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Abstract: Markov chain Monte Carlo (MCMC) is a statistical innovation methodology that allows researchers to fit
far more complex models to data than is feasible using conventional methods. Despite its widespread use in a vari-
ety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a miscon-
ception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of famil-
iarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference
using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary
mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent fac-
tors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude
with a discussion of the importance of individual heterogeneity for understanding population dynamics and
designing management plans.
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This paper is an introduction to Markov chain
Monte Carlo (MCMC), a powerful statistical tool
that is used to analyze large, complicated data sets,
especially those with complex hierarchical struc-
tures. The basic ideas of MCMC were introduced
almost 50 years ago (Metropolis et al. 1953) and
gained popularity during the 1980s in image pro-
cessing (Geman and Geman 1984). A growing
appreciation of the usefulness of MCMC has led to
an explosion of publications in the statistical litera-
ture (Gilks et al. 1996). However, relatively few
examples are found in wildlife-related applications.

We suggest several reasons why MCMC has not
been more widely used in wildlife applications.
First, MCMC has a decidedly Bayesian flavor,
which may not appeal to data analysts with a clas-
sical (Frequentist) training. However, MCMC can
be used as a tool to obtain the maximum likeli-
hood estimates used by Frequentists, even for
models with complexity that defies conventional
analysis. Markov chain Monte Carlo also can be
used in Objective Bayes analyses, the results of
which are similar to those of Frequentist analyses.
We begin with a brief review of Bayesian model-
ing, contrasting it with the Frequentist approach.
This review lays the foundation for description of
MCMC and describes Objective Bayes methods.

Another reason MCMC is not yet widely used
among wildlife biologists may be a lack of famil-
iarity. Markov chain Monte Carlo involves some
complex mathematical ideas. A need exists for a
clear accounting of what can be done with it and
how it works. We describe the need for MCMC
and its basic ideas and mechanisms. A simple and
satisfactory intuition for MCMC does not require
extraordinary mathematical sophistication. 

We illustrate the usefulness of MCMC by ana-
lyzing the association between latent factors gov-
erning individual heterogeneity in breeding and
survival rates of kittiwakes. The data set consists
of survival and breeding records for 845 birds,
collected over 13 years. The question of interest
was whether there are trade-offs between compo-
nents of fitness. For example, is it true that better
breeders tend to have lower survival rates? The
models we fit to these data are quite complex—
impossible to fit using conventional methods—
but are satisfactorily estimated using MCMC. We
illustrate the application of MCMC to these data,
using software BUGS (Spiegelhalter et al. 1995),
available for free download (http://www.mrc-
bsu.cam.ac.uk/bugs/). 

FREQUENTIST, BAYES, AND
OBJECTIVE BAYES MODELS

The primary distinction between Bayesian and
Frequentist analyses is in the interpretation of mo-
del parameters. In both types of analysis, data (Y )
are regarded as sampled from a sampling distrib-
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ution f(Y | θ), governed by parameter θ. In a Fre-
quentist analysis, θ is regarded as a fixed, unknown
quantity, while in a Bayesian analysis, θ is regarded
as a random variable. In this section, we describe
some of the consequences of this distinction.

Frequentist analyses describe the effects of vari-
ability on data by reference to hypothetical repli-
cate data sets. These hypothetical replicates are
drawn from the same sampling distribution, or a
hypothesized version of the sampling distribu-
tion, that produced the data. Familiar statistical
concepts such as P-values and unbiasedness are de-
fined with reference to such hypothetical replicate
draws. Statistical procedures are evaluated by their
typical performance under similar circumstances.

An important difference exists between an esti-
mator and an estimate. An estimator can be
thought of as a machine that produces estimates;
accuracy and precision are properties of the
machine rather than of individual products. Thus,
it is incorrect to describe an estimate as unbiased:
unbiasedness is a property of estimators, summa-
rized over applications to hypothetical replicate
data sets. Confidence interval coverage rates are
similarly defined, as features of the machine
rather than of the product. The correct interpre-
tation of confidence interval coverage rates is
conveyed by analogy to a 95% accurate elephant
gun, fired over the shoulder while running away:
you don’t know whether it has stopped the charg-
ing beast, but there is some comfort in knowing
that the desired result is obtained in 95% of sim-
ilar circumstances.

In a Bayesian analysis, the parameter θ is
regarded as a random variable. This paradigm
has the consequence that direct probability state-
ments are made about the parameters them-
selves, in contrast to the more indirect statements
of Frequentist analyses. 

Two probability distribution functions are used
to make statements about θ, called the prior and
posterior distributions. That the same random
variable can be described by 2 different distribu-
tions may seem strange, but the concept is not at
all unfamiliar: one might say that the chance the
home team will win today is 50%; however, if the
manager chooses to start the ace pitcher, the
odds increase to 70%. The additional informa-
tion modifies the probabilities. This is the case
with descriptions of parameters in a Bayesian
model. The prior distribution (or simply, the
prior) summarizes what is known about the
ranges and associated probabilities for θ without
reference to the data Y. The posterior distribu-

tion (the posterior) provides the same sum-
maries, but as informed by the data Y. 

In a Bayesian analysis, inference about θ is
based on the posterior distribution f(θ | Y), ob-
tained by applying Bayes’ theorem to the prior
π(θ), and the sampling distribution f(Y | θ), by
means of the calculation 

f(Y | θ) =    
f(Y | θ)π(θ)                

# f(Y | θ)π(θ)dθ 
.     (1)

Thus, the posterior distribution describes the
ranges of possible values for θ and their proba-
bilities as indicated by the combination of data
and prior knowledge. The Bayesian paradigm
provides a formal mechanism for combining
existing knowledge with indications provided by
the data at hand, expressed informally as

Prior + Data = Posterior. (2)

To give a concrete example, suppose that we wish
to estimate the mean θ of a normal distribution
based on a sample of n observations; for simplicity,
assume that the variance σ2 is known. A Frequen-
tist analysis neither requires nor allows for prior
knowledge about the likely range of values for θ,
simply using x–, the sample mean, as its estimate
for θ. A typical Bayesian analysis treats θ as a ran-
dom variable, itself sampled from a normal prior
with mean η and variance τ2, both of which are
assumed to be known. Under this model (the nor-
mal–normal mixture), the posterior distribution
of θ also is a normal distribution, but with mean

E(θ|data) = wη + (1 – w)x–,            (3)

and variance

Var(θ|data) =  (1 – w)(σ2
n ), (4)

where

w =
(σ2/n)

τ2 + (σ2/n)
.

(5)

The posterior mean  sometimes is referred to as
a Bayes estimate, and written as θ̂

B
.

Two important features of this example are
characteristic of Bayesian estimation. The first is
that θ̂

B
is a weighted average of the prior mean

and the sample mean (3), with weights deter-
mined by the precision of existing knowledge
(τ2) relative to the new information provided by
the data (i.e., Var(x–) = (σ2/n). Thus, Bayesian
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estimation often is described as shrinkage toward
a prior value: θ̂

B
is obtained by beginning at x– and

moving a portion of the way along a line toward
the prior mean η. If x– is a relatively imprecise esti-
mate of θ, w will be close to 1, and the Bayesian
estimate will be close to the prior mean. On the
other hand, the greater the precision of x–, the
closer w is to 0, and the closer the agreement
between x– and θ̂

B
.

The second feature of interest in this example
has to do with the mean squared error (MSE) of
θ̂
B

as an estimator of θ. It can be shown that
MSE(θ̂

B
) = Var(θ|data), and since 0 ≤ w ≤ 1, it fol-

lows from (4) that

MSE(θ̂
B
) < σ2

n = Var(x–) = MSE(x–).       (6)

This reduction of mean squared error is a reflec-
tion of the increased knowledge brought to bear
on the estimation by the prior knowledge of θ.
This is a common feature of Bayesian analysis.
The improvement is the consequence of a richer
model through specification of the prior.

The Bayesian paradigm is useful for analysis of
complex data sets that are governed by numerous
parameters. For example, mark–recapture studies
may involve hundreds of parameters, some gov-
erning survival rates, and others related to resight-
ing rates. In such cases, it is desirable to examine
patterns among parameters, such as the temporal
trend in survival rates. This is sometimes done by
supposing that the survival rates, suitably trans-
formed, fall precisely on a given line. A more nat-
ural assumption is that the transformed survival
rates more or less conform to a linear relation
and are subject to additional temporal variation.
The Bayesian approach, in which parameters are
regarded as random variables, deals effectively
with the existence of such pattern in parameters:
the pattern of change is reflected in the means of
the prior distributions (Link 1999).

In the foregoing example, we supposed that the
prior distribution was known. It is often possible
to relax this specification, to suppose only that
the prior distribution is of a known family, gov-
erned by an unknown hyperparameter. We may
then assign hyperprior distributions to the hyper-
parameters, and so on, so that a hierarchy of rela-
tions among parameters is established. At some
point, however, Bayesian analysis must begin with
a known distribution, and it is this specification
of a prior that leads many classically trained ana-
lysts to reject the Bayesian paradigm as too sub-
jective. The increased precision noted in (6)

comes at a cost: the performance of the estimator
θ̂
B

depends on the validity of the model specifica-
tion, to which the Bayesian has added the specifi-
cation of a prior distribution for θ.

What, it may be asked, prevents an unscrupulous
data analyst from selecting a prior on the basis of
the posterior it yields? There are 2 answers: first,
that the prior distributions used should be includ-
ed in the presentation of a Bayesian analysis.
Indeed, it is instructive to try several different pri-
ors and to evaluate the relation between prior
and posterior. We illustrate this principle in our
subsequent analysis of kittiwake data. If the pos-
terior distribution is highly sensitive to alternative
(reasonable) choices of the prior, it is likely that
the information content of the data is small. 

Another response to the concern of subjectivity
is to carry out an Objective Bayes analysis. Objec-
tive Bayes methods use prior distributions de-
scribed as flat, vague, or noninformative; these
terms sometimes are used in slightly different sens-
es, but the basic idea is that the priors have been
chosen so as to reflect only a very limited or impre-
cise prior knowledge of θ. An objective Bayes
analysis amounts to substituting 0 for Prior in (2).

To illustrate, consider the foregoing example of
estimating a normal mean: if the prior variance,
τ2, is large, the shrinkage factor w will be close to
zero and the Bayes estimate, θ̂

B
, will be close to

the classical estimate x–. The posterior distribu-
tion f(θ|data) approximates a normal distribution
with mean of x– and variance σ2/n, so that the
usual Frequentist confidence interval 

x– ± zα/2 
σ

!n

is legitimately interpreted as having probability
(1 – α) of including µ.

In cases where a uniform prior distribution is
reasonable, a close look at the definition of the
posterior distribution (1) leads to the observation
that all of the θs on the right side of the equation
are in the sampling distribution, f(Y | θ). The
denominator is a function of Y alone; θ is inte-
grated out. And if θ has a uniform prior, then
π(θ) = constant, so there are no θs there, either.
The consequence is that the posterior distribu-
tion f(θ |Y ) is proportional to f(Y | θ); this latter,
when considered as a function of θ, is the likeli-
hood function from which maximum likelihood
estimators are obtained. If the posterior distribu-
tion is proportional to the likelihood, they both
are maximized by the same θ. Thus, in a flat prior
Bayesian analysis, the mode of the posterior dis-
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tribution is the same as the maximum likelihood
estimator (MLE). Consequently, analysts who pre-
fer the Frequentist philosophy to the Bayesian phi-
losophy can still use Bayesian tools for model fitting.
In particular, MCMC is a Bayesian tool for evalu-
ating posterior distributions; specifying a flat prior
analysis, a Frequentist can use MCMC to find MLE.

MARKOV CHAIN MONTE CARLO

The usefulness of Bayesian methods has been
limited by difficulties associated with the calcula-
tion of the posterior distribution (1). The nor-
mal–normal mixture in the preceding section
involves a conjugate prior: similarities in the func-
tional forms of the prior and sampling distribu-
tions cause the posterior to be of the same form
as the prior, and hence easily calculable. Howev-
er, for many models, calculation of the integral in
(1) is prohibitively difficult; this is especially true
for hierarchical models, such as the kittiwake
model we describe later. Markov chain Monte
Carlo methods provide a solution to this problem.

Markov chain Monte Carlo methods are exten-
sions of the ordinary Monte Carlo (simulation)
methods familiar to readers of The Journal of Wild-

life Management ( JWM)—151 of 2,113 JWM papers
indexed in the BIOSIS database during 1985–2000
include “Monte Carlo,” “bootstrapping,” or “sim-
ulation” in their abstracts or keyword lists (Bio-
logical Abstracts 2001). Monte Carlo methods are
used in evaluating model predictions (e.g., in
population viability analyses [PVA]). They are
used to evaluate the distributions of test statistics,
especially when asymptotic approximations are
inadequate. Bootstrapping is another familiar
Monte Carlo method that is used to evaluate the
bias and variability of estimation procedures;
bootstrapping is distinguished from other Monte
Carlo methods because the simulated values are
drawn from an estimated rather than a fully spec-
ified model (Manly 1994).

The common feature of Monte Carlo applica-
tions is that simulation is used in place of an
intractable mathematical calculation. Interest
focuses on some function of model parameters
g(θ) that can be expressed as the expected value
of a function of data, h(Y). Typically, an analyst
simulates independent data sets Y s

i , i = 1, 2, ..., N,
and approximates g(θ) by 

ĝ (θ) = 1
N 

Σ
N

i=1
h(Y s

i ).                (7)

In a PVA, for example, h(Y) could be a zero-one
indicator of population extinction, and g(θ) the

extinction rate. A Monte Carlo evaluation of the
bias of an estimator T(Y) of a parameter q(θ) is
described by (7) with h(Y) = T(Y) – q(θ). 

Given the difficulties associated with calculat-
ing posterior distributions, it is natural to ques-
tion whether some sort of Monte Carlo approach
could be applied in a Bayesian analysis. Recall
that in a Bayesian analysis, interest focuses on the
posterior distribution f(θ |Y ); the roles of data Y
and parameters θ are switched relative to the
sampling distribution f(Y | θ). Thus, a Bayesian
Monte Carlo analysis would consist of estimating
a function G(Y), expressible as the expected value
of a function of parameters H(θ), with θ sampled
from f(θ|Y ). Unfortunately, drawing independent
samples from the posterior distribution is not
easy due to the difficulties in calculating the inte-
gral in (1).

Although it may not be easy to generate inde-
pendent samples from the posterior, it is easy to
produce a first-order Markov chain of values sam-
pled from the posterior distribution, even without
calculating the integral in (1). A first-order Markov
chain is a sequence of dependent observations,
{Xt }t=1

∞ , with the property that the distribution of
Xt+1 given all previous observations, depends
only on Xt. Numerous technical details must be
considered, but the basic idea is simple: instead
of the difficult task of generating a sequence of
independent observations from the posterior dis-
tribution, the analyst generates a first-order
Markov chain of dependent draws θs

i from the
posterior, and approximates features of the pos-
terior distribution, G(Y), in analogy with (7) by

Ĝ (Y) = 1N Σ
N+M

i =M +1
H(θs

i );             (8)

note that, for technical reasons described later,
the first M values from the Markov chain are dis-
carded. The mean, median, standard deviation,
percentiles, and other descriptors of the posteri-
or distribution can be approximated in this fash-
ion, allowing a Bayesian analysis of the data Y.
Non-Bayesian applications of MCMC choose flat
priors, and approximate maximum likelihood
estimates by the posterior mode.

METROPOLIS-HASTINGS ALGORITHM

In this section, we describe the Metropolis-Hast-
ings algorithm, which is the basis for producing
the Markov chains used in MCMC. We begin with
a brief review of certain features of Markov chains.

A mental picture of a Markov chain can be made
by considering the activities of an absent-minded
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and aimless bureaucrat with regular habits. The
bureaucrat has no particular goal in mind, wan-
dering from activity to activity, deciding what to
do next simply on the basis of what he currently is
doing (all of the Markov chains we discuss in this
paper are first-order). The set of activities is called
a state space, and the changes in activities are
transitions. The bureaucrat’s absent-mindedness
is the defining Markov property. Transition prob-
abilities are entirely determined by his current
state, without regard to what he has done previ-
ously. The bureaucrat’s regular habits make his a
stationary Markov chain: not only are his transi-
tion probabilities determined by his current state,
but they do not evolve through time. If there is a
30% chance that he goes from reading the news-
paper to looking out the window on Thursday, the
same transition probability will hold on Friday.

Many bureaucrats wander into some subset of
activities from which they never emerge, or at
least not for arbitrarily long numbers of transi-
tions. If we require that our bureaucrat act oth-
erwise, his Markov chain will be irreducible and
positive recurrent. That is, we require that each
state can be reached from each other state, and
the average return time to a given state is finite.
A feature of stationary, irreducible, positive
recurrent Markov chains is that they have a sta-
tionary distribution describing the long-term rel-
ative frequency of time spent in each state, and
that this stationary distribution is attained inde-
pendent of the initial state of the system. Biolo-
gists familiar with age- and stage-structured pro-
jection matrices (Caswell 2001) will recognize the
property of strong-ergodicity, which leads to stage
distributions independent of the initial state
(stage structure) of the system.

Suppose that there are 4 possible behavioral
states for the bureaucrat (W = looking out the
window, N = reading the newspaper, E = checking
e-mail, and C = visiting at the water cooler) and
that every 10 min his watch beeps to remind him
to make a transition. A matrix of transition prob-
abilities may look as follows:

To:

.           (9)

Thus, for instance, if the bureaucrat is reading
the newspaper, there is a 30% chance that he will

start looking out the window, 20% chance that he
will continue reading the newspaper, 10% chance
that he will check his e-mail, and a 40% chance
that he will hop up to visit the cooler. These prob-
abilities determine his stationary distribution:
denoting by P the transition matrix in (9), the sta-
tionary distribution can be found either by mul-
tiplying P by itself numerous times (the rows will
converge to the stationary distribution) or by find-
ing the eigenvector corresponding to the domi-
nant eigenvalue of P transpose: the percentages of
time spent in activities W, N, E, and C are specified
by a vector V = [42.4%, 26.6%, 18.9%, 12.1%].

The usual question is: “Given transition matrix
P, what is the corresponding stationary distribu-
tion V?” Markov chain Monte Carlo turns the
question around: “Is there a transition matrix P
yielding a specified stationary distribution V?” In
particular, we seek a transition matrix for a
Markov process taking values in the range-space
of θ, with stationary distribution equal to the pos-
terior distribution f(θ | Y ). If we could produce
such a Markov chain, we could use it to make infer-
ences based on the posterior distribution. The
mean value of the chain would converge to the
Bayes estimate of θ. Given flat priors, the posterior
mode of the chain would approximate the maxi-
mum likelihood estimator of θ. The central 95%
range of values of the chain would approximate
the central 95% region of the posterior distribu-
tion, creating a Bayesian confidence interval for θ.
In short, if we could produce such a Markov chain,
it could be used as the basis of a Markov chain
Monte Carlo calculation, as described by (8).

It turns out that this is quite easily accom-
plished. A simple algorithm, due to Metropolis et
al. (1953) and Hastings (1970) does the job. Its
transition structure is as follows: from state θt ,
generate a candidate state θ* by random sam-
pling from a distribution C(θ*| θt ). Next, compute 

r(θt ) = min { f(θ |Y )/C(θ*| θt )

f(θ |Y )/C(θt | θ
*)

, 1},        (10)

and determine the next state of the chain on the
basis of a Bernoulli trial: 

θt+1 =  { θ* with probability r(θt)
θt with probability 1 – r(θt)

;
(11)

the process stays where it is with probability 1 –
r(θt), or moves to the candidate value with prob-
ability r(θt). The resulting sequence θt, t = 1,2, ..., is
a Markov chain with the desired stationary distrib-

W N E C

W 0.45 0.48 0.07 0
N [0.30 0.20 0.10 0.40 ]E 0.55 0.05 0.39 0.01
C 0.41 0 0.49 0.10

From:
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ution. For a heuristic description of why the algo-
rithm works see Gelman et al. (1998:325). The per-
formance of the algorithm depends on the choice
of candidate generating distribution, C(θ*|θt ), as
discussed subsequently, and may sometimes be im-
proved by multiplying the transition probability
by a scalar α, 0 < α < 1 (Goggins et al. 1998).

The movement probabilities (10) depend on
the posterior distribution only through ratios of
values at the present and candidate values. The
beauty of this feature is that the integral in (1),
which sometimes stands in the way of calculating
the posterior, cancels out. Thus, MCMC can be
used to approximate features of the posterior dis-
tribution, even when the posterior distribution
itself cannot be calculated.

IMPLEMENTATION OF MCMC

Markov chain Monte Carlo is becoming a stan-
dard technique in the repertoire of applied sta-
tisticians. A significant contribution to the field
has been the development and distribution of
program BUGS (Spiegelhalter et al. 1995). Gibbs
sampling is a particularly adroit implementation
of the Metropolis-Hastings algorithm. (For
details on Gibbs sampling see Casella and George
[1992]; for its interpretation as a special case of
the Metropolis-Hastings algorithm, see Gelman
et al. [1998:328].)

With the availability of software such as BUGS

and the increasing speed of personal computers,
we anticipate that MCMC will be routinely
applied to biological models. Users of MCMC
need not have a sophisticated knowledge of the
details of its implementation—MCMC is simply a
procedure for simulation. A practitioner needs to
be aware of 2 important issues for evaluating the
performance of an MCMC simulation. These
relate to the distinguishing feature of MCMC sim-
ulation—rather than drawing independent sam-
ples from a target distribution, MCMC produces
a Markov chain of values with the target distribu-
tion as its stationary distribution. This distinction
has important consequences for the precision
and accuracy of simulation summaries. 

Precision and Autocorrelation

Most summaries of simulated data are averages
of 1 sort or another (as equations [7] and [8]).
The precision of averages increases with the
number of observations (i.e., the number of sim-
ulations) but is reduced by positive correlation,
such as in a Markov chain. For chains generated
using the Metropolis-Hastings algorithm, the

magnitude of the correlation depends on the
relation between current values θt and candidate
values θ*. If candidate values are too close to cur-
rent values, sampling of the target distribution
will be slow, and autocorrelation will be high. On
the other hand, if θ* is likely to be too far from θt ,
it may not represent the posterior distribution
and consequently will have a small acceptance
probability (10). In this case, the candidate values
tend to be rejected, the chain does not move
(i.e., θt +1 = θt ), and autocorrelation will be high.

The 2 extremes are illustrated in Fig. 1. We gen-
erated 2 Markov chains using the Metropolis-
Hastings algorithm. We obtained candidate val-
ues by adding normally distributed noise to the
current values. Both chains have standard nor-
mal stationary distributions. The lighter line cor-
responds to a candidate distribution with stan-
dard deviation of 10—83% of the candidate
values were rejected, and the lag-1 autocorrela-
tion was 0.86. The heavier curve was generated
using a candidate distribution with standard devi-
ation of 0.10—only 4% of the candidate values
were rejected, but the step sizes were very small,
and the lag-1 autocorrelation was 0.97.

It is possible to tune the choice of candidate
distribution to optimize the performance of the
MCMC simulation. For the example presented
here, Fig. 2 presents empirical evidence that set-
ting the standard deviation of the candidate dis-
tribution to an intermediate value of 2.3 mini-
mizes the lag-1 autocorrelation at a value of about
0.63. Such matters may be beyond the concern or
interest of most users of MCMC. However, users

Fig.1. Realizations of 2 Markov chains produced using the
Metropolis-Hastings algorithm, each with standard normal
stationary distribution. Candidate values produced by adding
mean 0 normal noise to current values. Standard deviations of
candidate values were 0.10 (thick curve), and 10.0 (thin curve).
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should be aware of the existence of problems
relating to excessive autocorrelation and routine-
ly evaluate the results of MCMC simulations for
its effects.

Accuracy and Starting Values

Another consideration in summaries of MCMC
relates to accuracy—whether the chain of values
sampled can be thought of as a sample from the
target distribution. At issue is the starting value of
the chain, which must be supplied by the practi-
tioner. If the starting value could be sampled
from the target distribution there would be no
problem: every value in the Markov chain could
be considered a sample from the target distribu-
tion. However, if the starting value does not rep-
resent the target distribution, neither will other
early values in the chain; the chain exhibits tran-
sient behavior, moving gradually into the range
of the target distribution. 

This phenomenon is clearly evident in Fig. 3.
We generated the Markov chain according to the
Metropolis-Hastings algorithm, with a standard
normal target distribution. We obtained candi-
date values by adding normally distributed noise
with standard deviation of 0.10 to the present val-
ues. The starting value of 10 being well outside
the range of the stationary distribution, the chain
exhibits transient behavior—a burn-in period of
500 or 1,000 values is needed before the chain
appears to be sampling in the range of the sta-
tionary distribution. Thus, in equation (8), an
analyst would set M = 1,000, and discard these val-
ues from MCMC calculations.

The selection of candidate distributions and
assessment of convergence to the stationary dis-
tribution are areas of active research. For a more
in-depth, readable account of the issues involved,
readers are referred to the report of a roundtable
discussion of MCMC in practice (Kass et al. 1998).

The value of MCMC as a statistical tool
becomes apparent when one considers fitting
complex statistical models to data. In the next
section, we illustrate the use of BUGS to analyze a
moderately complex hierarchical model, one
that defies analysis by conventional methods.

AN ILLUSTRATION OF MCMC USING BUGS

J.-Y. Monnat, E. Danchin, and a team of collab-
orators have studied several colonies of kittiwakes
on the Brittany coast of France for 20 years
(Danchin and Monnat 1992, Danchin et al. 1998).
Here, we describe an analysis of association in
individual-specific latent factors governing sur-
vival and breeding rates. The data set consists of
survival and breeding records over 13 years for
845 birds known to have bred at least once. The
question of interest was whether trade-offs exist
between components of fitness. For example, do
birds that are more productive tend to have lower
survival rates (Stearns 1992, Cam et al. 1998)?

The collection of data is described elsewhere
(Cam et al. 2002), but several important features
are noted here. First, we note that new birds of
known age were individually marked through the
study period; the number of individuals first
included in years 1, 2, ... ,12 were 98, 82, 88, 97,
76, 30, 73, 69, 54, 52, 60, and 66, respectively. This

Fig. 2. Autocorrelation (solid line) and rejection rate (dashed
line) for Metropolis-Hastings Markov chains with standard nor-
mal stationary distributions and candidate values generated by
adding mean 0 normal noise to current value, plotted as a func-
tion of standard deviation of candidate generating distribution. 

Fig. 3. Transient behavior of Metropolis-Hastings Markov chain
resulting from the starting value outside of range of stationary
distribution. The stationary distribution of the chain is standard
normal. Candidate values were produced by adding mean 0
normal noise with standard deviation of 0.10 to current values.
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feature of the data allows the analyst to distinguish
age and year effects on breeding and survival.

Another important feature of these data is that
the resighting probability for marked birds was 1
(Cam et al. 1998). Thus, for each bird alive in
year t, there is a record of whether the bird
attempted breeding in year t, and of whether it
survived to year t + 1. We modeled the 2,947 sur-
vival events, S, as Bernoulli trials with success
parameters, ϕ, and the 2,344 breeding events, B,
as Bernoulli trials with success parameter, β. The
effects of covariates on survival and breeding
probabilities were modeled as linear on the logit
scale, logit(p) = ln(p/(1 – p)). 

We evaluated a cross-classification of 32 candi-
date models. All of the models included year
effects on breeding and survival as factors. We
modeled age effects on survival and breeding as an
additive factor, a quadratic function, a linear func-
tion, or constant. We compared the adequacy of
these models with and without bird-specific effects.
The model selection process is reported elsewhere
(Cam et al. 2002), along with a discussion of the
biological implications of the model. Here, we
describe the fitting of the model that was eventu-
ally selected using Akaike’s Information Criterion.

The selected model included bird-specific
effects, specified that the effect of aging on survival
was linear, and that the effect of aging on breed-
ing was quadratic. Thus, the model specified that 

logit(ϕbird,yr) = µϕ + aϕ Abird,yr + δyr
ϕ , + αbird

ϕ  ,

and (12)

logit(βbird,yr) = µβ + αβ Abird,yr + bβ Abird,yr
2 + δyr

β

+ αbird
β  ;

here, A is age, δ is year effects (factors having 12
levels each, the first of which was set equal to 0
for identifiability), and α is individual effects.
Sub- and superscripts ϕ and β distinguish para-
meters related to survival and breeding, respec-
tively; subscripts bird and yr identify individual
birds, bird = 1, 2, ..., 845 and years, yr = 1, 2, ..., 12.
Pairs of bird-specific parameters, (αbird

ϕ  , αbird
β ) are

of special interest in this analysis.
Clearly, it is neither practical nor desirable to

include 1,690 = 845 × 2 parameters describing
individual effects in the model. Even were such
an approach feasible, the analyst would end up
calculating statistics on statistics, summarizing
and evaluating the collection of parameter esti-
mates, attempting to correctly account for the

sampling variation in the estimates. Instead, we
treated individual effects as bivariate random
effects. Thus, corresponding to each bird is an
unobservable pair of latent effects, a bivariate
parameter αbird = (αbird

β αbird
ϕ )′. These are assumed

to have bivariate normal distributions, with mean
0, and variance–covariance matrix Σ. Therefore,
the individual effects are described by 3 parame-
ters: 2 variances and a correlation. The correla-
tion in individual effects is of special biological
interest. Negative values would indicate that birds
with higher survival probabilities are less likely to
attempt breeding, given that they survive. Positive
correlations indicate that birds with higher sur-
vival probabilities are more likely to attempt
breeding, given that they survive.

Calculation of the likelihood for this model is
prohibitively difficult, so fitting by conventional
methods is not possible. However, an objective
Bayes analysis is fairly straightforward using BUGS.

Analysis in BUGS is aided by the specification of
a directed acyclic graph as illustrated in Fig. 4, and
explained below. A directed acyclic graph is a visu-
al metaphor for a hierarchical model, consisting of
nodes, plates, and edges (respectively, the ellipses,
rectangles, and arrows, in Fig. 4). Nodes are drawn
for each parameter and for the data, and for para-
meters that are obtained as functions of other
parameters. Arrows are added specifying hierar-
chical relations and dependencies; collections of
related nodes are summarized by plates. Thus, in
Fig. 4, the lower left-hand plate has nodes S[i] for
the 2,947 survival events in the data set; these are
modeled as Bernoulli trials, with success rates
phi[i], which is a function of the quantities rep-
resented by nodes with arrows leading to it.

Highlighting a node in BUGS allows the specifi-
cation of whether the node is stochastic, logical
(i.e., a deterministic function of the values of other
nodes), or constant. In Fig. 4, B[J] (the j th breed-
ing event) is seen to be stochastic, a Bernoulli
trial with success parameter beta[J]. If the node
beta[J] were highlighted, it would be observed to
be a logical node, calculated by the specification

logit(beta[ j]) = mu_beta + a_beta *
(BreedAge[j]) + b_beta * pow(BreedAge[j],2) 

+ delta_beta[BreedYr[j]] 
+ alpha_beta[BreedID[j]],        (13)

corresponding to the second portion of the
model specification (12).

Founder nodes, those without arrows leading to
them in the directed acyclic graph, must either
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be pre-specified constants or random variables.
Thus in Fig. 4, the nodes corresponding to µϕ ,
aϕ, µβ, aβ, bβ, δyr

ϕ , and δyr
β in the model specifica-

tion (12) are random variables (as in a Bayesian
analysis) rather than fixed but unknown con-
stants (as in a Frequentist analysis). Since we
desired an objective Bayes analysis, we specified
prior distributions that were mean zero normal
with standard deviations of 1,000. These priors
are essentially uniform over a large range. The
density values on [–50,50] are always within
99.87% of the maximum value. Values outside of
that range are meaningless on the logit scale.
Therefore, we may consider these priors as essen-
tially uniform. As previously mentioned, it follows
from equation (1) that the maximizer for the
posterior distribution of θ is the same as the max-
imum likelihood estimator. Thus, the modes of
the posterior distributions for µϕ , aϕ, µβ, aβ, bβ,
δyr

ϕ , and δyr
β will be the maximum likelihood esti-

mators in a Frequentist analysis.

The remaining founder nodes in Fig. 4 relate to
the latent individual-specific effects. Nodes
X[bird] and Y[bird] are independent standard
normal variates, linear combinations of which
were calculated so as to produce pairs αbird =
(αbird

β αbird
ϕ )′ with covariance matrix

Σ = [ c1
2 ρc1c2 ]ρc1c2 c2

2
. (14)

We specified vague inverse gamma priors (a stan-
dard noninformative prior for variances) for the
2 variances, and gave a uniform prior on [–1, 1].

Once the model has been completely specified,
BUGS selects an appropriate algorithm and pro-
duces Markov chains for each of the parameters.
These chains can be output as ASCII files for analy-
sis in other software packages (e.g., a collection of
S-Plus functions named CODA is available from the
BUGS website). Some graphical and descriptive
summaries also are available within BUGS. Some

Fig. 4. Directed acyclic graph for kittiwake model (equation [12]), from program BUGS. Nodes are drawn for each parameter and
for the data, with arrows specifying hierarchical relations and dependencies. Highlighted node B[J] indicates a stochastic type, with
density dbern and parameter beta[J ]. The node represents a Bernoulli trial with success parameter specified by node beta[J ].
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of these are shown in Fig. 5, for the parameter ρ.
Fig. 5 displays a smoothed histogram and an

estimate of the autocorrelation function of the
Markov chain of values of ρ. The tabular summa-
ry for ρ shows approximate values for the mean,
standard deviation, and percentiles 2.5, 50, and
97.5 of the posterior distribution; also, that these
were computed from a Markov chain of length
30,000, the first 500 values of which were discard-
ed as representing a burn-in period.

The interval (0.33, 0.98) contains the central 95%
of the mass of the posterior distribution and some-
times is called a 95% Bayesian confidence interval
or credible interval, although these terms some-
times are reserved for the shortest interval contain-
ing 95% of the posterior distribution. In the pre-
sent case, the shortest such interval is (0.39, 1]. The
mean and median values of the posterior distrib-
ution are both close to the mode (estimated, out-
side of BUGS, as 0.68 using a histogram smoother).

As mentioned at the outset, the possibility of
varying the prior is an asset, rather than a liabili-
ty of Bayesian analysis. In Fig. 6, we report the
results of an analysis with an informative prior
(triangular distribution at top). This prior places
3:1 odds on ρ < 0, and 15:1 odds on ρ < 0.50, and
hence is hardly objective. This prior might repre-
sent strongly held views of individual trade-offs in
breeding and survival probabilities. Under this
prior, the 95% credible interval [0.28, 0.90] and
posterior mean (0.61) are only slightly changed
from those obtained using the uniform prior
([0.33, 0.98] and 0.69). This sort of result often is

described as the data overwhelming the prior—
the contribution of Prior to Posterior is small rel-
ative to that of Data, in equation (2).

The evidence is that ρ > 0 : latent factors gov-
erning survival rates and breeding rates are posi-
tively correlated. Thus, the birds that are more
likely to survive also are more likely to breed,
given that they survive. There is no evidence of a
trade-off at the individual level.

We discuss some of the biological and manage-
ment implications of this finding in the next sec-
tion; a more detailed discussion is in Cam et al.
(2002). The 2 main conclusions are: (1) differ-
ences in survival or breeding probabilities among
individuals are substantial; models including
individual effects systematically had a better fit
than others, which supports the hypothesis of
heterogeneity in vital rates among individuals;
and (2) the pattern of age-related variation in
breeding and survival rates detected at the indi-
vidual level differed from that observed at the
population level. Our approach provided evi-
dence of senescent decline in survival. Such a
decline was undetectable when analyzed using
classic approaches to the effect of age on survival.
This phenomenon has been extensively studied
in humans (Vaupel and Yashin 1985a,b) and cap-
tive animals (Service 2000), but very rarely in wild
animal populations (McDonald et al. 1996). From
a modeling perspective, the analysis includes esti-
mation of variation and covariation in fitness
components at the individual level. Evaluation of
these fitness components is crucial for the study

Fig. 5. Summaries from Program BUGS of a Markov chain of values of ρ from analysis of model (12) include a smoothed his-
togram, an estimated autocorrelation function, and a tabular summary. Tabular summary provides approximate values for the
mean, standard deviation, and percentiles 2.5, 50, and 97.5 of the posterior distribution. These were computed from a chain of
length 30,000, the first 500 values of which were discarded as a burn-in period.
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of age-specific reproductive strategies (Charles-
worth 1994), and is also important for studies of
natural selection (Endler 1986). Accurate descrip-
tion of age effects has major implications for
designing management plans as well (see below).
Markov chain Monte Carlo allowed the fitting of
what otherwise might have been regarded as pro-
hibitively complex models.

THEORETICAL AND MANAGEMENT

IMPLICATIONS OF INDIVIDUAL

HETEROGENEITY

Individual Variation and Population Dynamics

Understanding the processes underlying popu-
lation dynamics is of fundamental interest in most
conservation programs, or to design management
plans (Nichols et al. 2000). Many classical ecolog-
ical models are based on the assumption that pop-
ulations consist of identical individuals. However,
as emphasized by Bjørnstad and Hansen (1999),
extensive evidence exists that natural populations

exhibit much genetic and nongenetic variation in
life-history traits and demographic parameters.
The sources of variation among individuals coex-
isting in a population at a given point in time
most commonly incorporated into population
models are age, size, or stage (i.e., Caswell 2001).
However, our results show that these sources of
variation may not be sufficient to adequately
account for heterogeneity among individuals.

The population consequences of variation
among individuals in vital rates associated with dif-
ferences in access to resources resulting from
social hierarchy or habitat heterogeneity, some-
times combined with stage or age, are receiving
growing interest (e.g., de Jong 1979, Hassell and
May 1985, omnicki 1988, Bjørnstad and Hansen
1999, Bjørnstad et al. 1999). Results obtained using
models incorporating these sources of hetero-
geneity indicate that individual variation can
influence population growth rate, equilibrium
density, and stability (Bjørnstad and Hansen
1999). Doebelli and de Jong (1999) investigated

Fig. 6. Summaries from Program BUGS for an alternative analysis of model (12). Top panel is a histogram of 500,000 draws from
an informative prior representing strong prior convictions that . Histogram, estimated autocorrelation, and tabular summaries of
posterior distribution based on a chain of values of 11,000 after a burn-in of 500.
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the influence of genetic variability in sensitivity to
population density and reached the same conclu-
sions. They extended their conclusions to envi-
ronmentally induced variability. Other sources of
variation among individuals and their conse-
quence on population dynamics also are receiv-
ing growing interest, such as cohort and maternal
effects (Hansson 1984, Albon et al. 1987, Schluter
and Gustafsson 1993, Sedinger et al. 1995, Boon-
stra and Hochachka 1997, Rose et al. 1998, Lind-
ström 1999). Both sources of heterogeneity among
individuals are suspected to have lagged demo-
graphic consequences and result in destabilization
of the population (Ginzburg 1998, Albon et al.
1992). However, Bjørnstad and Hansen (1999) also
emphasized that the consequences of individual
heterogeneity strongly depends on the form of the
model, and further work is needed to reach gen-
erally applicable conclusions. So far, attempts to
use age-structured models accounting for addi-
tional sources of individual heterogeneity in vital
rates have been rare, mostly because of the com-
plexity of the models required (L/ omnicki 1988).

The importance of individual variation recently
has been emphasized in studies focusing on the
relationship between individual decisions and
population dynamics (e.g., Marrow et al. 1996).
Extensive evidence exists that the number of
young produced in a population during a given
year is influenced by environmental conditions
(e.g., resource availability). This type of effect
could be viewed as a simple constraint shaping
the reproductive potential of individuals at that
point in time only. However, a fundamental
assumption of life-history theory is that individual
reproductive decisions depend not only on the
specific conditions at that point in time and their
consequences on the probability of raising young
successfully, but also on future fitness (i.e., trade-
offs between current and future fitness; Stearns
1992). Recent developments in that field (e.g.,
McNamara and Houston 1992, 1996; Clark and
Mangel 2000) rely on the influence of individual
state (e.g., condition) on decisions, individuals in
different states making different decisions in
terms of age of first breeding, clutch or litter size,
migration routes, or dispersal (e.g., Festa-
Bianchet and Jorgenson 1998). Individual state
reflects both underlying differences between
individuals (i.e., the type of differences addressed
in this study) and the influence of environmental
conditions recently experienced (McNamara and
Houston 1992, 1996). As the current and future
fitness prospects of individuals with different

underlying survival or breeding potential are not
the same, individuals are expected to make dif-
ferent decisions in the same environmental con-
ditions. The overall production of young in a
population during a given year may depend on
the proportion of individuals with different
underlying characteristics. Assessing the distribu-
tion of individuals with different underlying vital
rates is critical to understanding the population
consequences of individual decisions.

In addition to the difficulty raised by the com-
plexity of population models accounting for many
sources of individual variation in demographic
parameters, quantifying this heterogeneity in wild
animal populations is a challenge (Cooch et al.
2002). The models used here to assess individual
variation in breeding and survival rates can be
described as models where each individual has its
own mortality risk (Service 2000), or its own
reproductive potential. In this study, we account-
ed for the correlation between breeding and sur-
vival rates at the individual level; fitting such mod-
els using conventional approaches is prohibitively
difficult (Cam et al. 2002). One of the strategies to
build population models accounting for individ-
ual variation is to assign a growth rate depending
on some parameter with an individual value to
each individual in the population (Bjørnstad and
Hansen 1999). Now, as emphasized by Bjørnstad
and Hansen (1999), the influence of individual
variation on population dynamics is strongly
dependent on the distribution of the parameter
in the population. Describing the form of varia-
tion among individuals thus is critical to under-
standing the consequences of individual hetero-
geneity on the dynamics of the population.
Development of approaches to fitting complex
hierarchical models permitting estimation of the
distribution of the parameters in the population
is a promising advance and should provide means
of addressing the population consequences of
individual variation in life-history traits and
demographic parameters using empirical data.

Individual Variation: Management and
Conservation

The potential relevance of individual hetero-
geneity to harvest management was explicitly
noted by Johnson et al. (1986, 1988). They con-
sidered the hypotheses of additive and compen-
satory hunting mortality as originally described
for waterfowl by Anderson and Burnham (1976).
They then considered a heterogeneous popula-
tion in which probabilities associated with both
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hunting and nonhunting mortality differed
among individuals and were positively associated
within individuals (individuals with low nonhunt-
ing mortality probabilities also had low hunting
mortality probabilities). Even in the case where
hunting mortalities acted as instantaneous com-
peting risks (additive hunting mortality hypothe-
sis), the population appears to compensate for
increased harvest mortality. The mechanism
underlying this compensation does not involve
density-dependent changes in nonhunting mor-
tality, but simply results from a postharvest popu-
lation that contains an increased proportion of
low-mortality individuals. Patterns of individual
heterogeneity that showed no covariance within
individuals for hunting and nonhunting mortali-
ty probabilities, or that showed a negative covari-
ance, would yield different responses to harvest.
In fact, a negative covariance would yield an espe-
cially severe population-dynamic effect of harvest.
In addition to the effect of harvest mortality, the
postharvest population would have a higher non-
hunting mortality probability than would a non-
harvested population. The point is that individual
heterogeneity in vital rates, specifically the pat-
terns of variation and covariation of vital rates
among individuals, is very relevant to population
responses to management actions such as harvest.

The concept of reproductive value is important
to various kinds of management and conservation
problems. With respect to conservation, the age
classes with the largest reproductive value make the
largest contributions to future population growth
and are thus selected for restocking and reintroduc-
tion programs (see MacArthur and Wilson 1967).
With respect to harvest management, if all age class-
es are of equal value to the hunter, then the age
classes with the smallest reproductive values should
be harvested (e.g., MacArthur 1960). The shape of
the reproductive value function is heavily depen-
dent on whether or not individuals experience
senescent decline in either survival or reproductive
rates (e.g., see Nichols et al. 1980, Fig. 4). If our per-
ception of senescence is obscured by individual het-
erogeneity (as illustrated in the kittiwake example
above; see also Cam et al. 2002), then management
actions that are based on reproductive value or—
more generally—age-specific patterns of survival
and reproduction, may be misdirected. It is impor-
tant to draw strong inferences about the existence of
senescent decline in vital rates among individuals.
We do not know how to draw such inferences in
the absence of analytic approaches that properly
incorporate individual heterogeneity in vital rates. 

Population viability analysis (PVA) has become a
popular tool in certain areas of conservation biol-
ogy. Population viability models frequently include
temporal and sometimes spatial variation in vital
rates, but typically have not included individual
heterogeneity in birth and death rates. However,
such heterogeneity can be very important for esti-
mating extinction probabilities associated with
populations. Specifically, extinction probabilities
have been shown to typically decrease in the pres-
ence of individual heterogeneity in vital rates
(Conner and White 1999). Results of models that
do, and do not, incorporate individual hetero-
geneity can show substantial differences in such
quantities as persistence time and probability of
extinction (Conner and White 1999, White 2000). 

The above examples illustrate the importance
of individual heterogeneity to population man-
agement and conservation. The relevance of indi-
vidual heterogeneity in vital rates extends well
beyond these examples to virtually all manage-
ment or conservation actions. Patterns of varia-
tion and covariation of vital rates among individ-
uals are important determinants of population
dynamics and responses to management. We
believe that the usefulness of the methods pre-
sented here for estimating such variation and
covariation will be increasingly recognized in
wildlife management and conservation biology.

DISCUSSION

Markov chain Monte Carlo is a tool for fitting
complex statistical models to data. It is becoming
more widely used in a variety of biological and
related fields (Fig. 7). We found 235 citations in-
cluding “Gibbs sampling,” “Markov chain Monte
Carlo,” “Metropolis-Hastings,” or related terms in
Biological Abstracts (2001). The most citations were
in statistics journals (83×: including Statistics in

Medicine 30×, Biometrics 26×, and Biometrika 9×);
genetics journals (63×: including Genetics, Selection,
Evolution 18×, Genetic Epidemiology 13×, and Ameri-

can Journal of Human Genetics 8×); and animal sci-
ence journals (36×: including Journal of Dairy Sci-

ence 15× and Journal of Animal Science 9×). None of
these terms were found in The Journal of Wildlife

Management, Ecological Applications, or Ecology.
This is not to say that none of these applications

would interest readers of The Journal of Wildlife

Management. In particular, we note extensions of
conventional mark–recapture methodologies
(George and Robert 1992, Dupuis 1995,
Vounatsou and Smith 1995), and of the Cox pro-
portional hazards model (Gauderman and
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Thomas 1994, Goggins et al. 1998, Sargent 1998)
using MCMC. Applications of MCMC in ecologi-
cal journals include autologistic modeling for the
spatial distribution of wildlife (Augustin et al.
1996), modeling of nitrogen flows in the world’s
oceans (Harmon and Challenor 1997), and assess-
ment of fisheries stock (Meyer and Millar 1999).

Given the growing number of applications of
MCMC in all branches of statistical application,
the availability of software such as BUGS, the spec-
tacular rate of increase in clock speeds of person-
al computers, the consequent feasibility of ever
more computationally intensive statistical meth-
ods, and the potential for fitting complex hierar-
chical models, we predict MCMC will be used as
a tool in many future wildlife applications.
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