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ABSTRACT: Convergence of an algorithm for a linear feedback 
shift register initial state reconstructton using the noisy output 
sequence. based on a bitrise Bayesian iterative error-correction 
procedure and different weight parity-checks. is analyzed. I t  1s 
proved that the self-composition of the Bayes error probability 
converges to zero if and only i f  the noise probability is less than a 
critical value expressed in terms of the numbers of parity-checks. An 
alternative approach to the critical noise estimation based on the 
residual error-rate after each iterative revision is also discussed. 
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I .  INTRODUCTION 

HanY of  the published keystream generators are based on binary 

linear feedback shift registers (LFSRs) combined by a rnemorylcss 

function. Such a generator is called n combination generator. A 

weakness of a combination generator for stream ciphers is 

demonstrated in [ l ] .  In [ 2 ] - [ S ] .  various algorithms for the efficient 

realization of the attack are proposed and analyzed. The main 

underlying ideas for these nlgori thms a r e  based on the i terntive 

error-correction [9] .  The algorithms are iterative procedures with 

two main phases in each iteration. In the first phase. a criterion 
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for the second phase is bit-by-bit calculated. using the parity- 

checks corresponding to the considered bit, and in the second phase a 
bit-by-bit decision (error-correction) is made. Experimental 

convergence analysis of these algorithms is given in [ 2 ] .  [ 4 ] .  and 

[S]. whereas a probabilistic approach through the convergence of the 
error-rate self-composition. having origins in [9]. is developed in 

[a].  '[S] and [7] for the majority and threshold decision rules. 

respectively. In the error-correction phase. An equivalent 

convergence representation f o r  the Bayesian decision rule in 

error-correction is derived in [S]. 

In this paper, we consider an iterative algorithm employing the 

parity-checks of different weights and the Bayesian decision rule in 

error-correction for each bit. assuming that the error-rate from the 

previous iteration is used a5 the noise probability in the current 

one. We analyze the convergence of the Bayes error probability 

self-composition, which. as in [3] .  [ 5 ] ,  and [9]. may be regarded as 

an indicator of the iterative error-correction convcrgance. An 
alternative approach to the convergence consideration based on the 

residual error-rate after each iterative revivion is also suggested. 

IX. PROBLEW STATEHENT 

Denote by ( x ~ ) ~ = ~  an output segment of a LFSR of length L . 
In a statistical model. a binary noise sequence is assumed 

to be a realization of a sequence of i.i.d. binary variables 

such that Pr(E = 1 )  = p . nE1.2 . . . . .  N . Let ( z ~ ) ~ = ~  

version of ( x  }N 

N 

be a noisy 

defined by n n=l 
zn = x Q en , n=1.2. . . . .  N , n 

where @ denotes the modulo 2 addition. in CF(2). 
We consider a reconstruction o f  the LFSR initial state given the 

. provided that the feedback polynomial and P segment 

(P,=P . n=1.2 . . . . .  N) are known. using an algorithm based on 

iterative error-correction. 

N 
{zn}n=l 



126 

Suppose that a set of orthogonal parity-checks related to the 

n-th bit is generated in an appropriate way (see [2]-[4] and [ 7 ] >  

nz1.2. . . . .  N. 
Let Non(w) denote the number of parity-checks of weight W 

for the n-th bit, which involve exactly w+l bits. and let sn(w) 

be the number of satisfied parity-checks among them. n=1.2. . . . .  N . 
Let R denote a set of possible weights for each bit. In the 

statistical model. for every nz1.2.. . . .  N . sn(w) is a realization 

of the integer stochastic variable Sn(w) , w=l.2.. . . .L . 
L Pr(En.{Sn(w)}w=l) is the joint probability of the variables En and 

sn(w) . a=1.2. . . . ,  L , and Pr(Enl{Sn(w)}w=l) L is the corresponding 

Posterior probability. n=1.2. . . . .  N . In the statistical model. for 

every n=1.2, . . . .  N , en = [sn(w)lwCn is a realization of the 

stochastic multi-dimensional vector variable en = [S,(W)],,~ . Then. 
i t  can be shorn that the characteristic rntio of posterior 

probabilities 

I 

q ( 0  ) = Pr(E =1lGn=en) / [ I  - Pr(En=llGn=en)] n n  

is given by the following lemma 

Lemma 1: F o r  given p . [Non(w)lwCn , and a n  observed On = 

[Sn(w)],,, I the posterior probability quotient is given by 

No (w)-2sn(w) 
I "  . n=1.2. . . . .  N . (2) 1 + (1-2p)" 

qn(en) = + ,zn[ - 

Note that the product (2) effectively contains only those terms for 

which Non(w) 1 . 

The maln purpose of this paper is the cheoretic convergence 

analysis of the following algorithm [S]. which can be viewed a s  a 

modification/simplification of the algorithms [2]-[4]. 
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A L G O R I T H M :  
N Input : The noisy sequence { z ~ } ~ = ~  . 

Initialization: i=o , p(')=p . I=const ) I . c=const > 1 . 
Step 1: Set i + i + l  . If i 1 I go to Step 6 .  

Step 2: Calculate 

Step 3: For n=1.2. . . . .  N , calculate qn(en.P W) and 

On = [s,(w)],,~ , n=1.2. . . . .  N . 

p(i) = qn(en.p(i)) [ I  + qn(en.p (i))] where qn(en.p (i)) 
n 

stands for qn(en) corresponding to the noise probability 

P ( i )  . 
( i l  
n '  Step 4: I f  qn(On.p ) c , set z + z 8 I . p(i) + I-p n n 

n=1.2 . . . . .  N . 

Step 1. 

n Step 6: Set x + zn , n=1.2. . . . .  N . and stop the procedure. 
Output: The reconstructed sequence {xn}n=l * N  . 

Besides the direct analysis of the algorithm convergence to the 

original sequence (meaning that x = x , nz1.2 ..... N). its 

convergence could be considered through the convergence of the 

sequence {p(i) (in Step 5 p ( i )  is the expected relative 

number of errors in { z ~ } ~ = ~  after the (i-1)-th iteration step. 

given (On)n=l). o r  through the convergence of the expected value 

sequence { P ~ i ) } ~ = l  . where Pii) denotcs the Bayes probability of 

error after the i-th iteration (average value of p ( i )  over 

{en)n,l I when c=I). Since the direct analysis of the algorithm 

convergence seems to be intractable. in this paper we analyze the 

A 

' i = l  
N 

N 

N 

( i )  O1 and (P li=l . convergence of (PB ( i )  ) i = l  - 

111. SELF-COHPOSITION OF THE BAYES ERROR PROBABILITY 

When c = 1 in the ALGORITHM Step 4 .  we have the Bayesian 

approach to the error-correction. When the Bayesian decision rule is 
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employed. for a given n-th bit of noise. both the conditional and 

average probabilities of decision error are minimized. and are given 

respectively 

= min{Pr(En=Olen). Pr(En=llen)} . 
z PB(n.en) Pr(Gn=en) . 
'n 

with 

(3) 

( 4 )  

where P, = c 
omitted for s 

can obtain the 

-(1-2p)"]/2 , w E R . and subscript n in (5) is 

mplicity. After certain algebraic manipulations. one 

fOllOTing form for the Bayes probability o f  error: 

where Pr(Gn=en) is given by (5) and qn(en) by Lemma 1. 

Without loss of generality, suppose that Non(w) = N o ( w )  . 
n=1.2 . . . . .  N . w E n . This can be obtained by clipping of the 
original sequence (Non(w)}n=l N to the minimum value. Under this 

assumption. Lemma 1 and (6) yield that the Bayes error probability 

P,(n) is the same for all n , that is. PB(n) = PB . nP1.2. . . . .  N . 
Consequently. the self-composition of the Bayes error 

probability is defined as the recursion 

l = I  , 2 . .  . . (7) 

where p(O) = P < 0.5 . p being the initial noise probability. and 

q(8.P) stands for sn(en) corresponding to the noise probability P. 
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IV. CONVERGENCE ANALYSIS 

The convergence of the self-composition of the probability of 

error f o r  the majority decision error-correction rule was analyzed in 

[3]. [5]. A condltion for the threshold error-correction is given in 

[7]. although the proof is not quite precise. In this section. we 

consider the convergence of the Bayes error probabi 11  ty 

self-cornposition. which, as in [3]. [5]. may be regarded as an 

indicator of the iterative error-correction convergence. 

First note that f ( P )  is a continuous nonnegative function on 

the segment [ 0 . 0 . 5 ]  such that f(P=O) = f(Pz0.5) = 0 . We nor prove 
three lemmas and a theorem giving the necessary and sufficient 

conditions for (7) to converge to zero. When No(1) = 1 and 

No(w) = 0 . w=2.3 , . . . .  L , i t  follows that P(i) = p , i=1.2, . . .  . 
In all what follows this cage is simply called the degenerate one. 

Note that lemma 4 essentially contains the result that is missing in 

c71. 

Lei- 2: The recursion (7) converges to 0 i f  and only i f  

f ( P )  ) 0 . P E (0. p] . (9) 

Proof: Since f ( P )  is a nonnegative function not greater than 

P . the sequence {P(i)}y=l is nonnegative and nonicreasing and. 

hence. i t  converges to a l i m l r  P* E [O. p] such that f ( P * )  = 0 . 
Consequently. i t  is straightforward to show that Py = 0 i f  and only 

i f  (9) is true. Q . E . D .  

Lei- 3: F o r  each P E (0. 0.5) . we have that f ( P )  ) 0 i f  

and only i f  q(0. P) ) 1 for e = 0 = CO.0 , . . . .  01 . that is. 

when all the parity-checks are unsatlsfied. Otherwise. f(P) = 0 . 
- 

Proof: First, note that, except in the degenerate case, for all 

0 f 0 = [0 0 . . .  01 we have 

p E (0.0.5) . 
because, according to (2). the inequality 

[ l  + (1-2P)w No(H) ~ [ I  + (1-2P)" No(w)-2s(w) 
1 

1 - (1-2P)w .I 1 - (1-2P) 



holds i f  s ( w )  ) 0 , for any w=1.2. . . . .  L . 
On the other hand, according to (5) P r ( b 0 )  ) 0 f o r  a l l  0 . 

Therefore, in view of (8). i t  follows that a necessary and sufficient 
condition f o r  f(P) ) 0 is that a 0 exists such that 

q(e. P) 1 1 ~ However, the first formula in the proof implie? that 
this is equivalent to q(0. P) ) 1. Q.E.D. 

Lemma 4: Let Q(P) be the function defined by 

Q(P) = - P + (I-2P)wlNo(~) , P E ( 0 .  0.53 . (10) 
1 - P w€R 1 - (1-2P)' 

For n = (1) and No(1) = 1 . Q(P) = 1 , P E (0. 0.51 . For 

R = (1) and Nu(1) ) 1 , Q [ P )  1 1 , P E (0. 0 . 5 )  . and 

Q(0.5) = 1 . Finally. for n # 1 1 )  a critccal value Po E (0, 0.5) 

e x i s t s  such that Q(P) ) 1 for 0 ( P ( Po , Q(Po) = 1 . 
Q(P) ( 1 for Po ( P ( 0.5 , and Q(0.5) = 1 . 

Proof: First note that Q(P) is a positive and continuous 

function such that Q(O.5)=1 . I t  can be shown that the f i r s t  

derivative of Q(P) is 
I- I 

J , P€(0.0.5). (11 )  1 - 4 NO(*) H (1-2P) 
Q'(P) = Q ( P )  I: (I-p) 

Ira 1 - (1-2P)Z" 
which, using a substitution P = (l-x)/2 , becomes 

F(x) . Q'((1-~)/2) = 4 Q(( 1-~)/21 
I R I  (1 -x2)  

where 

and In1 is the cardinality of R . The zeroes of Q'(x) on (0.1) 
are thus determined by F(x) . So, we proceed by analyzing F(X) . 

When R = { I }  a n d  No(1) = 1 . F(x) = 0 f o r  a l l  x E (0.1) . 
meaning that Q(P) = 1 . P E (0. 0.51  . Rhen R = (1) and 

No(1) ) 1 , F(x) ( 0 for all x E (0.1) . Bearing in mind that 

Q(P) ) 0 . P € ( 0 ,  0.5) . i t  then follows t h a t  when R = { l }  and 

No(1) ) 1 . Q(P) is a decreasing function on ( 0 ,  0.51 such that 
Q ( 0 . 5 )  = 1 , which implies the lemma statement. 

Assume now that R # { I )  . The first derivative of F(x) on 

( 0 . 1 )  is 



nINo(wjw [ ( w - 1 )  - (W+l)X2 + (r+1)x2" - ( w - 1 1 %  2w+2 I .  F'(x) = Z - ' 
wen ( 1  - x 2 y  

(14)  

According to (14). we now analyze the following functions on (0 .1 ) :  

+JX) = (w-I) - (w+1)x2 + (r+1)x2" - (n-l)x 2n+2 
The first derivative of 4 p >  is 

@JX) = 2(w+l) x [-1 + w x 2w-2 - ( w - 1 )  x2"] 

l , ( X )  = - 1  + w x 2w-2 - (r-1) x . w E n\(l) . 

, w € R \ ( l }  . (15) 

. ( 16) 

Proceeding in the s a m e  manner. w e  finally consider the following 

functions on (0.1): 

(171 2 r  

The first derivative of rp,(x) is 

[ I  - x2]  . (18) 
2 w - 3  'p ' (x )  = 2 1 ( w - 1 )  x 

W 

According to (18). p;(x) . x E (0.1) , is a positive function. for 

each w E n \ { l )  . Consequently. using (12)-(18) and the fact that 

Q(P) 0 . P E ( 0 .  0.5) I i t  is not difficult to obtain that Q'(P) 
has exactly one zero, P* , on (0.0.5). and that Q'(P) is a 

negative function for 0 ( P ( P* , and a posttive one for 

P* ( P ( 0.5 . Finally, from Q(O+) = - , Q(0.5) = 1 , and the 

established characteristics of Q'(P) i t  follows that for R # ( 1 )  . 
a Po E (0. 0.5) exists such that Q(P) ) I for 0 ( P ( Po . 
Q(Po) = 1 . Q(P) ( 1 for Po ( P ( 0.5 . and Q(0.5) = 1 . Q.E.D. 

Theorem 1: The self-composf tion of t h e  Bayes error probability 

converges to 0 for 0 Q ( Po and is in any iteration step equal 

to p for Po 5 p I 0.5 . The critical value Po Is equal to the 

unique value of P E (0. 0.5) such that 

i f  fI # ( 1 )  . For n = ( 1 )  and No(1) 1 1 . Po = 0.5 , and for 

D = { l }  and No(1) = 1 , Po = 0 . 
Proof: For 0 = (1} and No(1) = 1 the proof 1s trivial. For 



R # 1 1 )  and R = ( 1 )  , No(1) ) 1 the existence of Po 1s 

established by Lemma 4. Then, according to Lemma 4 .  we have that 

Q(P) ) 1 for any 0 ( P ( Pu . By Lemma 3. Q(P) ) 1 implies that 

f(P) ) 0 . 0 ( P { Po . Finally, by Lemma 2. the self-composition 

converges to 0 i f  0 5 p ( Po . 
On the other hand, in view of Lemma 3 .  we have that f(P) = 0 

for Po < P 5 0.5 , so that (7) yields that the self-composition 

equals p in any iteration step. Q.E.D. 

Note that by virtue of L e m m a  4. Theorem 1 essentially states 

that for p > 0 the self-conposition of the Bayes error probability 

converges to zero i f  and only i f  

n [ ' + (  l-zP)w,N"(') ) 1 , 
1 - p *€R 1 - (1-2p)" 

which is the deslred convergence condition 

Finally. some examples related to Lemma 4 and Theorem 1 are 

presented. Denote by 1 the number of feedback tapas on a given 

LFSR. The function Q(P)-1 , when N=L05, LO6 , R 5 ( 1 . 2  , . . .  .L) 

and 0 (1.2 . . . . .  1) such that No(r) 1 . w E fl . and R = {1}  , 

assuming that (No(w)}.=~ stands for the average values determined 

by the approach presented in [ 4 ] .  is f o r  L=40 , Wt14 displayed in 

Table I. 

L 

According to Theorem 1. the nonacceptable noise Po Is the 

value o f  P E (0. 0.5) such that Q ( P ) - 1  = 0 . So defined 

nonacceptable noise is the minimum noise-rate above which the 

algorithm is bound to foil. Some values of Po are given in 

Table 1 1 .  
The presented numerical examples are self-explanatory and 

provide the quantitative illustrations o f  the analytical results. 



Table 

P 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0. I8 
0.19 
0.20 
0.21 
0.22 
0.23 
0.24 
0.25 
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 
0.36 
0.37 
0.38 
0.39 
0.40 
0.41 
0.42 
0.43 
0.44 
0.45 
0.46 
0.47 
0.48 
0.49 
0.50 
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5 I: The function Q(P)-1 , for L=40 , W=14 , when N=10 , l o 6 ,  .~ 
R 5 (1.2. .... L). R 5 (1.2 . . . . .  W}, and 

R5{1.2 . . . . .  L) 
5 N=10 

) 1000 
) 1000 
) 1000 
)I000 
) 1000 
) 1000 
) 1000 
1 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
)I000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
99.5 
8.9 
1.5 

0.151 
-0.264 
-0.422 
-0.488 
-0.513 
-0.517 
-0.510 
-0.496 
-0.479 
-0.458 
-0.435 
-0.412 
-0.386 
-0.360 
-0.333 
-0.305 
-0.276 
-0.246 
-0.214 
-0.182 
-0.148 
-0.113 
-0.077 
-0.039 
0.000 0.000 

6 N=lO 

) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
341.3 
18.9 
2.8 

0.532 
-0.080 
-0.298 
-0,385 
-0.419 
-0.425 
-0.417 
-0.40 1 
-0.38 1 
-0.357 
-0.33 1 
-0.304 
-0.275 
-0.245 
-0.214 
-0.182 
-0.148 
-0.113 
-0.077 
-0.039 

5 N = 1 0  

) 1000 
) 1000 
) loo0  
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) I000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
713.1 
48.1 
7.4 
1.6 

0.275 
-0.190 
-0.382 
-0.469 
-0.508 
-0.52 1 
-0.52 1 
-0.512 
-0.497 
-0.479 
-0.458 
-0.435 
-0.412 
-0.386 
-0.360 
-0.333 
-0.305 
-0.276 
-0.246 
-0.214 
-0.182 

-0.113 
-0.077 
-0.039 

-0. 148 

6 N=lO 

) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
58.9 
7.5 
1.6 

0.280 
-0.150 
-0.32 1 
-0.394 
-0.422 
-0.426 
-0.418 
-0,402 
-0.38 1 
-0.357 
-0.332 
-0.304 
-0.275 
-0.245 
-0.214 
-0.182 

-0.113 
-0.077 
-0.039 

-0. I 413 

Q(P) - 1 
R5(l.2.....W} 

0.000 0.000 

n = (w) . 

n=105 N=IO 6 

) 1000 
) 1000 
) 1000 
) 1000 
)loo0 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
99.9 
13.1 
2.6 

0.425 
-0.234 
-0.488 
-0.602 
-0.656 
-0.682 
-0.69 1 
-0.69 1 
-0.684 
-0.674 
-0.660 
-0.645 
-0.628 
-0,610 
-0.59 1 
-0.57 I 
-0.550 
-0.529 
-0.507 
-0.485 
-0.46 I 
-0.437 
-0.413 
-0.30 1 
-0.36 1 
-0.333 
-0.305 
-0.276 
-0.246 
-0.214 
-0.182 

-0.113 
-0.077 
-0.039 
0.000 

-0.148 

) 1000 
) 1000 
) 1000 
) 1000 
) 1000 
) 1000 

1000 
) 1000 
) 1000 
) 1000 
) 1000 
861.4 
60.8 
8.9 
1.8 

0.204 
-0.310 
-0.517 
-0.612 
-0.656 
-0.676 
-0.68 1 
-0.679 
-0.670 
-0.658 
-0.644 
-0.627 
-0.609 
-0.591 
-0.57 1 
-0.550 
-0.529 
-0.507 
-0.485 
-0.46 1 
-0.437 
-0.413 
-0.387 
-0.36 1 
-0.333 
-0.305 
-0.276 
-0.246 
-0.214 
-0.182 
-0.148 
-0.113 
-0.077 
-0.039 
0.000 



d-k 

Table 11: The values of nonacceptable noise Po when N=105, lo6 . 
n 5 I1.2, 
W=14 and 

nc{l.a 
5 N=10 

L=40. W=14 0.25 

L=60. W=18 0.17 

. . .  L). i2 5 ( 1 . 2  . . . . .  W}. n = {R} for L=40 . 
L=60 , W=18 . 

. . . . L )  Q5{1.2 ...., W} n={W} 
6 N = I O ~  N = ~ O  6 N = I O ~  N=IO 6 N=10 

0.15 0.16 

0.11 0.12 

0.30 0 . 2 4  0.29 

0.20 0.13 0.17 

V. ALTERNATIVE APPROACH TO THE CONVERGENCE AHALYSIS 

The critical noise established in Theorem 1 is t h e  noise above 

which the algorithm for iterative error-correction is bound t o  fail. 

because there is no complementation in Step 4 .  However. the 

convergence to zero of the Bayes error probability below the critical 

noise essentially relies on the fact that with nonzero probability 

all the parlty-checks related to a bit couId be unsatisfied. But in 

most cases this probability is extremely small, which makes this 

critical noise overly optfmfstic. when regarded a s  the noise below 

which the algorithm Is successful. Accordingly, we now take a m o r e  
realistic approach dealing with t h e  convergence of the sequence of 

residual error-rates ( p " ) }  i = I  (see Step 5). 
a 

Starting from the ALGORITHM Step 5. i t  can be shown chnc the 

residual error-rate can be put in the follorlng form. 

Lemma 5: 

where q is defined by Lemma 1 .  and rn(')(e) is tho number o f  

indlces n such that On = 0 in the 1-th iteration step. 
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Note that the expected value of m(')(e) / N over i s  

Pr(g=e) . which yields the Bayes error probability. Since m(')(e) 
depends on i the recursion (21) is not a self-coinposition. 

Therefore. we can not take the same approach as in section IV. It is 
easy t o  see that IP(~'J;=~ is a positive nonincreasing sequence 

which remains constant for f > j i f  for Some j p ( j )  = p ( j - ' )  . A 
desirable convergence property is that can occur only 

i f  8 = CNo(w)lw,, , that i s .  whcn all the parity-checks are 

p ( j )  = P(j-') 

satisfied. I t  appears very  difficult to derive exact necessary and 

sufficient conditions for t h i s  to happen. Instead. we take a 

heuristic approach based on the following three lemmas. 

Lemma 7: For each 9 s u c h  that s ( w )  ( No(r)/2 . 
q(8.p) ) 1 implies q(8.P) ) 1 for all 0 < P p . 

Lem- 8 :  For each ps(O.O.5). q(0.p) ) 1 implies q(e'.P) ) 1 
for all 8 '  0 . where the inequality is defined componentrise. 

Note that Lemma 6 corresponds to Lemma 3 .  whereas Lemma 7 can be 

proved in a similar way as Lemma 4. Lemma 8 is a simple consequence 

of Lemma 1. 

In view of Lemmas 5 - 8. we come to the following more realistic 

estimations of the critical noise, P: and p:* . below which the 

algorithm i s  very likely capable of correcting all the errors tn the 

noised sequence. Pf; and P:* are the solutions. in (0. 0.5) . to 
the equation 

P [ l  + (1-2PlW, NO(W)-~S(W) = . 
1 - P wEn I - (1-2P)" 

assuming that 

* - s ( w )  = 3 (*) . , a r e  the elements of an arbitrary 
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8 - vector such that [I - Pr(6 8*)IN ( e where e 0 . and 
that so-defined P: is close to maximum given ti. 

and 

for Pz and PE* , respectively. It follows that for reasonably 

small B 

Po ) Po" P;* , (231 

* 
where Po is given by Theorem 1. In connection with Po , one can 

also define the critical noise probability Po a s  the solution. in 

(0. 0.5). to (22) with 9 = [~(w)],,~ being a n arbitrary vector such 

that Pr(6 = 0)  ) 1/N , and that F: is close t o  maximum. 

-* 

VI. COnCLUSIOH 

A cryptanalytic problem of a LFSR initial state reconstruction 

using a noisy output sequence Is considered. The paper is dedicated 

to the convergence analysis of the self-cornpasition of the Bayes 

probability of error. which is an indicator of the iterative 

error-correction procedure convergence relevant for the 

cryptanalysla. It is proved that a critical value of the noise 

probability exists below which thc error self-composition converges 

to zero, and above which l t  remains equal to the initial noise 

probability. This critical value, expressed in terms of the numbers 

of parity-checks. is the noise-rate above which the iterative 

error-correction fails. An alternative, more realistic. estimation of 
the critical noise below which thc iterative error-correction 

procedure is successful, based on the convergence of the residual 

error-rate sequence. is also given. 
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