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ABSTRACT: Convergence of an algorithm for a linear feedback
shift register 1initial state reconstruction using the noisy output
sequence. based on a bitwise Bayesian iterative error-correctlion
procedure and different weight parity-checks, is analyzed. It is
proved that the self-composition of the Bayes error probability
converges to zero if and only 1if the noise probability is less than a
critical value expressed in terms of the numbers of parity-checks. An
alternative approach to the critical noise estimation based on the
residual error-rate after each iterative revision is also discussed.
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I. INTRODUCTION

Many o©f the published keystream generators are based on binary
Iinear feedback shift registers (LFSRs) combined by a memoryless
function. Such a generator is called a combination generator. A
weakness of a combination generator for stream ciphers is
demonstrated in [1]. In [2]-[8]. various algorithms for the efficlent
realization of the attack are proposed and analyzed. The main
underlying ideas for these algorithms are based on the iterative
error-correction [9]. The algorithms are iterative procedures with

two main phases in each iteration. In the first phase. a criterion
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for the second phase is bit-by-hit calculated, using the parity-
checks corresponding to the considered bit, and in the second phase a
bit-by-bit decision (error-correction) is made . Experimental
convergence analysis of these algorithms is given in [2], [4]. and
[8]. whereas a probabilistic approach thraugh the convergence of the
error-rate self-composition, having origins in [9]. is developed in
(3]. [5] and [7] for the majority and threshold decision rules,
respectively, in the error-correction phase. An equivalent
convergence representation for the Bayesian decision rule In

error-correction 18 derived in [6].

In this paper, we consider an iterative algorithm employing the
parity-checks of different weights and the Bayesian decision rule in
error-correction for each bit. assuming that the error-rate from the
previous iteration is used as the noise probability in the current
one. We analyze the convergence of the Bayes error probability
self-composition, which, as in [3]. [5]. and [9]. may be regarded as
an indicator of the {terative error-correction convergence. An
alternative approach to the convergence consideration based on the

residual error-rate after each iterative revision is also suggested.

II. PROBLEM STATEMENT

Dencte by (xn):=1 an output segment of a LFSR of length L

In a statistical model, a bilnary noise sequence {en):_1 is assumed
N

to be a realization of a sequence of {.i.d. binary variables (E } _,

such that Pr(Enzl) =p, . n=1.2.....N . Let (Zn} be a noisy

n=1
N
version of (xn)n=1 defined by

z, = X, ] e, - n=1,2,....8N ,

where @ denotes the modulo 2 addition. in GF(2)}.
¥e consider a reconstruction of the LFSR initial state given the

segment {zn}:_l . provided that the feedback polynomial and p
(Pn=P . n=1,2,. .. ,N) are known, using an algorithm based on

iterative error-correction.
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Suppose that a set of orthogonal parity-checks related to the
n-th bit is generated in an appropriate way (see [2]-[4] and [7])
n=1.2,...,N.

Let Non(w) denote the number of parity-checks of weight w

for the n-th bit, which involve exactly w+l bits, and let sn(w)

be the number of satisfied parity-checks among them, n=1.,2,....N
Let 2 denote a set of possible weights for each bit. In the
statistical model, for every n=1,2,....N ., sn(w) is a realization
of the integer stochastic variable Sn(v) . w=1.2,....L

PP(En.{Sn(')}S_l) fs the joint probability of the variables E_ and

Sn(') . w=1,2,...,L , and Pr(En[{Sn(w))&_l) is the corresponding

posterior probability, n=1,2,...,N . In the statistical model, for
= = f th

every n=1,2,....N . e = [Sn(')]wen is a realization o e

stochastic multi-dimenslional vector variable 6n = [Sn(')]w€ﬂ . Then,

it can be shawn that the characteristic ratio of posterior

probabilities
= ‘~= - =~: 1
a,(8.) = Pr(E =1]B_ e,) / [1 - Pr(E =1]|6_=86_)] (1)

{s given by the following lemma.

Lemma 1: For given p . [Non(v)]'en . and an observed 8 =

[sn(')]wﬁﬂ . the posterior probability quotient is given by

No -2
q,(8) = T_g n -1t (1-2p)" ] nl¥)-2s_(w) Caelze N (2)
Pwea 1 - (1-2p)"7

Note that the product (2) effectively contains only those terms for
which Non(') 21

The maln purpose of this paper is the theoretic convergence
analysis of the following algorithm [8]. which can be viewed as a
modification/simplification of the algorithms [2]-[4].
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ALGORITHNM
Input : The noisy sequence {zn):_1
Initialization: 1=0 . p{})=p . I=const ) 1 , c=const » 1
Step 1: Set i=i+1 . If 1 ) I go to Step 6.
Step 2: Calculate en = [.-;“(w)]“en . n=1,2,... N
Step 3: For n=1,2.....N . calculate qn(en-P(i)) and
(1} _ (1) (1) (1)
P =aq.(0,.p"" ") 7/ [1 +gq (6 .p'"7)] where g (6.p )

stands for qn(Bn) corresponding to the noise probability

i
P ) (1)
: (i) (4 -
Step 4: If qn(en.p ) Y e . set z, sz @1 . P -1 Pn .
n=1.2,....N .
N
Step 5: Calculate pl*1) o iyny z p(1) | pp UML) ( U0) oo ¢
n=i M
Step 1.
Step 6: Set X, *z, . n=1.2,... N, and stop the procedure.

Output: The reconstructed sequence {xn}:_1

Besides the direct analysis of the algorithm convergence to the

original sequence (meaning that X=X n=1,2.....N), its

convergence could be <considered through the convergence of the

(1),= (1)
sequence {p )i—l (in Step 5 P is the expected relative
number of errors {n (zn}:_l after the (i-1)-th iteration step,

N

glven {en)nzl). or through the convergence of the expected value
(1) = (1)

sequence {PB }1=1 . where PB denotcs the Bayes probability of

error after the i-th {iteration (average value of p(i) over

N
(en)n=l ' when c=1). Since the direct analysis of the algorithm

convergence seems to be intractable, 1in this paper we analyze the

1), = 1),®
convergence of (P§ )}1=1 and (P( )}1=1

III. SELF-CONPOSITION OF THE BAYES ERROR PROBABILITY

¥hen c =1 in the ALGORITHM Step 4, we have the Bayeslan

approach to the error-correction. When the Bayesian decision rule is
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employed. for a given n~th bit of noise. both the conditional and

average probabilities of decision error are minimized, and are given
by

= = = 3

Pg(n.0) = min{Pr(En_Olen). Pr(E 1|en)} . (3)

Pp(n) = T Py(n.0,) Pr(8 =0 ) . (1)
n

respectively, with

Pr(8=0) = p n (Vo{¥), p:(w)(l_pw)uo(-)-s(') .
w€f]

(1-p) zn(Nggzg) (1_p')s(') pto(w)-s(') . (5)

where P, = [1—(1—2p)']/2 , w €01 ., and subscript n in (5) 1is

omitted for simplicity. After certain algebraic manipulations. one

can obtaln the following form for the Bayes probability of error:

q (0} -1
=9n) ~nn . (6)

PB(n) = p - z Pr(8
q. (@) + 1

8, q.(e )21

n

where Pr(5n=6n) is given by (5) and qn(en) by Lemma 1.

Without loss of generality, suppose that Non(W) = No(w} .
n=1,2,..., N . we€Q . This can be obtained by clipping of the
original sequence (Non(')}:_1 to the minimum value. Under this

assumption, Lemma 1 and (6) yield that the Bayes error probability

PB(n) is the same for all n , that 1s, PB(n) = PB . n=1,2,....,N
Consequently, the self~composition of the Bayes error
probability is defined as the recursion
i - -
pli) o pUi=1) _ p(pli-1), 1=1.2.... . (7)
~ q(0.P) - 1
f(P) = Z Pr(0=0) —————— |, P € [0, 0.5] . (8)
9. q(9.P)11 q{®.P) + 1
(0)
where P =p £ 0.5, p being the initial noise probability, and

q(®.F) stands for qn(en) corresponding to the noise probability P.
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IV. CONYERGENCE ANALYSIS

The convergence of the self-composition of the probability of
error for the majority decision error-correction rule was analyzed in
[3]. [5]. A condition for the threshold error-correction is given in
{7]. although the proof 1is not quite precise. In this section, we
consider the convergence of the Bayes error probability
self-composition, which, as in [3]. [5]. may be regarded as an
indicator of the iterative error—-correction convergence.

First note that f(P) is a continuous nonnegative function on
the segment [0,0.5] such that f(P=0) = f(P=0.5) = O . We now prove
three lemmas and a theorem giving the necessary and sufficient
conditions for (7) to converge to zero. When No(1) =1 and
No(w) =0 . w=2,3.....L . it follows that P(!) = p | 1=1.2,...
In all what follows this case 1is simply called the degenerate one.

Note that lemma 4 essentially contains the result that 1is missing In

[71.
Lemma 2: The recursion (7) converges to O 1{f and only {f
£(P) > 0 . Pe€ (0. p] . (9)

Proof: Since f(P) 1s a nonnegative function not greater than

P . the sequence (P(”):_1 is nonnegative and nonicreasing and,

hence., it converges to a limit P € [0. p] such that f(P”) =0
Consequently, it {s straightforward to show that P" =0 if and only
1f (9) is true. Q.E.D.

Lemma 3: For each P € (0, 0.5) . we have that f(P) ) O if
and only 1f q(@e. P) » 1 for © =0 =[0,0....,0] . that tis,

when all the parity-checks are unsat{sfied. Otherwise, f(P) = O
Proof: First, note that, except in the degenerate case, for all
0 £ 0=[00 ... 0] we have

q(0. P) » q(0. P) . P € (0.0.5)

because, according to (2). the inequality

(L (1-2?)']No(-) y [t (x-zp)']No(-)-zs(-)

1 - (1-21)" 1 - (1-2P)"
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holds if s(w) ) O . for any w=1.,2,...,L

On the other hand, according to (5) Pr(0=6) ) 0 for all © .
Therefore, in view of (8), it follaws that a necessary and sufficient
condition for f(P} > O is that a 6 exists such that
q(®. P) }» 1 . However, the first formula in the proof implies that
this is equivalent to q(0, P) ) 1. Q.E.D.

Lenma 4: Let Q{P)} be the function defined by

w
Q(p) = —2— n L2 gNeln)  p e 0, 0.5] . (10)
1 - P wen 1 - (1-2P)

For 0= (1} and No{(1) =1 . @Q(P)=1 , P€ (0, 0.5] . For
Q@ = {1} and No(1) > 1 .oQPy 1 . P € (0. 0.5) . and
Q(0.5) = 1 . Finally. for 0 # {1} a critical value P, € (0, 0.5)
exists such that Q(P) » 1 for 0 ¢ P Py , Q(Py) =1 .
Q(P) ¢ 1 for Py (P (0.5 , and Q(0.5) = 1

Proof: First note that Q(P) is a positive and continuous
function such that Q(0.5)=1 . It can be shown that the first

derivative of Q(P) s
w-1

. _ 1 B 4 No(w) w (1-2P)
Q' (P) = Q(P) [T -in e ] . PE(0.0.5). (11)

which, using a substitution P = (1-x)/2 ., beconmes

Q' ((1-x)/2) = 3.21&1:51%%1 F(x) . (12)
lal (1-x%)
where
1 -1
F(x) = 2 [ 1+ [a[No(w)w (x™*1 = x" 1y ] . x€(0.1) . (13)

wen 1 - x2¥

and [0] 1s the cardinality of @ . The zeroes of Q'(x) en (0.1)
are thus determined by F{(x) . So, we proceed by analyzing F(x)

¥hen 2 = (1} and No(l1) =1 , F(x) =0 for all x € (0.1)
meaning that Q(P) =1 . P € (0, ¢.5] . When o= (1} and
No(1) ) 1 R F(x) (0O for all x € (0,1) . Bearing in mind that
Q(P) » 0O , P € (0, 0.5} , it then follows that when Q = {1} and
No(1) » 1 , Q(P) 1is a decreasing function an (0, 0.5] such that
Q(0.5) =1 ., which implies the lemma statement.

Assume now that 1 # {1} . The first derivative of F(x) on

(0.1) 1is



2w+2]_

-2
F'(x) =2 - lﬂlﬁng);'x; [(w-1) - (w+1)x2 + ('+1)x2' - (w-1})x
weq (1t - x™7) (14)

According to (14). we now analyze the following functions on (0.1):

$,(x) = (v-1) - (v+1)x2 + (w+1)x2" - (n-1)x2"*2 | w e {1} . (15)
The first derivative of ¢'(x) is
¢;(x) = 2(w+l) x [-1 + w X272 (w-1) xz'] . (16)

Proceeding in the same manner, we finally consider the follawing

functions on (0,1}:

¢'(x) = -1+ w x2'-2 ~ (w-1) 22" . w € O\N{1} . (17}

The first derivative of ¢'(x) is
, 2w-3

ei(x} = 2w (w-1) x2"73 (1 - K] . (18)
According to (18), e (x} . x € (0,1) . is a positive function, for
each w € O\{1} . Consequently, using (12)-(18) and the fact that
Q(P) » O , P € {0, 0.5) , 1t is not difficult tao obtain that Q'(P)
has exactly one zero, P* ., on (0.0.5), and that Q' (P) is a
negative function for O ¢ P ¢« P' . and a positive one for
P* ¢ P ¢ 0.5 . Finally, from Q(0+) == , Q(0.5) =1 . and the

established characteristics of Q'(P) 1t follows that for @ # {1}
a P, € (0. 0.5) exists such that Q(P) > 1 for 0 (P ¢ P,

Q(PO) =1, Q(P) ¢ 1 for PO (P (0.5. and Q(0.5) =1 . Q.E.D.

Theorem 1: The self-composition of the Bayes error probability

converges to O for O ( p ( PO and i{s in any iteration step equal

to p for Po S p £ 0.5 . The critical value P0 is equal to the

unique value of P € (0, 0.5) such that

P norl* (1—29):Jno(w) -1 (19)
1 - P wel 1 - (1-2P)

i}
o

if @2 (1) . For 01 = {1} and No(l) > 1 , P .5 , and for

2 = {1} and No(1l) =1, P, =0
Proof: For 1 = (1} and No(l1} = 1 the proof is trivial. For
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o« {1} and 2= {1} . No(1l) ) 1 the existence of PO is
established by Lemma 4. Then. according to Lemma 4, we have that
Q(P) » 1 for any O ¢ P ( Py . By Lemma 3, Q(P) > 1 1implies that
f(P) >0 ., O (P( PO . Finally, by Lemma 2. the self-composition
converges to O 1if O < p ( PO

On the other hand, in view of Lemma 3, we have that f(P) =0
for P0 P 0.5 , so that (7) ylelds that the self-composition
equals p {in any iteration step. Q.E.D.

Note that by virtue of Lemma 4, Theorem 1 essentially states
that for p } 0O the self-composition of the Bayes error probability

converges to zero if and only i{f

P n (1 + (1—22)']"0(') ) 1 \ (20)
1 -pwen 1 - (1-2p)"

which is the desired convergence condition.

Finally, some examples related to Lemma 4 and Theorem | are

presented. Denote by % the number of feedback tapes on a given
LFSR. The functfon Q(P)-1 , when N=10°, 10® . @9 .c (1.2.....1)
and 2 C {1.2....,¥} such that No(w) 21l . wé€Q , and 0 = (W} .

assuming that (No(l)}:_2 stands for the average values determined

by the approach presented in [4], is far L=40 , ¥=14 displayed in
Table I.
According to Theorem 1, the nonacceptable noise PO is the

value of P € (0, 0.5) such that Q(P)-1 = 0 . So defined
nonacceptable nolse {s the minlmum noilse-rate above which the
algorithm is bound to fafl. Some values of Po are given |in
Table II.

The presented numerical examples are self-explanatory and

provide the quantitative {llustrations of the analytical results.
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Table I: The function Q(P)-1 , for L=40 , W=14 , when N=105. 106.
nc{1.2,...,L}, 9cC {1,2,....¥}, and @ = (W)
P Q(P) - 1

nc{1.2..... L} ac{1.2.....%} 0={¥)

N=10° nN=10° N=10°  N=10° N=10®  N=10%
0.01 1000 }1000 ) 1000 11000 ) 1000 »1000
0.02 } 1000 1000 Y1000 Y1000 Y1000 » 1000
0.03 11000 Y1000 ) 1000 Y1000 )}1000 »1000
0.04 }1000 1000 1000 Y1000 Y1000 Y1000
0.05 } 1000 Y1000 Y1000 y1000 Y1000 ) 1000
0.06 Y1000 }1000 ) 1000 Y1000 1000 ) 1000
0.07 }1000 31000 ) 1000 Y1000 ) 1000 »1000
0.08 ) 1000 Y1000 » 1000 1000 )y 1000 y1000
Q.09 Y1000 Y1000 Y1000 1000 Y1000 }1000
0.10 }1000 Y1000 »1000 }1000 y 1000 y1000
0.11 11000 »1000 »1000 Y1000 »1000 ¥1000
0.12 1000 11000 1000 }1000 99.9 861.4
0.13 }1000 Y1000 » 1000 }1000 13.1 60.8
0.14 Y1000 »1000 » 1000 ) 1000 2.6 8.9
0.15 31000 Y1000 ) 1000 ) 1000 0.425 1.8
0.16 1000 }1000 Y1000 }1000 -0.234 0.204
0.17 1000 1000 »1000 ) 1000 -0.488 -0.310
0.18 1000 }1000 »1000 » 1000 -0.602 -0.517
0.19 }1000 Y1000 ) 1000 1000 -0.656 -0.612
0.20 Y1000 1000 »1000 » 1000 -0.682 -0.656
0.21 31000 }1000 713.1 ) 1000 -0.691 -0.676
0.22 )1000 ) 1000 48.1 Y1000 -0.691 -0.681
0.23 99.5 »1000 7.4 } 1000 -0.684 -0.679
0.24 8.9 Y1000 1.6 }1000 -0.674 -0.670
0.25 1.5 Y1000 0.275 }1000 -0.660 -0.658
0.26 0.151 ? 1000 -0.190 31000 -0.645 -0.644
0.27 -0.264 341.3 -0.382 58.9 -0.628 -0.627
0.28 -0.422 18.9 -0.468 7.5 -0.610 -0.609
0.29 -0.488 2.8 -0.508 1.6 -0.591 -0.591
0.30 -0.513 0.532 -0.521 0.280 -0.571 ~0.571
0.31 -0.517 -0.080 -0.521 -0.150 -0.550 -0.550
0.32 -0.510 -~0.298 ~-0.512 -0.321 -0.529 -0.529
0.33 -0.496 -0.385 -0.497 -0.394 ~-0.507 -0.507
0.34 -0.479 -0.419 -0.479 -0.422 -0.485 -0.485
0.35 -0.458 -0.425 -0.458 -0.426 -0.461 -0.461
0.36 -0.435 -0.417 -0.435 -0.418 -0.437 -0.437
0.37 -0.412 -0.401 -0.412 -0.402 -0.413 -0.413
0.38 -0.386 -0.381 -0.386 -0.381 -0.381 ~-0.387
0.39 -0.360 -0.357 -0.360 -0.357 -0.361 -0.361
0. 40 -0.333 -0.331 -0.333 -0.332 -0.333 -0.333
0.41 -0.305 -0.304 -0.305 -0.304 -0.305 -0.305
0.42 -0.276 -0.275 -0.276 -0.275 -0.276 -0.276
0.43 -0.246 -0.245 ~0.246 -~0.245 -0.246 -0.246
0.44 -0.214 -0.214 -0.214 -0.214 -0.214 -0.214
0.45 -0.182 -0.182 -0.182 -0.182 -0.182 -0.182
0.46 -0.148 -0.148 -0.148 ~Q0.148 -0.148 -0.148
0.47 -0.113 -0.113 -0.113 -0.113 -0.113 -0.113
0.48 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077
0.49 -0.039 -0.039 -0.039 -0.039 -0.039 -0.039
0.50 0.000 Q.000 0.000 0.000 0.000 0.000



Table II: The values of nonacceptable noise Po when N=105. 106 .
2c {1.,2,...,L}), fc{1,2,...,¥}, Q= (W} for L=40 .
¥=14 and L=60 , W=18

P0
c{1.2..... L} Qc{1.2,....,¥} Q=(W}
N=10> N=10° N=10° N=10° N=10° N=10°
L=40, W=14 0.25 0.30 0.24 0.29 0.15 0.16
L=60, W=18 0.17 Q.20 0.13 Q.17 0.11 0.12

Y. ALTERRATIVE APPROACH TO THE CONVERGENCE ANALYSIS

The critical noise established in Theorem 1 is the noise abaove
which the algorithm for iterative error-correction is bound to fall,
because there {3 no complementation 1in Step 4. However. the
convergence to zero of the Bayes error probability below the critical
noise essentially relies on the fact that with nonzero probability
all the parity-checks related to a bit could be unsatisfied. But {n
most cases this probability is extremely small, which makes this
critical noise overly optimistic, when regarded as the noise below
which the algorithm is successful. Accordingly. we now take a more

realistic approach dealing with the convergence of the sequence of

residual error-rates (p(t))r_l (see Step 5}.

Starting from the ALGORITHM Step 5. it can be shown that the

residual error-rate can be put in the following form.
Lemma 5:

all)(e) qro.p(t 1)y -y

(0 _ 0=

) _ . (21)
e: qo.pli 1)) N ae.ptt7 1)y 4

p

where q 1s defined by Lemma 1, and n(i)(e] i{s the number of
indices n such that Bn =8 1in the {-th iteration step.
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Note that the expected value of m(i)(e) /N over 0 . is
Pr(§=9) ., which yields the Bayes error probability. Since m(i)(e)
depends on 1 the recursion (21) 1is not a self~-composition.

Iv. It is

Therefore. we can not take the same approach as in section
easy to see that {p(i)):_l is a positive nonincreasing sequence

() - U1 4

can occur only

which remains constant for 1 ) § if for some J
desirable convergence property is that p(J) = 1:("—1
if 0 = [No(w)]wea , that 1is, when all the parity-checks are

P
)

satisfied, It appears very difficult to derive exact necesgsary and
sufficient conditions for this to happen. Instead, we take a

heuristic approach based on the following three lemmas.

Lemma 6: p(i) ( p(i_l) 1f and only 1if m(i)(e) )1 and
q(ﬂ.p(i—l)) } 1 for at least one @

Lemma 7: For each 2] such that s(w) ¢ No(w)s2 ., we€f .
q(@.p) > 1 implies q(O@.P) > 1 for all 0 ¢ P < p .

Lemma 8: For each p€(0.0.5), q{(0.p) > 1 {mplies q{(© .,p) } 1

for all @' ¢ ® . where the inequality is defined componentwise.

Note that Lemma 6 corresponds to Lemma 3, whereas Lemma 7 can be
proved in a similar way as Lemma 4. Lemma 8 is a simple consequence

of Lemma 1.

In view of Lemmas 5 - 8, we come to the following more realistic
estimations of the critical nolise, P; and P;* , below which the

algorithm is very likely capable of correcting all the errors in the

noised sequence. P; and PB* are the solutions, in (0, 0.5) . to

the equation

P nole (;;291'] No(w)-2s(w)
1 - P wen 1 - (1-2p)"

1. (22)

assuming that

»
- s{w) = s (w) . wv€0 , are the elements of an arbltrary



136

@ - vector such that [1 - Pr(@ ¢ 6‘)]N { e where e =0 ., and

that so-defined P; is close to maximum given &€,
and

H3 =

- s{w) = s**(w) . wenl where o = [s (w)]'en =0 =

Iz @ Pr(8=9) ,

(2]

»* 2w
for PO and P0 . respectively. It follows that for reasonably
small e
» E 3

Po ) P0 ) PO . (23)
where Po is given by Theorem 1. In connection with P; , one can
also define the critical noise probability F“ as the solution, in

0
(0. 0.5)., to (22) with © = [S(')]w€ﬂ being an arbitrary vector such

that Pr(8 = ©) » 1/N . and that ?8

13 close to maximum.

VI. CONRCLUSION

A cryptanalytic problem of a LFSR ini{tial state reconstruction
using a noisy output sequence Is considered. The paper 1s dedicated
to the convergence analysis of the self-composition of the Bayes
probability of error, which is an i{ndicator of the {terative
error—-correction procedure convergence relevant for the
cryptanalysis. It is proved that a critical value of the noise
probability exists below which the error self-composition converges
to zero, and above which it remalns equal to the 1initial noise
probability. This critical value, expressed in terms of the numbers
of parity-checks, is the noise-rate above which the 1iterative
error—correction fails. An alternative, more realistic, estimation of
the critical noise below which the iterative error-correction
procedure 1{s successful, based on the convergence of the residual

error-rate sequence. i{s also given.
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