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Abstract

Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics
with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position,
extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild
and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the
evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with
genomics would yield significant insights into the evolutionary processes that would not be gained easily by
working on other animal groups. We argue that the unique features of this group combined with their complex life
cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a
promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased
attention are also briefly outlined.
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Background
With more than 1,000,000 species described and an esti-

mated 5,000,000 extant species, insects represent the

most diverse animal taxon on Earth [1, 2]. They inhabit

key roles as herbivores, pollinators, seed dispersers,

predators, detritivores and vectors, thereby contributing

to the core biological foundation of all terrestrial ecosys-

tems [3, 4]. Insects are also of exceptional economic im-

portance as providers of essential ecosystem services

(e.g. global economic value of US$153 billion of insect

pollination in 2005, [5]), pests in agricultural landscapes

(e.g. annual control of the diamondback moth Plutella

xylostella costs US$4–5 billion, [6]) and as vectors of

diseases affecting humans (e.g. malaria control costs ~

US$12 billion annually, Centre for Disease Control).

Dragonflies and damselflies (Insecta: Odonata) repre-

sent a species rich, yet tractable (~6000 described spe-

cies, [7]) insect order, which encompasses two main

suborders, Anisoptera (dragonflies) and Zygoptera (dam-

selflies). The former are generally larger and alight with

their wings held out to the sides, while damselflies have

slender bodies, and generally hold their wings over the

abdomen when at rest. Here we will use the term odon-

ate as the inclusive terms when referring to both subor-

ders. Several characteristics make odonates an attractive

group to combine ecology with evolutionary genomics.

First, they are direct descendants of one of the most an-

cient winged insect groups and, along with Ephemerop-

tera (mayflies), are sister to all other neopteran insects

[8]. Second, odonates incorporate rich phenotypic and

ecological diversity in one single insect order and there-

fore constitute excellent candidates for ecological and

evolutionary studies [9]. As such, they have been used

extensively as model species in many areas of ecology

and evolution, such as sexual selection, behaviour,
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evolution of flight and life history theory [9]. Third, the

group shows several evolutionary innovations, particu-

larly with regard to flight (e.g. direct flight musculature),

vision (e.g. complex colour vision,) sexual behaviour (e.g.

secondary genitalia), and life history (e.g. complex life

cycle). Fourth, the large interspecific variation in habitat

specificity and complex aquatic/terrestrial life cycles

makes odonates prominent surrogates for evaluating all

types of freshwater ecosystems worldwide [10]. Lastly,

dragonflies and damselflies are comparatively large in-

sects, both as adults and late-instar larvae, and as such

their behaviours can be studied readily in the wild. Thus,

the phylogenetic position of odonates, combined with

their numerous evolutionary innovations make them an

attractive model to bridge ecology with contemporary

evolutionary genomics and can provide fundamental in-

sights into the origin of these traits. Despite the attract-

iveness of this group for evolutionary genomics studies,

efforts have been lagging behind other insect orders (see

Table 1 for a summary of current genomic resources for

Odonata).

At present, most genomic resources for arthropods are

available for dipteran flies [e.g. the many Drosophila spe-

cies, http://flybase.org/static_pages/species/sequenced_-

species.html], lepidopterans (e.g. moths and butterflies,

[11]) and hymenopterans (e.g. wasps and bees, [12]). To

some extent, this taxonomic bias is caused by the large

economic and/or medical importance of these groups

and in some cases because they serve as key laboratory

models [13]. However, while it is true that model species

provide numerous insights into key molecular and evo-

lutionary processes, they do not necessarily capture es-

sential parts of the biology and ecology of their relatives,

especially in the case of those species that are more dis-

tantly related. By casting a small net for insect genomic

resources, only a partial picture of insect adaptation is

formed. Moreover, a focus on a few model organisms

could promote a confirmation bias - a “tendency to see

what we expect to see” [14]. Conversely, research into

diverse taxa will contribute new knowledge to the

current “omics” (e.g. genomics and transcriptomics) era.

Such an approach offers insights into molecular adaptive

processes that occur at contemporary and phylogenetic

timescales and are of relevance to ecosystem functioning

and stability [15–17].

Recent advances in high-throughput sequencing

technologies make it possible to generate large

amounts of sequence data from virtually any organ-

ism, at a rapid rate and at relatively low cost [18].

Thus, it is now possible to bridge the gap between

ecology and genomics and to connect the often

unique and well-studied evolutionary ecology of

Odonata with a genomic perspective. This advance-

ment will not only increase our ability to understand

evolutionary processes within the group, but also add

fundamental insights across insects. In this review, we

outline the central research importance of Odonata

by presenting some of the key features that make this

group an unparalleled model system to integrate gen-

omics with ecology and evolution. We synthesize the

work conducted on the evolution, ecology and physi-

ology of odonates, as well as the contemporary re-

search showing that they are amenable study species

to quantify responses to anthropogenic change, to in-

form conservation efforts. We focus specifically on

those areas where the integration of genomics with

ecology and evolution would yield significant insights

into evolutionary dynamics that would not be easily

gained by working on other animal groups. Finally,

we outline future areas of research that deserve in-

creased attention.

Taxonomy and phylogenetic position
Dragonflies and damselflies (Fig. 1a, [8]) are extant rep-

resentatives of the first ancient winged insects. Their

phylogenetic position makes this group of central im-

portance to comparative studies on the evolution of gen-

omic innovations involved in the origins of physiological

processes (e.g. flight, colour vision, and metabolism) and

life history strategies (e.g. predation, mating, dispersal,

and complex life cycles). Thus, a tractable and large-

scale phylogeny would provide a rigorous framework to

quantify evolutionary changes in genome architecture

and provide insight on the origin of evolutionary innova-

tions in odonates and insects in general.

Over the past 20 years, much progress towards

reconstructing the phylogeny of Odonata has been

made [8, 19–23]. Noteworthy, efforts to construct a

detailed classification scheme based on the solid

phylogenetic support of suborders and families, albeit

some branches still show low support and conflict

among families [19, 20, 24–26]. A key limitation of

these studies is their reliance on a small set of loci

for phylogenetic reconstruction [25, 27]. More robust

results are likely to be found with genomic ap-

proaches for phylogenetic estimation [28, 29], but be-

fore these tools can be properly designed and utilized

to quantify phylogenetic relationships within Odonata,

genome-level data are necessary. One goal of the

1KITE project [8] is to produce transcriptomes of 107

odonate species (representing roughly half of the

family-level diversity), which will provide the first “big

data” estimates of the phylogeny of the group and ad-

dress some higher-level problems of classification (e.g.

relationships between the anisopteran families and

corduliid monophyly). These data will provide import-

ant information to both systematists and ecologists

and evolutionary biologists in general by providing a
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Table 1 Genomic resources currently available for Odonata (as from 1st of May 2016)

Type of resource Suborder Family Species Reference/s

Genomes Anisoptera Libellulidae Ladona (Libellula) fulva Available in GenBank,

Bioproject PRJNA194433

ESTs Zygoptera Coenagrionidae Ischnura elegans [213]

Transcriptomes Anisoptera Libellulidae Libellula vibrans Available in GenBank,

Bioproject PRJNA258192

Libellula fulva Available in GenBank,

Bioproject PRJNA275663

Pantala flavescens Available in GenBank,

Bioproject PRJNA239794

Sympetrum frequens [141]

Orthetrum albistylum [141]

Cordulegastridae Cordulegaster boltonii [8]

Anotogaster sieboldii [141]

Corduliidae Somatochlora uchidai [141]

Macromiidae Macromia amphigena [141]

Petaluridae Tanypteryx pryeri [141]

Gomphidae Asiagomphus melaenops [141]

Aeshnidae Anax parthenope [141]

Anisozygoptera Epiophlebiidae Epiophlebia superstes [141]

Zygoptera Coenagrionidae Enallagma hagenii [214]

Coenagrion puella [59]

Ischnura elegans [162]

Ischnura asiatica [141]

Ischnura ramburii Available in GenBank, Bioproject PRJNA270761, [215]

Telebasis salva Available in GenBank, Bioproject PRJNA270761, [215]

Calopterygidae Calopteryx splendens [8]

Mnais costalis [141]

Lestidae Indolestes peregrinus [141]

Mitogenomes Anisoptera Libellulidae Orthetrum triangulare melania [216]

Hydrobasileus croceus [217]

Brachythemis contaminata [218]

Corduliidae Cordulia aenea [219]

Gomphidae Davidius lunatus [220]

Ictinogomphus sp. [217]

Anisozygoptera Epiophlebiidae Epiophlebia superstes [221]

Zygoptera Coenagrionidae Ischnura pumilio [222]

Euphaeidae Euphaea formosa [70]

Pseudolestidae Pseudolestes mirabilis Available in GenBank, (FJ606784)

Calopterygidae Vestalis melania [223]

Atrocalopteryx atrata Available in GenBank, (KP233805)

Mnais costalis [224]

Platycnemidae Platycnemis foliacea Available in GenBank, (KP233804)
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much-needed perspective to address general questions

in odonate biology in a phylogenetic context. Future

efforts to resolve the phylogeny by obtaining tran-

scriptomic or genomic data for other odonate species

will further help to broaden our perspective on this

group and provide greater insight into their evolu-

tionary biology.

With approximately 6000 species currently described

[30], the taxonomy of the Odonata has been largely con-

sidered as well established, and it has been estimated

Fig. 1 Phylogenetic position and phylogeny of Odonata. a Phylogeny of Insecta, showing the position of Odonata. Redrawn from Misof et al. [8] by R.
Futahashi. b Recreation of Odonate phylogeny showing the current state of odonate phylogeny. Redrawn and synthesized from [23] and [20]. While a
clear picture of family level groupings has emerged a well-supported backbone of phylogenetic relationships for both Anisoptera and Zygoptera is still
lacking. G = (draft) genomes available and T = transcriptomes available (see Table 1 for details). Note that the two draft genomes currently available
could not be more distantly related and there is a need to close the more than 250,000,000 year gap that exists between the two species
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that 95 % of all extant species will be described by 2030

[7]. However, less explored regions, like the Neotropics

and the African continent, are likely to harbour a high

number of species not yet known for science (e.g. see

[31] for the recent description of 60 new dragonfly spe-

cies). Taxonomy is a very important scientific field, and

a correct identification of organisms constitutes an es-

sential infrastructure for other research areas [7]. The

numerous high-throughput technologies currently avail-

able allow for the characterization of the genome, tran-

scriptome, proteome and even the morphology of an

organism (e.g. CT scans, [32]). The application of such

technologies to taxonomic research in dragonflies and

damselflies would improve the quality and quantity of

data that can be applied, not only to the description of

new species, but also to provide new perspectives for the

correct identification of specimens [33].

Fossil record

Odonates have one of the most complete and well-

preserved fossil records among insects (Fig. 2). The Pro-

todonata represent a fossil crown group to the extant

Odonata and first appeared in the Namurian of the Car-

boniferous around 319,000,000 years ago). Protodonate

fossils show evidence of many important traits that are

still exhibited by extant odonates, such as an aquatic im-

mature stage, a complex life cycle [34], and the complex

mating system that typifies this group (i.e. males use sec-

ondary genitalia to transfer sperm, see also section 2E,

[35]). The earliest fossils that are recognized as “mod-

ern” odonates date to ~268 Mya from the Upper Per-

mian (Saxonagrion minutus, [36]) soon after which

several stem group fossils for each of the modern

suborders appeared, representing many of the families

and even some modern genera. The extensive fossil

Fig. 2 Diversity of both fossil and extant Odonata. a Lestes ceresti paratype MNHN R0744 Paris, France. Specimen is from the Chattian lacustrine
carbonite of France and is 23.03–28.4 Ma. b Isophlebia sp. MNHN R55232 Paris, France. c Zentihoptera lanei ♂ courtesy of J. Johnson. d Ischnura

ramburii mated pair (male above female below) with an andromorphic female, courtesy of S. Coleman. e Ischnura ramburii mated pair with a
gynomorphic female courtesy of S. Coleman. f Platycypha caligata ♂ courtesy of J. Abbott. g Head of Calopteryx maculata ♂ showing the
general head shape and relationship of the eyes and antennae for damselflies (Zygoptera). Red bar shows the distance between the eyes. h
Head of Anax junius ♂ showing the general head shape and relationship of the eyes and antennae for dragonflies (Anisoptera) courtesy of R.
Nelson. i Heteragrion angustipenne ♂ courtesy of K. Tennessen. j Microstigma rotundatum ♂ courtesy of K. Tennessen. k Arctotypus sylvaensis

holotype PIN 17000/3245 Moscow, Russia. l Philogenia mangsisa larva from Bybee and Tennessen 2008. m-o Cordulegaster sp. larva anterior,
dorsal and ventral view respectively. p Epiophlebia laidlawi larva. q Anax junius larva. r Hagenious brevistylus larva. s Macromiidae sp. t
Podolestes orientalis larva courtesy of C.Y. Choong. M-S from SMB
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record for several contemporary odonate groups, in

combination with information of their relative ages from

genomic data, offers the prospect of a thorough integra-

tion between the fossil record and contemporary studies

of evolutionary biology that will help to shed significant

light on many evolutionary questions. For example, in-

sect flight is particularly intriguing as it likely evolved

only once [37], and the anatomical regions from which

wings evolved among the early insects are as yet un-

known. A combination of genomic resources, fossils and

evolutionary development approaches may help to iden-

tify the genetic toolkit responsible for insect flight, as

well as the loci associated with key innovations during

the evolution of wing morphology as different odonate

species diversified and colonised new habitats.

Genome size

The so-called “C-value enigma” refers to the observation

that the genome size among many eukaryotes can vary

widely, and this variation does not have to correlate with

the number of genes or the organismal complexity (e.g.

some unicellular organisms have genomes much larger

than humans). Understanding how and why genomes

show such pronounced size variation has become a

timely research topic, especially in the current post-

genomics era [38].

Much has been discovered about the patterns and con-

sequences of variation in genome size, with most of these

discoveries coming from studies on vertebrates and plants

(e.g. [39, 40]), and comparatively little from insects. The

first comprehensive study of genomic variation in odo-

nates quantified genome variation in 100 North American

species, and revealed a nearly ten-fold difference in gen-

ome size between species (from 0.41 pg (Miathyria mar-

cella) to 2.36 pg (Somatochlora elongata), [41]). Genome

size correlations with voltinism and larval habitat were

not found, but a significant relationship between genome

size and body size (positive in dragonflies and negative in

damselflies), and flight ability was found (with small ge-

nomes being associated with percher species, that is those

that only fly intermittently in between periods of perching,

and large genomes with fliers, that is those that fly con-

tinuously). Finally, genome size was also positively corre-

lated with a species’ chromosome number [41]. Future

work using a combination of genomic and transcriptomic

data could be used to elucidate putative mechanisms re-

sponsible for the variation in genome size across odonate

species; such as gene duplication, DNA loss, variation in

intron size or transposable elements.

Evolutionary ecology

Modern odonates have an exceptionally well-

documented behaviour and natural history [9]. The Hol-

arctic regions have the best described odonate faunas,

while the greatest species diversity and most understud-

ied faunas are found in tropical areas. Keys and field

guides for adult odonates are available for most areas of

the world [42–45], and the techniques to observe and

capture individuals can be learned with relative ease,

making odonates one of the few insect groups with large

and comprehensive insect collections (e.g. Florida State

Collection of Arthropods, Naturalis Biodiversity Center

in Leiden, The Netherlands). Characteristics such as

their relatively large body size and conspicuous behav-

iour make them an ideal insect group to study compo-

nents of adult fitness in natural populations [46–49].

Below we highlight the distinct ecological traits of odo-

nates that make them a remarkable study system for

connecting field ecology with general questions in biol-

ogy, including the evolution of complex life cycles, fit-

ness consequences of divergent reproductive modes and

behaviours, response to climate change, and the evolu-

tion of flight.

Complex life cycle

Most animal species (80 % of the animal kingdom) have

a complex life cycle (CLC), whereby the immature and

adult stages occupy different ecological niches and often

undergo varied degrees of metamorphosis [50–52].

Odonata make an excellent group to explore the evolu-

tionary causes and consequences of CLCs as the larvae

are aquatic and the adults are terrestrial, and both life

stages are well-studied [52]. Organisms that live in dif-

ferent environments throughout their ontogenies are

faced with constraints to optimize responses to the vari-

ous selection pressures that operate in each environment

[53]. Thus, the relevant question concerns how one gen-

ome responds to contrasting selection regimes in mul-

tiple environments. Moreover, when these environments

undergo divergent changes, for example through global

warming which will affect aquatic and terrestrial habitats

differently [51], one genome must mediate appropriate

genetic responses in two different life stages across two

different and changing environments. Studies of such

genetic (including epigenetic) responses in odonates can

be used to understand how other animals with CLCs

may respond to climatic changes and in what systems

adaptations are likely to occur. A major hurdle to the

study of CLC evolution is a lack of knowledge about the

extent to which life stages genetically covary and

whether selection acts in a complementary (or divergent)

way [54, 55]. The few quantitative genetic studies that

have addressed this issue found support for genetic asso-

ciations across life stages, but also showed that traits are

capable of independent evolutionary change in response

to the divergent conditions encountered during each life

stage (ascidians [55], or anurans [56]). It thus seems that

both genetic association and independent evolution can
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help to shape adaptation in some species, however, the

paucity of studies to date make it impossible to draw

general conclusions.

The molecular mechanisms underlying the coupling of

life stages across metamorphosis are not particularly well

studied (but see [57] for work on Drosophila). Thus,

there is a major gap in understanding gene-by-

environment interactions that would occur during major

developmental transitions [58]; for example, how do the

immune systems of dragonflies and damselflies respond

to different larval and adult environments? The recently

identified immune genes in the damselfly Coenagrion

puella [59] would allow testing more directly whether

larval and adult stages evolve independently from one

another. Furthermore, transcriptomic studies measuring

gene expression patterns during larval and adult stages

would elucidate the degree of plasticity in gene expres-

sion in different life stages and how environmentally in-

duced changes differentially affect the genetic responses

of larval and adult life stages [58]. Such studies would

improve our understanding of how differential selection

pressures across the life cycle modulate genetic and plas-

tic adaptive processes. A genomic approach would also

provide an important complement to understanding the

documented carry-over effects of larval stressors to adult

fitness. For example, it has been demonstrated that lar-

val food shortage affects adult lifetime reproductive suc-

cess in the damselfly Lestes viridis [60]. Moreover,

transcriptomic studies could address the extent to which

epigenetic changes in the larval stage are reprogrammed

during metamorphosis [61], which may facilitate novel

epigenetic responses at the adult stage.

Movement dynamics: dispersal

Dispersal is a fundamental ecological and evolutionary

process that redistributes individuals among areas [62],

thereby buffering against the demographic and genetic

losses that are expected to occur in otherwise isolated

populations. Perhaps the best-studied animal in terms of

dispersal ecology and concomitant eco-evolutionary dy-

namics is the Glanville fritillary butterfly Melitaea cinxia

[63]. This was one of the first non-laboratory organisms

studied using high-throughput sequencing approaches

[64], which demonstrates not only the feasibility but also

the usefulness of obtaining genomic data from wild pop-

ulations. Work on the Glanville fritillary quantified how

polymorphisms at a single locus can be associated with

population demography [65] and life history traits and

fitness in both adults and larvae [63, 66, 67]. Odonates

share many of the attractive features of butterflies for in-

tegrative research into movement dynamics, including

the ease to study larval life history traits, and adults that

can be marked and recaptured to quantify dispersal and

mortality in the wild. In addition, odonates provide the

added dimension of linking terrestrial and aquatic

systems.

Dispersal can be quantified using both ecological and

genetic methods. Indeed, studies on odonates have

provided evidence that such different methodologies

provide comparable information about population con-

nectivity [68, 69]. Odonates have provided model sys-

tems for studies of how landscape features, such as

urban areas [68] or high grounds [70], can limit dispersal

and how agricultural development may affect dispersal

pathways [71]. These studies also uncovered a loss of

genetic diversity in isolated populations [72], but there is

little information about the eco-evolutionary conse-

quences of genetic erosion in odonate populations. The

application of genomic techniques to quantify, for ex-

ample, whether, and if so how, small population size

limits adaptation in wild populations would be useful for

informing conservation management.

Monitoring the consequences of climate change

Several damselfly species have modified their distribu-

tions and abundances over the last few decades in re-

sponse to rising global temperatures [73–75]. Long-term

distributional data of adults show that odonates are

amongst the taxa showing the strongest poleward range

expansions [73, 74], making them excellent study organ-

isms for unravelling the still poorly documented rapid

microevolutionary changes associated with range expan-

sions [76]. This research can be embedded in the several

well-documented cases of latitudinal adaptation among

odonates. For example, common garden studies on lar-

vae of the damselflies Ischnura elegans and Lestes sponsa

provided a detailed picture of thermal adaptation along a

latitudinal gradient in Europe. A key pattern is the evo-

lution of thermal reaction norms and voltinism in re-

sponse to differences in temperature [77]. Notably, the

evolution of higher thermal optima and faster growth

rates in southern latitudes has been associated with

changes in digestive physiology [78], cold resistance [79],

predator–prey interactions [80] and resistance against

contaminants [81]. Other studies in L. sponsa indicated

the evolution of larval growth and development rates

and their response to photoperiod [82–84]. Genomic

studies for these cases of latitude-associated adaptation

may not only reveal the pathways underlying the ob-

served phenotypic differentiation but may also identify

novel aspects of adaptation along this strong thermal

axis. Variation in these candidate genes can then be

screened in spatial and temporal contexts as climate

change continues.

Recent work aimed to quantify the genetic conse-

quences for odonate species that are expanding their

ranges has shown reductions in genetic diversity in

edge-of-range populations [85, 86], and evidence for
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selection at the gene level [87]. Using common garden

experiments, rapid evolution of both larval traits (in-

creased growth rate and increased activity levels) and

adult traits (increased flight ability and increased im-

mune function) was demonstrated in the rapidly pole-

ward expanding damselfly Coenagrion scitulum [88, 89].

The few studies on genomic signatures of range expan-

sion in both plants and animals did not link genetic

changes to phenotypes and did not unravel the evolu-

tionary processes involved [76]. In a first effort to do so,

a single-nucleotide polymorphism (SNP) study focused

on C. scitulum revealed one SNP associated with in-

creased flight performance to be under consistent selec-

tion in the populations at the expanding range edge [87].

This indicates that evolutionary changes among inde-

pendent edge populations are driven by the range expan-

sion process per se. This study illustrates the added

value of integrating genomic, phenotypic and environ-

mental data to identify and disentangle the neutral and

adaptive processes that are simultaneously operating

during range expansions. An important future step will

be to identify other determinants of dispersal ability at

the molecular level. For example, some sequence data

on candidate ‘dispersal’ genes, such as pgi, hif1alpha or

sdhd [90, 91] are available for odonates [27]. Applying

genomic studies to the other well-documented range ex-

pansions in odonates may therefore considerably add to

the limited knowledge on how species evolve during

range expansions.

Climate change and hybridisation

In addition to a loss of species diversity, many range ex-

pansions are creating de novo sympatric areas between

formerly allopatric taxa, and increasing evidence is sug-

gesting that this can modify species interactions [92].

Furthermore, evidence is growing that species interac-

tions in these newly created sympatric zones are leading

to the breakdown of species barriers and rapid hybridisa-

tion (reviewed in [93]). Thus, species identities in these

de novo sympatric zones may be unclear. Molecular

methods for species identification could help us to re-

solve species identities via genetic means and provide

clues about the general processes underlying the cre-

ation of biodiversity. For example, by studying the gen-

omics of species hybridisation and species introgression

in odonates, we would obtain a better knowledge of the

processes underlying the creation of novel genetic adap-

tations. In general, it is thought that adaptive genes have

a greater chance to cross species boundaries than key

“speciation genes” or genes residing inside “genomics

islands of divergence”, which should both be more re-

sistant to introgression [94, 95]. Genomic studies on

introgressive hybridisation in damseflies are being initi-

ated and have the potential to uncover if certain

genomic regions are repeatedly inherited from the same

parental species. These studies may be able to elucidate

the size of genomic linkage islands and how the inherit-

ance of genomic regions correlates with morphology and

ecology.

The vulnerability of odonates to anthropogenic

changes makes informed conservation measures a prior-

ity, given the likely impact that these changes may have

on the overall species diversity, food web structure and

ecosystem stability. A recent comparative study on sev-

eral damselfly species assessed the potential to use quan-

titative predictions of reproductive isolation as an

indicator to assess species’ hybridisation risk [96]. The

study found a positive correlation between the degree of

reproductive isolation and genetic distance between spe-

cies, as has been shown in fruit flies [97] and butterflies

[98]. This clear link between species divergence rates

and the likelihood to hybridise strongly suggests that

genetic divergence between taxa can be used as a proxy

to predict hybridisation rates of species that come into

contact following climate induced range expansions [96].

This link can be used to inform conservation efforts,

particularly for odonate species that are already endan-

gered (e.g. Ischnura gemina, [96]).

Sexual selection

Odonates are key players in the understanding of sexual

selection theory and have been traditionally used as

models in studies of sexual conflict [99], character dis-

placement [100, 101] and sexual selection in relation to

colour polymorphism and sperm competition [102].

Their fidelity to reproductive areas (particularly males),

diverse reproductive behaviour and amenability to

phenotypic manipulation make them exemplary systems

for field studies (Fig. 3), behavioural observations, and

laboratory experiments [103]. Indeed, few animal groups

can rival Odonata for the combination of these traits

(perhaps only water striders [104]).

Below, we highlight how genomic tools can be used to

increase our understanding of the underlying evolution-

ary processes of sexual selection. Specifically, we focus

on 1) evolution and origin of a unique reproductive

mode, 2) genetics of mating behaviour and 3) how odo-

nates are models for studying sexual dimorphism and

sex-limited polymorphisms.

Reproductive mode and behaviour

Insects are incredibly diverse in their reproductive behav-

iour and genetic tools are beginning to shed light on how

the different reproductive modes have originated. To date,

our knowledge of the genetics of insect reproductive behav-

iour comes mainly from studies of laboratory model species

like Drosophila (e.g. [105]) and eusocial insects (e.g. [106]).

Dragonflies and damselflies have a unique mode of
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reproduction whereby the male grasps the female by the

head (dragonflies) or the prothorax (damseflies) and then

the female raises the tip of her abdomen forward to receive

sperm from the male secondary genitalia; forming a charac-

teristic ‘mating wheel’ (Fig. 3b in [107]). Elucidating the

genes involved in courtship and mating among odonates

will help to clarify the evolutionary origin of their unique

reproductive mode. Additionally, because modern odonates

represent some of the most ancient insects, by identifying

the genes involved in mating in this group, we can make

evolutionary comparisons of the origins of reproductive be-

haviours in other well-studied insect groups.

Fig. 3 Some field applications using Odonata. Panel a-b show pairs of the damselfly Coenagrion puella at Queen Elizabeth Country Park, UK.
Animals have been marked on the thorax (to easily identify marked from unmarked animals) and assigned a unique code on the hindwing so
that individual behaviours at the mating site can be recorded throughout an entire breeding season (photo credit Phillip C. Watts). Panel c shows
males of the damselfly Calopteryx splendens (different colours represent groupings of resident and immigrant males, as well as mature and
immature males) that have been marked with fluorescent dye at Klingavälsåns Naturreservat in Sweden to be measured upon release with a
LIDAR [225]. Panel d shows an unidentified anisopteran species that was released at Stellenbosch in South Africa for trialling the setup of a
remote insect monitoring technique called dark field spectroscopy [226]. Panel e shows a Calopteryx virgo damselfly male interacting with female
C. virgo at Sövdemölla in Sweden. The female has been tethered with a cotton string to a bamboo stick to record mating responses of males.
Panel f shows how the same tethered female from Panel e is being moved along the stream shoreline to record male responses [227]. Panel g
shows a Calopteryx splendens male that had his wing patches increased with black paint, and Panel h shows how such wing manipulation can be
applied even under field conditions. Photo credits C-H Maren Wellenreuther
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Odonates are also a model system for studying sperm

precedence. Males engage in various strategies to ensure

reproductive success by removing or displacing rivals’

sperm from the female storage organs before transfer-

ring their own sperm [108]. Further studies of these be-

haviours using genomic tools can give us insight on the

evolutionary origins of these diverse reproductive mech-

anisms and the large variation in female and male mat-

ing rate that promoted their evolution. In Drosophila,

selection for increased mating rate led to major genetic

changes (up to a 21 % of the entire genome) which

pleiotropically selected for key functions related to

neurogenesis, metabolism, development and general cel-

lular processes [109]. In Odonata, genomic studies could

address whether such disparate mating behaviours have

also selected for other key biological functions, which

may explain the extensive variation in ecologies (e.g.

adaptation to tropical and non-tropical environments)

observed in many closely-related species. To this extent,

ischnuran damselflies may give unique insight because

they occupy a variety of extreme environments and ex-

hibit also a vast variation in mating strategies, ranging

from polyandry to parthenogenesis. The latter is particu-

larly interesting, because in contrast to other known in-

sect groups in which asexual reproduction is frequently

found, only one case of obligate parthenogenesis is

known within the Odonata (the only-female populations

of the American species Ischnura hastata on the Azores

islands [110]). Ongoing comparative transcriptomic

studies on sexual and parthenogenetic lineages of this

species will help to better understand which genes are

related to asexual reproduction and why it has evolved

in this but not other species of this group.

With regards to the intra- and interspecies variation

in sperm displacement mechanisms, nothing is yet

known about the genetic underpinnings. Genomic

studies that reveal these underpinnings can provide

answers to several questions. Firstly, is sexual selec-

tion on genitalic function involved in population di-

vergence and speciation [111]? Candidate genes for

addressing this question are available from genetic

work on male genitalic structures [112, 113] and fe-

male sperm storage organs in Drosophila [109] and

eusocial insects. In particular, odonates exhibit exten-

sive intra- [114] and inter-specific [115] variation in

the morphology of female sperm storage organs. Secondly,

do females gain indirect (genetic) benefits from mating

multiple times [116] (e.g., through the production of more

genetically variable offspring)? And thirdly, how can

sperm remain viable once stored in the female sperm stor-

age organs? For example, Ischnura aurora mate soon after

emergence and then disperse, which implies female adap-

tations to keep sperm viable even when the animal is not

sexually mature [117].

Dragonflies and damselflies also exhibit diverse pre-

mating behaviours related to male-male competition.

For example, distinct behavioural differences exist be-

tween territorial and non-territorial males, both within

and among species [118]. Although ultimate effectors

and fitness trade-offs of male mating tactics are reason-

ably well-known [119], knowledge of both the under-

lying genomic basis and hormonal influences are lacking

[120]. There is potential for strong pleiotropic effects in

some species, as seen in Japanese Mnais damselflies,

where male mating tactics are linked to a male-limited

colour polymorphism [121]. In this case we know that

the expression of territorial behaviour is correlated with

levels of juvenile hormone [122, 123], lipid content

[124], muscular activity [125], infection level, and flight

muscle protein expression [126]. Studies indicate that

these pathways are highly conserved likely due to purify-

ing selection [127], signifying that the widespread vari-

ation in male odonate sexual behaviour may be driven

by mutations in gene expression profiles rather than

changes in protein coding sequences.

Odonata has also been an exemplary group for

studies on female preference. Several damselfly spe-

cies appear to exhibit learned mate behaviours and

plastic mate preferences [128], and populations com-

monly show pronounced preferences even across

small spatial scales. The extent to which population

divergence is related to mating preference is relatively

unexplored, but it is likely that the combined action

of learning, plasticity and microevolutionary processes

are involved in most cases. For example, it is known

that naïve female Calopteryx splendens can rapidly

learn to distinguish between con- and heterospecific

males based on their wing phenotype [129, 130], and

it appears that learning of heterospecific phenotypes

may also be involved in sexual isolation between the

European Calopteryx species [92]. In the latter study,

it was shown that C. virgo males have lost part of

their mate recognition ability and that this loss in-

creased heterospecific mating attempts [92]. While as-

sociation learning is probably partly involved in the

increased heterospecific mating rates in allopatry, loss

of mate discrimination alleles as a result of selection

(e.g. reinforcement) or genetic drift in this case also

likely have played a role. By combining behavioural

field data with genomic data, we could determine to

what extent mating preferences and species recogni-

tion are fixed at emergence, and to what degree pop-

ulations with divergent sexual preferences differ in

their genomic signatures. A combination of gene ex-

pression studies and mating trials would provide yet

another way to gain deeper insights into the involve-

ment of microevolutionary processes in sexual diver-

gence in this group.
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Sexual dimorphism

Body size

Most odonate species show sexual dimorphism in colour

and/or size (Fig. 2). Of these, sexual size dimorphism

(SSD, a difference in body size between males and fe-

males), is often the most conspicuous feature between

the sexes. SSD in adult odonates can emerge even when

larvae are initially monomorphic [131]. Both types of

SSD occur in Odonata; males of some species are larger

than females (e.g. Calopterygidae) while females are lar-

ger than males in other species (e.g. Cordulegastridae)

[132]. Inter- and intrasexual selection has been shown to

facilitate male-biased SSD (i.e. larger males), particularly

in species with territorial males [118, 132, 133]. How-

ever, when SSD occurs in odonates, then female-biased

SSD (i.e. larger females) is often the rule. One explan-

ation for this female-biased SSD is that selection for

manoeuvrability during aerial encounters may select for

reduced male size [134]. In concordance with this, male-

biased SSD is common in non-territorial odonate species

[132], where males rarely engage in aerial contests [107].

Interestingly, damselflies are more likely to exhibit SSD

than anisopterans [118], although the reasons for this

are still unclear. Female-biased SSD can also evolve as a

consequence of fecundity selection [47, 118, 135].

SSD in odonates has only been explored in terms of

sexual selection and mating systems, but exceptionally

little is known about the underlying genetic basis of SSD

in this group. Several gene candidates exist that may aid

our understanding of the genetics of SSD, e.g. juvenile

hormone and insulin. Juvenile hormone is a gene with

highly pleiotropic functions, and among other things, is

known to be related to body size [136] and the repro-

ductive behaviour in several other insect species [137].

Thus by clarifying the role of juvenile hormone in pro-

ducing and regulating juvenile hormone levels in odo-

nates may provide the first pieces to understand not

only the evolution of SSD, but also mating tactics which

are frequently influenced by body size [138]. For ex-

ample, it would be interesting to see how genes that

regulate hormonal levels act pleiotropically by regulating

energetic resources (e.g. lipid reserves) when switching

mating tactics.

Colour

Sexual dimorphism in colour is also prevalent in Odon-

ata, particularly in damselflies (Fig. 2), where intra-and

interspecific interactions are commonly based on both

body and wing colour phenotypes [139–141]. Many

species-rich families live in open areas (e.g. ponds,

marshes and streams) where body colour patterns could

function as a trait for species recognition and intraspe-

cific communication [142]. For example, conspicuous

male colour evolution is commonly explained to result

from female mate choice (i.e. intersexual selection) and/

or male-male competition. In some cases, male wing

colouration communicates the bearer’s condition to male

and female conspecifics, as documented by an associ-

ation between wing colouration and lipidic muscular

content which is important for flight ability [143]. Fur-

ther, males of some species show nuptial colour changes

via chemical reduction of epidermal pigments [144].

Interestingly, evidence suggests that female wing colour

in some calopterygid species evolved as a correlated re-

sponse to selection on male wing colour, and was subse-

quently lost via natural selection [145]. Still, in females

of some calopterygid species, wing colour is known to

signal fecundity to males, presumably to provide females

with the benefit of reduced male mating harassment

through guarding after mating [146]. Thus, colouration

can be related to male as well as female mate choice in

odonates.

Colour-polymorphism and its origins

Cryptic female colouration in odonates is thought to

have evolved to avoid excessive sexual male mating har-

assment [147], which is also thought to be related to the

high frequency of female-limited colour polymorphism

in this group [148]. Female-limited polymorphisms are

often characterized by an andromorph and one or more

gynomorph females. Andromorphs look and often be-

have like males, whereas gynomorphs exhibit a more

cryptic and female-like colouration [149]. While sexual

conflict over mating rates has been implicated as the

main evolutionary force maintaining these polymor-

phisms, frequency-dependent mate choice is an add-

itional process contributing to its maintenance, since

rare morphs experience reduced harassment, thus creat-

ing cyclic dynamics in morph prevalence [150]. A recent

study showed that population fitness is related to the

frequency of female morphs, with the population overall

experiencing higher fecundity when morph population

frequencies are balanced [151]. Morph frequencies can

vary across environmental gradients. For example, a lati-

tudinal cline in andromorph morph frequency in Isch-

nura senegalensis is an apparent classic signature of

natural selection acting on colour, with the fitness of

andromorphs increasing with latitude implying a gene-

by-environment interaction [152]. In contrast, morph

frequencies of I. elegans in Sweden were stable over ten

generations, consistent with the action of negative

frequency-dependent selection [153]. A better under-

standing of species differences in colour gene frequen-

cies across environmental gradients and populations will

likely come from studies investigating the genomic

architecture of colour in related species and would help

us to address how sexual selection and sexual conflict
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operate not only in odonates, but also in other systems

showing sex-limited polymorphisms [148].

Genetic architecture of colour polymorphism

Breeding experiments to understand the genetic basis of

female colour in polymorphic damselfly species have

shown that colour inheritance is consistent with a classic

Mendelian pattern, involving a few alleles at a single

locus [154, 155]. Recent and more detailed genomic

work on several colour polymorphic butterfly species

has shown that colour is commonly controlled by super-

genes [156–158], which prevents the fine mapping of

genes due to strong linkage [159]. A supergene architec-

ture of tightly linked genes seems likely to be involved in

some damselfly species as well, where multiple pheno-

typic and fitness-related traits correlate with colour

[160], resulting in integrated yet discrete multivariate

colour phenotypes. One of these species is I. elegans,

where colour is controlled by three alleles in a domin-

ance hierarchy [155], and affects several additional fit-

ness related traits (e.g. development time, fecundity and

egg morphology, [150, 161]).

Chauhan and co-workers [162] analysed the transcrip-

tome of I. elegans and validated the presence of 12 genes

in three pigmentation pathways, namely the pteridine,

melanin and ommochrome pathway, thereby providing a

good transcriptomic resource for future work on colour

polymorphisms. Still, we know little about the candidate

loci that govern colour in this and other odonate species,

and much additional work is needed to determine the

functional significance of pigment genes. Studies have

been initiated to map the genomic regions underlying

colour in I. elegans, through the generation of a linkage

map [163], transcriptome assembly [162] and a draft

genome (Wellenreuther et al. unpublished data). Once

the genomic location of colour has been described in

this species, the fitness effects in males and larvae that

carry different colour genotypes could be evaluated

(colour is only visually expressed in mature females and

thus invisible in males and larvae). Likewise, by knowing

the genomics of colour one could study the evolution of

the colour polymorphism in families in which polymor-

phisms frequently occur. A clear candidate for such a

study would be the family Coenagrionidae, which has >90

polymorphic species in the Holarctic alone [164].

An examination of how colour has evolved through

the identification of not only the genes but also the

pathways responsible for the diversity and maintenance

of colour would have broad ramifications for our under-

standing of colour signalling (i.e. how colour may impact

both the behaviour and overall ecology) among insects,

and across the animal kingdom as well. For example,

population genomic studies and gene network analyses

across species could clarify the evolutionary origins of

life history traits correlated with body colour, including

morphology, reproductive traits and mating behaviour.

These investigations, in combination with studies of the

genetics of mating behaviour, have the potential to eluci-

date some of the mechanisms that underlie the wide-

spread sexual conflict in this group.

Physiology

There is a paucity of understanding of how genome se-

quence variation affects physiological mechanisms re-

sponsible for trait variation and evolution in odonates.

In part, this reflects the non-trivial nature (e.g. rearing

time and laboratory infrastructure investment) of main-

taining larvae and adults in the laboratory, and of devel-

oping appropriate molecular tools (e.g. antibodies, PCR

primers) that are needed to examine mechanistic fea-

tures of trait expression at a physiological level. The

availability of genomic resources for odonates would

lower some of these technical thresholds and create op-

portunities to enhance the molecular-level understand-

ing of well-studied traits, as well as ignite interest in

novel fundamental and comparative physiological re-

search on this insect group. Below we highlight several

key physiological research themes for which the avail-

ability of genomic resources would significantly facilitate

mechanistic understanding.

Flight

From the moment of emergence from the aquatic envir-

onment, odonate individual fitness is critically

dependent on an individual’s ability to fly. Species ex-

hibit wide (~100-fold) variations in body mass and thus

have evolved different flight behaviours and motor de-

signs to accommodate this morphological diversity

[165]. This variation in flight adaptations makes them

excellent models to examine the genomic architecture

associated with variation in flight capacity. For example,

percher and flier dragonfly species differ in diurnal activ-

ity pattern and flight thermoregulatory strategy [166].

Moreover, odonates exhibit distinctly different flight sys-

tem morphology and kinematics (e.g. wing beat fre-

quency and amplitude [167, 168]). Indeed, maximum lift

production per unit mass of the damselfly flight motor is

significantly higher (~86 N/Kg) than that of dragonflies

due to the lift enhancing “clap and fling” mechanism

that they employ in flight (~54–60 N/Kg, [169]). Simi-

larly, flight motor investment during sexual maturation

varies dramatically among odonates, with males of terri-

torial species showing relatively high flight muscle mass

accretion [165], thus enhancing their flight-muscle ratio

and aerial manoeuvrability. It is the continuum of odon-

ate life history strategies that rely largely on flight that

makes them such an attractive group for examining the

mechanisms that operate to optimize flight motor design
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[126], neural control [170], comparative biomechanics

[171] and closely associated features (e.g. vision, thermo-

regulation), across different ecological niches and in re-

sponse to environmental variation. Interestingly,

odonates have one of the few extant direct synchronous

locomotor flight systems in the insect world, making

them more similar to vertebrate musculoskeletal systems

than many other insect groups.

An example of integrative work on molecular mecha-

nisms controlling odonate flight performance is that on

quantitative alternative splicing of the gene encoding

troponin T, a key flight muscle sarcomere protein, in

Libellula pulchella (reviewed in [172]). This gene regula-

tory mechanism appears to serve as a key controller of

energy consumption and flight muscle performance

throughout adult life [125]. It is sensitive to nutrition

and body weight variation and impaired by an infectious

agent from the environment, which causes a metabolic

syndrome and impaired locomotion similar to that oc-

curring in mammalian obesity [173]. The potential to

uncover mechanisms controlling trade-offs in locomotor

muscle tissue and other equally important organ systems

using high throughput sequencing technologies is em-

phasized by the work on just this single gene. Similar

molecular (gene regulatory) mechanisms controlling tis-

sue performance plasticity (i.e. for vision, locomotion,

digestion, excretion) likely enable the developmental

transition from predatory aquatic larvae to flying adults,

and thus could reveal evolutionary signatures important

to an aquatic origin of insect flight.

Thermoregulation and thermal biology

Strenuous activity such as flight tends to raise insect body

temperature over ambient due to the relatively low (i.e.

10–20 %) efficiency of muscle power production [115]. As

a likely consequence, many flying insect taxa evolved flight

muscles that operate optimally at temperatures higher

than ambient [166, 174], which in turn necessitated be-

havioural and physiological mechanisms to tightly control

flight muscle temperature. Odonates exhibit a diversity of

such thermoregulation strategies and are considered the

earliest animal groups to have evolved them, millions of

years prior to vertebrates [166, 175].

The odonate thermoregulatory repertoire has been

reviewed in detail previously [115, 166]. Percher species

typically control body temperature heliothermically, i.e.

gaining heat from the sun, through postural adjustments

[166, 176, 177] or through shivering thermogenesis

(even some gomphids), while other perchers (i.e. some

gomphid species, [176]) show little evidence of thermo-

regulation [178, 179]. Thermoregulation strategies in

flier species can additionally involve flight behavioural

adjustments (i.e. increase ratio of gliding/powered

flight; but see [166]) and/or breathing-assisted blood

circulation [180]. The evolution of thermoregulatory

strategies in Odonata has likely selected for modifica-

tions at the molecular level that optimize and/or

stabilize cellular functions at these temperatures. Such

molecular thermal sensitivity has been demonstrated in

other insect groups (e.g. for lactate dehydrogenase and

phosphoglucose isomerase [117, 181]), but has thus far

not been examined in Odonata.

In the realm of climatic thermal adaptation, Lancaster et

al. [182] used a combination of laboratory experiments

and field collections to investigate the genomic responses

to sub-optimal temperatures (high and low) in the damsel-

fly I. elegans. Thermal chambers were used to expose

individuals from central populations and marginal popula-

tions in the north of the species’ range to different temper-

atures, and then RNA-seq was used to examine the

number and types of differentially expressed gene tran-

scripts [182]. Several functionally important genes were

differentially expressed. Most notably, genes involved in

cold tolerance showed a higher evolutionary liability com-

pared to genes associated with heat tolerances. These re-

sults will form the basis for future work on climatic

adaptation in this and related species. Robust odonate

genomic resources would allow us to start examining the

molecular consequences of thermoregulatory strategies in

this ancient lineage (>300 million years of evolution) and

facilitate the integration of thermal biology to better

understand the success of Odonata in colonizing environ-

ments with vastly different ambient temperatures, and

would provide a better understanding of the environmen-

tal ecology and dynamics of insects in general.

Sensory systems

Adult dragonflies and damselflies rely heavily on one

sensory system – vision. Although the relative unimport-

ance of smell may have been underemphasized, as recent

research has found morphological and electrophysio-

logical data showing that I. elegans is capable of detect-

ing the odour of both prey and mates ([183]). Odonata

offers an ideal system for studying the evolution of genes

involved in vision because visual communication is para-

mount among Odonata; they have complex colour vision

[184], and many behaviours that rely on distinguishing

colour [185]. Adults have notably large compound eyes

that consist of thousands of ommatidia. The number of

ommatidia varies among species from about 7000 in

damselflies (e.g. Coenagrionidae) to over 28,000 in large

dragonfly species (e.g. Aeshnidae), which are the largest

number of ommatidia in any insect eye [186]. Odonates

can recognize a wide range of spectra from ultraviolet to

red [140, 186, 187], with the light sensitivity differing

markedly between the dorsal and ventral portion of com-

pound eyes [139, 188]. Odonates, particularly dragonflies,

possess a strikingly large number of opsin genes (light
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sensitive proteins in the eye that function as the first step

in phototransduction) [141], and may have the most com-

plex suite of opsins for any terrestrial animal (e.g. Anax

parthenope has as many as 30 visual opsin gene copies

[141]). These opsin genes are differentially expressed

between larvae and adults, and between the dorsal and

ventral regions of adult compound eyes [140], which may

coincide with the use of different environments between

the life stages and sexes. Larvae have smaller eyes that ex-

press fewer types of opsins but larger antenna, suggesting

that they utilize other cues in addition to vision (e.g.

pheromones, vibration or pressure). Indeed, it has been

shown that larvae of the damselfly Enallagma antennatum

rely mainly on chemical cues to detect predators [189].

Accompanying the colour visual system are equally ex-

ceptional visual acuity and visual neurons, which make

odonates among the most supreme hunters in the animal

world, successfully capturing their prey ~95 % of the time

[171, 190]. Dragonflies use internal models to regulate sen-

sorimotor control while hunting [170], a trait that was

thought to be unique among only vertebrates. Because odo-

nates appear to use mostly one sensory system to carry out

relatively complex activities at the adult life stage (e.g. hunt-

ing, mate finding), they make an attractive system for the

study of vision since these activities are modulated to a

large degree by vision alone, i.e. without the contributions

and thus the complications of other sensory systems. Fur-

thermore, we know comparatively little concerning the vis-

ual system of the larval stage [191–193]. Genomic resources

for Odonata will be central for elucidating the diverse po-

tentially co-evolutionary patterns between visual capability,

hunting strategy, colour discrimination, colour and colour

patterns that occur in the adult and larvae of this group.

Stress physiology in larvae and integrative physiology

Work on damselfly larvae has been instrumental in

exploring physiological stress responses, and has con-

tributed to advancing our understanding of how physio-

logical stress is affected by predation risk, environmental

contaminants and responses to combinations of

stressors. There is increasing concern that interactions

among stressors may negatively affect biodiversity [194].

Specific attention should be paid to understanding how

the effects of contaminants may be magnified in the

presence of other stressors such as predation risk [195]

and higher temperatures [196]. This may explain why

contaminant levels assumed to be safe by legislation still

cause considerable loss of aquatic biodiversity [197, 198].

To understand and predict synergistic interactions be-

tween stressors we need to know how individual and

combined stressors affect organismal performance at the

physiological level. Yet, even for common natural

stressors, such as predation risk, this is poorly known,

especially in invertebrates [199]. With regard to

physiological effects of predation risk, damselfly larvae

are among the best studied invertebrates, which led to

novel insights in how predation risk affects prey physi-

ology [200, 201] and thereby can magnify the effects of

pesticides [202]. Stress physiology can also help to

mechanistically explain how effects of stressors encoun-

tered during the larval stage may bridge metamorphosis

and shape adult fitness components. For example, it was

recently shown that larval exposure to UV stress in the

damselfly C. puella impairs adult immune function

through increased allocation of melanin to the cuticle

[203], thereby identifying a novel pathway by which ef-

fects of larval stressors can be carried over to the adult

stage in animals with a CLC.

Physiological studies are complicated by the often com-

plex interactions between traits that are typically studied

in isolation. The development of genomic resources for

odonates would allow more rigorous testing of interac-

tions between a changing environment (e.g. temperature,

chemical composition) and the abilities of different species

to handle environmental stressors. For example, genomic

studies could delineate mechanistically the trade-offs be-

tween immunity and energetics (e.g. [126]), or more de-

finitively link environmental stressors to impairments in

colour development, flight (e.g. thermoregulation ability,

flight motor design) and fitness (e.g. [204–206]). The con-

trast of their quite homogeneous larval life history and

ecological relevance (i.e. one of the apex invertebrate

carnivores), and highly variable adult form (size, colour,

behaviours, physiology, longevity and distribution), com-

bined with broadly based scientific community and rapidly

increasing genomics community, identifies Odonata as an

model taxon with high potential to achieve such evolu-

tionary and ecologically relevant integration.

Conclusions

Further development of genomic resources for Odonata

could strongly improve research on microevolution driven

by anthropogenic environmental changes. Integrating gen-

omic data with the extensive field ecology knowledge of

many species could be a major leap forward in the field of

eco-evolutionary dynamics [207]. Phenotypic change can

come about by adaptation, plasticity or an interaction of

the two [207]. Disentangling contributions from these ef-

fects is important, as they are expected to be associated

with different patterns, rates, limits and costs [207]. More-

over, population genomics could allow the prediction of hy-

bridisation rates and improve the precision of demographic

inferences by using dragonflies and damselflies as bioindica-

tor species. This would allow us to plan conservation efforts

best suited for Odonata itself, other co-occurring species

and their environment. Transcriptomic analyses would

allow the identification of genes and molecular processes

likely to respond to selection due to climate change and
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habitat loss (which can be studied across a complex life

cycle in Odonata), as recently done by Lancaster et al.

[182]. Additionally, reduced representation sequencing ap-

proaches for genotyping (e.g. RAD, ddRAD, GBS) make it

possible to develop and sequence many markers in non-

model species [208], e.g. by sequencing large pools of indi-

viduals [209], and hence allow for the detection of outlier

loci under selection. Such transcriptomic and genomic

studies would benefit from the availability of reference tran-

scriptomes and genomes so that annotation of differentially

expressed genes and outlier loci is possible.

Summary points

(1)Odonates constitute an exceptional group to bridge

the gap between evolutionary ecology and genomics

due to their phylogenetic position, extensive

phenotypic and ecological diversity, complex life

cycle, ease of study in the wild and usefulness as

bioindicators of pollution and climate change.

(2)These qualities have made them brilliant study

subjects in evolution, ecology and physiology.

However, despite the extensive scientific literature,

there remains a gap between the availability of

genomic tools for Odonata compared to other insect

groups (i.e. Holometabola), which prevents the

research community from filling the holes in our

understanding of insect evolution specifically and

arthropod evolution more generally. Closing this gap

will lead to insights into some of the most ancient

and successful animals on the planet, the insects.

(3)Here, we have reviewed and discussed in detail those

areas of research where dragonflies and damselflies

have provided unsurpassed models to address

biologically challenging questions. We have

presented a path forward in terms of research and

resources needed to connect genomics and

evolutionary ecology of this insect group.

Future prospects

(1)Development of key high throughput resources for

Odonata, including high-quality genome assemblies

and species transcriptomes for both sexes, different

tissues and varied ontogenetic life stages.

(2)Applying the genomic insights gained from odonates

to insects in general, to help elucidate the genomic

origins of several evolutionary innovations (e.g. flight).

(3)Combining the large ecological dataset available for

many species with these resources to analyse

macroevolutionary patterns. For example, such a

genomics-informed approach would allow us to

investigate the widespread colour polymorphisms

across the many damselfly species to dissect the

genomic basis of colour genes, as well as connect

these to the ecological contexts driving colour

evolution.

Box 1. Platform for bioinformatics and genomic

resources

Genomic research on dragonflies is lagging behind other taxa. By
creating a platform where genomic and/or transcriptomic data can
be brought together and shared, the available information could be
used to its maximum in studies within and across species in this
group; allowing us to better understand the evolutionary history of
this fascinating and ancient lineage, as well as providing resources for
studies of other species across the diversity of insects.
The generation of such a platform for dragonflies would facilitate
macroevolutionary comparisons of the genome across related species
to understand the evolution of genome structure and the
phylogenetic relationships of species. Moreover, transcriptomic
analyses will be crucial to identify genes and molecular processes
involved in adaptation and selection, and in conjunction with
genomic data, they could be used to investigate the evolution of
gene expression, duplication and function. High-throughput
sequencing data may also help to better understand epigenetic
changes and genotype-by-environment interactions [18] as well as
microevolutionary perturbations (as described in the main text).
Furthermore, such data would allow researchers to investigate the
large differences in genome size and relate them to biologically
meaningful adaptations.
Despite the recent advance of high-throughput sequencing technologies
the number of these omics resources for dragonflies is yet very limited
and scarce. As for May 2016, out of the 261 insect complete genomes
available in the NCBI genome database (http://www.ncbi.nlm.nih.gov/
genome), only one corresponds to the draft genome assembly of a
dragonfly, Ladona fulva (BioProject PRJNA194433, Table 1), obtained under
the umbrella of the i5k project (http://arthropodgenomes.org/wiki/i5k).
Within this same project, two other odonate species are included
as “nominated” to have their genomes sequenced: Libellula
depressa and Ischnura elegans. The I. elegans draft genome
currently has a N50 contig and N50 scaffold size of 4 kb and
39 kb (without gaps), respectively, and a 20 kb library is planned
to be added to improve the scaffolding in the near future
(Wellenreuther et al. in preparation).
The first exploration of the transcriptome in an odonate was done by
Simon et al. (2009) who generated 4217 Expressed Sequence Tags
(ESTs) for I. elegans. The advent of high-throughput sequencing
technologies (mainly 454 pyrosequencing and Illumina) has allowed
scientists to obtain a large amount of RNA-seq data and to assemble
complete transcriptomes for many organisms, but still there is a
major contrast in the number of datasets available for odonates when
compared to other insects. As of May 2016, a search in the NCBI SRA
database (http://www.ncbi.nlm.nih.gov/sra), filtered by RNA data,
returned a total of 17,956 datasets for insects, and only 80 corresponded
to species within the Odonata. These datasets represent a total of 22
species (Table 1). Additionally, RNA-seq data have been reported for an
additional 10 species (e.g. [210, 211]), although these data are not yet
publicly available in the NCBI databases. Last, loci for further phyloge-
nomic reconstruction will be extracted from 108 odonate species and
these data are expected to be available at the end of 2016 (Karen
Meusemann, personal communication).
Mitochondrial genomes constitute, to date, the majority of the
available complete genomic resources for Odonata, with a total of 14
species, belonging to 9 families; for which complete mitochondrial
genomes are currently available (Table 1). Whole mitochondrial
genome sequencing allows the study of comparative and
evolutionary genomic questions, such as the frequency and type of
gene rearrangements and the evolution of genome size, and the
integration of nuclear and mitochondrial genome datasets will also
help to improve the resolution of future phylogenomic studies [212].
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