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Abstract. This paper describes an algorithm and architecture based
on an extension of a scalable radix-2 architecture proposed in a previous
work. The algorithm is proven to be correct and the hardware design is
discussed in detail. Experimental results are shown to compare a radix-8
implementation with a radix-2 design. The scalable Montgomery multi-
plier is adjustable to constrained areas yet being able to work on any
given precision of the operands. Similar to some systolic implementa-
tions, this design avoid the high load on signals that broadcast to several
components, making the delay independent of operand’s precision.
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1 Introduction

Several applications, such as RSA algorithm, [14] Diffie-Hellman key exchange
algorithm [5], Digital Signature Standard [12], and Elliptic curve cryptography
[6,9] use modular multiplication and modular exponentiation. The Montgomery
Multiplication (MM) algorithm [10] provides certain advantages in the imple-
mentation of modular multiplication. Multiple software and hardware designs
have been developed using the algorithm.

An aspect of cryptographic applications is that very large numbers are used.
The precision varies from 128 and 256 bits for elliptic curve cryptography to
1024 and 2048 bits for applications based on exponentiation [15]. Most of the
hardware designs for modular multiplication are fixed-precision solutions. That
is, the operands cannot exceed a fixed bit-size. Designs that can take operands
with an arbitrary precision are researched in the ASIC [18] and the FPGA [2]
realms.

It is recognized that designing hardware requires making the area-time trade-
off [21]. In the general case “faster means better”. However, an application where
this rule is not valid can always be found. Therefore, it is important that the
designers have several options or choices that they can choose from.
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The basic idea of the scalable Montgomery multiplier has been presented in
[18]. The main features of this multiplier are (1) the ability to work on any given
operand precision at the kernel level,(2) be adjustable to any chip area, a (3)
use a pipelined organization that reduces the impact on signal loads as a result
of high precision of the operands.

The first feature is unique in comparison to other designs. The ability to han-
dle long-precision numbers with small precision operations has been done using
conventional multipliers, and a control algorithm that uses these multipliers [7].
The general approach is to reuse a hardware core with a fixed precision, usually
at most 32 or 64 bits. The current publications show conventional multipliers
that do not exceed a precision of 100 bits [16,1]. The control algorithm is usually
complex in this case and the increase in parallelism involve multiple datapaths
and high complexity at the system level. Other solutions that use systolic array
implementation are designed for a fixed precision and the implementation must
be modified if a precision larger than the one originally considered is required.

The second feature comes from the flexibility of the algorithm and hardware
to be adjusted in both word size and number of processing elements. The more
hardware is available, the better is the performance of the multiplier. Similar
adjustment is also possible on algorithms based on conventional multipliers, at
the cost already presented above. Beyond any doubt, cryptographic algorithms
will be embedded in almost any application involving exchanging of information.
Applications, such as smart cards [11] and hand-held devices require hardware
designs restricted on area and power resources.

The high load on signals broadcast to several hardware components is an
important factor to slow down high-precision Montgomery multiplier (MM) de-
signs. For this reason, the use of systolic structures have been considered by other
researchers. The organization presented in this paper is not purely systolic, and
has a flavor of serial-parallel implementation of the multiplication algorithm.

In this work we present an evolution of the radix-2 algorithm proposed in
previous papers, which lead us to a higher radix design of the system. This
paper describes the issues involved in this design and the experimental results
to compare with the former radix-2 design.

2 High-Radix Word-Based Montgomery Algorithm

The notation used throughout this text is shown in Table 1.
Figure 1 shows the Multiple-word High-Radix (2k) Montgomery Multiplica-

tion algorithm (MWR2kMM), a generalization of the MM algorithm presented
in [18]. A full-precision High-Radix Montgomery algorithm has been presented
and proven to be correct in [8]. To prove correctness of the algorithm in Figure 1
we show that it is equivalent to the one presented in [8].

The parameter k changes depending on how many bits of the multiplier X
are scanned during each loop, or the Radix of the computation (r = 2k). Each
loop iteration (computational loop) scans k-bits of X (a radix-r digit Xi) and
determines the value qY , according to Booth encoding [3]. Booth encoding is
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Table 1. Notation

• M - modulus for modular multiplication;
• X - multiplier operand for modular multiplication;
• xj - a single bit of X at position j;
• Xj - a single radix-r digit of X at position j;
• Y - multiplicand operand for modular multiplication;
• N - number of bits in the operands;
• r - Radix (r = 2k);
• S - partial product in the multiplication process;
• k - number of bits per digit in radix r;
• qYj - coefficient that determines a multiple of Y which is added to the partial product

S in the jth iteration of the computational loop;
• qMj - coefficient that determines a multiple of the modulus M which is added to the

partial product S in the jth iteration of the computational loop;
• BPW - number of bits in a word of either Y , M or S;
• NW = ⌈ N+1

BPW
⌉ - number of words in either Y , M or S;

• NS - number of stages;
• CS - carry-save;
• Ca, Cb - carry bits;
• (Y (NW−1), ..., Y (1), Y (0)) - operand Y represented as multiple words;

• S
(i)
k−1..0 - bits k − 1 to 0 of the ith word of S.

applied to a bit vector to reduce the complexity of multiple generation in the
hardware. For radix-8 the Booth function for each digit is given as:

Booth(Xi, xi−1) = −4xi+2 + 2xi+1 + xi + xi−1

where Xi = (xi+2, xi+1, xi) is a radix-8 digit (i = km where m is an integer),
xj ∈ {0, 1}, and xi−1 is the most significant bit (MSbit) of the previous digit.

For Radix-2 computation k = 1 and qYj
= xj are used, making the algorithm

equivalent to the one presented in [18]. Ca and Cb represent two carry bits that
are propagated from the computation of one word to the computation of the
next word. In order to make the least-significant k-bits of S all zeros, qMj

M is
added to the partial product. This is required to avoid losing bits in the shift
operation performed in Step 10. The value of qMj

that satisfies this condition is
determined by examining the least significant k-bits of S generated at Step 4.

In step 11 and 12 the most significant (MS) word of S is generated and sign
extended. The use of Booth encoding may cause intermediate values of S to be
negative. The final result in S, when Step 13 (final reduction step) is reached,
is always positive and it can be a number greater than the modulus M . Its
purpose is to reduce the result to a number less than the modulus. M is chosen
as 2N−1 < M < 2N and the result is bounded as 0 ≤ S < 2M . Therefore, a
single subtraction of the modulus will assure that S < M , just in the case when
the final result in S is greater than or equal to the modulus.

The MWR2kMM is a multiple-word version of a full-precision algorithm pre-
sented in Figure 2, which is called in this work R2kMM algorithm. To obtain
the R2kMM algorithm we transform the word-based sequence of operations into
full-precision operations. It is shown in [8] that the requirement for qM is given
as:

qM ∗ M = −S (mod 2k).
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Step
1: S := 0

x
−1 := 0

2: FOR j := 0 TO N − 1 STEP k
3: qYj = Booth(xj+k..j−1)

4: (Ca, S(0)) := S(0) + (qYj ∗ Y )(0)

5: qMj := S
(0)
k−1..0 ∗ (2k − M

(0)−1

k−1..0) mod 2k

6: (Cb, S
(0)) := S(0) + (qMj ∗ M)(0)

7: FOR i := 1 TO NW − 1
8: (Ca, S(i)) := Ca + S(i) + (qYj ∗ Y )(i)

9: (Cb, S
(i)) := Cb + S(i) + (qMj ∗ M)(i)

10: S(i−1) := (S
(i)
k−1..0, S

(i−1)
BPW−1..k)

END FOR;
11: Ca := Ca or Cb

12: S(NW−1) := sign ext (Ca, S
(NW−1)
BPW−1..k)

END FOR;
13: IF S ≥ M THEN S := S − M

END IF;

Fig. 1. Multiple-word High-Radix (Radix-2k) Montgomery Multiplication
(MWR2kMM) Algorithm.

This requirement can be also rewritten as

Sk−1..0 + qM ∗ Mk−1..0 = 0 mod 2k.

The latter equation is another representation of the requirement that the last k
bits of S must be zeros. The Step 5 is equivalent to this requirement as shown
below:

qMj
= Sk−1..0 ∗ (2k − M−1

k−1..0) mod 2k

qMj
= Sk−1..0 ∗ (−M−1

k−1..0) mod 2k

Sk−1..0 = S mod 2k,Mk−1..0 = M mod 2k

Step
1: S := 0

x
−1 := 0

2: FOR j := 0 TO N − 1 STEP k
3: qYj = Booth(xj+k..j−1)
4: S := S + qYj ∗ Y
5: qMj := Sk−1..0 ∗ (2k − M−1

k−1..0) mod 2k

6: S := sign ext. (S + qMj ∗ M)/2k

END FOR;
7: IF S ≥ M THEN S := S − M

END IF;

Fig. 2. High-Radix (Radix-2k) Montgomery Multiplication (R2kMM) Algorithm.
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qMj
= S ∗ (−M−1) mod 2k

qMj
∗ M = −S mod 2k

It is also easy to show that

Y =

⌈ N−1

k
⌉

∑

j=0

(2k)j ∗ qYj
,

from the Booth encoding properties.
The last two equations show that the coefficients qYj

and qMj
are determined

the same way as in [8], which makes both algorithms equivalent. In [8] there are
requirements for X and Y that determine the boundaries for the result S. There
are no such requirements in the R2kMM algorithm. The R2kMM algorithm
inherits the boundaries for the result from the original MM algorithm.

3 High-Radix Montgomery Multiplier – System Level

For high-precision computation it is beneficial to divide the multiplicand Y , the
modulus M and the result S into words [18]. The approach keeps the gates
and the wire delays inside reasonable boundaries. With operands’ precision of
thousands of bits, a conventional design to multiply all the bits at once would
have a high number of pins, increased fan-in for the gates, high gate loads, and
gate outputs driving long wires.

The multiplications (qY ∗ Y )(∗) and (qM ∗ M)(∗) shown in the MWR2kMM
algorithm can be implemented by multiplexers (MUXes) and adders. The shifting
operation in Step 10 is simple in hardware. Additions can be done using Carry-
Save Adders (CSA), and keeping S in redundant form. With this approach the
carries generated during addition are not propagated but rather stored in a
separate bit-vector along with a bit-vector for the sum bits. The most complex
operations of finding the coefficients qY and qM (steps 3 and 5) can be executed
by table look-up. qY is pre-computed before the computational cycle begins since
it depends only on the least significant k bits of X. This observation leaves the
computation of qM in the most critical part of the algorithm as it is also pointed
out by other authors [13,20].

The architecture of a Montgomery multiplier implementing the MWR2kMM
algorithm is shown in Fig. 3. There are two main functional blocks: Kernel and
IO. Only the data path is shown. The Kernel’s datapath is where the computa-
tion takes place according to the algorithm. A control block (not shown) supplies
the signals to synchronize the system.

The final reduction functional block computes the final result in a suitable
form for the multiplier’s output, implementing step 13 of the algorithm. More
details are provided later.

The Kernel’s datapath gets as inputs BPW -bit words of Y , M and S (rep-
resented in a Carry-Save form as SS and SC) and k bits of X. The outputs are
BPW -bit words of the new partial product S. The superscript star (∗) indicates
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Fig. 3. System Level Diagram of Modular Multiplier.

that the signal is one word of the corresponding vector. For example, Y (∗) rep-
resents one word of vector Y . These signals change every clock cycle. Depending
on the kernel configuration (number of stages and word size) the operands must
pass through the data path several times [18].

The signal Xj is a k-bit signal. It provides the bits of X needed for Step 3
of the MWR2kMM algorithm.

The IO block provides the interface with the user and the memory elements
for the operands, modulus, and partial result. This block can be implemented
in different ways depending on the application where the multiplier will be used
and/or the system’s architecture in which the multiplier will be integrated. The
solution for this block can be flexible and the only requirement for it is to meet
the timing specifications for the kernel. Therefore, the architecture of this func-
tional unit is out of the scope of this work. A detailed description of the signal’s
timing in the interface between I/O and kernel is presented in [19].

4 Kernel Datapath and Reduction

The kernel datapath is organized as a pipeline of cells (MMcell) separated by
registers (Fig.4). A stage consists of a MMcell and a register. The MMcell im-
plements one iteration of the FOR loop (steps 3 to 12) in the MWR2kMM
algorithm. Each stage gets as inputs one word of Y , M , SS and SC each clock
cycle. Additionally, (NS ∗ k) bits of X are transferred to the kernel over 2 ∗NS
clock periods, where NS corresponds to the number of stages. Depending on the
computation’s progress, k bits of X are loaded in a different stage every 2 clock
cycles. Each stage needs these bits at different times. Thus, this signal is made
common for all stages with internal control loading the signal in the right stage
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at the right time. The MS bit of Xi is used to Booth encode Xi+1, as explained
in Section 2, thus, a cell must store these two pieces of information in order to
properly encode a radix-r digit of X. The datapath outputs one word of each SS

and SC every clock cycle. The pipeline outputs are SS
(∗)
K OUT and SC

(∗)
K OUT .

(*)
M IN

SS
(*)

IN

INSC
(*)

Y
(*)

IN

control
datapath

K_OUTSS
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K_OUTSC
(*)

cell
MM MM MM

cell cell
R

E
G

IS
T

E
R

S

R
E

G
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T
E

R
S

Xj

1 2 NS

stage

cntr_kout

Fig. 4. Top Level Diagram of the Kernel datapath.

Each MMcell propagates the words of Y and M and the newly computed
words of SS and SC to the next MMcell, which performs another computational
loop of the Montgomery Multiplication algorithm and on its turn propagates the
words of Y and M and the newly computed words of SS and SC, with a latency
of 2 cycles.

The reduction block implements the final reduction step in the MWR2kMM
algorithm. The final reduction happens after the last iteration of the loop scan-
ning the bits of X. During the intermediate iterations the final reduction block
propagates the signals from the kernel datapath without operating on them.
However, the design takes advantage of the word-serial output of the kernel dat-
apath and implements the final reduction serially, on-the-fly, as the words of
both vectors of the result are coming out of the kernel datapath. The condition
S ≥ M will not be known before the last pair of words for S is computed in
the datapath. The final reduction block implements the computation for both
conditions, S ≥ M , when S − M is generated, and S < M , when the result is
correct. In both cases the Carry-Save to non-redundant conversion is required.
Both resulting vectors will be stored in the place for SS and SC (the two bit-
vectors of the intermediate result) in the IO block. After the last pair of words
of S is processed, a flag is set by the control circuitry indicating which condition
is valid, S ≥ M or S < M . The result will be in either SS or SC. A detailed
implementation of the final reduction block is presented in [19].

5 Kernel Implementation

The direct design of the kernel processing element leads to an organization shown
in Figure 5(a). The figure shows the main blocks in the design: booth encoding,
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multiple generation, adders, and registers (shaded boxes). Shifting and alignment
is done by proper combination of signals.

The cell operates on k+1 bits of the multiplier X (one bit is obtained from the
previous scan) and one word of each the multiplicand (Y ), the modulus (M) and
the partial product (S). Booth encoding is generated by a lookup table to find the
coefficient qYj

. The negative multiples of Y are implemented by complementing
their positive counter-pairs and adding a ’1’ (two’s complement sign change). The
coefficient qMj

depends on the last k bits of the partial product S and the last
k−1 bits of the modulus M (Step 5). Recall that M is odd. Before S is shifted to
the right, the value qMj

M is added to S (Steps 6 and 9). The coefficient qMj
is in

the range [0, 2k −1]. For radix-8, the greatest value happens when S
(0)
2..0 = “001”,

and M
(0)
2..0 = “001” (qMj

= 7). The lowest value happens when S
(0)
2..0 = “000”, and

M
(0)
2..0 = “001” (qMj

= 0).
Multiple generation for high-radix designs is expensive because qY and qM

may assume values that are not powers of 2. As an example, the bit-vector 2Y
can be produced from Y by left-shifting Y by one bit. However, the bit-vector
3Y is produced by adding Y and 2Y .

The critical path in the basic design is very long and makes the design of
such high-radix circuit less attractive. The high radix is going to increase the
table delay and size, and the multiple generation delay and size. To increase the
performance of this system, re-timing was applied, resulting in the design shown
in Figure 5(b).

5.1 Improving the Performance Using Re-timing

Using re-timing, pieces of combinational logic are relocated to other other parts
of a sequential system, modifying the critical path. One problem with the first
direct implementation of the high-radix algorithm is the long critical path, pass-
ing through several modules, as shown in Figure 5(a). One can observe that the
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determination of qMj
depends on k LSBits of the partial product from the previ-

ous computational cycle, S
(0)
k−1..0, the k LSBits of Y (0), and the coefficients qYj

.
If the word size for S is more than 2k bits the k LSBits of S for the next pipeline
stage will be available well before the whole word S(0) is available. The idea is
to advance the information on the k least-significant bits (LSBits) of the shifted
S(0). In the previous design, these bits were propagated between two registers
with no logic operation done on them. Instead of simply propagating the bits,
the logic determining qM is performed on them, as shown in Figure 5(b).

The difference between these cell designs is that a portion of the first adder
was moved to before the input registers, and this portion of the adder computes
only the k LSBits of the not yet shifted partial product, which is required to
compute qM . The k-bit vector addM in the Figure represents these bits in non-
redundant form, and is applied to the Table that generates qM in the next clock
cycle, considering also k− 1 bits of the modulus M . As a result of this hardware
organization, all possible path delays will not exceed the delay of two adders and
two MUXes.

The computation done on the LSBits by the leftmost is also done for all the
other remaining operand words. So, while the leftmost adder works on the LS
bits of a word, the topmost adder (after the input register) should be working
on the other bits of the same word. There is one clock cycle difference between
the two circuits, and therefore, this situation must be considered carefully.

5.2 A Radix-8 Design

Without loss of generality, the details of this design will be explained based on
a radix-8 implementation. The circuit in Fig. 6 shows the diagram for a Radix-8
MMcell.

One way of implementing the coefficients qY and qM is to split them into
some components that will generate simple multiples and add these multiples in
the adder. For r = 8, two values could be used. For example, qY = 3 would be
split into 2 and 1, and the 3 ∗ Y multiple would be generated as 2 ∗ Y + 1 ∗ Y
or 4 ∗ Y − 1 ∗ Y without actually performing the addition or subtraction but
using two bit-vectors, 2 ∗ Y and 1 ∗ Y or 4 ∗ Y and −1 ∗ Y in this example. It is
efficient to choose only one of the components as a negative value. This is true
because negative bit-vectors, like −Y , are implemented by inverting the positive
bit-vector, Y in this case, and introducing a carry-in with a value of ’1’. Since
each four-to-two adder has only one carry-in input, only one of the components
can be negative.

Two multiplexers generate the multiples (q1Yj
∗ Y )(∗) and (q2Yj

∗ Y )(∗). The
Booth encoding is done according to Table 2 in DEC XJ functional block. As
an example, (/2 ∗ Y ) means that the Y is multiplied by 2 and all the bits are
complemented (or negated). Also, one can notice that the values 2 and −2 are
formed in two different ways. This approach simplifies the decoding logic for Xj .
The outputs of DEC XJ are the control signals for the multiplexers as well as
the carry-in bit for the first 4-to-2 adder (during the first computational cycle
only).
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Because the coefficients qY and qM are split into two each, the adders need
to have an extra input. The two four-to-two adders have a total of two carry-
out bits propagating between sequential words of the partial product S. One
carry-out is inserted at the LSB position of vector carryA. The other carry-out
is introduced back to the same adder as a carry-in bit for the next word of S.

The coefficient qMj
depends on the 3 LSBits of the partial product S and

the three LSBits of the modulus M . The product is represented by 2 vectors.
There is one additional input bit, hidden-bit, which affects qMj

. The hidden-bit is
generated by carry propagation in the least significant bits of the least significant
word computation, which are zeroed in the process. Knowing that the LSB of
M is always ’1’ and the LSB of carryA is always ’0’, qMj

will depend only on

eight bits: sumA2..0, carryA2..1, hidden-bit and M
(0)
2..1.

In Step 10 of the MWR8MM algorithm the partial product is right-shifted by
three bits. Because carry-save representation (CS) is used for S, the LS words of
the two bit-vectors (sumB(0), carryB(0)) after Step 6 in the algorithm can be, for
example: sumB(0) = ×.. × 110 and carryB(0) = ×.. × 010, where × represents
any value of the bit in this position. The last three bits of S are equivalent
to zeros when converted to a non-redundant form. However, data will be lost
if these bits are shifted out without taking into account the carry propagation
(110 + 010 = 1000). The carry bit generated in this case is the hidden-bit.
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Table 2. Booth encoding for qY , the backslash means bit-complement.

Xj(3 : 0) qYj q1Yj cin q2Yj Xj(3 : 0) qYj q1Yj cin q2Yj

0000 0 0 0 0 1000 -4 /4 1 0
0001 1 0 0 1 1001 -3 /4 1 1
0010 1 0 0 1 1010 -3 /4 1 1
0011 2 0 0 2 1011 -2 /4 1 2
0100 2 /2 1 4 1100 -2 /2 1 0
0101 3 /1 1 4 1101 -1 /1 1 0
0110 3 /1 1 4 1110 -1 /1 1 0
0111 4 0 0 4 1111 0 0 0 0

Instead of using a carry propagate adder to obtain the hidden-bit, in radix
8 the following observation is made: the last bit of carryB(0) is always ’0’,
therefore, to detect a hidden-bit it is enough to test if there is a 1 value in the
second or third bits of either carryB(0) or sumB(0). The circuit for the hidden-

bit detection is reduced to sumB
(0)
2 + sumB

(0)
1 . These two bits of sumB(0) are

stored into flip-flops, thus, the hidden-bit logic does not stand in the critical path
for the whole cell. Since the hidden bit is found after the operation on the LS
word is done, it is transferred from one cell to another, as part of the LS word.
It can be inserted in the free LSBit position in carryA(0) and also participates
in determining qM .

If all eight bits are used for a lookup table for qM , the table will have 256
entries. The number of entries can be reduced by assimilating the carries for
sumA2..0, carryA2..1, and hidden-bit by a three-bit adder. The resulting three-
bit vector is named addM :

addM2..0 = (sumA2..0 + (carryA2..1, 0) + (00, hiddenbit)) mod 8.

which reduces the table for qM to only 32 entries. It is represented by the DEC M

functional block according to Table 3. The decoder outputs are the control signals
for the multiplexers implementing (q1Mj

∗M)(∗) and (q2Mj
∗M)(∗). The decoder

also has an output which is asserted ’1’ whenever q1Mj
is negative. This signal

becomes a carry-in for the second four-to-two adder.
The multiples of Y and M , like 2Y, 4Y, 2M, 4M, 8M , require that these

operands be left-shifted. Caused by the word-serial scanning of this algorithm,
this shifting requires some of the MSBits from the previous words of Y and M
to be kept when the new words arrive. If it is the first word (first cycle=’1’) then
a number of zeros is shifted in to produce the needed multiple. Otherwise, the
MSBits of the previous word are shifted in as the LSBits of the current word.

As described at the end of the previous section, the leftmost adder is operat-
ing on the LSbits of words j of S and qY Y while the topmost adder is operating
of the MSbits of word j − 1. This arrangement requires that the carry-out prop-
agation among words of the partial sum A (carryA and sumA) be considered
carefully. The carry-out of the topmost adder, net spillA2, is introduced imme-
diately as carry-in for the leftmost adder. The carry-out of the leftmost adder is
delayed one clock cycle before it is introduced as carry-in to the topmost adder.
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Table 3. Decoding for qM .

qMj q1Mj cin2 q2Mj

addM2..0 M
(0)
2..1 M

(0)
2..1 M

(0)
2..1 M

(0)
2..1

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001 7 5 3 1 /1 1 /1 1 1 0 1 0 8 4 4 0
010 6 2 6 2 2 2 2 2 0 0 0 0 4 0 4 0
011 5 7 1 3 1 /1 1 /1 0 1 0 1 4 8 0 4
100 4 4 4 4 0 0 0 0 0 0 0 0 4 4 4 4
101 3 1 7 5 /1 1 /1 1 1 0 1 0 4 0 8 4
110 2 6 2 6 2 2 2 2 0 0 0 0 0 4 0 4
111 1 3 5 7 1 /1 1 /1 0 1 0 1 0 4 4 8

6 Experimental Results and Analysis

This section describes the experimental data obtained with the radix-8 Ker-
nel designs and compares them with the radix-2 design. Although both radix-8
designs were implemented, only the results for the re-timed radix-8 design is
presented in detail. The complete data is presented in [19].

6.1 Synthesis and Simulation Environment

The Mentor Graphics’ package of applications was used to generate this data.
The target technology was set to AMI05 slow (0.5µm) provided in the ASIC
Design Kit (ADK) from the same company. A data-book for this technology
is available at [4]. Before the designs were synthesized, they were simulated in
ModelSim for functional correctness. The designs were described in VHDL, syn-
thesized with Leonardo as flattened designs (no hierarchy), and laid-out using
ICStation. This last tool provides RC parameter extraction. RC-extraction al-
lows the determination of time delay values for each wire in the design, bringing
further simulations closer to the real-silicon simulations. Using the information
from ICStation and Leonardo, the designs were back annotated and verified
with Velocity. The values presented in this section were obtained from several
experiments.

The kernel area depends on the number of stages in the pipeline (NS) and
the word size (BPW ). The area for the radix-8 kernel was obtained as:

Akernelr8
= 92 ∗ BPW ∗ NS + 269 ∗ NS − 9.42 ∗ BPW − 35.5.

The total computational time for the kernel is a product of the number of
clock cycles (TCLKs) and the clock period (tp). The clock period is derived from
the synthesis results, and will depend on the number of stages, the word size,
and other parameters. The number of clock periods to complete a computation
is obtained from the algorithm.

Table 4 shows the critical path delay (tp) as a function of the number of
stages for the re-timed radix-8 kernel as well as the number of bits per word in
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the operands. These two parameters also determine the design area. The bold-
faced figures in the Table show tested configurations. The rest of the figures are
produced by linear interpolation. An increase in area leads to an increase in the
critical path delay. This is due to increased wire lengths (parasitic resistance and
capacitance) and fan-outs for the gates. A setup time plus clock-to-Q propagation
time of 1.2ns for flip-flops is given for AMI05-slow technology. The hold time
requirement is insignificantly small. The setup and hold time requirements will
scale with the technology giving the same proportional effect on the clock period.

Table 4. Critical path delay for radix-8 Kernel (nsec).

Bits Per Word Bits Per Word
NS 8 16 32 64 128 NS 8 16 32 64 128
1 10.7 10.3 13.1 18.9 20.2 10 11.2 15.2
2 10.8 12.1 14.4 20.5 30.4 11 11.2 15.3
3 10.9 12.5 15.7 23.0 12 11.2 15.4

4 11.0 12.9 17.0 25.4 13 11.3 15.4
5 11.1 12.7 17.6 14 11.3 15.4
6 11.1 13.5 18.2 15 11.3 15.5

7 11.2 14.3 18.7 20 11.4

8 11.2 14.9 19.2 26 13.0

9 11.2 15.1

Two cases should be considered: (1) when NW ≤ 2 ∗ NS, and (2) when
NW > 2 ∗ NS. The variable NW =

⌈

N+1
BPW

⌉

represents the number of words
in the N -bit operands with chosen word size of BPW bits [18]. Because of
the extra register in the pipeline a word propagates through the pipeline for
(2 ∗ NS + 1) clock cycles For Radix-8, since 3 bits of X are used in each stage,
⌈

N
3∗NS

⌉

pipeline cycles are required. Equation 1 represents the total number of
clock cycles needed for the re-timed Radix-8 Montgomery multiplication design
as:

TCLKs =

{⌈

N
3∗NS

⌉

∗ (2 ∗ NS + 1) +NW + 1 , if NW ≤ 2 ∗ NS
⌈

N
3∗NS

⌉

∗ (NW + 1) + 2 ∗ NS , if NW > 2 ∗ NS
(1)

It can be shown that when NW < 2 ∗ NS adding more stages to the pipeline
has somewhat unpredictable effect on the total number of clock cycles. It hap-
pens because in this case the number of words NW has a small effect on the
computational time, while the fraction

⌈

N
3∗NS

⌉

has minimums and maximums
as the number of stages NS changes. Thus, it may be the case that a design
with more stages will be slower than a design with less stages.

Figure 7 shows the total actual computational time (TCLKs×tp) for N = 256
and N = 1024, using designs with different number of stages (NS) and word
size (BPW ). The first observable minimum computational time happens when
the boundary NW ≤ 2∗NS and NW > 2∗NS is crossed. With further increase
in the number of pipeline stages the computational time goes through a series of
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minimal and maximal values. The boundary NW > 2NS is crossed at a different
number of stages for a different precision of the operands (a different number
of words). Operands with precision 256 bits will require a smaller number of
stages in the pipeline than operands with 1024 bits precision, in order to execute
the operation in minimal time. The goal of choosing a design point is to have
computational time for 256-bit precision close to its absolute minimal value and
at the same time to have as small computational time for 1024-bit precision as
possible.
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Fig. 7. Total time for 256-bit (a) and 1024-bit (b) operands for some values of NS and
BPW.

It can be seen from the data obtained in the experiments that the fastest
designs are achieved with a word size of 8 bits. For this word size and 256-bit
precision, the first optimal design point is for NS = 15. The area is 14964 NOR
gates. Each additional stage adds about 1005 to the gate count as can be obtained
from the area equation. Other optimal points for this design, represented as
NS/area pairs, are: 16/15969, 18/17979, 22/21999, 24/24009 and 26/26019.

For 1024-bits of precision, the time decreases asymptotically, with a faster
decrease for a smaller number of stages.

Table 5. Some design points for radix-8 kernel, BPW = 8, N = 256 and N = 1024.

NS 15 16 18 22 24 26

Area, gates 14964 15969 17979 21999 24009 26019
tNS=15

t
for 256-bit 1 1 1.05 1.04 0.92 0.83

tNS=15

t
for 1024-bit 1 1.04 1.21 1.37 1.39 1.42

Table 5 compares several design points for the radix-8 kernel with BPW = 8.
The Table presents the design area and the ratio of the computational time
related to the point NS = 15. It can be seen that the design point with NS = 22
is very suitable since the computational time for 256-bit precision is very close
to its minimal value. At the same time the computational time for 1024-bit
precision is improved by 37% as compared to the point with NS = 15. With
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further increase of the number of stages the computational time for 256-bit
precision worsens while the computational time for 1024-bit precision does not
improve significantly (only 2% per stage).

A comparison of performance between the radix-2 design ([18]) and the radix-
8 designs discussed in this paper is shown in Figure 8. The data shows the time
to compute the modular multiplication for 256-bit operands as a function of
the design area. For small areas, the radix-2 design (v1) performs as well as
the radix-8 design with re-timing (v3). The basic design (v2) is worse than the
radix-2 one. For areas of 10,000 gates or more, the radix-8 design with re-timing
is better than the other two, which shows that the high-radix design has a better
overall performance.
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Fig. 8. Area×time comparison between radix-2 (v1), radix-8 basic (v2), and radix-8
with re-timing (v3) for 256-bit operands.

7 Conclusion

This paper presented the algorithm modifications and hardware implementation
details of a high-radix implementation of the scalable modular multiplier pre-
sented in [18]. A radix-8 design was used to exemplify the design process, and
to obtain experimental results that show the viability of using this approach.
Experimental data shows that the radix-8 scalable multiplier is able to perform
as well as the radix 2 design for small areas, and better than the radix-2 design
for larger areas. The re-timing technique applied to the high-radix design was
critical to obtain a competitive solution.
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Hardware and Embedded Systems - CHES 2000, Lecture Notes in Computer Science
No. 1965, pages 281–296. Springer, Berlin, Germany, 2000.

16. E. M. Schwarz, R. M. Averil III, and L. J. Sigal. A radix-8 CMOS S/390 multiplier.
In T. Lang, J.-M. Muller, and N. Takagi, editors, Proceedings, 13th Symposium on
Computer Arithmetic, pages 2–9, Bath, England, July 6–9 1997. IEEE Computer
Society Press, Los Alamitos, CA.

17. E. E. Swartzlander, editor. Computer Arithmetic, volume I. IEEE Computer
Society Press, Los Alamitos, CA, 1990.
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