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Abstract: Heparin, a class of glycosaminoglycans (GAGs), is widely used to induce sperm capacitation
and fertilization. How heparin induces sperm capacitation remains unclear. Olfactory receptors (ORs)
which are G protein-coupled receptors, have been proposed to be involved in sperm capacitation.
However, the interaction between ORs and odor molecules and the molecular mechanism of ORs
mediating sperm capacitation are still unclear. The present study aimed to explore the underlying
interaction and mechanism between heparin and ORs in carrying out the boar sperm capacitation.
The results showed that olfactory receptor 2C1 (OR2C1) is a compulsory unit which regulates the
sperm capacitation by recognizing and binding with heparin, as determined by Dual-Glo Luciferase
Assay and molecular docking. In addition, molecular dynamics (MD) simulation indicated that
OR2C1 binds with heparin via a hydrophobic cavity comprises of Arg3, Ala6, Thr7, Asn171, Arg172,
Arg173, and Pro287. Furthermore, we demonstrated that knocking down OR2C1 significantly inhibits
sperm capacitation. In conclusion, we highlighted a novel olfactory receptor, OR2C1, in boar sperm
and disclosed the potential binding of heparin to Pro287, a conserved residue in the transmembrane
helices region 7 (TMH7). Our findings will benefit the further understanding of ORs involved in
sperm capacitation and fertilization.

Keywords: olfactory receptor; OR2C1; heparin; boar sperm; capacitation

1. Introduction

Mammalian olfactory receptors (ORs) are classified as G protein-coupled receptors
(GPCRs), which are primarily located in olfaction mediating sensory cells [1–3]. ORs initiate
a series of biochemical signaling transduction by specifically recognizing odor molecules
that convert the chemical signals of odor molecules into electrical signals to identify various
odors [4]. However, ORs are also widely distributed in non-olfactory tissues and cells,
including heart [5], kidney [6], liver [7], testis [8], oocytes [9], and mammalian sperm [10–12].
In human sperm, OR6B2 and OR2W3 are located in the acrosome and flagellum of sperm
respectively [13]. Moreover, OR51E2, OR4S1, OR4C13, and OR1I1 are located in the
acrosome, mid-piece, and flagellum of sperm [12,14]. The ORs located in the flagellum and
mid-piece of sperm are most likely involved in sperm chemotaxis, while those distributed in
sperm acrosome are more likely to participate in sperm acrosome reaction and capacitation,
suggesting different functions in response to different cellular patterns of ORs distribution.

Sperm capacitation is an indispensable event before fertilization, characterized by a
set of physiological and chemical changes that enables sperm to penetrate zona pellucida
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of oocytes [15,16]. Many studies suggest that litter size and fertility showed significant
correlations with the proportion of capacitated spermatozoa, and defects in sperm capacita-
tion can also reduce fertility [17–19]. For instance, defects in cystic fibrosis transmembrane
conductance regulator (CFTR), which regulates bicarbonate production is crucial for sperm
capacitation, have also been identified to seriously undermine male fertility [20]. To further
improve the fertility of males, proper understanding of sperm capacitation mechanism
is required, because only capacitated spermatozoa are capable of fertilizing oocytes both
in vitro and in vivo. It is generally believed that dramatic changes occur during sperm
capacitation and are manifested as the deconstruction of sperm membrane [21], increase
in intracellular pH (pHi ) [22], influx of Ca2+ [23], membrane hyperpolarization [24], and
tyrosine phosphorylation [25]. Capacitation is induced by different factors in in-vitro
media or female reproduction tract, such as heparin [26], bicarbonate [27], bovine serum
albumin (BSA) [28], and calcium ions [29]. However, the molecular mechanism about
how different substrates cause sperm’s capacitation has not been fully unveiled. CatSper
channel and bicarbonate transporters are marked as the main gateways to allow the influx
of calcium (Ca2+) and bicarbonate ions (HCO3

−), which are responsible for activating the
cAMP/cGMP signaling pathway by activating soluble adenylate cyclase (sAC) [30]. In addi-
tion to Ca2+ and HCO3

−, some macromolecules, such as heparin (glycosaminoglycan), can
only initiate the cAMP/PKA signaling pathway by mediating the efflux of cholesterol [31],
which is similar to the action of BSA [32]. The difference is that heparin binds and removes
the heparin-binding proteins that adhere to the surface of sperm from seminal plasma,
disrupting lipid rafts and capacitation indirectly [33]. However, it is unclear whether some
proteins interact with heparin on the sperm membrane to initiate the regulation of capac-
itation or not. Our previous report discovered that the differentially expressed miRNAs
and mRNAs were highly enriched in the olfactory transduction pathway when boar sperm
was treated with heparin [34]. In addition, sperm membrane signal transduction based
on cAMP and Ca2+ may participate in quality regulation of frozen-thawed boar and giant
panda sperm, which suggests that olfactory receptors may be involved in the regulation of
sperm capacitation or cryo-capacitation-like changes [35].

Heparin belongs to glycosaminoglycans (GAGs), which was identified as a new class
of odorants in fish that activate the olfactory bulb and trigger fear responses via a spe-
cialized circuit [36]. It was reported that the expressions of GAGs play a key role in the
functioning of mouse olfactory epithelium (OE) [37], which transmits the signal of odorants.
The alteration in the expression of GAGs contributes to olfactory receptor neuron (ORN)
dysregulation and abnormal olfactory molecules identification in the pathophysiology
of schizophrenia [38]. GAGs can also promote the maturation of human ORN [39] and
activate signaling pathways, which are essential for the proliferation and self-renewal
of neural stem/progenitor cells [40]. Intriguingly, heparin-like GAG is secreted by the
female reproductive tract and mediates sperm function and interaction between sperm
and oocytes [41], such as capacitation and fertilization, respectively. Defects in sperm
capacitation lead to poor fertility and even infertility. The administration of low doses of
heparin may increase clinical pregnancy and live birth rates in women undergoing in vitro
fertilization (IVF) or intracytoplasmic sperm injection (ICSI) [42]. The deconcentrated
sperm produced by heparin-glutathione pretreatment also increased the efficiency of ICSI
in cattle [43]. Consequently, it is vital to elucidate the mechanism of sperm capacitation
induced by heparin for improving fertility and treating infertility. In this study, we com-
prehensively demonstrated that heparin-like GAG induces sperm capacitation by binding
to a specific olfactory receptor, OR2C1, in the plasma membrane via Dual-Glo Luciferase
Assay, molecular docking and molecular dynamics (MD) simulation. Our findings will
benefit the further understanding of the interaction and molecular mechanism of ORs and
capacitation-inducing factors.
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2. Results
2.1. Effects of Different Substrates on Sperm Capacitation and mRNA Expression of Olfactory Receptor

The sperm capacitation rate and mRNA expression of the olfactory receptors were
evaluated from 1 h to 4 h. The capacitation rates in the heparin, BSA, NaHCO3, and CaCl2
were all significantly higher at every time point (p < 0.01) than the fresh group (Figure 1B).
Especially at 4 h, the capacitation rates in heparin were significantly higher (p < 0.01) than
other treatments.
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Figure 1. Sperm capacitation and mRNA expression profiling of ORs with different substances.
(A) Assessment of the acrosomal status by a pisum sativum agglutinin (PSA)/propidium iodide
(PI) staining assay. a: integral acrosome (green, PI−/PSA+), b: dead sperm (red, PI+/PSA−),
c: acrosomal reaction (green/red, PI+/PSA+), d: damaged acrosome and incomplete membrane
(green/red, PI+/PSA+). The capacitation rate is equal to the sum of the C group divided by the
total sperm. (B) Capacitation rate of sperm. (C) Hierarchical clustering diagram of relative mRNA
expression levels of ORs in boar sperm treated with NaHCO3, BSA, CaCl2, and heparin for 1 h–4 h.
The X-axis represents the processing time, and the Y-axis represents the log10 (relative expression).
The data are representative of at least three independent experiments (mean ± SEM).

In addition, the hierarchical clustering diagram disclosed that the mRNA expression
patterns of olfactory receptor genes in sperm treated with heparin were considerably differ-
ent from those in other treatments (Figure 1C). Heparin broadly upregulated the relative
expression of OR2C1, OR10Z1, OR6S1, OR4K13-L, OR52K1-L, OR51F2, OR1L8-L, OR7A17-L,
OR51T1, OR140, and OR2M3-L from 1 h to 4 h; in contrast, BSA, CaCl2 and NaHCO3 gener-
ally downregulated the relative expression of olfactory receptors. Furthermore, BSA rarely
upregulated the relative expression of olfactory receptors in 2 h and 3 h. In the heparin
group, the relative expression of most olfactory receptors in 1 h has a higher elevation
compared to 2 h, 3 h, and 4 h. The down-regulated heparin group is only found in OR49-L
and OR52E4. Moreover, extensive down-regulation can be found in the BSA, CaCl2 and
NaHCO3 groups.

2.2. Homology Modelling and Molecular Docking of OR2C1 and Heparin

The models of the OR2C1 receptors were constructed while obeying the energy rules
of stereochemicals (Figure 2A), which have similar structures to other reported ORs [44–46].
Of the amino acid residue dihedral angles in the models of the OR2C1 receptors, 98.2%
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are endowed with a reasonable range. Among them, 96.4% of the amino acids were
located in the permissive region, and only 1.8% of the amino acids were located in the
forbidden region of the torsion angle (Figure 2B). After simulating the structure of heparin
and olfactory receptors through homology modeling, we performed molecular docking
prediction of binding between heparin and ORs (Table S1). The result showed that heparin
primarily bound to a cavity formed by transmembrane helices at the N terminus of the
OR2C1 receptor (Figure 2D). Furthermore, the lowest predicted binding energy required by
heparin was found in the OR2C1 receptor compared to other receptors (−6.79 kcal/mol);
in consequence, OR2C1 was the top-ranked binder for heparin (Table S2).
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Figure 2. Homology modelling and molecular docking of OR2C1 and heparin. (A) Homology model
of OR2C1 protein; (B) Ramachandran plot of OR2C1 protein (the Ramachandran plot is mainly
divided into three areas: allowed area (red area), maximum allowed area (yellow area), and not
allowed area (blank area)); (C) Structure of heparin; (D) The predicted binding model of OR2C1
and heparin.

2.3. Molecular Dynamics Simulation for OR2C1 and Heparin

To further investigate the possible binding of OR2C1 to heparin, molecular dynamics
simulations were performed. As shown in Figure 3A, the rise in the root mean square devi-
ation (RMSD) in protein/ligand OR2C1_Heparin complex only occurred in the early stage
of simulation and was stable from about 40 ns with the average value of 1.008 ± 0.044 nm.
On the other hand, we analyzed the root mean square fluctuation (RMSF) value of all amino
acids in the whole system in Figure 3B. In the OR2C1_Heparin system, the RMSF of the
C-terminal amino acid of the OR2C1 protein was significantly higher than that in other
regions. In addition, RMSF values also fluctuated greatly in the region of V225-C241 located
in a loop at the bottom of the OR2C1 protein. Nevertheless, the RMSF of the whole OR2C1
protein did not fluctuate significantly due to the binding of heparin. The solvent accessible
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surface area (SASA) of OR2C1 protein was measured in Figure 3C, which has a larger value
at the beginning of the simulation which swiftly decreases before 40 ns, and then tends to
be stable at about 40 ns. Furthermore, the SASA of the stabilized structure was smaller
than that of the initial structure, and the structure of the complex was more compact.
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Figure 3. Molecular dynamic simulation between OR2C1 and heparin for 100 ns in central cavity.
(A) RMSD of the residues of modelled OR2C1 structure and heparin; (B) RMSF of the residues in the
system of OR2C1 binding heparin; (C) SASA; (D) number of H-bonding contacts with ligand.

The results showed that the total free binding energy between OR2C1 protein and heparin,
measured at a stable RMSD interval of 80–100 ns, was negative (∆Gbind = −40.744 kcal/mol)
(Table 1). Among these, the electrostatic interaction of the system, including electrostatic interaction
under vacuum (∆Gele = −318.485 kcal/mol) and polar solvation energy (∆GPB = 318.227 kcal/mol),
have poor binding energy (∆Gvdw + ∆Gnp =−0.258 kcal/mol). Higher binding energy was observed
in non-polar interactions including van der Waals force interaction (∆Gvdw =−35.293 kcal/mol) and
non-polar solvation free energy (∆Gnp = −5.193 kcal/mol). Hydrogen bonds between the OR2C1
protein and heparin over the simulation time have been counted and are shown in Figure 3D. The
number of hydrogen bonds between OR2C1 protein and heparin decreased slightly when
the whole complex structure became stable. At this time, the average number of hydrogen
bonds is 6.3, which is significantly less than 10.6 during 0–10 ns.

Table 1. Binding free energy between heparin and OR2C1.

Item Energy (kcal/mol) Delta

∆Gvdw (kcal/mol) −35.293 3.934
∆Gele (kcal/mol) −318.485 41.848
∆GPB (kcal/mol) 318.227 37.706
∆Gnp (kcal/mol) −5.193 0.349

∆Gbind (kcal/mol) −40.744 9.973
∆Gvdw: van der Waals force interaction; ∆Gele: electrostatic interaction under vacuum; ∆GPB: polar solvation
energy; ∆Gnp: non-polar solvation free energy; ∆Gbind: bingding free energy.

To further confirm the main interaction region and key amino acids between OR2C1
protein and heparin, the complex conformation after MD simulation was extracted. As
shown in Figure 4, a hydrophobic cavity consisting of Arg3, Ala6, Thr7, Asn171, Arg172,
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Arg173, and Pro287 is the place where heparin binds to OR2C1 protein. The phosphate
group on the heparin molecule bind with Thr7, Asn171, and Arg172 in OR2C1 to form hy-
drogen. Furthermore, a strong hydrophobic effect also formed in heparin with surrounding
hydrophobic amino acids (Arg3, Ala6, Arg173, and Pro287). Among this, Pro287 exist in
the transmembrane helices region 7 (TMH7) of OR2C1 (Figures S1 and S2). All of these in-
termolecular forces further enhanced the affinity between heparin and the OR2C1 receptor.
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Figure 4. Interaction maps of binding pattern between heparin and OR2C1. (A) Heparin binding
to the hydrophilic (blue) and hydrophobic (orange) surface of OR2C1; (B) position of heparin in 3D
structure of OR2C1 protein; (C) ligand–protein interactions between heparin and OR2C1 with the
residues that form H-bonding interaction (green) and hydrophobic interaction (red gear); (D) 3D
binding pattern diagram of heparin and OR2C1, the H-binding are shown in green dotted line.

2.4. Activation of OR2C1 with Heparin

The heterologous expression of ORs in Hana3A cells is generally used to verify the
binding of ectopic ORs and ligands [45]. The structure of recombinant plasmid was shown
in Figure 5A. The results showed that the normalized luciferase activity in transfected
OR2C1 with heparin cells was significantly higher than that in the transfected OR2C1 group
and the NC group (p < 0.01) (Figure 5B). In addition, no significant difference (p > 0.05) was
observed between the transfected OR2C1 group and the NC group. Therefore, these results
further demonstrated that heparin can activate OR2C1.
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Figure 5. Construction of plasmid and Dual-Glo Luciferase Assay. (A) The structure of recombinant
plasmid, including OR2C1, RTPIS, Luciferase, and Renilla; The genes of RTP1S and OR2C1 are driven
by cytomegalovirus promoter (CMV), Luciferase (Luc) is driven by the cAMP response element
promoter (CRE), and Renilla (RL) is driven by the constitutive promoter (SV40). (B) Dual-Glo
Luciferase Assay. The formula ([(Luc/RL)N − (Luc/RL)lowest]/[(Luc/RL)highest − (Luc/RL)lowest])
was used to normalize the luciferase activity. ** p < 0.01. The data are representative of at least three
independent experiments (mean ± SEM).

2.5. Regulation of Heparin-Activated OR2C1 in Sperm Capacitation

To verify the role of OR2C1 in heparin-induced capacitation in boar sperm, knocking
down OR2C1 (si_OR2C1) significantly (p < 0.01) decreased the mRNA expression of OR2C1
(Figure 6A). After the addition of heparin, the relative expression of OR2C1 was significantly
increased (p < 0.01) compared with the fresh group (Figure 6B). The mRNA expression of
OR2C1 in knocking down OR2C1 with the heparin group was significantly decreased (p < 0.01)
compared with that in the non-targeting siRNA (si NC) with heparin group (Figure 6C).
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Figure 6. Histograms of relative mRNA expression of OR2C1 and sperm capacitation rate with
si-OR2C1. (A) The relative mRNA expression of OR2C1 in si_OR2C1 and (B) treated with heparin
group; (D) the sperm capacitation rate of si_OR2C1 and further treated with heparin group. The
Y-axis displays the relative expression of the OR2C1 gene (A–C) and sperm capacitation rate (%, D),
respectively. Non-targeting siRNA oligonucleotides were transfected as negative control (si NC).
** p < 0.01. The data are representative of at least three independent experiments (mean ± SEM).
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In addition, a significantly increased (p < 0.05) capacitation rate was found in the
heparin group compared with the fresh group (Figure 6D). Meanwhile, the si_OR2C1 with
heparin group was significantly decreased (p < 0.01) in comparison to the si NC with
heparin group.

3. Discussion

Heparin is a common glycosaminoglycan (GAG) type of polysaccharide in ovarian
follicular fluid and is widely used to induce sperm capacitation [47]. In addition, BSA,
NaHCO3, and CaCl2 are also reported as capacitation-inducing factors, and are widely
used to induce sperm capacitation. In the present study, surprisingly, heparin appears to
have a stronger facilitated effect on boar sperm capacitation. Particularly at 4 h, the sperm
capacitation rate induced by heparin was markedly higher than that of other capacitation
factors. These results indicate that the pathway and mode of action of these different
capacitation inducing factors may be different. For instance, the uptake of calcium and
bicarbonate through the specific transporters flow into the sperm membrane stimulates
sAC and cAMP elevation and further initiates sperm capacitation, respectively [48–50]. In
contrast, both macromolecular BSA and heparin cannot pass through the sperm membrane;
they reposition lipid rafts by enhancing membrane fluidity to induce capacitation [50–52].
This may explain why the relative expression of olfactory receptor genes, which code
for membrane receptor proteins, were up-regulated when treated with heparin and BSA,
but not when treated with calcium and bicarbonate. It is worth noting that the effects
of heparin on olfactory receptor gene expression were substantially broader than that
of BSA due to their different interaction mechanisms. It was reported that BSA induces
cholesterol efflux by binding directly to cholesterol in sperm membranes, while heparin
removes seminal plasma adhesive proteins from the sperm membrane surface which
prevent premature capacitation, and indirectly increases plasma membrane fluidity [31].
Detailed studies demonstrated that a group of heparin-binding proteins bind to the sperm
and are present in the seminal plasma at ejaculation, which restricts the sperm’s fertilizing
capacity. Heparin binds to this kind of protein and removes them from sperm to induce
sperm capacitation, such as PDC-109 in bull [53] and wheat germ agglutinin-reactive
protein in boar [33]. However, the regulatory mechanism activated by heparin after this
process is not fully understood.

ORs were generally reported to exist in sperm [54] and widely believed to be involved
in sperm chemotaxis, further regulating sperm fertilization and capacitation [10–12,14,55].
Odorants can be unique ligands that interact with ORs to reinforce these processes. Spehr
found a special odorant bourgeonal that can bind with hOR17-4 to trigger transient Ca2+

response and modify sperm kinetic models [55,56]. Human sperm exhibited elevated swim
speeds and directed movements after reacting to bourgeonal, exposing that bourgeonal is
not only a compelling chemoattractant but also an effective swimming stimulant for sperm
that navigate them towards oocytes. In addition, Lyral as a cognate ligand of olfactory
receptor MOR23 can induce the influx of cellular Ca2+ by activating MOR23, leading to
the modulation of motility and chemotaxis in mouse sperm [55]. Except these exogenous
odorants, the endogenous ligands 5A-androst-16-en-3-one and 4-hydroxy-2,5-dimethyl-
3(2H)-furanone found in follicular fluid activate chemotaxis of sperm in humans toward
the oocytes and act on ORs such as OR4D1 and OR7A5 on their membranes [57]. So far,
numerous studies have verified that odorant-induced Ca2+ signals are indeed present in
sperm [58]. Multiple tested OR ligands have been monitored using single-cell calcium
imaging experiments, and the results indicated that most of them could transiently induce
Ca2+ influx [12]. The influx of Ca2+ is a prerequisite for sperm capacitation which proves
ORs function as an upstream switch in sperm capacitation according to their mode of
interaction [59]. Our previous study showed that the differentially expressed genes were
mainly enriched in the olfactory transduction signaling pathway in fresh and heparin-
induced capacitated boar sperm, implying the potential regulation of ORs in this way [34].
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As a consequence, in this study, we further aimed to elucidate the underlying molecular
mechanism of ORs in heparin-induced sperm capacitation.

It is generally accepted that ORs could be activated by traditional odorants; however,
the ligands of ORs are not only limited to them. For example, as a male pheromone in
sea lamprey, spermine can act as a novel ligand on OR TAAR384 to attract ovulatory
females [60]. In this study, our results showed that heparin significantly up-regulates
olfactory receptor gene expression, which implies the potential role of heparin in inducing
sperm capacitation. In order to further explore whether heparin directly binds ORs as a
novel odorant or not, we performed subsequent experiments and obtained a positive result
that heparin is able to join with various ORs. Different ORs have remarkable affinities for
each substance; for example, MOR107-1 is activated only by the (-) enantiomer of fenchone
and MOR271-1 is not [61]. Our results have verified that OR2C1 displays the highest
binding affinity for heparin (Figure 2). In mammals, ORs are also highly conserved proteins
that generally bind to ligands in the cavity formed by the transmembrane helix at their
N-terminal [44,45,62]. Similarly, molecular docking and MD simulations uncovered that
heparin binds to the N-terminal cavity in OR2C1 predominantly through an alternating
interplay of hydrogen bonding and a strong hydrophobic effect among certain residues.
Non-polar interactions (∆Gvdw + ∆Gnp = −40.486 kcal/mol) were inferred to be the main
driving force between OR2C1 protein and heparin. Moreover, ORs also contain conserved
residues which are crucial for OR activation and specificity control of olfactory G pro-
tein [45,63]. The highly conserved proline residues always exist in the TMH7 of ORs such
as Pro285 and Pro281 in OR1A1 and Olfr43 which cause a pronounced kink in TMH7 [46].
We similarly detected Pro283 and Pro287 in the TMH7 region of the OR2C1 protein, which
were analogous to conserved residues. In particular, Pro287 formed a strong hydrophobic
interaction with heparin, which increased the affinity of OR2C1 and heparin.

OR2C1 was a putative odorant receptor of sperm cells in many species, such as
boar, bovine, horse, and goat, which was confirmed from UniProt [64]. Limited reports
have found that OR2C1 favor the survival of isocitrate dehydrogenase wild-type glioma,
certifying that OR2C1 was one of the therapeutic targets for glioma [65]. A novel link
between heparin and OR2C1 in sperm emerges from this study. Heparin-like GAGs
influence sperm-oocyte interaction by interacting with oviduct-specific glycoprotein in
the development of zona pellucida modifications [66]. It has been reported that GAGs
are widely expressed and modulate olfactory neuronal homeostasis in mouse and human
ORN, suggesting that GAGs can bind with ORs like an activator [37–39]. Whether olfactory
receptors mediate the capacitation effected by heparin-like GAGs during sperm in the
oviduct remains poorly understood in part because of the difficulty of experiments in
the female reproductive tract. However, our results showed that after the addition of
exogenous siRNA, the relative expression level of OR2C1 mRNA was significantly reduced
compared with that in the NC group, demonstrating its ability to target degradation of
OR2C1 mRNA already present in mature sperms (Figure 6A). At the same time, although
mature sperm are generally considered to be transcriptionally silent, previous studies have
found that heparin can rapidly transform mature sperm into a capacitated state, and there
is a huge transcriptomic difference before and after the process [34], which is manifested
as the up-regulation of olfactory receptor-related genes. The phenomenon of breaking
the gene silencing state in mature sperm by heparin also seemed to be demonstrated by
our results that the sperm capacitation rate and the relative expression of OR2C1 mRNA
in the heparin group was significantly increased (Figure 6B, D). Based on this, after the
introduction of exogenous siRNA, the prominent decrease in relative expression of OR2C1
mRNA, accompanied by a significant decrease in the sperm capacitation rate has been
observed (Figure 6C, D). These results have confirmed the potential role of OR2C1 in sperm
capacitation induced by heparin in vitro, which inspires us to carry out deeper research.
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4. Materials and Methods
4.1. Animal Ethics Statement

All animal procedures involving animal treatments were performed in accordance
with the Institutional Animal Care and Use Committee in the College of Animal Science and
Technology, Sichuan Agricultural University, Sichuan, China (under permit no. 2020202040),
which conforms to the Regulations of the Administration of Affairs Concerning Experimen-
tal Animals (Ministry of Science and Technology, China, 2017).

4.2. Materials

Trizol LS Reagent kit (Invitrogen, Carlsbad, CA, USA), TaKaRa PrimeScript RT Reagent
Kit (Takara Biotech, Beijing, China), Fluorescein isothiocyanate isomer conjugated with PSA
(FITC-PSA) ( Sigma, Saint Louis, MO, USA), PI (Sigma, Saint Louis, MO, USA), Roswell
Park Memorial Institute Medium (RPMI Medium) (Gibco, Grand Island, NY, USA), Fetal
bovine serum (FBS) (Pan, Aidenbach, Germany), TransIntroTM PL Transfection Reagent
(Tran, Beijing, China), CD293 (Invitrogen, Carlsbad, CA, USA), Dual-Glo Luciferase Assays
System (Promega, Madison, WI, USA), non-targeting siRNA oligonucleotides (siRNA NC)
(Ribobio, Guangzhou, China), silencing siRNA targeted against the OR2C1 gene (siRNA
OR2C1) (Ribobio, Guangzhou, China).Unless stated, all chemicals used were purchased
from Sigma (Sigma, Saint Louis, MO, USA). BTS (37 g glucose, 3 g trisodium citrate,
1.25 g Na2-EDTA, 1.25 g NaHCO3, 0.75 g KCl, 0.6 g/L penicillin G sodium, and 1.0 g/L
dihydrostreptomycin; diluted to 1 L).

4.3. Sperm Collection and Treatment

Ejaculates (n = 10) were collected from healthy and sexually active Yorkshire boars,
provided by Pengzhou Jinzhu farm (Pengzhou, Sichuan, China). Fresh ejaculates were
transported in a portable refrigerator (17 ◦C) within 1 h to the lab. All the samples were
tested through standard assessment of semen quality and only those with normal morphol-
ogy, more than 90% motility, 80% viability, and higher than 1 × 108 mL−1 concentration in
subsequent experiments were used.

All semen (n = 10) were mixed to a pool, and then equally divided into four aliquots.
Firstly, one aliquot was centrifugated (1500 rpm/min, 5min) and immediately suspended in
BTS at 37 ◦C for 1–4 h, which was regarded as fresh group. A second aliquot was incubated
in BTS with heparin, BSA, NaHCO3, CaCl2 for capacitation, respectively. A third aliquot
was further divided into two aliquots for knockdown of OR2C1, among which one aliquot
was transfected with 20 nM siRNA OR2C1 and siRNA NC for 12 h and another one was
additionally incubated with heparin for 1 h after transfection.

4.4. Assessment of Acrosomal Status and Capacitation Rate

Double staining with FITC conjugated with PSA and PI was applied to evaluate
acrosomal status and membrane integrity as previously described [67]. In brief, after being
fixed in 4% paraformaldehyde for 10 min, sperm were subsequently incubated with FITC-
PSA (20 µg/mL) for 20 min and PI (20 µg/mL) for 5 min at 37 ◦C. Then, the suspension
was washed three times with PBS. For each sample, no less than 200 sperm were observed
using Epifluorescence microscopy (Olympus, Tokyo, Japan). Image J (1.48v) was used to
overlap the red (PI) and green (FITC-PSA) fluorescence.

4.5. RNA Extraction and Quantitative Real-Time PCR (RT-qPCR)

Total RNA was extracted with Trizol LS according to previous method and somatic
cells was eliminated by treating with 0.5% of Triton-X hypotonic solution [35]. The Nan-
odrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) was used to measure RNA
concentration and purity. Qualified RNA sample was converted to cDNA using TaKaRa
PrimeScript RT Reagent Kit according to the manufacture protocol. RT-qPCR was used
to detect the expression of target genes through CFX 96 Real-Time PCR Detection System
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(Bio-Rad, Hercules, CA, USA). The GAPDH were regarded as the housekeeping genes for
normalizing to the relative mRNA expressions.

4.6. Homology Model Building and Molecular Docking

The three-dimensional structure of the human M2 muscarinic receptor (PDB code
3UON) was taken as the template to simulate the structure of olfactory receptor proteins as
previously described [68]. Modeler modeling 10.3 based on the MPI library was used to
construct homology modeling for olfactory receptor [69]. The reliability of those olfactory
receptor modellings was examined by the PROCHECK v.3.5. After being evaluated and
conforming to the stereochemical energy rules, models were applied to the subsequent
molecular docking. The structure of heparin was mapped in ChemDraw 14.0. The MOPAC
2016 was used to optimize the molecular structure and calculate the atomic charge of PM3.
The PDBQT file for docking was generated via AutoDock Tools 1.5.6. Molecular docking
was achieved by the software package AutoDock 4.2.6. The parameters were set as follows:
the lattice points (60 × 60 × 60) in each direction of X, Y, and Z, 100 docking times, and
the other parameters were adopted to the default values. Amber14 force field was used to
optimize docking results. Briefly, the steepest descent method of 1000 steps were taken,
followed by the conjugate gradient method of 500 steps, and the final results will be used
for subsequent analysis.

4.7. Molecular Dynamic Simulations

Molecular dynamics (MD) simulation of OR2C1 and heparin were performed with
the GROMACS 2018.4 version package in an isothermal–isobaric ensemble (NPT). The
Amber14SB all-atom force field [70] and TIP3P water model [71] were used in this system.
All bonds involving hydrogen atoms were constrained by the LINCS algorithm [72] with
a 2 fs integration time. Electrostatic interactions were calculated using the PME method
(Particle Mesh Ewald) [73], and the cut-off radius of the non-bonded interactions was set as
10 Å, which was updated every 10 steps. The V-Rescale [74] temperature coupling method
was used to control the simulated temperature to 298.15 K, and the Parrinello–Rahman [75]
method was employed to control the pressure to 1 bar. Firstly, the steepest descent method
is used to minimize the energy of the two systems. Then, canonical ensemble (NVT) and
NPT equilibria were simulated for 1 ns at 298.15 K, respectively. Finally, the system was
simulated by MD for 100 ns, and the conformation was saved every 10 ps. The simulation
results were visualized using the GROMACS embedding program and VMD.

4.8. Dual-Glo Luciferase Assay

The full-length genomic of OR2C1 was amplified by the specific primers tag with N-
terminal rhodopsin and was subcloned into pCI vector between Mlu I and Not I restriction
enzyme sites. The sequence and primers of OR2C1 gene of pig were shown in Figure S2.
Hana3A, derived by HEK239T, was cultured in RPMI medium supplemented with 10%
FBS (vol/vol) at 37 ◦C. The constructed pCI was co-transfected with three plasmids in
Hana3A: firefly luciferase driven by CRE, sea kidney luciferase driven by the constitutive
promoter SV40, and RTP1S driven by CMV like the olfactory receptor using TransIntroTM

PL transfection reagent. RTPIS was used to promote olfactory receptor surface expression.
Subsequently, the cells were treated with heparin for 4h. Luciferase activity was measured
in Hana3A cells with the Dual-Glo Luciferase Assays System.

4.9. Knock-Down of OR2C1

To reduce the expression of OR2C1 mRNA, the Cell Manipulation ECM-2001 (BTX,
Holliston, MA, USA) was used to transiently transfect sperm with siRNA oligonucleotides
targeting OR2C1 mRNA. Pulse conditions were set to 4 × 300 V for 100 µs. The level of
OR2C1 expression and capacitation rates were determined after siRNA knock-down.
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4.10. Statistical Analysis

All experiments were performed independently in at least triplicate and results were
presented as mean ± standard error of mean (SEM). The statistical difference was analyzed
by independent sample t-test using SPSS (v.19.0). The relative olfactory receptors genes
expression level was quantified by the 2−∆∆CT method. P < 0.05 and p < 0.01 was considered
statistically significant.

5. Conclusions

At the beginning of present study, we demonstrated that heparin extensively upregu-
lated mRNA expression of ORs. Further, we revealed the potential association between
OR2C1 and heparin by knocking down OR2C1 during heparin-induced sperm capacitation.
We also confirmed that OR2C1 was involved in the regulation of sperm capacitation by
binding with heparin and identified its potential crucial binding site. Overall, we compre-
hensively provided novel evidence that heparin induces sperm capacitation via binding
with OR2C1 located in the plasma membrane, which will contribute to elucidating the
molecular regulatory mechanism of sperm before reaching the oocyte.
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