
Of Choices, Failures and Asynchrony:
The Many Faces of Set Agreement

Dan Alistarh1, Seth Gilbert1, Rachid Guerraoui1, and Corentin Travers2?

1 Swiss Federal Institute of Technology, Lausanne, Switzerland
2 Technion, Haifa, Israel

Abstract. Set agreement is a fundamental problem in distributed com-
puting in which processes collectively choose a small subset of values from
a larger set of proposals. The impossibility of fault-tolerant set agreement
in asynchronous networks is one of the seminal results in distributed
computing. The complexity of set agreement in synchronous networks
has also been a significant research challenge. Real systems, however, are
neither purely synchronous nor purely asynchronous. Rather, they tend
to alternate between periods of synchrony and periods of asynchrony.
In this paper, we analyze the complexity of set agreement in a such
a “partially synchronous” setting, presenting the first (asymptotically)
tight bound on the complexity of set agreement in such systems. We
introduce a novel technique for simulating, in fault-prone asynchronous
shared memory, executions of an asynchronous and failure-prone message-
passing system in which some fragments appear synchronous to some
processes. We use this technique to derive a lower bound on the round
complexity of set agreement in a partially synchronous system by a
reduction from asynchronous wait-free set agreement. We also present
an asymptotically matching algorithm that relies on a distributed asyn-
chrony detection mechanism to decide as soon as possible during periods
of synchrony.
By relating environments with differing degrees of synchrony, our simu-
lation technique is of independent interest. In particular, it allows us to
obtain a new lower bound on the complexity of early deciding k-set agree-
ment complementary to that of [12], and to re-derive the combinatorial
topology lower bound of [13] in an algorithmic way.

1 Introduction

Set agreement was first introduced by Chaudhuri [6] to capture the power of
allowing more choices than consensus [16], where only a single decision value
is permitted. Each process pi begins with an initial value vi; eventually, every
process outputs one of the initial values as a decision. In k-set agreement, the
set of all values output can be of size at most k. When k = 1, set agreement
reduces to consensus. When k = n, the problem is trivial, i.e., processes can act
entirely independently.
? Supported in part by a Sam & Cecilia Neaman Fellowship.

In a collection of seminal papers, Borowsky, Gafni, Herlihy, Saks, Shavit, and
Zaharoglou [5, 14, 17] showed that fault-tolerant asynchronous set agreement is
impossible (while at the same time revealing a deep connection between dis-
tributed computing and algebraic topology). Chaudhuri et al. [7] further devel-
oped these techniques, establishing a tight lower bound on the round complexity
of synchronous set agreement: in a system with t failures, at least bt/kc + 1
rounds are necessary. More recently, Gafni et al. [12] and Guerraoui et al. [13]
considered the feasibility of reaching an early decision: how fast can an algorithm
tolerating up to t failures decide in an execution with at most f < t failures?
They both show, in different ways, that at least bf/kc+ 2 rounds are needed.

Set agreement has been extensively studied in both synchronous and asyn-
chronous systems. Real world distributed systems, however, are neither purely
synchronous nor purely asynchronous. Instead, they tend to exhibit periods of
synchrony when the network is well behaved, and periods of asynchrony when
the network is poorly behaved. To describe such a system, Dwork et al. [9] in-
troduced the idea of partial synchrony. They assume for every execution some
(unknown) time GST (global stabilization time), after which the system is syn-
chronous. In this paper, we study the feasibility and complexity of set agreement
in the context of partially synchronous systems, determining the minimum-sized
window of synchrony in which k-set agreement can be solved. Of course, the
lower bounds for synchronous systems [7, 10] imply an immediate lower bound
here of b tk c + 1 rounds. The question, then, is whether there exists any match-
ing algorithm that terminates in a synchronous window of size b tk c + 1, or is
there some inherent cost to tolerating asynchrony? Moreover, how does this cost
depend on t and k?

We answer these questions by showing that at least b tk c + 2 synchronous
rounds are required for k-set agreement, and demonstrating an algorithm that
terminates in any window of synchrony of size at least b tk c+4 rounds. Together,
these results tightly bound the inherent price of tolerating some asynchrony.
Lower Bound By Reduction. The technique for deriving the lower bound
is an important contribution in end of itself, as it provides new insights into
the complexity of set agreement. Instead of relying on topology, as is typically
required for set agreement lower bounds, we derive our result by reducing the
feasibility of asynchronous set agreement to the problem of solving set agreement
in a window of size b tk c + 1. Since asynchronous set agreement is known to be
impossible, this reduction immediately implies that at least b tk c+2 synchronous
rounds are required for k-set agreement.
Early Deciding Synchronous Set Agreement. Our technique turns out
to be of more general interest, as we can re-derive and extend existing lower
bounds for synchronous early deciding set agreement. It has been previously
shown [12,13] that even in an execution with f < t failures, some process cannot
decide prior to round bf/kc+ 2.

Using our simulation technique, we re-derive both previous lower bounds
in a simpler and more general manner, in the standard model where t and n
are bounded and known. Of note, both lower bounds are corollaries of a single

theorem that relates the number of processes which decide early with the worst-
case round complexity of an algorithm. Basically, we show that if d processes
decide by round bf/kc + 1 in executions with at most f failures, then in the
worst-case, some process takes at least time bt/kc+E(·) + 1 to decide (where E
is a function of t, k and d). Due to space limitations, we leave the presentation
of these results to the full version of the paper [2].
Upper Bound for Eventually Synchronous Agreement. We then present
the first known algorithm for set agreement that tolerates periods of asynchrony.
Our algorithm guarantees correctness, regardless of asynchrony, and terminates
as soon as there is a window of synchrony of size bt/kc + O(1). For simplicity,
we show synchronous round complexity of bt/kc+4; a tighter analysis in the full
version yields bt/kc + 3 for t ≥ k2. Note that a previous paper [3] presents an
algorithm that exactly matches the lower bound, for the special case of consensus
(k = 1). Thus, closing the one round gap between the two bounds remains an
intriguing challenge.

Two basic ideas underlie our algorithm. First, processes collectively execute
an asynchrony detection sub-protocol that determines whether a round appears
synchronous or asynchronous. A process can decide when it sees bt/kc + O(1)
synchronous rounds. Even so, different sets of processes may have different views
of the actual execution when the decision occurs, since there are only bt/kc+O(1)
rounds to exchange information. Second, each process maintains an estimate, i.e.,
a value that it is leaning toward choosing. In each round, each process adopts
the minimum estimate that it receives. If a process is about to decide, however,
it can elevate the priority of its estimate, causing other processes to adopt its
value instead.
Implications. Several implications arise from our simulation technique and
its usage. First, it provides additional evidence that the impossibility of fault-
tolerant asynchronous k-set agreement is a central result in distributed com-
puting, as it implies non-trivial results in both partially synchronous and syn-
chronous models. Second, it highlights close connections between models that
have differing levels of synchrony. In particular, our simulation technique takes
advantage of structural similarities between eventually synchronous set agree-
ment and early deciding set agreement to establish lower bounds in two different
models of synchrony. The uncertainty regarding asynchrony (found in a partially
synchronous execution) turns out to be fundamentally similar to the uncertainty
regarding failures (found in an early deciding execution).

2 Model

In this section, we define three basic models of computation. The partially syn-
chronous model ESn,t consists of n deterministic processes Π = {p1, . . . , pn}, of
which up to t < n may fail by crashing. (Note that the algorithm in Section 4 uses
t < n/2.) The processes communicate via a message-passing network, modeled
much as in [8,9,15]: time is divided into rounds; however, there is no assumption
that every message broadcast in a round is also delivered in that round. Instead,
we assume only that if all non-failed processes broadcast a message in round r,

then each process receives at least n − t messages in that round3. We assume
that the network is partially synchronous: there is some round GST after which
every message sent by a non-failed process is delivered in the round in which it
is sent. The synchronous model Sn,t is identical to ESn,t, except that we assume
every process knows, a priori, that GST = 0, i.e., that every message is delivered
in the round that it is sent.

The asynchronous model ASn,k consists of n processes Π, up to k of which
may crash. The processes communicate via single-writer, multi-readers (SWMR)
registers. The memory is organized in arrays X[1..n] of n registers; entry X[i] of
an array can be written only by pi. In addition to read() and write() operations,
a process can also invoke X.snapshot() to read all the contents of X in a logically
instantaneous single operation. Let x and x′ be the result of any two snapshot
operations on X. We assume that the following hold: Containment: x ⊆ x′∨x′ ⊆
x; Self inclusion: Let v be the value written by pi in X[i] prior to invoking
X.snapshot(), with no intervening x.write(·) operations; let x be the result of
the snapshot operation; then x[i] = v. Implementation of snapshot on top of
SWMR registers can be found in [1, 4], and thus they provide no extra power.
k-set agreement is impossible in ASn,k [5, 14,17].

3 Simulating Synchronous Views: a Lower Bound for
k-Set Agreement

In this section, we present an algorithm for simulating, in the asynchronous
model ASn,k, executions in ESn,t of a k-set agreement algorithm A. The simu-
lation pseudocode is presented in Figure 1. Each process in ASn,k simulates one
process executing A in ESn,t. (We refer to the processes in ASn,k as simulators.)
Each execution e simulated by our algorithm is a valid execution of A in model
ESn,t, and satisfies the following property: at least one process, whose simulator
is correct, observes a window of synchrony of length at least bt/kc + 1. More
precisely, for each simulated execution e, there exists a round R and a process p
such that p cannot distinguish, by the end of round R + bt/kc+ 1, execution e
from some execution e′ in which the global stabilization round GST is equal to
R. We say that p has a synchronous view of length bt/kc+ 1.

Our simulation relies on the ideas introduced in [10]. The goal in [10] is to
simulate, in ASn,k, executions of the synchronous model Sn,t. The simulation
ensures that (1) whenever a message is not delivered by some process, the sender
is simulated as failed in every following round and, (2) in each round, at most k
new failures occur. The first property guarantees that the simulated execution
is synchronous, while the second property implies that up to bt/kc rounds can
be simulated without exceeding the maximum number of failures t allowed by
the model Sn,t.

We observe that in an execution of bt/kc+1 rounds simulated with the tech-
nique described in [10], although more than t processes might have failed in the
simulated execution, at least one process p observes no more than t failures and
3 This can be implemented by delaying a round r+1 message until at least n−t round
r messages have been received.

still perceives the execution as synchronous. Thus, if we assume a k-set agree-
ment protocol for model ESn,t where every process decides by the end of round
GST + bt/kc + 1, process p must obtain a decision. If its associated simulator
does not fail, the decision can be propagated to every simulator which allows
them to decide. In the other case, we repeat the simulation for another bt/kc+1
rounds, again resulting in a process either deciding or its associated simulator
failing. Eventually, after k + 1 repetitions (which we refer to as “phases”), we
argue that some process decides and does not fail.

3.1 Basic Setup
The simulation depends on three parameters: the algorithm A being simulated,
the number of phases numP , and an array R1, R2, . . . , RnumP+1 where each Ri
is the first round in the ith phase.

For process pi, the algorithm A is described by a function compute(r, rec),
where r is a round number and rec a set of messages received by pi in round r.
The compute function returns a pair (di,mi), where mi is the message to be sent
in the next round, and di is the decision value or ⊥. Without loss of generality,
we assume that each process sends the same message to all other processes.

3.2 Simulating Synchronous Rounds
Each process in ASn,k simulates one process executing A in ESn,t. The simula-
tion begins with a call to propose(vi) (line 5), where vi is pi’s proposal.

The simulation is divided into phases (lines 8–13): in each round of a phase
in which no simulators fail, there is at least one process that sees the phase as a
window of synchrony within a (possibly) asynchronous execution.
Round overview. In order to simulate round r (lines 11–13), process pi
invokes simulate(mi, r) (line 12), where mi is its message for round r, which was
computed previously. The simulate procedure returns pairs 〈j,mj〉, where mj is
the round r message “sent” by pj . The simulator then calls the compute function
(line 13), which returns di, a possible decision, and mi, the next message to send.
If di 6= ⊥, simulator pi writes the decision value di in the shared array DEC
before deciding that value (line 13). Similarly, if a simulator observes that a
value 6= ⊥ has been written in DEC , it decides that value (lines 14–16).
Simulating a round. The simulate function (lines 17–30) carries out the
send/receive step. For round r, simulator pi writes the message mi into the
register VAL[r][i] (line 18), and then performs repeated snapshots of VAL[r]
(line 19) to discover the messages of other simulators. Since k simulators may
fail in ASn,k, the simulator cannot wait for messages from all n simulators. As
soon as pi discovers n− k messages in its snapshot of VAL[r], it continues. The
variable Mi stores the set of up to k processes from which some message was
missed. The simulators then need to agree on which messages to deliver in the
simulated round and which messages were missed; if a message is missed from
some process pj , then the simulators collectively “fail” process pj in all future
simulated rounds.
Adopt-commit objects. The simulators use adopt-commit objects (intro-
duced in [10,18]) to coordinate which processes have “failed” in the simulation.

Parameters: A, numP , [R1, . . . , RnumP+1]1

Shared variables:2

AC[1..RnumP+1][1..n], array of adopt-commit objects3

DEC [1..n],VAL[1..RnumP + 1][1..n], array of SWMR registers.4

procedure propose(vi): start Task T1; start Task T2;5

Task T1:6

(,mi)← compute(0, vi, true) % messages for the first round7

for ρ = 1 to numP do8

% Begin a new phase:9

Si ← ∅10

for r = Rρ to Rρ+1 − 1 do11

reci ← simulate(mi, r) % Simulate send/receive of round r.12

(di,mi)← compute(r, reci) % Compute message for next round. if13

di 6= ⊥ then DEC [i].write(di); stop T2; return di

Task T2:14

repeat for j = 1 to n do deci[j]← DEC [i] until (∃` : deci[`] 6= ⊥)15

stop T1; return deci[`]16

procedure simulate(mi, r) % Simulate round r where pi sends message mi.17

reci ← ∅; VAL[r][i].write(mi)18

repeat viewi ← VAL[r].snapshot() until |{j : viewi[j] = ⊥}| ≤ k19

Mi ← {j : viewi[j] = ⊥}20

for j = 1 to n do21

if j ∈ Si ∪Mi then statei[j]← AC[r][j].propose(suspect)22

else statei[j]← AC[r][j].propose(alive)23

if statei[j] = (commit, suspect) then Si ← Si ∪ {j}24

else if statei[j] = (adopt, suspect) then Si ← Si ∪ {j};25

reci ← reci ∪ {〈j,VAL[r][j]〉}
else reci ← reci ∪ {〈j,VAL[r][j]〉}26

% Complete view of round r, if necessary:27

if |reci| < n− t then reci ← {〈j, viewi[j]〉 : viewi[j] 6= ⊥} ;28

if 〈i,mi〉 /∈ reci then reci ← reci ∪ {〈i, viewi[i]〉} ;29

return reci30

Fig. 1. Simulating A in ASn,k, code for simulator pi.

An adopt-commit object AC is invoked via a propose(v) operation, and returns a
decision (dec, v) where dec ∈ {adopt, commit}. The object satisfies the following
properties: 1. Termination: Each invocation by a correct process terminates. 2.
Validity: If a process decides (dec, v) then some process invoked AC .propose(v).
3. Agreement: If a process decides (commit, v), then every decision is (·, v). 4.
Convergence: If every process proposes the same v, then (commit, v) is the only
possible decision. Implementations of adopt-commit objects in ASn,k can be
found in [10, 18]. These implementations also satisfy: 5. Commit Validity: As-
sume pj invokes AC .propose(v); then pj cannot get back (commit, v′) with v 6= v′.

Agreeing on failures. After completing the snapshots, the simulators use the
adopt-commit objects to agree on which processes have failed. Simulator pi stores
in Si a set of suspected processes, and it resets Si to ∅ at the beginning of each
phase. Throughout the phase, processes are added to Si based on the output
of the adopt-commit objects. If a process pi misses a message from a process
pj in round r (i.e., if pj ∈ Mi), or if process pi suspects pj (i.e., if pj ∈ Si),
then its simulator proposes suspecting pj using AC [r][j] (line 22). Otherwise,
the simulator proposes that pj is alive (line 23).

There are three possible decisions. First, (commit, suspect) (line 24): in this
case, the simulation fails process pj in round r. By agreement, we know that
every simulator either adopts or commits to suspecting pj , and so process i adds
pj to Si. Second, (adopt, suspect) (line 25): in this case, we cannot determine
whether pj is failed or not in round r; even so, to be safe, simulator pi adds pj to
Si. We know, however, by validity that some process proposed pj as alive, and
so we know that VAL[r][j] contains the message from pj , which we add to the
set reci of messages to deliver. Finally (·, alive) (line 26): as in the second case,
we add the message from VAL[r][j] to reci. Notice that if any simulator commits
to failing pj , then every other simulator will either adopt or commit to failing
pj and add pj to Si. By convergence, in the following round, every simulator
commits to failing pj . By using the adopt-commit objects in this way, we ensure
that simulated views remain synchronous.
The end of the phase. This approach results in simulating up to k new
failures in each round. Eventually, the number of simulated failures may surpass
t, the bound on failures in ESn,t. Consequently, for some processes, the set of
messages reci may no longer contain an appropriate set of messages to deliver.
In that case, simulator pi augments the set reci to ensure that it contains enough
messages (|reci| ≥ n− t, line 28) and that it contains the round r message of pi
(line 29).

Therefore, not all processes may maintain a synchronous view. However, we
can show that if the length of the phase is at most bt/kc+ 1 rounds, at least one
process is able to maintain its synchronous view through the end of a phase.

3.3 Lower Bound on Set Agreement in ESn,t

We now show how to use the simulation technique to prove a lower bound on
set agreement in ESn,t. We begin, for the sake of contradiction, by assuming
that algorithm A solves k-set agreement in ESn,t in any window of synchrony
of size bt/kc+ 1. The simulation uses k+ 1 phases, each of length bt/kc+ 1, i.e.,
Rρ = (ρ− 1)(bt/kc+ 1) + 1. We show that the resulting simulation of A solves
k-set agreement in ASn,k, which is known to be impossible, implying that no
such algorithm A exists. This implies that any k-set agreement protocol requires
at least bt/kc+ 2 synchronous rounds to decide.

First, we list some of the properties of the simulation, whose proofs can be
found in the full version of the paper [2]: (P1) the simulated execution of A is a
valid execution ofA in ESn,t; (P2) each phase ρ appears synchronous: if a process
sees f ≤ t failures by the end of round r, then it perceives the first r rounds
of phase ρ as synchronous; (P3) there are at most t simulated failures at the

beginning of the last simulated round in phase ρ; (P4) some simulated process
sees no new failures in the last round. Since each phase is of length bt/kc + 1,
and since A guarantees a decision in a window of synchrony of size bt/kc+ 1, it
follows from properties (P1)–(P4) that by the end of phase ρ, a process either
decides, having seen the entire phase as synchronous, or its associated simulator
fails.

Lemma 1. For every phase ρ, if no process decides and writes its decision to
DEC prior to the end of phase ρ, then at least one process that begins phase ρ
fails before beginning phase ρ+ 1.

We conclude that our simulation of algorithm A solves k-set agreement in ASn,k.
Agreement follows from the fact that our simulation is a valid simulation of A in
ESn,t, and termination follows from the fact that if there is no decision, then at
least one simulator fails in every phase; since there are only k possible failures
in ASn,k, by the end of phase k + 1, some process must decide.

Lemma 2. The algorithm in Figure 1 simulating A solves k-set-agreement in
ASn,k.

Since k-set agreement is impossible in ASn,k, we conclude:

Theorem 1. There is no algorithm A for ESn,t that decides by round GST +
bt/kc+ 1, i.e., within a window of synchrony of size bt/kc+ 1.

4 k-Set Agreement Algorithm for ESn,t

We present an algorithm named K4 which solves k-set agreement in a window
of synchrony of size bt/kc + 4. The algorithms requires a majority of correct
processes, i.e., t < n/2. The pseudocode can be found in Figure 2. The proof of
correctness for the protocol can be found in the full version of this paper [2].

4.1 Description
K4 is a round-based full-information protocol. Each process maintains a local
estimate est i, representing its preferred decision, and sets Activei and Failed i,
which denote the processes that pi believes to be alive and failed (respectively).
In every round, each process broadcasts its entire state (line 5), and receives all
the messages for the current round (line 6), updating its view of which processes
have failed and which rounds are synchronous (lines 7–10). A process decides if it
receives a message from another process that has already decided (lines 11–12),
or if it sees bt/kc+ 4 consecutive synchronous rounds (line 13). If no decision is
reached, then the estimate est i is updated in lines 15–17. There are two key com-
ponents to K4: accurately determining whether rounds are synchronous (which
is critical for ensuring liveness), and updating the estimate (which is critical for
ensuring agreement).
Detecting Asynchrony. updateSynchDetector() merges information into the
Active and Failed sets; if a process believes that p` was active in round r, then
p` is added to Active[r]; if it believes that p` was failed during round r, then
p` is added to Failed [r] (see lines 20–23). It then determines based on Active[r]

procedure propose(vi)i1

esti ← vi; ri ← 1; msgSeti ← ∅; sF lagi ← false2

Activei ← []; Failed i ← []; AsynchRoundi ← []3

while true do4

send(esti, ri, sF lagi, Activei, Failed i, AsynchRoundi, decidei) to all5

wait until received at least (n− t) messages for round ri6

msgSeti[ri]← messages that pi receives in round ri7

Activei[ri]← processes from which pi gets messages in round ri8

Failed i[ri]← Π \Activei[ri]9

updateSynchDetector() % Update the state of pi.10

if (∃msgp ∈ msgSet i with msgp.decidedp = true) then11

decidei ← true; esti ← msgp.estp12

if (sCount i = bt/kc+ 4) then decidei ← true13

if (decidedi = false) then14

flagProcsi ← { p ∈ Activei[ri] | sF lagp = true }15

if flagProcsi 6= ∅ then esti ← minq∈flagProcsi(estq)16

else esti ← minq∈Activei[ri](estq)17

ri ← ri + 118

procedure updateSynchDetector()19

for every msgj ∈ msgSet i[ri] do20

for round r from 1 to ri − 1 do21

Activei[r]← msgj .Activej [r] ∪Activei[r]22

Failed i[r]← msgj .Failed j [r] ∪ Failed i[r]23

for round r from 1 to ri − 1 do24

AsynchRoundi[r]← false25

for round k from r + 1 to ri do : if (Activei[k] ∩ Failed i[r] 6= ∅) then26

AsynchRoundi[r]← true
sF lagi ← false27

sCounti ←max`(∀r′ ∈ [ri − `, ri], AsynchRoundi[r′] = false)28

if sCounti = bt/kc+ 3 then sF lagi ← true29

Fig. 2. The K4 algorithm, at process pi.

and Failed [r] sets whether round r seems synchronous (lines 24-26). A round r
is deemed asynchronous if some process p` is believed to have failed in round
r (i.e., p` ∈ Failed [r]), and yet is also believed to be alive at some later round
k > r (i.e., p` ∈ Active[k]). Finally, process pi sets a flag sF lag to true if it sees
the previous bt/kc+ 3 rounds as synchronous (line 29).

Updating the estimate. Each process updates the estimate in every round.
Estimates have two levels of priority: if a process has seen bt/kc+3 synchronous
rounds, i.e., if it is “ready to decide,” then its estimate has high priority; other
estimates are awarded normal priority. A process adopts the minimum prioritized
estimate, if one exists (line 16); otherwise, it adopts the minimum estimate
received in the current round (line 17).

5 Conclusion

We have presented a new technique for simulating synchronous and partially
synchronous executions in asynchronous shared memory. Our technique allows
us to characterize the complexity of set agreement in partially synchronous sys-
tems, as well as to refine earlier lower bounds for early-deciding synchronous set
agreement. One direction of future work is to extend our lower bound results
to other tasks by encapsulating the Extended BG simulation [11]. On the algo-
rithmic side, the solvability of set agreement in partially synchronous systems
without a majority of correct processes remains an open question.

References

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snap-
shots of shared memory. J. ACM, 40(4):873–890, 1993.

2. D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. Of choices, fail-
ures and asynchrony: The many faces of set agreement. Technical report,
http://lpd.epfl.ch/alistarh/kset-ps/kset-TR-full.pdf.

3. D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers. How to solve consensus in
the smallest window of synchrony. In DISC, pages 32–46, 2008.

4. H. Attiya and O. Rachman. Atomic snapshots in o(n logn) operations. SIAM J.
Comput., 27(2):319–340, 1998.

5. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient
asynchronous computations. In STOC, pages 91–100, 1993.

6. S. Chaudhuri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Inf. Comput., 105(1):132–158, 1993.

7. S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. A tight lower bound for
k-set agreement. In FOCS, pages 206–215. IEEE, 1993.

8. P. Dutta and R. Guerraoui. The inherent price of indulgence. Distributed Com-
puting, 18(1):85–98, 2005.

9. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

10. E. Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In PODC, pages 143–152, 1998.

11. E. Gafni. The Extended BG simulation and the characterization of t-resiliency. In
STOC, 2009.

12. E. Gafni, R. Guerraoui, and B. Pochon. From a static impossibility to an adaptive
lower bound: the complexity of early deciding set agreement. In STOC, pages
714–722, 2005.

13. R. Guerraoui, M. Herlihy, and B. Pochon. A topological treatment of early-deciding
set-agreement. In OPODIS, pages 20–35, 2006.

14. M. Herlihy and N. Shavit. The topological structure of asynchronous computability.
J. ACM, 46(6):858–923, 1999.

15. I. Keidar and A. Shraer. Timeliness, failure-detectors, and consensus performance.
In PODC, pages 169–178, 2006.

16. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ToPLaS,
4(3):382–401, 1982.

17. M. E. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topol-
ogy of public knowledge. SIAM J. Comput., 29(5):1449–1483, 2000.

18. J. Yang, G. Neiger, and E. Gafni. Structured derivations of consensus algorithms
for failure detectors. In PODC, pages 297–308, 1998.

