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Abstract

Noses are extremely sophisticated chemical detectors allowing animals to use scents to interpret and navigate their environ-

ments. Odor detection starts with the activation of odorant receptors (ORs), expressed in mature olfactory sensory neurons 

(OSNs) populating the olfactory mucosa. Different odorants, or different concentrations of the same odorant, activate unique 

ensembles of ORs. This mechanism of combinatorial receptor coding provided a possible explanation as to why different 

odorants are perceived as having distinct odors. Aided by new technologies, several recent studies have found that antagonist 

interactions also play an important role in the formation of the combinatorial receptor code. These findings mark the start 

of a new era in the study of odorant-receptor interactions and add a new level of complexity to odor coding in mammals.
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Introduction

“I should think we might fairly gauge the future of biological 

science, centuries ahead, by estimating the time it will take 

to reach a complete, comprehensive understanding of odor. 

It may not seem a profound enough problem to dominate 

all the life sciences, but it contains, piece by piece, all the 

mysteries.” — Lewis Thomas.

Smelling starts with a sniff. The process of breathing in 

air into the nose floods the nasal cavity with myriad odor-

ous molecules, or simply put, odorants. These molecules 

may smell pleasant, repulsive, or act as carriers of critical 

biological or ecological messages.

Odorants communicating vital biological information typi-

cally elicit behavioral and physiological changes in animals, thus 

playing a pivotal role in the survival and the propagation of the 

species (Li and Liberles, 2015). In some cases, the same odor-

ant delivers different biological messages to animals of differ-

ent species. In others, the identity of these ecologically-relevant 

odorants may vary greatly among different species, ultimately 

driving evolutionary adaptations to distinct ecological niches 

(Bear, et al., 2016; Li, et al., 2013; Manoel, et al., 2019).

A major challenge in studying smell and odor-guided 

behaviors has been the understanding of the biological mecha-

nisms that enable the discrimination of a large number of odor 

cues, which are typically presented to the animal’s nose in 

virtually infinite combinations of mixtures and concentrations.

This review presents a brief historical description of the key 

findings and early challenges surrounding odor coding in the 

mammalian nose. It discusses how recent advances in olfactory 

neurobiology fundamentally inform our understanding of the 

interactions between odorants and their receptors in the nose, 

and how this knowledge impacts theories of odor perception.

Organization of the mammalian olfactory 
system

The peripheral olfactory system of most mammalian spe-

cies involves two major olfactory organs: the olfactory 

mucosa (OM) located at the top of the nasal cavity and the 
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vomeronasal organ (VNO) sitting at its base (Buck, 2012). 

The anatomical structure of the olfactory system can vary 

significantly between species, with some mammalian line-

ages (e.g., catarrhine monkeys, apes, and humans) lacking 

a VNO (Keverne, 1999), and other species (e.g., rodents) 

displaying additional olfactory organs, such as the septal 

organ of Masera and the Grueneberg ganglion (Barrios, 

et al., 2014; Ma, 2010).

Our focus is on the OM of the nose, which is composed 

of the olfactory epithelium (OE) and a submucosa. The 

OE is mainly populated by sustentacular cells, horizontal 

and globose basal cells, immature and mature olfactory 

sensory neurons (Fig. 1). The submucosa sitting below 

contains olfactory ensheathing cells, glandular and cavern-

ous tissues, blood, and lymph vessels (Cuschieri and Ban-

nister, 1975; Huard, et al., 1998; Morrison and Costanzo, 

1992; Sharma, et al., 2019). Odorant reception occurs pri-

marily in the OE via the mature olfactory sensory neurons 

(hereafter referred to as OSNs). This cell type, with its 

molecular and physiological architectures, thus is at the 

center of this review.

Early challenges in understanding odor 
coding and the discovery of the odorant 
receptors

“the olfactory imprint is collected in the mucosa by 

the peripheral expansion of the bipolar cells and is 

then transferred to the glomeruli where […] cells from 

the molecular layer collect said imprint to raise it to 

the brain.”

- Santiago Ramón y Cajal

The two pioneers of neuroscience (and eternal rivals), 

Camillo Golgi and Santiago Ramón y Cajal, had described 

the basic neuroanatomical structure of the olfactory system 

in the late nineteenth century (Golgi, 1875, Ramón y Cajal, 

1892). However, the concept of odorant receptors was con-

sidered only mid-twentieth century (Jones and Jones, 1953; 

Ottoson, 1954; Pauling, 1946; Skouby and Zilstorff-Ped-

ersen, 1954; Sviridenko, 1951), while the genes encoding 

odorant receptors remained incognito for almost the entire 

twentieth century.

The foundation for discovering the receptors genes was 

laid in the 1970s and ‘80 s, with an increase in molecular 

studies that suggested a second messenger mechanism 

in olfaction. First, high adenylate cyclase activity was 

found in olfactory ciliary preparations of dissociated frog 

OSNs (Kurihara and Koyama, 1972; Pace, et al., 1985), 

a biochemical finding later confirmed physiologically 

(Firestein, et al., 1991). This data was followed by the 

identification of cyclic AMP (cAMP) as the secondary 

messenger in olfactory reception (Gesteland, 1976; Minor 

and Sakina, 1973). Contemporary technological develop-

ments, such as electrophysiological recordings, revealed 

that distinct odorants evoke distinguishable activation 

patterns in the OE (Kauer and Moulton, 1974; Mackay-

Sim, et al., 1982), and even suggested the existence of 

multiple OSNs subtypes (Gesteland, 1976; Holley and 

MacLeod, 1977; Lancet, 1986; Sicard, 1985; Sicard and 

Holley, 1984).

Towards the end of the 1980s, mounting evidence 

pointed to G-protein coupled receptors (GPCRs) as the 

strongest candidates for odorant receptors (Lancet, 1986). 

Especially the identification of an olfactory-specific gene 

coding for a Gα protein (Gαolf) and for a nucleotide-

gated channel indicated that odorant activation involved 

Fig. 1  The major cell types of the mammalian olfactory mucosa 

(OM). In mammals, the OM is composed by the olfactory epithe-

lium (OE) and a submucosa. The OE is a pseudostratified epithelium 

composed mainly by sustentacular cells (SUCs), globose basal cells 

(GBCs), horizontal globose cells (HBCs), immature olfactory sensory 

neurons (iOSNs) and mature olfactory sensory neurons (mOSNs). 

The olfactory ensheathing cells (OECs) are an important cell type 

populating the submucosa
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G-protein mediated production of cAMP (Dhallan, et al., 

1990; Jones and Reed, 1989). Around the same time, 

experiments using dissociated newt OSN provided evi-

dence of intracellular calcium signaling during odorant 

binding. These experiments further implied a link to the 

mechanism of adenylate cyclase or gating of ion channels 

(Kurahashi and Shibuya, 1990).

The path looked paved for the discovery of the odor-

ant receptors. Still, their identification as GPCRs would 

take several more years before transforming the field 

(Buck and Axel, 1991; Firestein, et al., 2014). Notable 

about this discovery was Buck’s ingenious experimen-

tal design, which revealed a crucial feature of the OR 

family that would expand understanding of GPCRs: the 

mosaic character of the OR multigene family. ORs are 

highly conserved throughout evolution while also exhib-

iting striking structural diversity across their members. 

Instead of being defined by a specific set of shared amino 

acid sequences, the OR family relation is cross-cutting, 

meaning members share different sequences with various 

other members.

The mosaic character of OR genes had also made their 

discovery impracticable (Barwich, 2020; Buck, 2004). 

The standard discovery method of new gene families at 

the time was PCR. However, the amplification of genetic 

material with the known GPCR primer pair failed. Buck’s 

use of RNA instead of DNA in combination in tandem 

with her design of 11 degenerate primers, amplifying 

related but not identical sequences (based on Buck’s 

interest in genetic diversification), yielded the jackpot. 

Mammalian odorant receptors turned out to be the larg-

est multigene family in the mammalian genome, con-

taining ~ 400 intact genes in humans, ~ 1100 in mouse 

and ~ 2000 in elephants (Godfrey, et al., 2004; Malnic, 

et al., 2004; Niimura, et al., 2014; Zhang and Firestein, 

2002).

Other chemosensory receptors in the OE

Since the discovery of the OR gene family in 1991, other 

evolutionary conserved families of chemosensory receptor 

genes were found to be expressed in the mammalian OE, 

including the trace-amine associated receptors (TAARs), 

two guanylyl cyclases (GUCY2D and GUCY1B2), and the 

membrane spanning 4-pass A (MS4A) receptors (Bear, 

et al., 2016; Fulle, et al., 1995; Greer, et al., 2016; Horow-

itz, et al., 2014; Leinders-Zufall, et al., 2007; Liberles and 

Buck, 2006; Omura and Mombaerts, 2015; Saraiva, et al., 

2015b, 2019). These ‘atypical’ receptors feature in other 

reviews in this issue, or were recently covered in other 

review articles.

Odorant receptor expression in the OE

Following the discovery of the ORs, Buck and Axel’s labo-

ratories deepened research into OR genetics and wiring. One 

topic of main interest were the expression patterns exhibited 

by this remarkable gene family in the OE. By performing 

RNA in situ hybridization experiments, they found that 

OSNs expressing the same OR gene are randomly distrib-

uted within spatially restricted zones in the OE (Fig. 2a) 

(Ressler, et al., 1993; Vassar, et al., 1993). Other studies con-

firmed the existence of different spatial patterns of expres-

sion, or zones, for mammalian ORs. However, the exact 

number of zones in the OE and their physiological function 

remains in debate (Bashkirova, et al., 2020; Coppola, et al., 

2019; Horowitz, et al., 2014; Miyamichi, et al., 2005; Tan 

and Xie, 2018; Zapiec and Mombaerts, 2020). In this con-

text, one possible hypothesis is that the spatial organization 

of the OE contributes to the maximization of the discrimi-

natory capacity of the peripheral olfactory system (Ressler 

et al. 1993). Notably, the patterns of odorant sorption in the 

mouse nose have been found to correlate with the spatial 

response patterns of OSNs – this association is known as the 

‘sorption hypothesis’ in olfaction (Scott, et al., 2014), and 

this idea was even proposed prior to the OR discovery as the 

‘chromatographic hypothesis’ by Maxwell Mozell (Mozell 

1966). While this hypothesis has recently been challenged 

(Coppola, et al., 2019), other studies not only support it 

(reviewed in (Secundo, et al., 2014)) but also suggest that it 

could help provide a functional logic underlying the spatial 

organization of ORs/OSN subtypes in the mouse olfactory 

epithelium (Ressler, et al., 1993). Future large-scale experi-

ments focused on connecting the zonal expression patterns 

for all mouse ORs to the physicochemical descriptors of 

their respective agonists will be critical to stress test this 

hypothesis.

Another significant breakthrough in understanding how 

OR genetics determine the wiring of the olfactory pathway 

arrived with two additional studies. These studies revealed 

that each OSN expresses only one allele of a single OR gene 

(Chess, et al., 1994; Malnic, et al., 1999). These findings 

led to the ‘one neuron – one receptor rule’ (Fig. 2b), and 

several subsequent studies provided additional support to the 

monogenic and monoallelic expression of OR genes in the 

OE (Li, et al., 2004; Serizawa, et al., 2003; Shykind, et al., 

2004; Tian and Ma, 2008; Tietjen, et al., 2005, 2003). More 

recently, studies using single-cell RNA-sequencing (RNA-

seq) have shown that while immature OSNs express low lev-

els of multiple OR genes, the vast majority of mature OSNs 

express a single OR gene at high levels (Hanchate, et al., 

2015; Saraiva, et al., 2015b; Tan, et al., 2015). These results 

indicate that singular OR gene expression is achieved dur-

ing the differentiation of the OSN, and further contributes 
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to understanding the mechanisms of OR gene choice (Nagai, 

et al., 2016).

Another notable feature of ORs, is that their expression 

level in the OE can differ dramatically, with some receptors 

being up to 300-fold more abundant than others (Bressel, 

et al., 2016; Khan, et al., 2011; Rodriguez-Gil, et al., 2015; 

Young, et al., 2003; Zhang, et al., 2004). In line with these 

results, recent RNA-seq studies performed in the OE of 

several mammalian species (mouse, rat, dog, marmoset, 

macaque, and human) have shown that the vast major-

ity of ORs (up to 98.9% in mouse) are expressed across a 

large dynamic range of abundance in the OE, and that OR 

gene expression levels correlates with the number of OSNs 

expressing the same OR (Fig. 2c) (Ibarra-Soria, et al., 2014, 

2017; Saraiva, et al., 2015a, 2015b, 2019). These studies 

also indicated that RNA-seq is not only a highly sensitive 

technique to detect mRNA from ORs, but it also serves as 

an accurate high-throughput tool to catalog OSN subtype 

diversity.

A solution to a number’s problem – 
the ‘combinatorial receptor code’

The total number of stimuli recognized and discriminated 

by the olfactory system remains to be determined. A recent 

study estimated that humans can discriminate at least 1.72 

trillion odors (Bushdid, et al., 2014). This number was con-

tested and estimated to constitute the upper bound instead 

(Gerkin and Castro, 2015; Meister, 2015). In either scenario, 

the numbers of odorants detected and discriminated by the 

nose vastly exceed the number of intact ORs present in any 

given species (Niimura, et al., 2014). So, how does the olfac-

tory system solve this multifactorial problem?

Initial experiments, recording from single OSNs in the OE, 

revealed that each OSN responds selectively to more than one 

odorant and that individual odorants activate unique sets of 

OSNs (Firestein, et al., 1993; Sato, et al., 1994; Sicard and 

Holley, 1984). In 1999, experiments combining calcium imag-

ing and single-cell RT-PCR allowed, for the first time, the 

identification of the ORs expressed in OSNs – specifically 

OSNs activated by a group of aliphatic odorants which were 

tested at different concentrations (Malnic, et al., 1999). These 

results were revolutionary, as they provided concrete evidence 

that different odorants, or different concentrations of the same 

odorant, are recognized by a unique combination of multiple 

ORs. In other words, each concentration of a given odorant 

generates its own ‘combinatorial receptor code’ in the OE 

(Fig. 3a).

Roughly a decade later, a study performed in the mouse 

OE the responses of 3000 dissociated mature OSNs to 125 

different odorants, representing 375,000 possible OSN/OR-

odorant pairings (Nara, et al., 2011). This large-scale study 

still constitutes the most comprehensive analysis of odor-

ant response profiles in OSNs/ORs. It yielded three novel 

and significant findings about odor coding in the OE. First, 

OSNs/ORs repertoires exhibit an extraordinary diversity as 

well as bias, in odorant recognition. Second, most OSNs/

Fig. 2  Expression patterns of odorant receptors (ORs) in the olfactory 

epithelium (OE). (a) In the nose, mature olfactory sensory neurons 

(mOSNs) expressing the same OR gene are stochastically distributed 

within a spatially restricted area of the OE, also known as a ‘zone’. 

Early studies identified 4 non-overlapping OR expression zones, but 

later studies identified as many as 9–12 partially overlapping zones. 

In the schematic, the 4 non-overlapping OR expression zones (blue, 

red, yellow, and green colors) are shown: left panel, lateral view of 

the olfactory mucosa (OM); right panel, a coronal section of the OM 

(including the respiratory epithelium, in grey). (b) In the nose, each 

mOSN expresses one allele of a single OR gene. This type of expres-

sion became known in the field as the ‘one neuron – one receptor 

rule’. (c) Recent RNA-seq experiments showed that most intact ORs 

are expressed in the OE across a large dynamic range, with only a 

minority being expressed at very high levels. As measured by RNA-

seq, the abundance level of a given ORs in the OE correlates perfectly 

to the number of OSNs expressing it. The arrow depicts the position 

of the last OR plotted.
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ORs are narrowly tuned (i.e., detect one or a small number of 

structurally related odorants), although broadly tuned OSNs 

(i.e., responding to a large number of odorants) are also pre-

sent in the OE. Third, the vast majority of odorants elicit a 

unique combinatorial activation code, containing both nar-

rowly and broadly tuned OSNs/ORs.

Together, these results expanded our understanding of 

odorant detection and odor coding in the OE. In particu-

lar, these studies offered a potential explanation why differ-

ent odorants exhibit distinct odors, including odorants that 

are structurally very similar yet diverge in sensory quality. 

Importantly, this combinatorial strategy deployed by OSNs, 

or ORs, has since been validated by many other studies and 

mammalian species (Araneda, et al., 2000, Araneda, et al., 

2004, Duchamp-Viret, et al., 1999, Gonzalez-Kristeller, 

et al., 2015, Hamana, et al., 2003, Hu, et al., 2020, Jiang, 

et al., 2015, Kajiya, et al., 2001, McClintock, et al., 2014, 

Nara, et al., 2011, Oka, et al., 2004a, Oka, et al., 2004b, 

Saito, et al., 2009, Sato-Akuhara, et al., 2016, von der Weid, 

et al., 2015).

Fig. 3  Modulation of the olfactory combinatorial code at the periph-

ery. In the mammalian nose, odorants are detected by ORs in a com-

binatorial fashion. In other words, one odorant can activate multiple 

ORs, and each OR can detect more than one odorant. (a) When the 

combinatorial code was first established, each OR was tested against 

a given concentration of a single odorant, and only agonist interac-

tions were analyzed. (b) Recent studies analyzed the responses of 

ORs to specific odorants presented as part of odor mixtures, and 

found that odorants in addition to their agonist role, can also serve as 

modulators (antagonists, inverse agonists, partial agonists and syner-

gistic ligands) to OR activity. A ‘No odorant’ condition depicts the 

activation profile or ORs 1–6 in the absence of any odorant. (c) The 

recent studies mention above resorted to technologically advanced 

techniques to perform high-throughput analysis of OR/OSN activa-

tion in the OE, or the OSN axon terminals in the mouse OB, after 

exposure to odorants or odor mixes. Some of these studies resorted 

to 2-photon or Swept Confocally Aligned Planar Excitation (SCAPE) 

microscopy, while others used transcriptomic approaches (e.g., 

microarrays)
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Odor mixtures and odorant‑OR interactions 
in the OE

Combinatorial coding helped to model the interaction of 

individual odorants with receptor repertoires. However, in 

natural environments, the olfactory system is exposed to 

complex mixtures of odorants, not to single odorants. Recent 

studies thus started to focus on mixture perception by inves-

tigating receptor responses to blends of multiple odorants 

(Fig. 3).

These experiments now shed a markedly new light on 

explanations of odor coding at the peripheral level. Spe-

cifically, results show that peripheral odor coding involves 

odorants acting on receptors as agonists, antagonists, inverse 

agonists, partial agonists, and even have a synergistic effect 

(Fig. 3b) (de March, et  al., 2020; Inagaki, et  al., 2020; 

McClintock, et al., 2020; Pfister, et al., 2020; Reddy, et al., 

2018; Xu, et al., 2020; Zak, et al., 2020).

These advancements were fueled by technological pro-

gress (Fig. 3c). Notable here was the introduction of a new 

microscopy technique: Swept Confocally Aligned Planar 

Excitation (SCAPE). In a breakthrough study of the Fire-

stein lab, SCAPE was used to test odor responses in OSNs 

of genetically engineered mice that expressed a calcium-

sensitive fluorescent protein (GCaMP6f). Notably, this study 

measured odorant responses in intact epithelium tissue in 

real-time to analyze receptor responses in individual OSNs 

across a collection of ~ 10,000 cells (Xu, et al., 2020).

Observations of mixture coding yielded two notable 

effects: the suppression as well as the enhancement in indi-

vidual cell responses. On the one hand, constituting sup-

pression effects, responses to a mixture of three odorants 

(acetophenone, benzyl acetate, and citral) showed that some 

OSNs that responded predominantly to acetophenone when 

administered individually, had their responses to acetophe-

none suppressed or completely inhibited when exposed to 

the ternary odorant mixture. On the other hand, revealing 

enhancement effects, another subset of OSNs that initially 

yielded small responses to acetophenone and benzyl acetate 

alone, showed increased responses when a mix of the two 

odorants was added. Additionally, a group of OSNs that did 

not respond to citral showed a higher response to acetophe-

none when citral was included in the mix, which can be 

interpreted as a sign of synergistic effects. Synergistic effects 

were also found in another study, which analyzed responses 

to odorant mixtures via in vivo two-photon imaging of OSNs 

expressing GCaMP3. Here, the synergistic effects were seen 

preferentially for low concentrations of odorants in the mix. 

In comparison, antagonism was predominant for higher 

concentrations of odorants in the mixture (Inagaki, et al., 

2020). These synergistic effects could indicate an allosteric 

mechanism, even though this type of modulation has rarely 

been reported for Class A GPCRs. Yet odorant binding to 

an allosteric site might explain, for example, why a receptor 

that did not respond to three individual odorants is active 

when exposed to a mixture of all three (Xu, et al., 2020).

A critical part of this revised model of odorant-receptor 

interaction is a markedly theoretical element. The SCAPE 

study presents a possible answer to the inherent neurocom-

putational challenge arising from combinatorial coding at 

the periphery: How does the brain discriminate different 

complex mixtures from widespread and overlapping recep-

tor activity? Antagonistic modulation at the receptor level 

would facilitate sparse coding resulting in less ambiguous 

signal patterns. Aromatic blends, such as coffee or roses, 

are composed of hundreds of different components. The 

combinatorial code allows humans to detect various odorant 

features in such mixtures and respond to a complex and, in 

its constituents, unpredictable chemical environment. How-

ever, with combinatorial activation alone, receptor activation 

patterns quickly overlapped to form a broad and smudged 

signal, which would lose its distinctiveness. Modulation, 

antagonistic and allosteric, facilitates a unique receptor code 

for the discrimination of complex mixtures. Less, literally, 

can be more.

Another study used calcium imaging of dissociated 

mouse OSNs to analyze how indole sensitive cells respond 

to a mixture of indole and other odorants (Pfister, et al., 

2020). The data demonstrated dose-dependent inhibition of 

the responses to indole by a variety of structurally diverse 

odorants. The ORs expressed by the indole responsive 

OSNs, as part of the same OR subfamily and additional 

OR paralogs, were identified by single-cell RNA-seq and 

characterized in a heterologous expression system. The 

activation profiles of these receptors to a large library of 

structurally diverse odorants (~ 800) showed that ~ 50% of 

the odorants in the library were able to antagonize at least 

one of these ORs, with some of them antagonizing one sin-

gle OR and others antagonizing multiple ORs. Notably, the 

results indicate that antagonism by odorants may also occur 

in a combinatorial fashion. Overall, mathematical modeling 

of dose–response curves by antagonizing odorants remain 

consistent with competitive binding, while the authors do 

not exclude that some antagonist odorants could act non-

competitively (allosterically) (Pfister, et al., 2020).

In vivo experiments in freely behaving mice indicated that 

responses of all indole sensitive ORs are inhibited when the 

agonist was mixed with α-ionone. In contrast, a different 

group of ORs proved responsive to the mixture (McClintock, 

et al., 2020). The same type of in vivo experiments, now 

followed by confirmation by in vitro expression of the ORs, 

demonstrated that the odorant whiskey lactone suppressed 

isoamyl acetate responses from a fraction of OSNs respon-

sive to isoamyl acetate alone (de March, et al., 2020). Com-

parable antagonistic effects were found in binary mixtures 
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containing undecanal and bourgenal. These experiments 

further registered inverse agonism, suppressing the recep-

tors’ basal activity upon exposure to bourgeonal, as well as 

partial agonism (de March, et al., 2020).

Antagonism proved the most common modulator of 

olfactory responses. However, the presence of inverse ago-

nism (when an odorant binds to the receptor and decreases 

the receptor’s basal activity) both in vivo and heterologous 

assays, remains notable (de March, et al., 2020; Inagaki, 

et al., 2020; Pfister, et al., 2020). An odorant can perform 

different causal roles, both as an agonist to one OR and 

an inverse agonist to another OR, as seen in heterologous 

essays (Inagaki, et  al., 2020). These results are further 

consistent with previous observations (Ache, et al., 1988; 

Araneda, et al., 2004; Bell, et al., 1987; Chaput, et al., 2012; 

Duchamp-Viret, et al., 2003; Münch, et al., 2013; Oka, et al., 

2004b; Peterlin, et al., 2008; Rospars, et al., 2008; Sanz, 

et al., 2005; Shirokova, et al., 2005; Spehr, et al., 2003).

Collectively these studies reveal that modulation of odor-

ant responses can begin peripherally, at the OR level, before 

the stimulus reaches the olfactory bulb. Odorants act as ago-

nists to activate ORs in a combinatorial fashion, but also 

serve as modulators (antagonists, inverse agonists, partial 

agonists and synergistic ligands) to OR activity (Fig. 3b).

Modulation of the combinatorial code points to two cen-

tral explanatory tenets relevant to current research in olfac-

tion. First, modulation explains how the olfactory system 

deals with the discrimination of overlapping receptor rep-

ertoires in high-dimensional odorant mixtures. Second, it 

links molecular data with psychophysical studies that have 

documented the psychological equivalent of suppression and 

enhancement effects in mixture perception (Cain, 1975; Kay, 

et al., 2005; Laing, et al., 1984).

Other features of OR‑ligand interactions

In addition to the efficacy of binding of the odorant to the 

OR and activation efficiency of the OR by the odorant, other 

mechanisms can further modulate OR/OSN responses, and 

consequently, odor perception. These perireceptor events 

include: odorant-odorant metabolic interaction (e.g., meta-

bolic interaction among different aldehydes affect the olfac-

tory metabolism of 2-methylbut-2-enal, a pheromone, and 

increase its availability in the OE), enzymatic conversion 

(e.g., reduction of hexanal to hexanol), dilution or removal 

of odor molecules by xenobiotic metabolizing enzymes in 

the nasal mucus (e.g., conversion of acetophenone to methyl 

salicylate by Cyp1a2a in the nasal mucus affects the response 

of Olfr874 to acetophenone) (Asakawa, et al., 2017; Hanser, 

et al., 2017; Ijichi, et al., 2019; Kida, et al., 2018; Nagashima 

and Touhara, 2010; Robert-Hazotte, et al., 2019; Thiebaud, 

et al., 2013), and were covered by multiple recent reviews 

(Block, 2018; Heydel, et al., 2013, 2019). Moreover, odorant-

binding proteins, a class of lipocalin proteins secreted by nasal 

glands and capable of binding to odorant molecules, are pre-

sent in vertebrates’ mucus. However, their exact physiological 

role in olfaction still remains mostly unknown (Bignetti, et al., 

1985; Briand, et al., 2002; Flower, 1996; Heydel, et al., 2013; 

Pevsner, et al., 1986; Tegoni, et al., 2000). Future work will 

help elucidate how these additional mechanisms further shape 

OR-ligand interactions and contribute to odor perception.

Concluding remarks

How olfactory cues are translated into complex behavio-

ral or physiological changes presents one of neuroscience’s 

greatest mysteries. Odor coding at the periphery is central 

to solving this secret. Combinatorial coding and receptor 

modulation mechanisms reveal that odorant-binding at the 

periphery is not a passive interface that translates chemical 

data into electrical signals. These primary detection mecha-

nisms actively structure the chemical data that reaches the 

brain. As Lettvin and colleagues had noted most famously 

for the visual system: the (frog’s) retina performs computa-

tions in the first layer of input that renders the foundations 

for any subsequent signal computation model in the brain 

(Lettvin, et al., 1959). The same principle applies to olfac-

tion. Therefore, it is imperative to model odor coding prin-

ciples based on the odorant receptor’s activity.

Odorant receptors are not ruled by the same mecha-

nisms as the visual system. Odorants activate unique 

combinations of ORs in the OE. Some odorants can 

trigger a large number of ORs. Other odorants are less 

promiscuous and activate only a small number of ORs. 

The composition and number of ORs recruited can also 

vary with changes in odorant concentration. This initial 

information is thought to be subsequently processed and 

interpreted in the olfactory bulb and higher brain centers, 

leading to the different odor percepts. Mounting evidence 

now suggests that the first level of modulation of odorant 

responses already occurs in the OE. Interactions among 

various odorant components in a mixture can modulate 

and alter the combinatorial code to a particular odorant at 

the OR level, including concentration-dependent activity. 

These results bring a new level of complexity to olfactory 

coding, where a large number of receptors and odorants 

are involved and several possible combinations of odor-

ants. The role of these modulatory interactions in odorant 

perception can be addressed in experiments that analyze 

how much exposure to odorant mixtures, compared to 

exposure to single odorants, can change olfactory-driven 

behaviors in mice.

Future experiments should consider these odorant 

interactions at the periphery and investigate remaining 
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unanswered questions. Do some odorants covalently inter-

act with receptors and modify their ligand binding sites? 

Or can odorants in a mixture interact one with another to 

produce new chemical structures? An additional factor to 

consider is the relative concentration of the odorant com-

ponents within a scent. We know that while fragrances are 

composed of multiple odorants, some are predominant in 

concentration or intensity, or in volatility. According to 

the Laing limit (Laing and Francis, 1989; Laing, 1987), 

identifying single odorants in mixtures gets more diffi-

cult as the number of odorants increases. Recent research 

indicates that this limit may not link to a saturation of the 

receptor code but is caused by antagonistic effects.

These constitute relatively new and revolutionary 

insights. Experimental advances investigating concrete 

interactions of odorants and receptors were primarily 

driven by the recent advent of high-throughput technolo-

gies, such as discussed in this review (e.g., RNA-sequenc-

ing, SCAPE microscopy). The next years thus promise 

the generation of larger datasets in a markedly faster pace 

that will allows us to better model how receptor interac-

tions shape odor coding. Combining these data with other 

large datasets from multidimensional behavioral pheno-

typing studies, chemoinformatics and deep learning, will 

facilitate the understanding of the functional impact of 

the combinatorial code and its modulation in odor-guided 

behavioral and physiological responses.

But the final frontier to cracking the olfactory code prom-

ises to be of a markedly theoretical nature, as recent studies 

on the odorant-receptor interactions foreshadow a paradigm 

shift. Thus far, the evidence gathered strongly suggests a first 

level of modulation of odorant responses through linear and 

non-linear interactions in the OE. Plus, recent studies with 

a medicinal chemistry approach have shown that OSNs do 

not categorize odorants as similar according to the principles 

of organic chemistry (Poivet, et al., 2016, 2018). In fact, they 

respond to features not even recognized by recent machine 

learning studies mapping odorants to perceptual categories, 

such as the recent study by Keller and colleagues (Keller, 

et al., 2017). As a result, any neural correlates of odor per-

ception cannot be found by directly mapping chemical input 

structures onto neural activation patterns. Instead, the new 

task emerging is to determine the principles by which the 

olfactory system detects, encodes, permutates, and modu-

lates its information – starting with the mechanisms of odor 

coding right at the periphery.
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