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The calculation of orientation distribution functions (ODF) from incomplete pole
figures of any crystal symmetry can be carried out by an iterative procedure taking
into account the positivity condition for all pole figures. During the iterative
procedure the pole figures are normalized and the pole figure inversion leads to
stable results, i.e. the coefficients for higher degrees of series expansion keep small.
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INTRODUCTION

In a previous paper (Dahms and Bunge (1987)), a new method for
the calculation of an orientation distribution function (ODF) from
incompletely measured pole figures has been presented. This
method uses an iterative procedure in which the positivity condition

Ph,t(tr/) >-- 0 (1)
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for any pole figure desired is taken into account. Because the
normalization of the incomplete pole figures was carried out by
cubic extrapolation (Dahms and Bunge (1986)), this procedure can
only be used for pole figures from samples possessing cubic crystal
symmetry. It is the aim of this paper to generalize the method, such
that it can be used for any crystal symmetry.

MATHEMATICAL FUNDAMENTALS

(see also Dahms and Bunge (1987))

In the harmonic method, the coefficients FT(hkl) of a pole figure are
related to the coefficients C of the ODF by

4 M) C"(hkl) (2)F(hkl)
2l +----- ,=1

where k(hkl) are spherical surface harmonics satisfying crystal
symmetry.
The pole density values Phk(OZfl) of the corresponding pole

figures can be calculated from

L

Phkl(Ofl) FT(hkl)l[(trfl) (3)
I=0/1=1

where /’(o) are spherical surface harmonics satisfying sample
symmetry.

In the case of completely measured pole figures, Ff(hkl) can be
calculated from

FT(hkl) Phk,(O:fl)l7"(Ofl) sin te dte dfl
=0 =0

(4)

where * denotes the complex conjugate quantity.
The normalized pole density Phk(Ofl) cannot be measured

directly. It must be determined from the measured intensity
Ihkl([) using the relation

ehkl(O[) Nhkl Ihkl(O ) (5)
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where Nhkz can be determined from the normalization condition

Thus, for completely measured pole figures, Eq. (2) is an
overdetermined system of linear equations because normally more
than M(l) pole figures are measured. This problem may be solved
using a least squares method

4r
C"k(hkl) min (6)w

"7 21 + 1

with w as a weight factor.
The so determined C do not necessarily fulfill the positivity

condition, Eq. (1), but normally this doesn’t introduce serious
errors, if pole figures with low indices are chosen for the ODF
analysis.

In the case of incomplete pole figures, the pole figure coecients
F(hkl) cannot be determined directly from the pole figure values.
They are defined by a twofold integral of which one part is known
and the other is unknown:

F(hkl)/N,t 2. It()() sin dd
a=O =0

+ 2. Ih()r() sin ded (7)
max 0

The Ihk in the unknown part of the pole figures can be approxim-
ated by any expression. Here, a simple quadratic fl-independent
polynomial is suggested:

Ihkl() A +B +C2= Whkl() (8)
the coecients of which are obtained from boundary conditoins at

mx and /2. Details of this procedure were given in an
earlier paper (Dahms and Bunge (1986)). Using this approximation,
the second part of Eq. (7) is zero for any v 1.

Thus, the pole figures can be normalized approximatively and
first order F(hkl) can be calculated. Using Eq. (6), first order C
can be calculated, and from these F(hkl) and Phkl() can be
recalculated. Because of Eq. (1), all negative pole figure values can
be set to zero.
Now, a second order estimation of the Nhk can be obtained using
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the integral version of Eq. (5):

Phkl(Ofl) sin o do: dfl Nhk Ihkl(trfl) sin o: do: dfl
a=0 -tl=0 .a=0 ./=0 (9)

This method is similar to Van Houtte’s (1980) iterative method,
who did, however, not include the positivity condition.
A second order estimation of the unknown part of Eq. (7) is now

possible, thus leading to a second order estimation of the F’[(hkl).
In this way a loop is defined, which can be run through as often as
desired. There is no risk of divergency, because no negative values
are allowed according to Eq. (1). The flow diagram for the
procedure described here can be seen in Figure 1.

Also in this iterative procedure, it is possible to introduce
additional not measured pole figures after the first loop. They can
be treated in the same way as the measured pole figures, but no
iterative normalization is necessary. This may be useful, if the
number of measured pole figures is too small compared with the
desired degree of series expansion L given by the value M(L) in
Eq. (2). In this case, Eq. (2) is underdetermined and thus cannot be
solved without additional conditions. In the case that M(L) equals
the number of pole figures, all errors which may occur in the pole
figures are projected into the C via the error-containing F/(hkl).
Additional pole figures bound to the positivity condition may
generally lead to overdetermined systems of linear equations, which
may be solved by the least-squares method Eq. (6).

RESULTS

In order to test the suggested methods, one synthetic and two real
textures were used.
The synthetic texture was a hexagonal (0001)(10i0) texture with

a spread of 12.5. Figure 2 shows the corresponding ODF (L 22,
0o2 const.). Theoretical pole figures were calculated as described
earlier (Dahms and Bunge (1986)) in steps of Aa=5 and
Aft=3.6 up to max=70 in the approximation L=22 with
c/a= 1.5873 (Titanium). (0001), (10i0), (11.0), (10i2) and (11.2)
pole figures were obtained (see Figure 3). Because of the specific
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Figure 1 Flow diagram of the iterative procedure.

features of this texture, they possessed also hexagonal sample
symmetry, but they were treated in the general orthorhombic
symmetry. This texture was chosen, because in this case, the
normalization of some of the incomplete pole figures is extremely
difficult. For all pole figures of the type (hkiO), nearly all the
expected pole density is contained in the unmeasured range. Hence,
this texture presents a rather strong test of the proposed method.
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Figure 2 Theoretical ODF of a hexagonal (0001)(10i0) texture (q2=const.,
L 22, contour levels 12, 25, 50, 100 random).

The first real texture was the texture of the alloy ZnCu15
(e-brass), which was extruded at 480C from 75 mm q to 7 x
35 mm2. Here the same pole figures as above and the (10i3) pole
figure were measured with the same steps to Omx 70 using
Cu(Kte) radiation, they are shown in Figure 4. In the micrograph of
the longitudinal section (Figure 5), a banded recrystallized structure
can be seen.
The second texture was the texture of a tin sheet, which was

rolled 95.75% at room temperature. The (200), (101), (220), (211),
(301) and (112) pole figures were measured in the same way as the
brass pole figures but using the oblique section method as presented
by Welch (1980). Here the effect of an additional not measured pole
figure to the ODF analysis will be shown. The pole figures after
rotation to the standard projection and symmetrization can be seen
in Figure 6. In the micrograph of the longitudinal section (Figure 7)
also a recrystallized structure is found.
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Figare 3 Pole figures of the texture of Figure 2 with marked limiting tilt angle
t’ma 70 for incomplete pole figures (c/a 1.5873, contour levels 2, 3, 4, 6, 8, 12,
16, 24 x random).

Theoretical Texture

The five incomplete pole figures of Figure 3 were roughly normal-
ized using quadratic extrapolation Eq. (8). The so obtained
normalization factors were used as starting values for the following
iterative procedure. During the iteration, the normalization factors
changed continuously, which can be seen in Figure 8 for the case of
the (10i0) pole figure. The normalization factor converges to unity
but very slowly. Table 1 shows the normalization factors obtained
by the quadratic extrapolation and after 21st loop.



Figure 4 Incomplete pole figures of e-brass extruded at 480C from 75 mm q to
7 x 35 mm2 (contour levels 1, 2 7 x random).

Figure 5 Longitudinal section of the extruded e-brass.
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Figure 6 Symmetrized pole figures of 93.75% rolled tin, recrystallized at room
temperature (contour levels in multiples of the random intensity).

It can be seen that the errors of the normalization factors of two
pole figures (about 20%) are rather high. Nevertheless it must be
taken into account that in these two cases the Ph, in the
"measured" ranges are extremely low such that the absolute error is
low, too.
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Figure 7 Longitudinal section of the rolled tin sheet.

Within the same loops as the normalization factors, also the C
were calculated up to L 22. In Table 2, all non-zero coefficients
are given compared to the theoretical values. (The C} are
independent of the index v in this case.)

It is seen that the C i.e. the fibre texture components are well

3.5

3.0

i.5

2 4 6 8 I0 12 14 16 18 20 22

Figure $ Change of the normalization factor of the (10i0) pole figure of the
(0001) 10i0)-texture during the iterative procedure.
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Table 1 Normalization factors of incomplete
pole figures of a (0001)(10i0) texture with
Oo 12.5 before and after the iterative proce-
dure (The ideal value is 1)

Nhkil
hkil Initial 21st loop

(00_01) 0.999 1.003
(1010) 3.345 1.201
(11_20) 3.345 1.171
(1012) 1.039 1.002
(1122) 1.147 1.003

represented after the 21st loop, although the normalization factors
show considerable errors, while the errors increase with increasing
v. Nevertheless, they correspond with the theoretical one, even in
this extremely unfavourable case, within a reasonable order of
magnitude and the so obtained solution is stable. In Table 3 the
maximum values of the ODF and the texture index (Sturcken and
Croach (1963)) of the theoretical and the iteratively calculated
ODFs are shown.

Iterative texture analysis from incomplete pole figures leads, as it
is seen, to a somewhat smoothed ODF. This can also be seen in
Figure 9, where two sections of the ODF (even l) are shown. No
additional artefacts or oscillations are introduced by this method.

Table 2 Theoretical and interatively calculated C’"-values
from incomplete pole figures

Theor. 21st loop # v / v /z v
all / v 2 4 3 7 4 10
/z and v 1 1

2 4.656 4.667
4 7.097 7.115
6 7.895 7.897 7.643
8 7.230 7.240 7.055
10 5.687 5.675 5.564
12 3.921 3.927 3.915
14 2.395 2.374 2.609
16 1.305 1.321 1.562
18 0.637 0.624 0.614
20 0.280 0.299 0.362
22 0.111 0.096 0.255

2.486
1.707
1.063
0.694
0.439
0.417

0.358
0.078
0.079
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Table 3 Texture indices J and maximum
values of the ODF (fmax) of a (0001)(10i0)
texture calculated from theoretical coefficients
and from incomplete pole figures (even l)

J fm,x

Theor. 33.9 81.3
Incom. 31.5 78.2

Texture of extruded -brass

The coefficients C were calculated iteratively up to L 22. In
Table 4, the normlization factors obtained by quadadratic ex-
trapolation and after the 21st loop are shown.

It is clearly seen that the change of the normalization factors
during the iterative procedure is less then 10%. It can be concluded
that quadratic extrapolation is a good method to estimate the
normalization of an incomplete pole figure.
The C’’ for odd /-values were calculated using the zero range

method as presented by Lee et al. (1986). The zero range was
defined in the recalculated pole figures. A pole figure point with a
pole density <0.33 x random was assumed to belong to the
"physical" zero range according to Welch et al. (1987). The mean

80 =0

0 10" 20" 30* 10" 20* 30" 40 50"60" 70* 80* 90"

Fge Section of the ODF of the (01){10[0} texture (even l, =0,
() theoretical ODF, (.) ODF from incomplete pole figures).
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Table 4 Change of the normalization factors from
the quadratic extrapolation (Na) to the final value (Ne)

hkil Na Ne
(10i0) 0.4448 0.3861
(00_02) 0.3951 0.3731
(1011) 0.1076 0.1002
(1012) 0.8795 0.8482
(112_0) 0.8787 0.8163
(1013) 0.8726 0.8584

absolute C} vs. are shown in Figure 10. Additionally, the errors
for even are marked. It can be seen that the coefficients for odd
are in the range of the errors for the even 1. This is due to the fact
that there is a strong fibre component in the texture.
The complete ODF is shown in Figure 11. The main texture

component is a (ll,0)(10i0) texture at (0, 90, 0) which is
superposed by a (100) fibre texture with its axis parallel to the
extrusion direction. This can also be seen in Figure 12, where a
section of the ODF at q91 q92 0 is shown. The superposition of
these two types of textures is due to the extrusion process. An ideal
fibre texture would be expected in the case of a circular profile.

10

08

O6

04

02

6 8 10 12 14 16 18 20 22

Figure 10 Mean absolute values of the coefficients C’" vs. degree of series
expansion of extruded e-brass: (O) even (lower curve errors); (0) odd I.
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Figure 11 Complete ODF of extruded e-brass (tp2 const., L 22, contour levels
3, 6, 12, 24 x random).
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Figure 12 Section through the ODF of Figure 11.
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Texture of rolled tin

In this case, complete experimental pole figures were available, but
their number was too low in order to solve Eq. (6) up to a
satisfactory degree which was chosen as L 20. Because of the
tetragonal symmetry, it is M(20)=6. In order to level out ex-
perimental errors in the pole figures it is desirable, however to use
at least seven pole figures. Hence, the (001) pole figure, which
cannot be measured experimentally was introduced in the way
described above. Since the (001) pole figure has the lowest multi-
plicity of all pole figures in tin, it has large ranges of low or zero
intensity in which the positivity condition adds information to the
mathematical procedure by which the coefficients C’v are deter-
mined. The mean absolute values of the resulting C-coefficients for
the first and the 19th iteration steps are shown in Figure 13. The
improvement of the solution obtained by introducing the (001) pole
figure is to be seen in Figure 14 showing that the negative values
were considerably reduced.

Again, using the zero-range method, C’v for odd were
calculated up to L 21 starting from the "even" ODF without and
with additional (001) pole figure. With these coefficients complete
ODFs were calculated, which are shown in Figure 15a,b. It is

1.0
0.9
0.8
0.7

0.5

0.3

0.1

0.0
0 Z, 6 8 10 12 lZ, 16 18 20 22

Figure 13 Mean absolute values of the coefficients C vs. degree of series

expansion of rolled tin: (C)) first estimate; (r7) after the 19th loop (lower curves

errors).
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Figure 14 Circle cr 90 of the calculated (001) pole figure" (--.--) first estimate

() after the 19th loop.

clearly seen that some of the spread orientations have disappeared
in the latter case.
The accuracy of the ODF can be estimated by the resulting

negative values, either by the maximum negative value (which is the
minimum value fmin Of the ODF) or by the integral over the
negative region S_. These values are given in Table 5 along with the
maximum value and the texture index. The latter ones show a slight
decrease of the sharpness of the obtained ODF whereas the former
ones show a considerable decrease of the errors obtained by the
introduction of the (001) pole figure in the iterative process.

CONCLUSIONS

The iterative method described here including iterative normaliza-
tion and taking into account the positivity condition of all pole
figures allows the calculation of the ODF from incompletely
measured pole figures of all crystal symmetries. For lower crystal
symmetries, the positivity condition may be used to introduce
additional pole figures, which stabilize the coefficients of high order.
By that way, higher degrees of series expansion are possible and
false peaks introduced by series truncation are reduced. This
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Table 5 Texture index J (even l), maximum (fmax)
and minimum value (fmin) and weighted sum of
negative intensities S_ of the complete ODF of a
rolled tin sheet

J fmax fmin S__

Without (001) 3.95 20.6 -3.7 623
With (001) 3.63 19.6 -1.7 383

method can easily be implemented at any standard system of pole
figure inversion using complete pole figures.
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