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Abstract

We consider the problem of building a P2P-based search engine for massive document
collections. We describe a prototype system called ODISSEA (Open DIStributed Search
Engine Architecture) that is currently under development in our group. ODISSEA pro-
vides a highly distributed global indexing and query execution service that can be used
for content residing inside or outside of a P2P network. ODISSEA is different from many
other approaches to P2P search in that it assumes a two-tier search engine architecture and
a global index structure distributed over the nodes of the system.

We give an overview of the proposed system and discuss the basic design choices.
Our main focus is on efficient query execution, and we discuss how recent work on top- �
queries in the database community can be applied in a highly distributed environment. We
also give some preliminary simulation results on a real search engine log and a terabyte-
size web page collection that indicate good scalability for our approach.

�
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1 Introduction
Due to the large size of the Web, users increasingly rely on specialized tools to navigate through the vast
volumes of data, and a number of search engines, directories, and other IR tools have been built to fill this need.
While there is a plethora of smaller specialized engines and directories, the main part of the search infrastructure
of the web is supplied by a handful of large crawl-based search engines, such as Google, Inktomi, AltaVista,
and a few others. Such search engines are typically based on scalable clusters, consisting of a large number
of low-cost servers located at one or a few locations and connected by high-speed local area or system area
networks [7]. A lot of work has focused on optimizing performance on such architectures, which support up to
tens of thousands of user queries per second on thousands of machines.

The last few years have also seen an explosion of activity in the area of peer-to-peer (P2P) systems, i.e.,
highly distributed computing or service substrates built from thousands or even millions of typically non-
dedicated nodes across the internet that may join or leave the system at any time. Examples range from widely
used unstructured ad-hoc communities such as Napster, Gnutella, and FreeNet to recent academic work on
scalable and highly structured peer-to-peer substrates such as Chord [45], Tapestry [53], Pastry [42], or CAN
[38] that can support a variety of applications.

From the perspective of search engines and large-scale IR this development raises two interesting issues.
First, since an increasing amount of content now resides in P2P networks, it becomes necessary to provide
search facilities within P2P networks. Second, the significant computing resources provided by a P2P system
could also be used to implement search and data mining functions for content located outside the system, e.g.,
for search and mining tasks across large intranets or global enterprises, or even to build a P2P-based alternative
to the current major search engines. This second issue can be seen in the context of the following more general
question: Which of the Giant Scale Services [7] currently provided by cluster-based architectures can and
should be provided by more highly distributed or P2P systems? It has been established that applications such
as the sharing of large static files can be very efficiently implemented in a P2P environment. However, other
applications that, e.g., involve frequent updates to massive data, are more challenging, and may turn out to be
more appropriately implemented on clusters or on highly-robust distributed systems of dedicated nodes with
limited changes in topology (due to faults, or nodes joining or leaving).

In this paper, we describe a prototype system called ODISSEA (Open DIStributed Search Engine Architec-
ture) that is currently under development in our group. ODISSEA attempts to address both of the above issues,
by providing a “distributed global indexing and query execution service” that can be used for content residing
inside or outside of a P2P network. ODISSEA is different in several ways from many other approaches to P2P
search, as explained below. It encounters some basic challenges typical of those that arise when implement-
ing more dynamic applications involving frequent updates on P2P systems, leading to interesting algorithmic
problems and solutions. We describe and discuss the basic design choices and motivation and give some initial
results, with focus on the issue of efficient distributed query processing.

1.1 ODISSEA Design Overview

ODISSEA is a distributed global indexing and query execution service, i.e., a system that maintains a global
index structure under document insertions and updates and node joins and failures, and that executes simple
but general classes of search queries in an efficient manner. This system provides the lower tier of a proposed
two-tier search infrastructure. In the upper tier, there are two classes of clients that interact with this P2P-based
lower tier:

1. Update clients insert new or updated documents into the system, which stores and indexes them. An
update client could be a crawler inserting crawled pages,

�

or a web server pushing documents into the
index, or a node in a file sharing system.

�

Thus, crawling is not included as part of the lower tier, as justified by our subsequent discussion.
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2. Query clients design optimized query execution plans, based on statistics about term frequencies and
correlations, and issue them to the lower tier. Ideally, the lower tier should enable query clients to use or
implement a variety of different ranking methods.

There are two main differences that distinguish ODISSEA from most other P2P search systems. First, the
assumption of a two-tier architecture that aims to give as much freedom as possible to clients to implement
their own user interfaces and search and ranking policies. This is motivated by the goal of providing an “open”
search infrastructure that allows the creation of a rich variety of client-based search and navigation tools running
on user desktops. There are trade-offs between efficiency and flexibility that may limit the full realization of
this goal, and one of our main research goals is to investigate these trade-offs.

The second difference is our assumption of a global inverted index structure. Many current approaches
�

to
full-text search in P2P systems assume a local inverted index, where each node maintains an inverted index for
all local documents (or the documents of a few surrounding nodes), and queries have to be broadcast to all, or
on average at least a significant fraction, of the nodes, in order to get the best results. In a global index, the
inverted index for a particular term (word) is located at a single node, or partitioned over a small number of
nodes in some hybrid organizations. Thus, queries with multiple keywords require “combining” the data for the
different keywords over the network, at a cost that can be quite considerate. We discuss this decision in detail
later, and it has some consequences for the overall design.

http://poly.edu index://chair

ODISSEA
WWW

Search
Server

Crawler
Client

Client
queries

index://table

queries

Figure 1: ODISSEA as a web search infrastructure, with a web crawler as update client, and two query clients
(one client-based and one as a web-based search service). Also shown are indexes for the words “chair” and
“table”, and a node holding the document http://poly.edu.

Figure 1 shows the basic design. We decided to implement the system on top of an underlying global
address space provided by a DHT structure, in particular Pastry [42]. Each object is identified by a hash of its
name, where the name is the URL of a document or a string such as index://chair for the index structure
for the term “chair”, and is assigned a location determined by the DHT mapping scheme. Thus, the only way to
move an object is to rename it, resulting in a mapping to a random other node. (We note that the real mapping
scheme used by us is actually more complicated, to enable replication and load balancing.)

1.2 Target Applications

We have four main application scenarios that motivate our research, in particular:

(1) Search in P2P networks: To provide full-text search facilities for large document collections located
within P2P communities.

(2) Search in large intranet environments: Large organizations may use distributed search applications to
share machine resources, within a more controlled and possibly less bandwidth-constrained environment.

�

See [20, 29, 39] for exceptions.
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(3) Web search: Our most ambitious application is a P2P-based search infrastructure for the web that pro-
vides an alternative to the major search engines, with a powerful API (more low-level than, e.g., the
Google API) that supports the anticipated shift towards client-based search tools that exploit the re-
sources of todays desktop machines. We admit that this scenario may not be feasible in the near future
but we believe it still deserves study.

(4) Search middleware: Instead of inserting documents, clients could directly insert “postings”, i.e., index
entries. The system would then act as “global middleware” on top of a system of local index structures,
where nodes might periodically insert some of their postings into the system. The middleware could
then use a combination of local and global indexes, resulting in increased efficiency for certain types of
queries.

Paper outline: In the next section we justify our main design decisions and assumptions. Section 3 gives
more details about the system design. Technical details and preliminary experimental results on query process-
ing are provided in Section 4. Section 5 discusses related work, and finally Section 6 mentions some open prob-
lems. Updated information on this project is available at http://cis.poly.edu/westlab/odissea/.

2 Discussion and Justification
Two-tier approach: This choice was originally motivated by the web search application scenario. Given the
expected increases in speed and bandwidth of desktop systems, we see the potential for a rich variety of novel
search and navigational tools and interfaces that more fully exploit client computing resources, and that rely on
access to a powerful lower-level web search infrastructure. These tools may perform a large number of web
server or search engine accesses during a single user interaction, in order to prefetch, analyze, aggregate, and
render content from various sources into a highly optimized form. Existing early examples of these types of
client-based tools are browsing assistants such as the Alexa and Google Toolbars, Zapper, Leticia and Power-
Scout [30], the Stanford Power Browser [11], or tools built with the Google API. In addition, specialized search
engines (Google News, citeSeer) or meta search engines could also be supported by such an infrastructure.

Thus, the proposed system could be used to provide such a lower-level search infrastructure, with an pow-
erful open and agnostic API that is accessed by client- and proxy-based tools. By agnostic, we mean an API
that is not limited to a single method for ranking pages (e.g., the Google API, which returns pages according
to Google’s ranking strategy), but that ideally allows clients to implement their own ranking strategies. There
clearly are limits and trade-offs to this goal. The most general solution of performing most of the ranking
at the client requires large amounts of data to be transferred. On the other hand, we conjecture that limited
but powerful classes of ranking functions could be efficiently supported by providing appropriate “hooks” and
algorithmic techniques inside the system.

Given such an API a variety of client-based tools could share the same lower-level search infrastructure.
This issue is also related to the perceived “barrier of entry” in the search engine market. A lot has been written
in the trade press about the consolidation towards a few major players, and in particular about the dominating
role of the Google engine. We note that for a simple large-scale search engine with a limited query load, the
obstacles are actually not that high, and a small group of determined programmers could build such a system
in a few months on maybe a dozen low-cost machines.

�

Nonetheless, we believe this still presents a significant
obstacle to the creation of a wider variety of client-based tools, since developers would rather prefer to focus on
the tool itself than on building lower-level infrastructure. The wide response to the release of the Google API
shows the need for such an infrastructure, and we are envisioning are more low-level and general API based on
a P2P infrastructure.

Global vs. local index: The other important decision is the use of a global index instead of the more
�

In fact, this is how many of the current major players started out, and there are several attempts underway to build scalable open
source search engines.
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commonly used local index organization.
�

We now define some terms. First, an inverted index for a document
collection is a data structure that contains for each word in the collection a list of all its occurrences, or a
list of postings. Each posting contains the document ID of the occurrence of the word, its position inside the
document, and possibly other information such as whether the word is in the title or in bold face. Each postings
list is best visualized as a simple array, maybe sorted by document ID.

In a local index organization, each node creates its own index for all documents that are locally stored.
Thus, every node will have its own small postings list for common words such as “chair” or “table”, and
a query “chair, table” is first broadcast to all nodes and then the results are combined. In a global index
organization, each node will hold a complete global postings list for a subset of the words, as determined, e.g.,
by a hash function. Thus, every node will have a smaller number of longer lists, and under the standard query
evaluation strategy a query “chair, table” is first routed to the node holding the list for “chair” (the shorter
list), which then sends its complete list to the node holding the list for “table”. We emphasize here that our
approach does in fact not send the entire list, as explained later. The two index organizations are illustrated in
Figure 2. There have been a number of performance comparisons between local and global index organizations
and several hybrid organizations on parallel architectures; see, e.g., [4, 12, 48], but these studies do not directly
apply to widely distributed environments.

table

and
table
chair

chair

Figure 2: Query processing in a local (left) and global index organization.

The main issue with local index organizations is that all or most nodes need to be contacted for most
queries, and thus such schemes are unlikely to scale beyond a few hundred nodes. There have been attempts
to overcome this issue by routing queries only to those nodes that are likely to have good results

�

or are in
the vicinity [27, 43, 16]. However, we do not believe that this approach will scale at all if result quality is a
major concern, since document collections are simply not naturally clustered in a way that allows queries to
be routed to only a small fraction of the nodes. This is certainly the case for the current web, where a search
infrastructure based on local indexes at each site would be extremely inefficient. This could be somewhat
improved by clustering the entire document collection appropriately, though this seems quite challenging to
do [29]. Moreover, the statistics needed to intelligently route queries will be quite large for large collections
and many nodes since the number of distinct words grows with collection size; the existing literature has only
evaluated fairly small collections of maybe a few gigabytes.

In a global index organization, however, large amounts of data need to be transmitted between nodes, since
large document collections result in lists of megabytes or more for all except fairly rare words. This problem
has led some people to reject global indexes as unrealistic for environments with more limited bandwidth,
and for moderate numbers of nodes a local index is probably a better choice. However, we believe that this
problem can be overcome by the use of smart algorithmic techniques. One such technique was recently applied
in this context in [29, 39], where Bloom filters are used to decrease the cost of intersecting lists of postings
over the network, though this only improves results by a constant factor. We investigate in Subsection 4.1 how

�

These two organizations are also sometimes referred to as vertical and horizontal index partitioning [32]. We avoid these terms
here as they tend to lead to confusion with standard database terminology.

�

This problem is also known as the database selection problem in the meta search community [33].
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recent results on top-
�

queries in the database literature [18] can be applied to our scenario to asymptotically
reduce communication requirements. We believe that these techniques, combined with other query optimization
techniques, allow interactive response times even on very large data sets.

Updates are another challenge for a global index structure. A new or updated document will result in a
large number of index updates, one per word in the document, that now have to be routed to the different nodes
responsible for these words. Thus, there will be a persistent very fine-grained communication pattern among
the nodes of the system that needs to be implemented carefully. Finally, we note that the choice between local
and global index structures also depends on the types of queries and the frequency of document updates; this
motivated the “middleware” application in the previous section where the best combination of index structures
is used.

Crawling punt: As mentioned, we assume that in the web search application crawling would be performed
by crawling clients that fetch and insert documents. The main reason is that from our own experiences with
large-scale crawling [44] we are not sure a P2P solution is appropriate. Large crawls generate many manage-
ment issues due to queries or complaints from web site operators and network administrators. It is important
to be able to reconfigure a crawler quickly to avoid certain web sites or subnetworks or to modify its behavior,
and failure to do so can result in problems with local administrators or upstream network providers. � Moreover,
smart crawling strategies beyond BFS are hard to implement in a P2P environment unless there is a centralized
scheduler. We refer to [6, 14, 15] for work on highly distributed crawling.

Thus, we would expect that a handful of powerful crawling clients would provide most documents, and we
plan to use our Polybot crawler [44] to initially populate the system with data. It might be more appropriate
to incorporate recrawling into the system, though. Thus, an inserted page could be labeled with an expiration
date, after which it is automatically refreshed by the node holding the page. Alternatively, web sites could also
push their pages into the system.

P2P systems and fault tolerance: Utilizing idle computing, network, or disk resources is one of the main
motivations for building P2P systems. However, there is a fundamental challenge facing applications that
use large amounts of disk space on remote nodes, such as a search engine. Given current network speeds, it
would take days or weeks to transfer enough data to a newly joined node to utilize any significant fraction of
a ����� GB hard disk, and during this time the node would probably consume more resources than it adds to the
system. Thus, it would appear that such applications are maybe best restricted to the more stable end of the
P2P spectrum, where most nodes remain in the system for an extended period of time, and would be wasteful
to implement on highly dynamic P2P systems.

Our system design also relies on this assumption of a more stable system. However, we distinguish between
nodes that are temporarily unavailable and nodes that have permanently left the system. When a node rejoins
the system after an extended period of unavailability, an interesting problem arises: how do we efficiently
synchronize its data structures, in this case the index structures, with an up-to-date copy held by another node,
to incorporate any changes that were missed during unavailability? We discuss this problem in more detail later.
Other questions involve distinguishing between failed and unavailable nodes, when to rebuild data on failed or
unavailable nodes, and how quickly data should be pushed to newly joined nodes.

3 System Design Details
In this section we describe our current system design in more detail. Note that query processing is described in
the next section. Also, many additional details have to be omitted due to space constraints. We are currently
implementing a first version in Java, using Pastry as a P2P substrate. Each node runs a modified version of a
high-performance indexer that is being developed within our group, which stores inverted lists in compressed
form in Berkeley DB. All documents are also stored in BDB.

�
Of course, for certain types of crawling activities, e.g., to surreptitiously monitor certain web sites, a P2P solution may be preferable

for the very same reasons.
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Names and Hashing: As mentioned, a document has a name such as http://www.cnn.com/ while
an inverted list for a term (e.g., “chair”) has a name such as index://chair. Using MD5, we hash these
names to

� � -bit IDs. All lookups into the system are performed using these IDs.
Parsing and Routing Postings: A newly inserted or updated document is parsed at the node where it

resides, as determined by the DHT mapping. The parser generates a set of postings for the document, where
each posting is a tuple containing the term (word), the

� � -bit document ID, the position within the document,
the length of the document, and the context of the term occurrence (in bold face, in the title, etc.). It is best
to think about these postings as update commands that have to be applied to the index structure. In particular,
there are commands to add and delete a term occurrence from the index, and for shifting an occurrence within
a document by a given number of positions (for the case of updated pages). During transfer, postings are
transformed into a slightly more succinct format.

Each posting must be propagated to the node holding the corresponding index in the ODISSEA network.
Given the very fine-grained communication pattern resulting from this, it would not be a good idea to open
direct TCP connections to the destinations. Instead, postings are routed via several intermediate destinations, as
determined by the topology of the Pastry network. Once they arrive at the destination, postings are queued and
then applied to the appropriate index structure. Due to their semantics, it does not matter in which order postings
arrive and are applied, as long as we do not parse two different versions of the same document within a short
period of time (in which case the resulting index for this document could become inconsistent.) Locally, index
structures are organized to allow index updates with low amortized complexity. Thus, updates are inserted into
a small index structure that is eventually merged with larger and larger structures on disk; similar techniques
are, e.g., used by the Lucene indexer of the Apache Jakarta project and the text indexer of SQL Server.

Groups and Splits: Recall that objects are identified by an
� � -bit ID. However, we do not directly present

this ID to Pastry to determine the location of an object. Instead, we group a large number of objects into a
group. Initially, all objects (documents, indexes) whose first � bits coincide (say, for ������� ) are placed into
a common group identified by this � -bit string. Pastry then uses this string to determine where the group is
located. Locally, each group maintains a Berkeley DB database with all objects it contains.

When a group becomes too large (say, larger than � GB), it is split into two groups identified by a �	��
��� -bit
string and objects are divided between the two groups in the obvious way. As a result, the new groups will be
assigned to new locations by Pastry. However, a stub structure will remain accessible under the old � -bit label,
and this stub structure maintains a table of all its descendants. In fact, each descendant strictly speaking also
consists of a stub and the actual data. When a new node takes over some part of the Pastry address space, the
appropriate stubs are immediately transferred to it, while the actual data can be moved later in a lazy fashion;
see Figure 3.

We also have splitting rules for index structures. When the inverted list for a common term grows beyond
a certain size (e.g., � ��� MB), the list is split into two lists, containing postings with document IDs starting with
“0” and “1”, respectively. These new lists are renamed appropriately and thus assigned to new groups, with a
stub remaining under the old name. Note that performing the split based on the document ID in this way results
in simple and efficient query execution plans during query processing. However, only the largest lists are split.

Replication: Replication for fault tolerance is performed at the group level. For example, we may decide to
have four replicas of each group, which are named by attaching “/0”, “/1”, “/2”, and “/3” to its group label; this
new label is then what is really presented to Pastry during lookups. We assume that all replicas of a group form
a clique and periodically communicate to update their status; if a group replica fails, the others are in charge of
detecting this and if necessary performing repair. Each node can contain a number of group replicas, and thus
participates in a number of cliques; see Figure 3. Postings from a new or updated web page are first routed to
only one replica of the appropriate index structure. This replica is then in charge of forwarding the postings to
the other currently available replicas over a period of a few minutes.

Faults, Unavailability, and Synchronization: When a node leaves the system, its group replicas eventually
have to be replaced to maintain the desired degree of replication. A problem is that we may not always be able
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Figure 3: Left: A group has been split, resulting in three descendants. The node holding one of the descendants
has only recently joined the Pastry address space, and thus the actual data associated with the descendant is still
at its old location. Right: A node holding two group replicas, each shown with its clique.

to distinguish between failed and temporarily unavailable nodes. One solution is to declare a node failed if it
has been unavailable for an extended period, and to create a new replica whenever a node has failed or more
than a certain number of nodes are unavailable.

Once a node has been unavailable for a longer period of time, it needs to synchronize its index structures
when it rejoins the system. Ideally, this should be done in a bandwidth-efficient manner, so that the amount of
communication is proportional to the number of missed updates to the index. We note that there are a number
of traditional approaches to such problems that rely on logs of previous updates or appropriate time stamps. We
are currently studying the use of recently studied set reconciliation techniques to solve this problem without
logs or time stamps; see [26, 35] for recent work and [46] for a survey.

4 Efficient Query Processing in ODISSEA
In this section we describe query processing in the proposed system. A naive implementation of ranked queries
with a global index structure would result in transfers of many megabytes of data for many queries from a typical
query load. Since realistic bandwidths for P2P applications in WAN environments are on the order of maybe
a few hundred kilobytes per second, this would result in response times of many seconds or even minutes. We
now describe how to adapt a recent set of techniques by Fagin and others [17, 18, 19] to our scenario, and give
measurements of the expected savings from this approach based on a real search engine query log and a set of
� ��� million web pages from a recent crawl that we have carried out.

4.1 Some Background and Algorithmic Techniques

Ranking in search engines: We first give some background on ranking in search engines. Search engines
rank pages based on many criteria, including classical term-based techniques from IR, global page ranks as
provided by Pagerank [8] and similar methods, whether text is in bold face or within a hyperlink, and dis-
tances between the search terms in the documents, among others. Formally, a ranking function is a function�

that, given a query consisting of a set of search terms ������� � �������	��
�� � , assigns to each document  a score� ������ � ����������� 
�� �  . The top-
�

ranking problem is then the problem of identifying the
�

documents in the
collection with the highest scores. We focus on two families of ranking functions, of the forms

� ���  � 
�� �� �
� �

� ������
�
 and

� ���  ��� ��  
 
�� ���
� �

� ������
�
��

The first family includes the common families of term-based ranking functions used in IR, where we add up the
scores of each document with respect to all words in the queries. In particular, this also includes the well-known
class of cosine methods; see, e.g., [51]. The second formula adds a query-independent value � ��  to the score
of each page; this could for example be a suitably normalized Pagerank value. Thus, these two families include
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many important ranking functions, and we could in fact use any other monotone function instead of addition to
combine the various functions in the above formula. Note however that techniques using the distances between
the query terms in a document would lead to an additional function

� ������ ������������� 
�� �  that depends on all
query terms, and that this would impact the efficiency of the methods described in the following.

Queries to search engines have on average less than three terms, and search engines typically evaluate a
query by considering all documents in the intersection of the inverted lists, i.e., all documents that contain
all search terms. � An easy information-theoretic argument shows that determining the intersection of two lists
located at different nodes requires transmitting an amount of data linear in the size of the shorter of the two lists.
However, recent work in the database community [18] shows how to evaluate top-

�
queries without scanning

over the entire intersection.
Fagin’s Algorithm (FA): We now describe the first algorithm, which was originally proposed in [17] for

the case of multimedia queries, e.g., to retrieve images from an image database. We will state them directly for
our scenario, first for the case of the first family of ranking functions without � ��  . Intuitively, the algorithm
exploits the fact that an item (document, university) that is ranked in the top is likely to be ranked very high in
at least one of the contributing subcategories (term scores, departmental rankings).

Consider the inverted lists for a search query with two terms � � and � � . For the moment, assume they are
located on the same machine, and that the postings in the list are pairs of the form ���� � ������

�
  , ����� � ����� ,

where  is an integer identifying the document and
� ������

�
 is real-valued. Assume that each inverted list is

sorted by the second attribute, so that documents with largest value of
� ������

�
 are at the start of the list. Then

the following algorithm, called FA, computes the top-
�

results:

(1) Scan both lists from the beginning, by reading one element from each list in every step, until there are
�

documents that have each been encountered in both of the lists.

(2) Compute the scores of these
�

documents. Also, for each document that was encountered in only one
of the lists, perform a lookup into the other list to determine the score of the document. Return the

�

documents with the highest score.

ab c d

b cda

scan frontier
chair

table

Figure 4: Fagin’s Algorithm on the terms “chair” and “table”. At this point, the first 	 postings in each list
have been scanned, and two documents ( 
 and � ) have been encountered in both of the lists. If

� � � , then the
scan of Step (1) is complete at this point. Other documents such as � and  have been encountered in only one
list, and a random lookup is now needed to find them in the other list. In the case of  , the random lookup fails
because  does not contain the word “chair”. Documents not containing a term are shown in outlines at the end
of each list, though they would not actually be stored in an inverted list implementation.

The algorithm is illustrated in Figure 4. It is not difficult to see that this indeed returns the top-
�

results
overall. It is shown in [17] that if the orderings of documents in the two lists are independent, then the algorithm
terminates after looking at only  ��� ���  entries in each list, where

�
is the number of documents in the

�
This is in contrast to “traditional” IR systems that tend to consider the union of the inverted lists, and where typical queries consist

of a dozen terms or more. The results in this subsection do not really depend on this choice.
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collection (not the length of the list). In the case of queries with � terms, the bound becomes  � ����� �

� � �

�  .
Thus, for long lists this significantly improves over scanning the entire list. If terms are positively correlated,
then the result improves, while it gets worse for negatively correlated terms. Note that the result is independent
of the actual “shapes” of the distributions of the

� ������
�
 , though refinements to the basic technique could

potentially exploit special distributions such as Zipfians.
Threshold Algorithm (TA): The following refinement to the algorithm was proposed by several authors;

see [18] for a discussion. In the refinement, we again simultaneously scan both lists, so that in each step we
read an item ���� � ������ �   from the first list and an item �� � � � �� � ��� �   from the second list. In each step we
compute

� � � ������ �  
 � �� � ��� �  ; note that  and  � will usually be different documents. Also, whenever we
encounter a document in one of the lists, we immediately perform a lookup into the other list to compute its
complete score. As soon as we have found

�
documents with score larger than the current value of

�
, we return

these as the results. It can be shown that TA is correct and always terminates at least as early as FA, though the
asymptotic bounds remain the same.

Integrating query-independent scores: We can naively adapt both algorithms to the second family of
ranking functions as follows. Instead of sorting each list by

� ������
�
 , we sort by

� ������
�
 


�

��� � ��  , so that the
total score is the sum of the sort attributes from both lists. Note that from a performance point of view, this
should in fact increase efficiency, as it introduces significant correlation between the ordering of the two lists.

However, in reality we cannot combine term-based and link-based scores simply by adding them up. In-
stead, it is preferable to normalize the scores in a query-dependent way that minimizes the effect of outliers.
Following [40] we do this by normalizing using the mean of the top- � ��� term-based and link-based scores that
appear in the two (or more) lists; see [40] for details. This means that the inverted lists cannot be completely
organized in sorted order before the arrival of the query, though they can usually be kept approximately sorted.
In our distributed setting this is not really a problem since we are interested in minimizing bandwidth con-
sumption and not processing cost at the node. One further issue concerns the Pagerank value that we use in
this context. After some experimentation, we concluded that rather than using the raw value as output by the
iterative Pagerank computation, it is more appropriate to use the logarithm of this value; the resulting value dis-
tribution is more similar to that of the cosine values, while the raw scores are extremely skewed. However, we
ran experiments for both cases and in general there are many possible approaches here. We note that Pagerank
is only one of many possible global orderings; others might be based on a different link analysis technique, text
analysis, or user access data.

A natural question that we do not address is how the global ordering is computed and made available to all
nodes in the system. Again, Pagerank is only one of many possible orderings and we do not propose here to run
Pagerank inside a P2P system. One alternative that fits into our vision of client-determined ranking functions is
to allow clients to compute their own global orderings which can depend on their personal preferences [23, 24].
This ordering can then be treated as an additional term in each query posed by a client, and the query can
be evaluated using the protocol proposed in this paper (though with slightly diminished efficiency due to the
additional term, and with minor internal changes to incorporate normalization). An experimental evaluation of
this approach remains to be done.

4.2 Experimental Results on Real Data

We run some initial experiments to determine the potential savings due to the above schemes. We note that these
experiments are still in a centralized setting; we consider distributed implementations in the next subsection.
There have been previous evaluations of the basic FA and TA algorithms on data sets from other application do-
mains, but not on large-scale web data or in conjunction with global measures such as Pagerank. For such large
collections, indexes typically reside on disk, and the random lookups make the proposed schemes unsuitable
in a centralized scenario. The situation is different, however, in the distributed case or for scenarios where the
indexes can fit into the large main memories of state-of-the-art machines.

For the experiments, we use queries selected from a log of over � million queries posted to the Excite search
engine on December 20, 1999. For the reported experiments, we used 	���� two-term queries selected from this
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top1 top4 top10 top100

Length of shorter list 879,010 879,010 879,010 879,010
Intersect 786 1,171 1,705 8,033
FA (cosine only) 4,638 8,012 12,445 39,306
TA (cosine only) 1,114 2,199 3,441 13,014
CA (cosine only) 371 931 1,729 9,429
FA (cosine + pagerank) 3,038 5,083 8,453 34,029
TA (cosine + pagerank) 677 1,346 2,255 11,333
CA (cosine + pagerank) 245 578 1,075 8,075
FA (cosine + log(PR)) 944 1,410 2,137 9,709
TA (cosine + log(PR)) 228 373 625 3,721
CA (cosine + log(PR)) 97 166 288 2,102

Table 1: Average costs of the various methods on a data set of � ��� million pages.

set. Our document collection consists of about � ��� million web pages crawled by the Polybot crawler [44] in
October 2002, for a total of about ��� � TB of data. We removed queries containing words with more than

� �
million postings (stop words such as “a”, “the”, “with”, “as”), as is done by many engines, and we removed
queries with less than � ��� results in the intersection of the lists. For the first family of ranking functions,
we used a standard cosine measure. For the second family, we defined � ��  as an appropriately normalized
Pagerank score computed from a web graph extracted from our crawl.

Table 1 shows the average number of postings that have to be accessed from each list under various algo-
rithms on the � ��� queries. In the first row we have the number of postings in the shorter of the two inverted lists;
this represents the cost incurred by the unoptimized algorithm where we transmit the entire list. In the next line,
we have the number of postings that are scanned if we are only interested in getting an arbitrary

�
elements

that contain both query terms. This might be considered a reasonable lower bound � on what we could hope to
achieve with the optimized methods, and was measured by ordering indexes by document ID and scanning from
the beginning until

�
elements in the intersection are found. We note that this cost can in some cases be quite

significant, say for two inverted lists of length � � � �  with no correlation where we might have to scan most
of the lists to find a single document containing both words. In the experiments, we also include an idealized
algorithm called CA (Clairvoyant Algorithm) that stops as soon as it has encountered the top-

�
elements; this

shows the cost between finding the top-
�

results and being certain that we have found them.
We show results for FA, TA, and CA, with and without Pagerank. As we see from the data, all three

algorithms perform significantly better than the basic algorithm. The results for TA and CA show that we can
usually terminate the scan much earlier without impact on the result. We also see that including the Pagerank
score results in improved performance, in particular when using the logarithm of the raw score, while the
extremely skewed raw Pagerank score gives less benefit. We also see that in a number of cases the algorithms
perform better than the algorithm for finding

�
elements in the intersection; this is due to the fact that many of

the terms in the queries are correlated so that documents scoring high in one term are also more likely to score
high in the other term.

Table 2 gives a more detailed look at the results, grouped by the length of the shorter of the two inverted
lists, i.e., for the one-fifth of queries with the shortest shorter inverted lists, the next one-fifth, and so on. We
see that as predicted by the asymptotic results, we get the most benefit when it really counts, i.e., for queries
that would be very expensive otherwise. Interestingly, including Pagerank helps even more for longer than for
shorter lists. Figures 5 to 9 in the Appendix provide even more details, and show the costs of the methods for
various combinations of list lengths. E.g., Figure 7 shows results for the middle quintile of the shorter lists,
for different lengths of the other, longer list. As we see, performance varies quite a lot among the different

�
If we discount correlations between query terms.
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shortest 20% shorter 20% middle 20% longer 20% longest 20%
Shorter list 10,401 63,853 222,948 666,717 3,371,176

top10 top100 top10 top100 top10 top100 top10 top100 top10 top100

FA (cosine only) 5,298 7,452 16,115 34,786 17,361 59,105 13,541 52,214 10,017 43,058
TA (cosine only) 2,057 4,978 4,083 15,304 2,904 12,677 4,417 16,942 3,754 15,244
CA (cosine only) 705 3,031 2,251 9,609 1,285 9,332 2,495 13,126 1,916 12,131
FA (cos + log(PR)) 3,691 7,582 3,990 21,730 1,672 11,109 865 5,623 498 2,615
TA (cos + log(PR)) 889 3,922 922 6,762 610 3,587 407 2,834 304 1,534
CA (cos + log(PR)) 227 1,696 403 3,283 352 2,309 261 2,032 197 1,200

Table 2: Average number of accesses for different quintiles of the length of the shorter list.

cases, and we do not yet have a complete explanation for the behavior. We note also that it is not clear that one
should scan both lists at the same speed as done in Fagin’s algorithm; maybe the shorter list should be scanned
at higher (or lower ?) speed. We are working on a model to explain this behavior.

In summary the results indicate that an appropriate distributed protocol based on these algorithms might
have the potential to achieve interactive response times in WAN environments even for the fairly large data set
that we used.

4.3 A Simple Distributed Protocol

We now adapt these techniques to a highly distributed environment with limited bandwidth as well as high
latency. Thus, we have to limit ourselves to one or a few roundtrips between the nodes holding different inverted
lists. There is also a potential bottleneck in the random lookups performed by the FA and TA algorithms. In
a high-bandwidth environment, this is a serious drawback of the algorithms since large index structures have
to reside on disk. As a result, other pruning methods have been proposed for this case [1, 37] that avoid such
accesses but instead need to scan a significant part of the inverted lists. In a P2P environment this is less
of a concern, and a large set of random lookups could always be resolved by performing a local scan over the
inverted list. Following is our proposed distributed implementation, called DPP (Distributed Pruning Protocol),
for the case of two search terms and a ranking function from the first family (i.e., without the term � ��  ).
Algorithm DPP:

(1) The node holding the shorter list, called node
�

, sends the first � postings of its inverted list to node � .
(Let’s assume for the moment that

�
somehow knows the best value of � .) Also, let � 


�
� be the smallest

(last) value
� ������ �� transmitted.

(2) Node � receives the postings from
�

, and performs a lookup into its own list in order to compute the
total scores of the corresponding documents. Retain the

�
documents with the highest score among these.

Let ��� be the smallest score among these documents.

(3) Node � now transmits to
�

all postings among its first � postings with
� ������ � ������
	���


�
� , together

with the total scores of the
�

documents from Step (2).

(4) Node
�

now performs lookups into its own list for the postings received from � , and determines the
overall top

�
documents.

One remaining question is how to choose the value of � . This could be done by deriving appropriate formulae
based on extensive testing. Alternatively, we could use sampling-based methods [9] to estimate the number of
documents appearing in both prefixes. In either case, a wrong estimate could be corrected at the cost of an extra
roundtrip.
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shortest 20% shorter 20% middle 20% longer 20% longest 20%

Shorter lists 10,401 63,853 222,948 666,717 3,371,176
Number of postings sent from A to B 2,057 4,083 2,904 4,417 3,745
Number of postings sent from B to A 1,486 4,084 2,891 4,413 3,745
Total bytes transferred 28,344 65,336 46,360 70,640 59,920
Total communication time (400 Kbps) 1,052 1,477 1,216 1,550 1,405
Total communication time (2 Mbps) 833 1,368 1,107 1,441 1,295

Shorter lists 10,401 63,853 222,948 666,717 3,371,176
Number of postings sent from A to B 889 922 610 407 304
Number of postings sent from B to A 792 923 612 407 307
Total bytes transferred 13,448 14,760 9,776 6,512 4,888
Total communication time (400 Kbps) 720 757 648 463 426
Total communication time (2 Mbps) 612 648 538 353 317

Table 3: Communication costs and estimated times of the protocol for top- � � queries, for cosine measure (top
� lines) and cosine + log(PR) (bottom � lines).

4.4 Evaluation of DPP

To estimate the performance of DPP on our data and query set, we need an appropriate model of communication
cost. In our system, we open a new TCP connection between the participating nodes for each query. To model
the effect of the TCP congestion window on performance, which is significant in our scenario, we use a model
for file transfer cost under TCP recently proposed in [50] with typical parameters for a broadband connection
between the East and West coast of the US.

�
In particular, we assume a roundtrip signaling delay of

� � ��� , and
a bandwidth limit between 	 ��� kbits and � mbits per second on the first and last leg. For both directions, we
incur the cost due to the congestion window, and for the first message we have the additional cost of establishing
the connection.

We assume that each posting is transmitted in
�

bytes on average, as follows: We hash the
� � -bit document

IDs down to � bits, where � is chosen such that the likelyhood of a collision between the transmitted prefix and
the other list is less than, say, � � � � . We then encode the hashes using standard gap compression techniques
[51]; this results in at most 	 � to 	 � bits per hash; the rest of the

�
bytes is used for an approximation of the

term value
� ������ �  . We note that our protocol could be adapted to recognize when a collision occurs, in which

case an additional roundtrip can be used to fix the problem. (Observe that the scheme is a bit like using a very
precise compressed Bloom filter with one hash function.)

Table 3 shows the estimated cost of the algorithm, using the same data set as before. There are two as-
sumptions in the measurements. First, we choose the length � of the prefix that should be sent from

�
to �

by using the results of the experiments on the TA algorithm. This is optimistic since the parties do not have
these results available; on the other hand, the results from the CA algorithm indicate that even a low estimate
would often return the correct result (or we could choose an additional roundtrip to be sure). Second, we do not
measure internal computation within nodes. Of course, this internal computation is also incurred by standard
(non-P2P) search engines, and most of it is overlapped with communication anyway. We believe that neither of
these assumptions changes the measurements fundamentally.

The results indicate that interactive response times are possible on terabyte size collections. Note that large
engines such as Google in fact use data sets that are ��� to ��� times larger than ours. According to the theoretical
bound of � � this would result in an additional factor of about

�
on the amount of data transmitted. Use of

more than two keywords would also increase communication. On the other hand, the above algorithm is really
only a baseline as discussed in the following.
�
The model in [50] is similar to other TCP models that have been proposed.
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4.5 Optimizing Query Execution Plans

The above protocol is just a first step towards efficient query execution. There are two other ways to get further
improvements: (1) use of Bloom filters as studied in [39], and (2) use of the hybrid partitioning described in
Section 3 where large inverted lists are split among several nodes. We note that the second approach does
not actually decrease the total cost of a query, but it can improve total latency by splitting communication and
computation among several nodes. As it turns out, Bloom filters can be combined in several interesting ways
with our protocol. The end result is that there are a large number of possible ways to execute a query on three
or more search terms. We are currently studying in detail how to derive the best possible plans.

Recall that the design of a good query plan is up to the query client in our system. This would be done in
two phases. The client first inquires basic statistics such as term frequencies, mean values for the normalization,
and possibly samples [9] to estimate correlations between terms from the system. The system would return the
statistics and also the IP addresses of the nodes holding the lists. This type of information can be very efficiently
cached in the system as it is small compared to the rest of the data. In fact we really only need to keep statistics
for inverted lists of significant length (e.g., more than a few thousand postings).

Given the statistics, the client knows which search term has the shortest inverted list, and which of the
longer inverted lists are partitioned between several nodes. In the second phase, a query plan is designed as
a directed labeled graph, where the nodes are nodes in the network identified by address, and the edges are
labeled with the type of protocol to be used, e.g., send complete list if small, send a Bloom filter of the list, send
a prefix of a list as done in the baseline DPP protocol, or send a Bloom filter of a prefix.

5 Related Work
For background on indexing and query execution in IR and search engines, we refer to [3, 5, 51], and for issues
in parallel search engine architecture we refer to [7, 8, 28, 41]. Discussions and comparisons of local and
global index partitioning schemes and the resulting query performance on parallel architectures are given, e.g.,
in [4, 12, 25, 31, 32, 48].

There has been a lot of recent interest in the pruning techniques of Fagin et. al [17, 19]; see also [18] for a
survey and [13] for early related ideas. Most of the interest has been focused on multimedia and meta search
scenarios, and we are not aware of previous applications in a peer-to-peer environment. On the other hand, there
has also been significant work in the IR community, much of it preceding the above, on pruning techniques for
vector space queries. Some early work is described in [10, 22, 37, 49, 52], and more closely related recent
work is in [1, 2]. One difference between these two strains of work is that in the IR case, a random lookup
of a posting is much more expensive than scanning it. Thus, the recent pruning techniques from IR typically
restrict index access to scans, resulting in more limited savings. In our case, we are primarily concerned with
bandwidth, making this less of an issue.

There has been significant interest in search in distributed and P2P systems over the last few years. We note,
however, that the problem of full-text search on terabyte-size collections is different from that on smaller col-
lections or on systems that only index titles and keywords for multimedia objects (e.g., mp3 files). Some recent
work on text search in P2P systems with local index organization appears in [16, 27, 43, 47]. As explained, the
global index organization is one of the aspects that distinguish our system from others. Another very different
approach to distributed search is taken by systems such as JXTA [34], STARTS [21], and the Z39.50 standard
[36], which are mainly concerned with issues of combining outputs from diverse search tools.

Global index organizations in a peer-to-peer environment have recently been discussed in [20, 29, 39]. The
work by Reynolds and Vahdat [39] considers the benefits of using Bloom filters instead of sending an entire
inverted list during query execution. Subsequent work in [29] estimates the potential benefit of using a combi-
nation of techniques, including Bloom filters, clustering, compression, caching, and adaptive set intersection,
compared to the naive algorithm that transfers the entire list. The paper concludes that these techniques to-
gether save a significant constant factor and bring the approach close to feasibility for terabyte data sets. The
authors also mention the possibility of using Fagin’s pruning technique [18] for additional improvements, but
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no details are provided. We note that combining Fagin’s technique with those in [29] is possible, as indicated
in Subsection 4.5, but the details are tricky and the returns will diminish as more techniques are applied.

6 Open Questions and Future Work
In this paper, we have given an overview of the ODISSEA system, and presented some very early results on
query processing in the system. There are numerous open questions for future work. In particular, we are
currently working on a framework for generating optimized query execution plans for multi-keyword queries
based on a combination of pruning techniques, Bloom filters, and compression. We are also studying new
algorithmic techniques for the index synchronization problem described in Section 3, and strategies for load
balancing and rebuilding of lost replicas in an environment where nodes hold very large amounts of data but
may be temporarily unavailable. Beyond these specific items, the general question remains whether the near
future will see massive P2P-based systems for challenging applications such as web search and large-scale IR,
beyond the current simple applications such as file sharing.

Finally, we are working on some improvements in the experimental evaluation in this paper. This concerns
experimental results for queries with more than two keywords and phrase searches, and the effects on efficiency
of using term distance in the ranking.
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Figure 5: Performance of the various algorithms for top- � � and top- � ��� queries, for the ���
�

of the queries
with the shortest shorter lists (first quintile). In each chart, the average number of tuples scanned is plotted
versus the lengths of the other (longer lists), which are also grouped into quintiles.
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Figure 6: Performance of the various algorithms for top- � � and top- � ��� queries, for the second quintile of
the shorter lists. In each chart, the average number of tuples scanned is plotted versus the lengths of the other
(longer lists), which are also grouped into quintiles.
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Figure 7: Performance of the various algorithms for top- � � and top- � ��� queries, for the third quintile of the
shorter lists. In each chart, the average number of tuples scanned is plotted versus the lengths of the other
(longer lists), which are also grouped into quintiles.
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Figure 8: Performance of the various algorithms for top- � � and top- � ��� queries, for the fourth quintile of the
shorter lists. In each chart, the average number of tuples scanned is plotted versus the lengths of the other
(longer lists), which are also grouped into quintiles.
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Figure 9: Performance of the various algorithms for top- � � and top- � ��� queries, for the ���
�

of the queries
with the longest shorter lists (fifth quintile). In each chart, the average number of tuples scanned is plotted
versus the lengths of the other (longer lists), which are also grouped into quintiles.

22


