
REVIEW

Of genes and microbes: solving the intricacies
in host genomes

Jun Wang1&
, Liang Chen1, Na Zhao1, Xizhan Xu1,2, Yakun Xu1,2, Baoli Zhu1,2,3&

1 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science,

Beijing 100101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases First Affiliated Hospital, School of

Medicine, Zhejiang University, Hangzhou 310058, China

& Correspondence: junwang@im.ac.cn (J. Wang), zhubaoli@im.ac.cn (B. Zhu)

Received February 6, 2018 Accepted February 28, 2018

ABSTRACT

Microbiome research is a quickly developing field in

biomedical research, and we have witnessed its poten-

tial in understanding the physiology, metabolism and

immunology, its critical role in understanding the health

and disease of the host, and its vast capacity in disease

prediction, intervention and treatment. However, many

of the fundamental questions still need to be addressed,

including the shaping forces of microbial diversity

between individuals and across time. Microbiome

research falls into the classical nature vs. nurture sce-

nario, such that host genetics shape part of the micro-

biome, while environmental influences change the

original course of microbiome development. In this

review, we focus on the nature, i.e., the genetic part of

the equation, and summarize the recent efforts in

understanding which parts of the genome, especially

the human and mouse genome, play important roles in

determining the composition and functions of microbial

communities, primarily in the gut but also on the skin.

We aim to present an overview of different approaches

in studying the intricate relationships between host

genetic variations and microbes, its underlying philos-

ophy and methodology, and we aim to highlight a few

key discoveries along this exploration, as well as cur-

rent pitfalls. More evidence and results will surely

appear in upcoming studies, and the accumulating

knowledge will lead to a deeper understanding of what

we could finally term a “hologenome”, that is, the orga-

nized, closely interacting genome of the host and the

microbiome.

KEYWORDS gut microbiota, host genetics, quantitative

genetics, gene-microbiome association

INTRODUCTION

With between three- and ten-fold bacteria colonizing our own

body (Sender et al., 2016), most of which are in the gas-

trointestinal (GI) tract (Qin et al., 2010; Zhu et al., 2010), it is

hard to imagine that our genome does not devote a particular

set of genes to dealing with all the potential threats, as well

as coordinating benefits with our microbiome. Indeed, there

are many indications of gene-microbiome cross-talk in

humans, other animals (Kurilshikov et al., 2017) and even

plants (Lundberg et al., 2012), with a large majority of those

identified before the wide application of next-generation

sequencing. Those genes function in the immune system

(Hooper et al., 2012), with good reason: pathogens, an

important part being bacteria, were one of the largest forces

shaping the evolution of human genomes and thus the sur-

vival of our species and other species that rely on the

immune system to defend against those pathogens (Kau

et al., 2011).

In natural populations of animals and plants, the occur-

rence of epidemics constantly wipes out populations at the

local (leading to disappearance of a species within an area)

or global scale (leading to extinction). However, once there

are survivors in those epidemics, there are usually genetic

explanations in their genomes, such as natural variations in

immune-related genes that lead to the higher resistance and

survival of a particular group of individuals (Brinkworth and

Pechenkina, 2013). In the next generations, those alleles

(one variety of a gene) would usually increase in frequency

and lead to changes in population genetics (Prugnolle et al.,
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2005). There are a lot more pathogens that are not as dra-

matic as those involved in epidemics but that lead to less

lethal infections and only the lower fitness of a few; however,

these pathogens can still contribute to the change in allele

frequencies (Barreiro and Quintana-Murci, 2010). Of course,

pathogens are also involved in the arms race of the host and

pathogens; no allele can be the perfect solution, but instead,

different alleles are selected and enriched in different periods

(Novembre and Han, 2012).

In humans, we know particularly well what the biggest

threats were in our past and now, because of historical and

medical records, and we see them in our genomes (Barreiro

et al., 2008). Bubonic plague used to decimate one-third of

European populations at a time, and its effects are visible in

the current populations of Europeans, including some

unexpected consequences that are summarized in the book

the “Survival of the Sickest” (Moalem and Prince, 2008). This

is still happening, although on a smaller scale nearly every

year. At present, tuberculosis (TB) infects millions throughout

the world, mainly in undeveloped areas (World Health

Organization, 2016); these infections were more widespread

in the past, before the invention of antibiotics. A study by

Jostins et al. (2012) found surprising results demonstrating

that the genes we think are causal in inflammatory bowel

disease (IBD) (mainly composed of Crohn’s disease and

ulcerative colitis, and auto-immunity, which affect a small

percentage of the population in Europe) turned out to be

consequences of selection by TB. Those genes either pro-

mote our immune systems’ attempt against TB by lowering

the sensitivity to infection or blocking the recognition sites by

bacteria, via as-yet-unknown mechanisms; these were

consequently under selection by pathogens and are

changing in frequency in the population (Jostins et al. 2012).

Cholera, bacterial and meningitis are among the hundreds of

recurring bacterial infections we are aware of, many of which

have left a mark in our genome (Gupta, 2016) (Fig. 1).

However, it is not always about bad bacteria. Especially in

the last decade, we have started to understand the compo-

sition and functions of complex microbial communities in the

GI tract of humans and animals (Spor et al., 2011), as well as

the skin (Grice and Segre, 2011) and oral microbiome (De-

whirst et al., 2010), reproductive (Ravel et al., 2011) and

respiratory systems (Dickson and Huffnagle, 2015). Addi-

tionally, we have begun to appreciate the important functions

of the normal microbiome in our own health (Fig. 1). We rely

on our gut microbiome for digesting food and metabolizing

large molecules to smaller ones, so our intestines can take

them up more easily (Kau et al., 2011). They produce a large

amount of other substances, including vitamins, serotonins,

and many other functional molecules that modulate various

systems in the host body (Kau et al., 2011; Kostic et al.,

2014); thus, the concept of the gut-brain-axis (Foster and

Neufeld, 2014), gut-liver-axis (Ray, 2017) and gut-lung-axis

(Budden et al., 2017) have been proposed, examined and

accepted by wider audiences. The microbiome stimulates

the early maturation of the immune systems in infants while

maintaining the normal immune functions of adults; mean-

while, many of the immune-related diseases are primarily

caused by dysbiosis in the microbiome (Kamada et al.,

2013). The hologenome concept, endorsed by many in this

field, can be understood to be the comprehensive inclusion

of this whole interaction, cooperation and mutual selection at

the genomic and metagenomic level, where the host and its

microbiome compose a functional entity and the basis for

natural selection and evolution (Zilber-Rosenberg and

Rosenberg, 2008).

INDIRECT EVIDENCE

We aim to take the readers along the historical path of dis-

covering the gene-microbiome cross-talk, although the

studies we include here are not strictly chronological. For

instance, we already knew a number of genes that were

critical in maintaining host defence against pathogens (Major

Histocompatibility Complex, MHC) (Neefjes et al., 2011),

sensing microbes (Toll-Like Receptors, TLR for instance,

which senses a wide range of molecules produced by

microbes) (Kieser and Kagan, 2017), or were involved in

other important process that could lead to disease. However,

these are largely based on natural knock-out models, i.e., a

mutation that leads to loss-of-function of a particular gene.

We have studied mice or humans that are usually unhealthy,

because critical genes in the host-microbe cross-talk are no

longer functional and thus represent the extremities of the

gene function spectrum. The more general observations of

how variations in the whole genome, especially neutral or

near-neutral alleles (those who do not carry as deleterious

effect as the loss-of-function) and their association with

effect on the microbiome have only come relatively recently

(e.g., Hov et al., 2015, Wang et al., 2016, Bonder et al.,

2016, Turpin et al., 2016, Goodrich et al., 2016).

The Ochman group published in Plos Biology a study on

hominoids—primates, including humans, showing that

microbiome divergences are well aligned (congruent) with

the phylogeny of the mitochondria genome, a relatively

simple yet powerful sub-genome for host phylogeny (Och-

man et al., 2010). This work was followed by several other in-

depth studies (Moeller et al., 2014; Nishida and Ochman,

2017). The microbiome divergence in this study was

approximated with the Unifrac distance (Lozupone et al.,

2011), which is also a phylogenetic measure of overall

bacterial relationships, taking into account both the abun-

dance of bacterial taxa, as well as their positions in a phy-

logenetic tree. Then, the overall microbiome differences are

also clustered to form a “phylogeny” showing their relative

similarities, and the congruence with the host phylogeny

indicates that the microbiome differences could indeed be

shaped by host genetic differences. However, it has to be

noted that the evidence here is not without potential con-

founders, especially considering the natural drift of the

microbiome together with its host during evolution and

divergence, as well as the dietary differences of different
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host species, geographical isolation, etc. (Bodenstein &

Theis, 2015). This has also been noted in other comparative

studies that try to distinguish signatures of genetic affinity

from environmental similarities, especially diet (Ley et al.,

2008). Nonetheless, it opens the door to understanding that

in the whole genome, variations in the hosts underlie gut

microbial variations, at least between different species.

The Ley group carried out another landmark study using

the UK Twins biobank (Goodrich et al., 2014). The general

idea is quite straightforward: by contrasting twins that are

genetically identical (monozygotic twins) or non-identical, but

related (dizygotic twins), one can quickly determine if some

traits, in this case the microbiome, are genetically related.

The assumption is that environmental differences are mini-

mal in twins, or at least not extremely different between

monozygotic twins and dizygotic twins. When a trait is more

similar in the former than the latter, it must be due to genetic

similarities. They indeed found this in the human gut micro-

biome in UK Twins, through a series of consequent studies

using 16S rRNA and metagenomic analysis (Goodrich et al.,

2016; Xie et al., 2016). A few particular bacteria also showed

considerably high heritability, defined as the similarity of a

trait due to the same genetic make-up, including one group,

Christenalleaceae, that is inversely correlated to body-mass-

index (BMI). Mouse models indeed show that this group of

bacteria has an effect of reducing obesity. However, it is

rather disappointing that further analysis locating the genetic

loci corresponding to this group of bacteria did not result in a

definitive gene, which could be due to the small sample size

of twins. This is because genome-wide-association studies

(GWAS), as we are going to describe in detail, usually

require relatively unrelated individuals, and in twins, the

effective sample size is halved and would not reach one

thousand. Org et al. (2015) performed similar analysis in 113

strains of different mice, where the microbiome is also more

similar within the same strain than between different strains.

They estimated the heritability of the microbiome, taking into

account the relatedness of those mice strains as well as the

pedigree, and concluded that host genetic variation can

explain a substantial amount of variation in the gut

microbiota.

DIRECT EVIDENCE: DESIGNED GENETIC STUDIES

Resolving confounders

Contrary to the genetic makeup of the hosts, which are

(relatively speaking) stable, the microbiome tends to be a

dynamic system that has its own natural fluctuations and is

highly affected by a variety of environmental factors (Hall

et al., 2017); thus, the microbiome observed at different time

Produce nutrients, other functional molecules, stimulate 
normal immune functions and mucosa growth

Produce toxins, pro-inflammatory substances, cause

infections and inflammations

Better immune-tolerance and recognition, 

secrete usable substrates, selection for 

promoting those bacteria

More immune-clearance, anti-infection 

or inflammation responses, selection 

for resistance

GI tract

Skin surface

etc. 

Beneficial bacteria Detrimental bacteria

Host genome

Epithelium

Allele frequency change in genes with these functions-evolution in action

Figure 1. A simplified illustration of the host gene-microbiome interactions at the interface of various types of epithelia. The

mucosal layer of the GI tract, airway, skin surface and reproductive tract surface are the primary interfaces of host-microbe

interactions. Those microbes that we consider as beneficial usually produce nutrients, essential functional molecules and maintain

the normal functions of the immune systems; thus the primary aim of host genes is to ensure their immune tolerance and facilitate

their growth by secreting mucus, etc. as substrates. While harmful bacteria usually produce toxins, pro-inflammatory molecules and

lead to infections, the host genes must clear them from the normal community and defend against inflammation and infections.
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points within a particular individual could be vastly different.

Additionally, when looking at cross-sectional studies, as

most of the large-scale investigations are due to the limita-

tions set by studies of such scale, we are examining a

snapshot of the microbiome within different individuals, with

a high degree of randomness and noise (Walter and Ley,

2011). However, this is similar to a lot of fields in biology: we

depend on biological signals that are substantial enough to

be picked up by the appropriate detection methods, which, in

this framework, includes statistical methods. Additionally, we

depend on a sufficiently large sample size to distinguish

statistically significant signals from the rest.

Nonetheless, accounting for the most important con-

founders is essential for any genetic study, for not doing so

would lead to type I errors (false positives, where false

genetic loci show up as significant) and type II errors (false

negatives, where real genetic loci are covered by noise). In

mouse models, we could control those to minimize them,

while in humans, this would require a systematic investiga-

tion of confounders. A large collection of studies has repor-

ted anthropometric measures, including age (Yatsunenko

et al., 2012), body mass index (BMI, Dominianni et al.,

2015), waist measures and dietary habits (David et al., 2014;

Dominianni et al., 2015), other life habits and so on (Yassour

et al., 2016). In 2016, two studies appeared simultaneously

in a special issue in Science, in Belgian Flanders (Flemish

Gut Flora Project) (Falony et al., 2016) and Northern

Netherlands (LifeLines-DEEP cohort) (Zhernakova et al.,

2016), in which scientists carried out population-based

analyses of confounding factors in shaping the diversity of

the microbiome. In this study, hundreds of different mea-

sures were tested, filtered and ranked with their respective

contributions to the overall dissimilarity of the gut microbiome

(beta-diversity) and taxa abundances—the collective prop-

erty of which is called alpha-diversity—as well as functional

capacities. Many of the factors investigated were partially

genetically determined, including gender, BMI, blood chem-

istry, etc., and thus already indicated a genetic involvement

in shaping the microbiome. Other factors, such as age, are

certainly not genetically determined, but are some of the top

contributors and must be accounted for in studying genetics.

Now it might sound odd, that we would also need to

control for genetic confounders while studying genetics. The

rationales are as follows: in quantitative genetic studies

using either crosses (quantitative trait loci, QTL) or natural

populations (genome-wide-associations studies, GWAS), we

are aware of the fact that the similarity of a trait could be due

to overall relatedness. For instance, mice from the same

breeding pair share largely the same growth environment

and could have a shared microbiome from maternal trans-

missions (Benson et al., 2010; Wang et al., 2015). Related

human individuals might also share a similar microbiome for

the same reasons (Goodrich et al., 2016). Conversely, if the

populations we study are not well-mixed, but subpopulations

exist, thus providing a distinct population structure, the traits

we find to be different between individuals might not be due

to the effects of a few genes but rather longer term history of

evolution, separation, drifts and so on (Yatsunenko et al.,

2012). It is essential to account for kinship in QTL studies

and GWAS analysis, and to thoroughly determine if there is

distinctive population structure. Usually, all but one related

individual are removed in a GWAS, and many try to keep the

studied population as homogeneous as possible; however,

there are also mathematical solutions that take kinship into

account, or population structure via the genetic principle

components (Kang et al., 2008; Price et al., 2010).

We quickly discuss the methods to account for con-

founders but will not go into much technical detail. When we

investigate univariate traits, such as richness or taxa abun-

dances, for most of the significant confounders, we use lin-

ear model/generalized linear models to remove their “effect”

and keep the residues for the genetic analysis. This is rel-

atively straightforward but sometimes cannot be well thought

through, as many microbiome responses to a factor are non-

linear (Lahti et al., 2014); however, other non-parametric

factor do not necessarily perform better and can be mis-

leading in its residues. For overall microbiome dissimilarities

or beta-diversities, one can also remove the confounding

effects of particular factors using constrained principle

coordinates analysis (PcoA) and take its residue (also a

distance matrix) (Ruhlemann et al., 2017). We rarely see it

being performed, mainly because only a few have worked on

the beta-diversity association with the host genome to date,

and the field is still in its infancy.

Candidate gene approach

For historical, medical and political reasons, IBD continues

to be the central focus of many microbiome investigations. It

is a prevalent chronic inflammatory disorder of the GI tract in

Europe, with occurrence approximately 1% and is particu-

larly high in certain population of Jewish decedents

(Hanauer, 2006). A continuous line of genetic studies have

revealed a long list of potential genetic risk factors in IBD

patients, including NOD2, CARD9, ATG16L1, IRGM and

FUT2, among others (Xavier and Podolsky, 2007). Since

there is a high proportion of microbiome factors in IBD dis-

ease, many of those risk genes have been tested to deter-

mine if they have impact on the microbiome (Kostic et al.,

2014). Many IBD genetic risk factors are indeed are signifi-

cantly associated with the decrease in the genus Roseburia,

which plays an essential role in the conversion of acetate-to-

butyrate compared to healthy controls, and this genus is

known to be decreased in IBD patients (Morgan et al., 2012).

We have summarized genes that were hypothesized to have

impacts on the microbiome and were consequently tested in

either humans (natural genetic variations) or mice (knockout

models). As we can see, most studies are still focused on

IBD. Of course, this list is by no means complete but con-

tains the most prominent examples we are aware of

(Table 1).
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Table 1 Examples of candidate-gene approach studies in host

gene-microbe interactions. We performed a literature search

centred around the host gene, microbiome and diseases and have

listed the most prominent examples where hypothesis-driven studies

were carried either in humans (using natural variations) or mice

(knock-out models) with respect to changes in the microbiome. We

listed the changes observed, as well as the study context (type of

disease), which we can see the primary focus on IBD

Gene

name

Traits associated with genetic variations Context of study References

Human

IL13/

CD14

Interaction with cesarean delivery and prenatal exposure to

antibiotics to affect skin microbiome

Atopic dermatitis Lee et al. (2014)

FUT2 Airway microbiome (Pseudomonas aeruginosa) Bronchiectasis Taylor et al. (2017)

IL6 Helicobacter pylori Dyslipidemia Pohjanen et al.

(2016)

ATG16L1 Fusobacteriaceae, Bacteroidaceae, Lachnospiraceae,

Enterobacteriaceae, E. coli

IBD Sadaghian Sadabad

et al. (2015)

CARD9 Gut microbiome composition IBD Lamas et al. (2016)

FUT2 Gut microbiome composition, diversity and structure IBD Rausch et al. (2011a,

b)

NLRP12 Gut microbiome diversity IBD Chen et al. (2017a, b)

NOD2 Gut microbiome composition IBD de Bruyn et al. (2017)

SLC39A8 Gut microbiome composition IBD Li et al. (2016)

TNFSF15 Prevotella IBD Nakagome et al.

(2017)

SI Blautia, Oscillibacter, Ruminococcus and unclassified

Enterobacteriaceae

IBS Thingholm et al.

(2018)

IFN-I Microbials related to tryptophan metabolism Multiple sclerosis Rothhammer et al.

(2016)

DEFB-

CN

Nasopharyngeal bacterial colonization patterns Otitis media Jones et al. (2014)

A2ML1 Middle ear microbiome Otitis media Santos-Cortez et al.

(2016)

C4B Gut microbiome composition Paediatric inflammatory

bowel disease

Nissilä et al. (2017)

CARD15 Periodontal microbiota in Crohn’s patients Periodontitis Stein et al. (2010)

ELANE Subgingival microbiota Periodontitis Ye et al. (2011)

Mouse

Myd88 Diversity, segmented filamentous bacteria Anti-microbial signalling Larsson et al. (2012)

Vdr Lactobacillus, Clostridium, Bacteroides, Alistipes, Odoribacter,

Eggerthella

Bile acid metabolism Jin et al. (2015)

Tnf Gut microbiome composition Colitis Kozik et al. (2017)

Can E. coli Colorectal cancer Peuker et al. (2016)

Lcn2 Alistipes Colorectal cancer Moschen et al. (2016)

Ifnar1 Gut microbiome composition IBD Tschurtschenthaler

et al. (2014)

Il10/Tlr4 Gut microbiome composition IBD Ward et al. (2016)

Il2 E. coli Nissle, B. vulgatus and E. coli mpk/B. vulgatus IBD Bohn et al. (2006)

Nlrp12 Gut microbiome composition IBD Chen et al. (2017a, b)

Sirt1 Gut microbiome composition IBD, colorectal cancer Lo Sasso et al. (2014)

Muc2 Gut microbiome composition Ileal homeostasis Sovran et al. (2015)

Mhc Gut microbiome composition Immunology Kubinak et al. (2015a,

b)

B4galnt2 Gut microbiome composition and Salmonella susceptibility Inflammation Rausch et al. (2015)
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Two of the genes are, interestingly, determinants of sur-

face glycans, which serves as the initial contact point/mo-

lecule for host-microbe cross-talk. First, the gene FUT2

encodes an enzyme fucosyltransferase-2 involved in the

expression of ABO blood group antigens found on the GI

mucosa and secretions. It is found to have two distinct

genotypes, one functional secretor and one loss-of-function

mutation leading to a non-secretor (McGovern et al., 2010).

Recent study revealed that the FUT2 secretor status (de-

fined by the genotype) has a significant influence on the gut

microbiota (Rausch et al., 2011a, b); thus, the genus Blautia

is lower in group A-secretors compared with non-A-secretors

and this reduction is accompanied by higher abundances of

members of Rikenellaceae, Peptostreptococcaceae,

Clostridiales, and Turicibacter (Gampa et al., 2017). Inter-

estingly, the mouse gene B4galnt2 (encoding glycosyl-

transferase β-1,4-N-acetylgalactosaminyltransferase 2) has

similar function in terms of determining the sugar composi-

tion of the intestinal mucosa, and it is tissue-specific when

we consider the expression patterns. Its expression in the

intestine or not is strongly associated with altered bacterial

community composition in the mouse model (Staubach

et al., 2012). B4galnt2 intestinal expression changes the gut

microbiome and consequently facilitates epithelial invasion

of Salmonella typhimurium, the underlying mechanism of

which could be by increased intestinal inflammatory cytoki-

nes and infiltrating immune cells. Additionally, B4galnt2 has

an interesting pattern of selection in the mouse population

that we will discuss towards the end.

Another set of examples are genes responsible for

sensing microbes and triggering down-stream cell signalling

pathways. Those are usually components of the innate

immune system. For example, exogenous microorganisms

can be recognized by pattern recognition receptors (PRR),

including but not limited to Toll-like receptors (TLR) and

NOD-like receptors (Kieser and Kagan, 2017), and the

MyD88 protein encoded by the MYD88 gene as an adaptor

can modulate the signal transduction pathway. Those genes

all have knockout mouse models, and the impact on the gut

microbiome has been observed. In addition, we are aware

that MyD88 signalling is critical for the development of type I

diabetes (T1D), but the incidence of this disease can be

decreased in mice by exposure to microbial stimuli, such as

injection with mycobacteria or various microbial products,

suggesting that the cross-talk by specific genes is essential

for the healthy development of immune systems in the early

stages of life (Wen et al., 2008; Kostic et al., 2015).

However, the most intriguing case so far is the MHC loci,

wherein humans consistently fail to find significant associa-

tions with gut microbial compositions, either in candidate

gene approaches or even in the recent GWAS (see later).

The largest study so far was carried out in Norway using the

bone marrow registry to distinguish candidates of different

MHC alleles, and the collected microbiome did not reveal a

significant difference (Hov et al., 2015). However, it is

another story in mouse models and the signals are much

more prominent (Kubinak et al., 2015a, b). This highlights

some of the difficulties in studying human genetics in terms

of its impact on the microbiome, and the effects of certain

genetic variations might be very small (and indeed confirmed

in following studies) and may be masked by environmental

differences. In mouse models, those factors are better con-

trolled. Additionally, we admit that we do not have the com-

prehensive list of genes that have been studied using the

candidate approach, and we merely touched the classic few

(Table 1). However, the principle holds and we do expect to

see a larger collection of such studies, each with deeper

insights into the mechanisms of gene-microbiome

interactions.

Quantitative genetics

The tools of quantitative genetic studies come in handy

when we intend to screen the associations between the

microbiome and the whole host genome, instead of individ-

ual genes. Largely roots from plant and animal breeding

science, quantitative genetics aims to find genes or genetic

loci that are underlying important biological traits (pheno-

types) of studied organisms, providing the basis for causal,

mechanistic studies as well as practical applications (im-

prove the production of crops or animals, for example)

(McCarthy et al., 2008). Two terms are widely used: QTL and

GWAS (Fig. 2). Many argue that, in the strict sense, they are

mutually exclusive and that the former applies to quantitative

traits such as height in animals or yields in crops, mainly

using planned crosses as the study cohort and that

Table 1 continued

Gene

name

Traits associated with genetic variations Context of study References

TREM-1 General dysbiosis in gut microbiome Inflammation Kökten et al. (2018)

Nod2 Gut microbiome under high fat diet Obesity Rodriguez-Nunez

et al. (2017)

Fut2 Multi-generation dynamics of gut microbiome Susceptibility to enteric

infection

Rausch et al. (2017)
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resolution is proportional to the generations of recombina-

tion, while the latter applies mostly to humans where the

natural population history of a thousand generations has led

to considerable recombination. However, it does not reach

the per gene level. Instead, human genomes still have large

blocks of genes that are linked, and little recombination has

occurred yet. On the contrary, linkage disequilibrium (LD)

also occurs as a result, which can lead to gene-level or even

SNP-level resolutions for associations; in many cases, the

studied trait is binary, especially about disease. However, we

would like to note that mathematically, the two approaches

are essentially the same. Quantitative genetic studies are

about finding significant associations between genetic vari-

ations, either a single SNP or a large chromosome region.

Both cases consider LD information, and variations in a

defined phenotype and different types of traits only affect the

model of the association tests. Binary traits require logistic

regression, and the result of the associations are usually

denoted as an odds ratio (OR): compared to the basal fre-

quency of a trait, a particular SNP could change the fre-

quency of that trait by OR fold. Thus, it is enriched, if OR is

higher than 1, and vice versa. While continuously distributed

traits require linear or similar regressions and the “effect” of

SNP/haplotype block are beta-values or z-scores, depend-

ing on the model used. This means that the mean value

associated with a particular SNP/haplotype block deviates

from the overall mean, measured by the variance (Hirsch-

horn and Daly, 2005).

To date, we are aware of six QTLs (Fig. 3), using crosses,

that were carried out in mice as the model organism with the

microbiome as the targeted trait. Four QTLs were done for

the gut microbiome, while the remaining two focused on the

skin microbiota. Benson et al. in 2010 published the first

proof-of-concept study, showing that in a mouse cross of

several generations, we can indeed locate the genetic vari-

ations at certain chromosomal regions to the variations of gut

microbiome. Even when the resolution is not high, there are

some interesting hints about the potential genes involved

that correlate to specific microbiome abundances, in partic-

ular genes downstream of toll-like-receptor 2 (Tlr2), a gene

that is mainly responsible for sensing gram-positive bacteria

and downstream genes, including Irak3, Lyz1, Lyz2, IL-22,

and IFN-gamma, while the correlated microbiome traits are

indeed Coriobacteriaceae and Lactococcus (Benson et al.,
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2010). McKnite et al. (2012) and Leamy et al. (2014) fol-

lowed up using different cross schemes and identified more

regions with limited overlaps between the studies, each with

some interesting insights about the genes that might be

involved. Wang et al. (2015) published another interesting

study using hybrid mice as the QTL cross cohort, where two

subspecies of house mice are crossed to the second gen-

eration, and many regions are found to be correlated to

microbial diversity. Lab mice are essentially Mus musculus

domesticus, while its eastern European counterpart is Mus

musculus musculus. They occur naturally in central Europe

and have a well-studied evolution and speciation system.

Currently, it seems that the microbiome is also affected by

this hybridization. Moreover, the type of association is

interesting. Half of the associations are transgressive,

meaning that heterozygotes for a particular genetic locus

have abnormally high or low values, out of the range for both

homozygotes (Wang et al., 2015). This and one potential

epistatic interaction that follows the Dobzhansky-Muller

incompatibility model reveals further insights that the

microbiome shape the genome evolution of hosts. Details

can be found in the publications and in additional literature

by the Bodenstein group (Brucker and Bordenstein, 2013;

Bordenstein and Theis, 2015).

The other two skin microbiome QTLs, both published by

the Baines group, provide interesting observations of host-

microbiome homeostasis on the surface of the body (Srini-

vas et al., 2013; Belheouane et al., 2017). Working on an

auto-immune skin disease model called epidermolysis bul-

losa acquisita (EBA), the group has extended the previous

disease-oriented QTLs to include microbiome composition

and found that the microbiome could indeed play an impor-

tant role in determining disease manifestation. Even with

roughly the same genetic makeup, developing the disease or

not is correlated to the abundance of Staphylococcus, a

potentially protective species. In contrast, when the bacterial

abundance is taken into account in the statistical model, the

power of QTL significantly increases, as the “noise”, or

environmental confounder of bacteria, is controlled (Srinivas

et al., 2013). The second skin QTL has innovated the study

approach and used 16S rRNA gene transcripts, which

examine the “active” part of the microbiome instead of the

standing communities. Together with further cross genera-

tions (15th instead of 4th), this resulted in an almost per gene

resolution and more significant associations when the tran-

scripts are used. Additionally, some of the loci are involved in

carcinogenesis of the skin, which are correlated to similar

bacteria that could also lead to cancers in the colon (Bel-

heouane et al., 2017).

We need to mention that the study by Org et al. (2015)

discussed above actually carried out a GWAS in a similar

fashion to that performed in humans, and several important

genes were identified in this process that are associated with

the microbial taxa. Contrary to QTLs above, they used

standing variety of mouse strains (110 of them) instead of

crosses that are specially set up, and the methods carefully

considered the population structure. The only limitations

were the relative small sample size and the low number of

SNPs, for which we cannot really reach a similar genome-

wide significance threshold in humans (will discuss below).

This limits the resolution in the results.

The microbiome-oriented GWAS in humans, coinciden-

tally also have six cases so far. We would consider at least

two not to be sufficiently large to be considered equally as

the remaining few. The first approximation of a microbiome

GWAS was not really by design. Rather, Blekhman extracted

human genome reads from HMP metagenomic raw data,

called SNPs from those human reads for each subject, and

correlated the genetic variations of the hosts to the micro-

biome variations. One particular association is between the

lactase (LCT) gene and Bifidobacterium, and both are rela-

ted to milk consumption and thus could understandably be

correlated (Blekhman et al., 2015). However, whether the

“fished out” human reads were sufficient to carry out proper

SNPs was never clear, and neither was the reliability of the

consequent analysis. Davenport et al. (2015) reported a

small, but more conventionally designed GWAS study and

managed to find some associations, none of which reached

the commonly accepted genome-wide significance threshold

(which is 5E−08 or 1E−08, the rationale is that when you

screen millions of SNPs, the real significance should stand

Bonferroni or Benjamini-Hochberg corrections for multiple

testing, and thus it is commonly set at this scale). The Ley

group also continued with their endeavours in the UK Twins

cohort with multiple models for microbiome-SNP associa-

tions, and they did manage to actually find some hits that

were later rediscovered, including LCT and SLIT3. However,

because of the lack of a central focus on the models or

functional studies, the study did not go into sufficient detail in

exploring gene-microbiome ties at the genome scale

(Goodrich et al., 2016) (Fig. 3).

The real breakthrough in human GWAS on the gut

microbiome came as a trio in the November issue of Nature

Genetics in 2016, where a German cohort (PopGen/FoCus)

(Wang et al., 2016), a Dutch cohort (LifeLines-DEEP)

(Bonder et al., 2016) and a Canadian cohort (GEM) (Turpin

et al., 2016) simultaneously published large-scale GWASs

Figure 3. Overview of microbiome QTL in mouse and

GWAS in humans to date. Left half shows the six QTLs in

mice, coloured by different studies and the confidence intervals

are marked on the mouse chromosome. Please note that

Belheouane and Srinivas studies are skin microbiome QTLs.

The right half shows the genes implicated in human GWAS,

including UK Twins, FoCus/PopGen (both original publication

and later with modified methods), LifeLines-DEEP and GEM

studies. Links in the middle show potential overlapping genes

that showed up in human GWASs and fall into a confidence

interval in mouse QTLs, which might be supportive of each

other in terms of the association with microbiome variations.

b
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on the human gut microbiome (Fig. 3). All three cohorts

include more than 1,000 unrelated individuals, all have

replication cohorts, and all have considered the distribution

properties of bacterial taxa (only a small fraction fits normal

distributions, the rest are mainly zero-inflated). Among these

three studies, the German and Canadian studies used a two-

part hurdle model to address zero-inflations, while the Dutch

study worked on the none-zero part when this was the case.

The other difference is that the German/Canadian cohorts

worked on a 16S rRNA based bacterial composition, while

the Dutch study also has shot-gun metagenomic data and

thus could map certain functional pathways. Beyond using

bacterial abundance as the main studied trait, the German

study, in particular, proposed a method to associate the

overall microbial diversity (beta-diversity) to human genetic

variations, and discovered 42 loci that passed the signifi-

cance threshold, including one Vitamin D receptor (VDR)

that was known to be involved in bile-acid sensing and

homeostasis. Additionally, in this study, a number of func-

tional studies, including bile acid analysis, metagenomic

sequencing, cross-checking with different databases and

comparing the human transcriptomes vs bacterial abun-

dances (“coupling”), established the validity of VDR as a

central part of the human-microbiome cross-talk, mostly via

bile-acid metabolism and downstream pathways (Wang

et al., 2016). The beta-diversity association method was

consequently further developed to be less computationally

intensive and more adapted to a higher dimensionality, with

some further interesting loci discovered in this process

(Ruhlemann et al., 2017). The Dutch study mainly confirmed

the previous findings of LCT-Bifidobacterium associations

and showed that environmental influence (in this case, milk

intake) also interacts with the genotype of the individuals and

shapes the microbial abundance (Bonder et al., 2016).

Benson wrote a nice summary on all three of these studies,

which was published in the same issue of Nature Genetics

(Benson, 2016). Additionally, Kurilshikov and Zhernokova

pieced together a wonderful review on this extended topic as

well (Kurilshikov et al., 2017).

CONCLUSIONS

We have described the chronicles of genetic investigations

in understanding host-microbe interactions, and the main

results of the different approaches. We have seen indirect

evidence in comparative studies, but those studies have

limitations. We could investigate individual genes of interest

and gain insights into their importance but could not gener-

ate a complete picture. Additionally, there is a quantitative

genetic approach, and there are many things that we need to

be cautious of. However, this endeavour is, by no means

complete. We are just in the preliminary stages of investi-

gation. Here, we would also note the current limitations of the

mentioned studies, as well as our own perspectives into

future efforts and directions.

Limitations

Our review is very focused human and mouse studies while

ignoring the larger context of other model or non-model

organisms. The reason is because of the great deal of effort

put into the former two models and that the studies in

humans and mice are considerably more relevant to our own

health. We do know that a vast collection of literature exists

for plant gene-microbe interactions, and many are textbook

models, such as those genes involved in the invasion and

colonization of Agrobacterium, which involves a complex

interplay that would dwarf some of the host-microbe cross-

talk in animals (Nester, 2015; Ellis, 2017). Similarly, a plant

GWAS on the microbiome has been published for Ara-

bidopsis thaliana and revealed a list of genes that may

participate in a wider scale of interactions as well (Horton

et al., 2014). However, since many genes lack counterparts

in animals or at least do not carry out the same function, the

value as a reference to other organisms is limited.

We do not have a shortage of host-microbe cross-talk

examples in C. elegans, Drosophila and Zebra fish and

many other common model organisms used in the lab. Most

of these are single pathogens, and the difference observed

in consequences are due to the genetic variation of the host.

This again falls into the category of candidate gene-based

approaches, in which one gene was the primary focus of

study, and a glimpse into the greater picture of host-microbe

cross-talks in those organisms has been observed. In regard

to genome-wide, quantitative genetic studies in the micro-

biome, there have been two carried out in Drosophila

(Chaston et al., 2015; Dobson et al., 2015), where the

authors have pinpointed the interactions of nutrition and the

host, and the microbiota serves as an important intermedi-

ator for the effects of nutrition to actually occur. Translated

into terms that are widely used in human or mouse studies,

the microbiome largely determines the metabolomes of the

host and consequently the health status. Moreover, there are

also a handful of studies, including one on chicken (Zhao

et al., 2013), and we apologize if we missed other studies

using different studying organisms. All of these studies make

important contributions to the field, and by combining those

studies, we generate a grander picture and get closer to

solving the full puzzle. To achieve this, both the accumula-

tion of data as well as innovation in methods are required.

Still, association does not mean causation, which is a

limitation of association-based studies. Functional validation

and establishment of real causation is still the bottleneck of

many gene-microbe interactions. Moreover, compared to the

limited knowledge we have on the host side, we know little to

none about which bacterial genes are carrying out the cross-

talk with the host. In pathogens, we study the key virulence

factors that are part of the invasion process, or pathogene-

sis, including various toxins, different types of secretion

systems, or genes responsible for producing the key

metabolites influencing the hosts. We also know a few

molecules that play a central role in being recognized by the
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hosts, such as cell wall components, lipopolysaccharides

(LPS). However, we lack a general picture of which part of

the bacterial genomes are responsible for establishing and

maintaining the connection with the host and which parts

underlie the breakdown of such homeostasis. The authors

assume that this varies from bacteria to bacteria of course

and that environmental bacteria would need fewer genes for

this task, while symbiotic bacteria should devote an essential

part of the genome; otherwise, they would not be able to

maintain a symbiotic relationship with the hosts. The gut

microbiome, skin microbiome and bacteria in other body

sites are intermediate in the sense that they are not strictly

symbiotic but would still need to invest part of the genome.

Some studies have shown that long-term intracellular sym-

bionts in insects have lost a large part of their genome in the

evolutionary process and only keep a small fraction of the

essential genes (Wernegreen, 2002; Bennett et al., 2014).

Whether this occurs in the gut or skin is not known, and the

authors would argue that this genome reduction, if it exists,

would apply to genes that are more maternally transmitted

than those that are usually acquired from the environment.

Outlook

As we proclaimed in the beginning of this review, pathogens

are driving forces in allele frequency changes in host pop-

ulations, and we usually observe the results of this selection.

However, this rarely occurs in real time, and we have not

conducted an in-depth examination of the exact parameters

of fitness and the costs. However, Vallier et al. (2017) carried

out an astonishing study showing that, in natural populations

of western house mice (Mus musculus domesticus), two

alleles of the B4galnt2 gene co-exist as a result of long-term

balancing selection, where one allele confers protection

against various pathogens and thus could be favoured by

pathogen-driven selection. However, it also leads to bleeding

in the GI tract and could potentially reduce host fitness (this

is similar to the human bleeding disorder called type 1 von

Willebrand disease and could also be selected because it

has beneficial effects during pathogen infections). Because

this balancing selection is rather recent (from geographical

distribution pattern combined with population history), the

authors built up evolutionary models and estimated the fit-

ness costs of the bleeding allele. It turns out that the cur-

rently observed allele frequency, as well as distribution,

could only be explained when there is a heterozygote

advantage and an advantage for homozygotes with bleeding

alleles, and the costs in fitness of bleeding counts half of

pathogenic infections. This is not biologically relevant proof,

of course, as both fitness costs and infection costs are

extremely difficult to quantify. However, it shows how

important selection from microbes can be and how tiny

microbes shift our genome, even leading to alleles that are

otherwise detrimental to humans to maintain in the popula-

tion. This is not the only case, as many of the underlying

genes/alleles of autoimmune disorders and metabolic

syndromes are believed to be the result of selection by

pathogens in the past and will continue to interact and

change our genomes in the future (Nielsen et al., 2007;

Novembre and Han, 2012; Milot and Pelletier, 2013).

Our review has so far been focused on individual genes,

and we could only limit it to the main proof-of-concept

studies. An important concept in understanding the host-

microbe cross-talk, similar to in any genetic study, is the

gene-environment interactions (G by E), where the genetic

background manifests different effects when the environ-

mental context changes. This has been shown to be the

case in the LCT gene and Bifidobacterium (Blekhman et al.,

2015; Goodrich et al., 2016), where dairy intake serves the

environmental background (Bonder et al., 2016). However,

we do not have many other examples, since the content of

environmental influences is so vast, and many studies have

not managed to include a sufficient amount. At the same

time, the sample sizes usually do not permit this kind of

analysis either. In addition, there is an urgent need to move

beyond single gene associations, since for most of the

complex traits, the power of the single gene in explaining

microbiome diversities as well as functionalities is limited,

and conclusions can only be partial and misleading. Inte-

grating multiple genetic variations with respective weight,

which results in polygenic scores as used in many diseases

(Dudbridge, 2013), could be applied in microbiome research

to explain the underlying genetic architecture for a single

taxon or the overall diversity and would yield a more com-

plete overview of host-microbe cross-talk. Another important

direction is to move beyond single genes to biological

pathways, which participate, and examine the association

between microbes and certain cellular processes/signalling

pathways. This requires enrichment analysis from a collec-

tion of single genes (Ramanan et al., 2012). Overall, this

fascinating area of research has just revealed its potential in

terms of understanding both fundamental biology, as well as

application in medicine and human health, with many

aspects that have yet to be examined.
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Vitamin D receptor.

COMPLIANCE WITH ETHICS GUIDELINES

Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu and Baoli

Zhu declare that they have no conflict of interest.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/

licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to

the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

REFERENCES

Barreiro LB, Quintana-Murci L (2010) From evolutionary genetics to

human immunology: how selection shapes host defence genes.

Nat Rev Genet 11:17–30

Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (2008)

Natural selection has driven population differentiation in modern

humans. Nat Genet 40:340–345

Belheouane M, Gupta Y, Kunzel S, Ibrahim S, Baines JF (2017)

Improved detection of gene-microbe interactions in the mouse

skin microbiota using high-resolution QTL mapping of 16S rRNA

transcripts. Microbiome 5:59

Bennett GM, McCutcheon JP, MacDonald BR, Romanovicz D,

Moran NA (2014) Differential genome evolution between com-

panion symbionts in an insect-bacterial symbiosis. MBio 5:

e01697-14

Benson AK (2016) The gut microbiome-an emerging complex trait.

Nat Genet 48:1301–1302

Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh

PL, Nehrenberg D, Hua K et al (2010) Individuality in gut

microbiota composition is a complex polygenic trait shaped by

multiple environmental and host genetic factors. Proc Natl Acad

Sci USA 107:18933–18938

Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT,

Spector TD, Keinan A, Ley RE, Gevers D et al (2015) Host

genetic variation impacts microbiome composition across human

body sites. Genome Biol 16:191

Bohn E, Bechtold O, Zahir N, Frick JS, Reimann J, Jilge B,

Autenrieth IB (2006) Host gene expression in the colon of

gnotobiotic interleukin-2-deficient mice colonized with commen-

sal colitogenic or noncolitogenic bacterial strains: common

patterns and bacteria strain specific signatures. Inflamm Bowel

Dis 12(9):853–862

Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila

AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP et al (2016)

The effect of host genetics on the gut microbiome. Nat Genet

48:1407–1412

Bordenstein SR, Theis KR (2015) Host biology in light of the

microbiome: ten principles of holobionts and hologenomes. Plos

Biol 13:e1002226

Brinkworth JF, Pechenkina K (2013) Primates, pathogens, and

evolution. Springer, New York

Brucker RM, Bordenstein SR (2013) The hologenomic basis of

speciation: gut bacteria cause hybrid lethality in the genus

Nasonia. Science 341:667–669

Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M,

Hugenholtz P, Hansbro PM (2017) Emerging pathogenic links

between microbiota and the gut-lung axis. Nat Rev Microbiol

15:55–63

Chaston JM, Dobson AJ, Newell PD, Douglas AE (2015) Host

genetic control of the microbiota mediates the drosophila nutri-

tional phenotype. Appl Environ Microbiol 82:671–679

Chen L, Wilson JE, Koenigsknecht MJ, Chou WC, Montgomery SA,

Truax AD, Brickey WJ, Packey CD, Maharshak N, Matsushima

GK, Plevy SE, Young VB, Sartor RB, Ting JP (2017a) NLRP12

attenuates colon inflammation by maintaining colonic microbial

diversity and promoting protective commensal bacterial growth.

Nat Immunol 18(5):541–551. https://doi.org/10.1038/ni.3690

Chen L, Wilson JE, Koenigsknecht MJ, Chou WC, Montgomery SA,

Truax AD, Brickey WJ, Packey CD, Maharshak N, Matsushima

GK, Plevy SE, Young VB, Sartor RB, Ting JP (2017b) NLRP12

attenuates colon inflammation by maintaining colonic microbial

diversity and promoting protective commensal bacterial growth.

Nat Immunol 18(5):541–551. https://doi.org/10.1038/ni.3690

Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C,

Gilad Y (2015) Genome-wide association studies of the human

gut microbiota. PLoS One 10:e0140301

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,

Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al

(2014) Diet rapidly and reproducibly alters the human gut

microbiome. Nature 505:559–563

de Bruyn M, Vermeire S (2017) NOD2 and bacterial recognition as

therapeutic targets for Crohn’s disease. Expert Opin Ther Targets

21(12):1123–1139. https://doi.org/10.1080/14728222.2017.

1397627

Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH,

Lakshmanan A, Wade WG (2010) The human oral microbiome.

J Bacteriol 192:5002–5017

Dickson RP, Huffnagle GB (2015) The lung microbiome: new

principles for respiratory bacteriology in health and disease.

PLoS Pathog 11:e1004923

Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL,

Sannino DR, Westmiller S, Wong AC, Clark AG, Lazzaro BP et al

(2015) Host genetic determinants of microbiota-dependent nutri-

tion revealed by genome-wide analysis of Drosophila melanoga-

ster. Nat Commun 6:6312

Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, Ahn J

(2015) Sex, body mass index, and dietary fiber intake influence

the human gut microbiome. PLoS One 10:e0124599

Dudbridge F (2013) Power and predictive accuracy of polygenic risk

scores. Plos Genet 9:e1003348

Ellis JG (2017) Can plant microbiome studies lead to effective

biocontrol of plant diseases? Mol Plant-Microbe Interact 30:190–

193

Screening for host-microbe interactions REVIEW

© The Author(s) 2018 457

P
ro
te
in

&
C
e
ll

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/ni.3690
https://doi.org/10.1038/ni.3690
https://doi.org/10.1080/14728222.2017.1397627
https://doi.org/10.1080/14728222.2017.1397627


Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K,

Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D et al

(2016) Population-level analysis of gut microbiome variation.

Science 352:560–564

Foster J, Neufeld KA (2014) Gut-brain axis: How the microbiome

influences anxiety and depression. Int J Neuropsychopharmacol

17:27

Gampa A, Engen PA, Shobar R, Mutlu EA (2017) Relationships

between gastrointestinal microbiota and blood group antigens.

Physiol Genom 49:473–483

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R,

Beaumont M, Van Treuren W, Knight R, Bell JT et al (2014)

Human genetics shape the gut microbiome. Cell 159:789–799

Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R,

Ober C, Spector TD, Bell JT, Clark AG, Ley RE (2016) Genetic

determinants of the gut microbiome in UK twins. Cell Host

Microbe 19:731–743

Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol

9:244–253

Gupta S (2016) Infectious disease: something in the water. Nature

533:S114–S115

Hall AB, Tolonen AC, Xavier RJ (2017) Human genetic variation and

the gut microbiome in disease. Nat Rev Genet 18:690

Hanauer SB (2006) Inflammatory bowel disease: epidemiology,

pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis

12(Suppl 1):S3–S9

Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for

common diseases and complex traits. Nat Rev Genet 6:95–108

Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between

the microbiota and the immune system. Science 336:1268–1273

Horton MW, Bodenhausen N, Beilsmith K, Meng DZ, Muegge BD,

Subramanian S, Vetter MM, Vilhjalmsson BJ, Nordborg M,

Gordon JI et al (2014) Genome-wide association study of

Arabidopsis thaliana leaf microbial community. Nat Commun

5:5320

Hov JR, Zhong HZ, Qin BC, Anmarkrud JA, Holm K, Franke A, Lie

BA, Karlsen TH (2015) The influence of the autoimmunity-

associated ancestral HLA haplotype AH8.1 on the human gut

microbiota: a cross-sectional study. Plos One 10:e0133804

Jin D, Wu S, Zhang YG, Lu R, Xia Y, Dong H, Sun J (2015) Lack of

vitamin D receptor causes dysbiosis and changes the functions of

the murine intestinal microbiome. Clin Ther 37(5):996.e7–1009.

e7. https://doi.org/10.1016/j.clinthera.2015.04.004

Jones EA, Kananurak A, Bevins CL, Hollox EJ, Bakaletz LO (2014)

Copy number variation of the beta defensin gene cluster on

chromosome 8p influences the bacterial microbiota within the

nasopharynx of otitis-prone children. PLoS One. 9(5):e98269.

https://doi.org/10.1371/journal.pone.0098269

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY,

Lee JC, Schumm LP, Sharma Y, Anderson CA et al (2012) Host-

microbe interactions have shaped the genetic architecture of

inflammatory bowel disease. Nature 491:119–124

Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut

microbiota in immunity and inflammatory disease. Nat Rev

Immunol 13:321–335

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ,

Eskin E (2008) Efficient control of population structure in model

organism association mapping. Genetics 178:1709–1723

Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011)

Human nutrition, the gut microbiome and the immune system.

Nature 474:327–336

Kieser KJ, Kagan JC (2017) Multi-receptor detection of individual

bacterial products by the innate immune system. Nat Rev

Immunol 17:376–390

Kökten T, Gibot S, Lepage P, D’Alessio S, Hablot J, Ndiaye NC,

Busby-Venner H, Monot C, Garnier B, Moulin D, Jouzeau JY,

Hansmannel F, Danese S, Guéant JL, Muller S, Peyrin-Biroulet L

(2018) TREM-1 inhibition restores impaired autophagy activity

and reduces colitis in mice. J Crohns Colitis 12(2):230–244.

https://doi.org/10.1093/ecco-jcc/jjx129

Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in

inflammatory bowel disease: current status and the future ahead.

Gastroenterology 146:1489–1499

Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T,

Hamalainen AM, Peet A, Tillmann V, Poho P, Mattila I et al

(2015) The dynamics of the human infant gut microbiome in

development and in progression toward type 1 diabetes. Cell

Host Microbe 17:260–273

Kozik AJ, Nakatsu CH, Chun H, Jones-Hall YL (2017) Age, sex, and

TNF associated differences in the gut microbiota of mice and their

impact on acute TNBS colitis. Exp Mol Pathol 103(3):311–319.

https://doi.org/10.1016/j.yexmp.2017.11.014

Kubinak JL, Stephens WZ, Soto R, Petersen C, Chiaro T, Gogokhia

L, Bell R, Ajami NJ, Petrosino JF, Morrison L, Potts WK, Jensen

PE, O’Connell RM, Round JL (2015a) MHC variation sculpts

individualized microbial communities that control susceptibility to

enteric infection. Nat Commun. 23(6):8642. https://doi.org/10.

1038/ncomms9642

Kubinak JL, Stephens WZ, Soto R, Petersen C, Chiaro T, Gogokhia

L, Bell R, Ajami NJ, Petrosino JF, Morrison L et al (2015b) MHC

variation sculpts individualized microbial communities that control

susceptibility to enteric infection. Nat Commun 6:8642

Kurilshikov A, Wijmenga C, Fu J, Zhernakova A (2017) Host

genetics and gut microbiome: challenges and perspectives.

Trends Immunol 38:633–647

Lahti L, Salojarvi J, Salonen A, Scheffer M, de Vos WM (2014)

Tipping elements in the human intestinal ecosystem. Nat Com-

mun. https://doi.org/10.1038/ncomms5344

Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G,

Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, Brot L,

Taleb S, Couturier-Maillard A, Nion-Larmurier I, Merabtene F,

Seksik P, Bourrier A, Cosnes J, Ryffel B, Beaugerie L, Launay

JM, Langella P, Xavier RJ, Sokol H (2016) CARD9 impacts colitis

by altering gut microbiota metabolism of tryptophan into aryl

hydrocarbon receptor ligands. Nat Med. 22(6):598–605. https://

doi.org/10.1038/nm.4102

Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A,

Nielsen J, Ley RE, Bäckhed F (2012) Analysis of gut microbial

regulation of host gene expression along the length of the gut and

regulation of gut microbial ecology through MyD88. Gut 61

(8):1124–1131. https://doi.org/10.1136/gutjnl-2011-301104

REVIEW Jun Wang et al.

458 © The Author(s) 2018

P
ro
te
in

&
C
e
ll

https://doi.org/10.1016/j.clinthera.2015.04.004
https://doi.org/10.1371/journal.pone.0098269
https://doi.org/10.1093/ecco-jcc/jjx129
https://doi.org/10.1016/j.yexmp.2017.11.014
https://doi.org/10.1038/ncomms9642
https://doi.org/10.1038/ncomms9642
https://doi.org/10.1038/ncomms5344
https://doi.org/10.1038/nm.4102
https://doi.org/10.1038/nm.4102
https://doi.org/10.1136/gutjnl-2011-301104


Leamy LJ, Kelly SA, Nietfeldt J, Legge RM, Ma F, Hua K, Sinha R,

Peterson DA, Walter J, Benson AK et al (2014) Host genetics and

diet, but not immunoglobulin A expression, converge to shape

compositional features of the gut microbiome in an advanced

intercross population of mice. Genome Biol 15:552

Lee SY, Yu J, Ahn KM, Kim KW, Shin YH, Lee KS, Hong SA, Jung

YH, Lee E, Yang SI, Seo JH, Kwon JW, Kim BJ, Kim HB, Kim

WK, Song DJ, Jang GC, Shim JY, Lee SY, Kwon JY, Choi SJ, Lee

KJ, Park HJ, Won HS, Yoo HS, Kang MJ, Kim HY, Hong SJ

(2014) Additive effect between IL-13 polymorphism and cesarean

section delivery/prenatal antibiotics use on atopic dermatitis: a

birth cohort study (COCOA). PLoS One. 9(5):e96603. https://doi.

org/10.1371/journal.pone.0096603

Ley R, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds

within worlds: evolution of the vertebrate gut microbiota. Nat Rev

Microbiol 6(10):776–788. https://doi.org/10.1038/nrmicro1978

Li D, Achkar JP, Haritunians T, Jacobs JP, Hui KY, D’Amato M, Brand

S, Radford-Smith G, Halfvarson J, Niess JH, Kugathasan S,

Büning C, Schumm LP, Klei L, Ananthakrishnan A, Aumais G,

Baidoo L, Dubinsky M, Fiocchi C, Glas J, Milgrom R, Proctor DD,

Regueiro M, Simms LA, Stempak JM, Targan SR, Törkvist L,

Sharma Y, Devlin B, Borneman J, Hakonarson H, Xavier RJ, Daly

M, Brant SR, Rioux JD, Silverberg MS, Cho JH, Braun J,

McGovern DP, Duerr RH (2016) A pleiotropic missense variant in

SLC39A8 is associated with Crohn’s Disease and human gut

microbiome composition. Gastroenterology 151(4):724–732.

https://doi.org/10.1053/j.gastro.2016.06.051

Lo Sasso G, Ryu D, Mouchiroud L, Fernando SC, Anderson CL,

Katsyuba E, Piersigilli A, Hottiger MO, Schoonjans K, Auwerx J

(2014) Loss of Sirt1 function improves intestinal anti-bacterial

defense and protects from colitis-induced colorectal cancer.

PLoS One. 9(7):e102495. https://doi.org/10.1371/journal.pone.

0102495

Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011)

UniFrac: an effective distance metric for microbial community

comparison. Isme Journal 5:169–172

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J,

Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG et al

(2012) Defining the core Arabidopsis thaliana root microbiome.

Nature 488:86–90

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J,

Ioannidis JP, Hirschhorn JN (2008) Genome-wide association

studies for complex traits: consensus, uncertainty and chal-

lenges. Nat Rev Genet 9:356–369

McGovern DPB, Jones MR, Taylor KD, Marciante K, Yan XF,

Dubinsky M, Ippoliti A, Vasiliauskas E, Berel D, Derkowski C et al

(2010) Fucosyltransferase 2 (FUT2) non-secretor status is

associated with Crohn’s disease. Hum Mol Genet 19:3468–3476

McKnite AM, Perez-Munoz ME, Lu L, Williams EG, Brewer S,

Andreux PA, Bastiaansen JWM, Wang XS, Kachman SD,

Auwerx J et al (2012) Murine gut microbiota is defined by host

genetics and modulates variation of metabolic traits. PLoS ONE

7:e39191

Milot E, Pelletier F (2013) Human evolution: new playgrounds for

natural selection. Curr Biol 23:R446–R448

Moalem S, Prince J (2008) Survival of the sickest: the surprising

connections between disease and longevity. Harper, London

Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV,

Pusey AE, Peeters M, Hahn BH, Ochman H (2014) Rapid

changes in the gut microbiome during human evolution. Proc Natl

Acad Sci USA 111:16431–16435

Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV,

Reyes JA, Shah SA, LeLeiko N, Snapper SB et al (2012)

Dysfunction of the intestinal microbiome in inflammatory bowel

disease and treatment. Genome Biol 13:R79

Moschen AR, Gerner RR, Wang J, Klepsch V, Adolph TE, Reider SJ,

Hackl H, Pfister A, Schilling J, Moser PL, Kempster SL,

Swidsinski A, Orth Höller D, Weiss G, Baines JF, Kaser A, Tilg

H (2016) Lipocalin 2 protects from inflammation and tumorige-

nesis associated with gut microbiota alterations. Cell Host

Microbe. 19(4):455–469. https://doi.org/10.1016/j.chom.2016.03.

007

Nakagome S, Chinen H, Iraha A, Hokama A, Takeyama Y, Sakisaka

S, Matsui T, Kidd JR, Kidd KK, Said HS, Suda W, Morita H,

Hattori M, Hanihara T, Kimura R, Ishida H, Fujita J, Kinjo F, Mano

S, Oota H (2017) Confounding effects of microbiome on the

susceptibility of TNFSF15 to Crohn’s disease in the Ryukyu

Islands. Hum Genet. 136(4):387–397. https://doi.org/10.1007/

s00439-017-1764-0

Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems

understanding of MHC class I and MHC class II antigen

presentation. Nat Rev Immunol 11:823–836

Nester EW (2015) Agrobacterium: nature’s genetic engineer. Front

Plant Sci 5:730

Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG (2007)

Recent and ongoing selection in the human genome. Nat Rev

Genet 8:857–868

Nishida AH, Ochman H (2017) Rates of gut microbiome divergence

in mammals. Mol Ecol

Nissilä E, Korpela K, Lokki AI, Paakkanen R, Jokiranta S, de Vos

WM, Lokki ML, Kolho KL, Meri S (2017) C4B gene influences

intestinal microbiota through complement activation in patients

with paediatric-onset inflammatory bowel disease. Clin Exp

Immunol. 190(3):394–405. https://doi.org/10.1111/cei.13040

Novembre J, Han EJ (2012) Human population structure and the

adaptive response to pathogen-induced selection pressures.

Philos Trans R Soc B 367:878–886

Ochman H, Worobey M, Kuo CH, Ndjango JB, Peeters M, Hahn BH,

Hugenholtz P (2010) Evolutionary relationships of wild hominids

recapitulated by gut microbial communities. PLoS Biol 8:

e1000546

Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY,

Mehrabian M, Pan C, Knight R, Gunsalus R et al (2015) Genetic

and environmental control of host-gut microbiota interactions.

Genome Res 25:1558–1569

Peuker K, Muff S, Wang J, Künzel S, Bosse E, Zeissig Y, Luzzi G,

Basic M, Strigli A, Ulbricht A, Kaser A, Arlt A, Chavakis T, van den

Brink GR, Schafmayer C, Egberts JH, Becker T, Bianchi ME,

Bleich A, Röcken C, Hampe J, Schreiber S, Baines JF, Blumberg

RS, Zeissig S (2016) Epithelial calcineurin controls microbiota-

dependent intestinal tumor development. Nat Med. 22(5):506–

515. https://doi.org/10.1038/nm.4072

Pohjanen VM, Koivurova OP, Niemelä SE, Karttunen RA, Karttunen

TJ (2016) Role of Helicobacter pylori and interleukin 6–174 gene

Screening for host-microbe interactions REVIEW

© The Author(s) 2018 459

P
ro
te
in

&
C
e
ll

https://doi.org/10.1371/journal.pone.0096603
https://doi.org/10.1371/journal.pone.0096603
https://doi.org/10.1038/nrmicro1978
https://doi.org/10.1053/j.gastro.2016.06.051
https://doi.org/10.1371/journal.pone.0102495
https://doi.org/10.1371/journal.pone.0102495
https://doi.org/10.1016/j.chom.2016.03.007
https://doi.org/10.1016/j.chom.2016.03.007
https://doi.org/10.1007/s00439-017-1764-0
https://doi.org/10.1007/s00439-017-1764-0
https://doi.org/10.1111/cei.13040
https://doi.org/10.1038/nm.4072


polymorphism in dyslipidemia: a case-control study. BMJ Open. 6

(1):e009987. https://doi.org/10.1136/bmjopen-2015-009987

Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches

to population stratification in genome-wide association studies.

Nat Rev Genet 11:459–463

Prugnolle F, Manica A, Charpentier M, Guegan JF, Guernier V,

Balloux F (2005) Pathogen-driven selection and worldwide HLA

class I diversity. Curr Biol 15:1022–1027

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C,

Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human

gut microbial gene catalogue established by metagenomic

sequencing. Nature 464:59–65

Ramanan VK, Shen L, Moore JH, Saykin AJ (2012) Pathway

analysis of genomic data: concepts, methods, and prospects for

future development. Trends Genet 28:323–332

Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S,

Rosenstiel P, Franke A, Baines JF (2011a) Colonic mucosa-

associated microbiota is influenced by an interaction of Crohn

disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA

108(47):19030–19035. https://doi.org/10.1073/pnas.1106408108

Rausch P, Rehman A, Kunzel S, Hasler R, Ott SJ, Schreiber S,

Rosenstiel P, Franke A, Baines JF (2011b) Colonic mucosa-

associated microbiota is influenced by an interaction of Crohn

disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA

108:19030–19035

Rausch P, Steck N, Suwandi A, Seidel JA, Künzel S, Bhullar K,

Basic M, Bleich A, Johnsen JM, Vallance BA, Baines JF, Grassl

GA (2015) Expression of the blood-group-related gene B4galnt2

alters susceptibility to salmonella infection. PLoS Pathog 11(7):

e1005008. https://doi.org/10.1371/journal.ppat.1005008

Rausch P, Künzel S, Suwandi A, Grassl GA, Rosenstiel P, Baines JF

(2017) Multigenerational influences of the Fut2 gene on the

dynamics of the gut microbiota in mice. Front Microbiol. 8:991.

https://doi.org/10.3389/fmicb.2017.00991

Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL,

Karlebach S, Gorle R, Russell J, Tacket CO et al (2011) Vaginal

microbiome of reproductive-age women. Proc Natl Acad Sci USA

108:4680–4687

Ray K (2017) Alcoholic liver disease: gut-liver axis: PPIs, entero-

coccus and promotion of alcoholic liver disease. Nat Rev

Gastroenterol Hepatol 14:689

Rodriguez-Nunez I, Caluag T, Kirby K, Rudick CN, Dziarski R, Gupta

D (2017) Nod2 and Nod2-regulated microbiota protect BALB/c

mice from diet-induced obesity and metabolic dysfunction. Sci

Rep. 7(1):548. https://doi.org/10.1038/s41598-017-00484-2

Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison

JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kébir

H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet

N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ (2016) Type I

interferons and microbial metabolites of tryptophan modulate

astrocyte activity and central nervous system inflammation via

the aryl hydrocarbon receptor. Nat Med. 22(6):586–597. https://

doi.org/10.1038/nm.4106 Epub 2016 May 9

Ruhlemann MC, Degenhardt F, Thingholm LB, Wang J, Skiecevi-

ciene J, Rausch P, Hov JR, Lieb W, Karlsen TH, Laudes M et al

(2017) Application of the distance-based F test in an mGWAS

investigating beta diversity of intestinal microbiota identifies

variants in SLC9A8 (NHE8) and 3 other loci. Gut Microbes

48:1–8

Sadaghian Sadabad M, Regeling A, de Goffau MC, Blokzijl T,

Weersma RK, Penders J, Faber KN, Harmsen HJ, Dijkstra G

(2015) The ATG16L1-T300A allele impairs clearance of

pathosymbionts in the inflamed ileal mucosa of Crohn’s disease

patients. Gut. 64(10):1546–1552. https://doi.org/10.1136/gutjnl-

2014-307289

Santos-Cortez RL, Hutchinson DS, Ajami NJ, Reyes-Quintos MR,

Tantoco ML, Labra PJ, Lagrana SM, Pedro M, Llanes EG, Gloria-

Cruz TL, Chan AL, Cutiongco-de la Paz EM, Belmont JW,

Chonmaitree T, Abes GT, Petrosino JF, Leal SM, Chiong CM

(2016) Middle ear microbiome differences in indigenous Filipinos

with chronic otitis media due to a duplication in the A2ML1 gene.

Infect Dis Poverty 5(1):97

Sender R, Fuchs S, Milo R (2016) Are we really vastly outnum-

bered? Revisiting the ratio of bacterial to host cells in humans.

Cell 164:337–340

Sovran B, Loonen LM, Lu P, Hugenholtz F, Belzer C, Stolte EH,

Boekschoten MV, van Baarlen P, Kleerebezem M, de Vos P,

Dekker J, Renes IB, Wells JM (2015) IL-22-STAT3 pathway plays

a key role in the maintenance of ileal homeostasis in mice lacking

secreted mucus barrier. Inflamm Bowel Dis. 21(3):531–542.

https://doi.org/10.1097/MIB.0000000000000319

Spor A, Koren O, Ley R (2011) Unravelling the effects of the

environment and host genotype on the gut microbiome. Nat Rev

Microbiol 9:279–290

Srinivas G, Moller S, Wang J, Kunzel S, Zillikens D, Baines JF,

Ibrahim SM (2013) Genome-wide mapping of gene-microbiota

interactions in susceptibility to autoimmune skin blistering. Nat

Commun 4:2462

Staubach F, Kunzel S, Baines AC, Yee A, McGee BM, Backhed F,

Baines JF, Johnsen JM (2012) Expression of the blood-group-

related glycosyltransferase B4galnt2 influences the intestinal

microbiota in mice. ISME J 6:1345–1355

Stein JM, Lammert F, Zimmer V, Granzow M, Reichert S, Schulz S,

Ocklenburg C, Conrads G (2010) Clinical periodontal and

microbiologic parameters in patients with Crohn’s disease with

consideration of the CARD15 genotype. J Periodontol. 81

(4):535–545

Taylor SL, Woodman RJ, Chen AC, Burr LD, Gordon DL, McGuckin

MA, Wesselingh S, Rogers GB (2017) FUT2 genotype influences

lung function, exacerbation frequency and airway microbiota in

non-CF bronchiectasis. Thorax 72(4):304–310. https://doi.org/10.

1136/thoraxjnl-2016-208775

Thingholm L, Rühlemann M, Wang J, Hübenthal M, Lieb W, Laudes

M, Franke A, D’Amato M (2018) Sucrase-isomaltase 15Phe IBS

risk variant in relation to dietary carbohydrates and faecal

microbiota composition. Gut. https://doi.org/10.1136/gutjnl-2017-

315841

Tschurtschenthaler M, Wang J, Fricke C, Fritz TM, Niederreiter L,

Adolph TE, Sarcevic E, Künzel S, Offner FA, Kalinke U, Baines

JF, Tilg H, Kaser A (2014) Type I interferon signalling in the

intestinal epithelium affects Paneth cells, microbial ecology and

epithelial regeneration. Gut. 63(12):1921–1931. https://doi.org/

10.1136/gutjnl-2013-305863

REVIEW Jun Wang et al.

460 © The Author(s) 2018

P
ro
te
in

&
C
e
ll

https://doi.org/10.1136/bmjopen-2015-009987
https://doi.org/10.1073/pnas.1106408108
https://doi.org/10.1371/journal.ppat.1005008
https://doi.org/10.3389/fmicb.2017.00991
https://doi.org/10.1038/s41598-017-00484-2
https://doi.org/10.1038/nm.4106
https://doi.org/10.1038/nm.4106
https://doi.org/10.1136/gutjnl-2014-307289
https://doi.org/10.1136/gutjnl-2014-307289
https://doi.org/10.1097/MIB.0000000000000319
https://doi.org/10.1136/thoraxjnl-2016-208775
https://doi.org/10.1136/thoraxjnl-2016-208775
https://doi.org/10.1136/gutjnl-2017-315841
https://doi.org/10.1136/gutjnl-2017-315841
https://doi.org/10.1136/gutjnl-2013-305863
https://doi.org/10.1136/gutjnl-2013-305863


Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith

MI, Guttman DS, Griffiths A, Panaccione R, Otley A et al (2016)

Association of host genome with intestinal microbial composition

in a large healthy cohort. Nat Genet 48:1413–1417

Vallier M, Abou Chakra M, Hindersin L, Linnenbrink M, Traulsen A,

Baines JF (2017) Evaluating the maintenance of disease-asso-

ciated variation at the blood group-related gene B4galnt2 in

house mice. BMC Evol Biol 17:187

Walter J, Ley R (2011) The human gut microbiome: ecology and

recent evolutionary changes. Ann Rev Microbiol 65(65):411–429

Wang J, Kalyan S, Steck N, Turner LM, Harr B, Kunzel S, Vallier M,

Hasler R, Franke A, Oberg HH et al (2015) Analysis of intestinal

microbiota in hybrid house mice reveals evolutionary divergence

in a vertebrate hologenome. Nat Commun 6:6440

Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M, Hov

JR, Degenhardt F, Heinsen FA, Ruhlemann MC, Szymczak S

et al (2016) Genome-wide association analysis identifies varia-

tion in vitamin D receptor and other host factors influencing the

gut microbiota. Nat Genet 48:1396–1406

Ward MA, Pierre JF, Leal RF, Huang Y, Shogan B, Dalal SR, Weber

CR, Leone VA, Musch MW, An GC, Rao MC, Rubin DT, Raffals

LE, Antonopoulos DA, Sogin ML, Hyman NH, Alverdy JC, Chang

EB (2016) Insights into the pathogenesis of ulcerative colitis from

a murine model of stasis-induced dysbiosis, colonic metaplasia,

and genetic susceptibility. Am J Physiol Gastrointest Liver

Physiol. 310(11):G973–G988. https://doi.org/10.1152/ajpgi.

00017.2016

Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L,

Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA et al

(2008) Innate immunity and intestinal microbiota in the develop-

ment of Type 1 diabetes. Nature 455:1109–1113

Wernegreen JJ (2002) Genome evolution in bacterial endosym-

bionts of insects. Nat Rev Genet 3:850–861

World Health Organization (2016) Global tuberculosis report 2016.

WHO, Geneva

Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of

inflammatory bowel disease. Nature 448:427–434

Xie HL, Guo RJ, Zhong HZ, Feng Q, Lan Z, Qin BC, Ward KJ,

Jackson MA, Xia Y, Chen X et al (2016) Shotgun metagenomics

of 250 adult twins reveals genetic and environmental impacts on

the gut microbiome. Cell Syst 3:572

Yassour M, Vatanen T, Siljander H, Hamalainen AM, Harkonen T,

Ryhanen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers

D et al (2016) Natural history of the infant gut microbiome and

impact of antibiotic treatment on bacterial strain diversity and

stability. Sci Transl Med 8:343ra381

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,

Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP

et al (2012) Human gut microbiome viewed across age and

geography. Nature 486:222–227

Ye Y, Carlsson G, Wondimu B, Fahlén A, Karlsson-Sjöberg J,

Andersson M, Engstrand L, Yucel-Lindberg T, Modéer T, Pütsep

K (2011) Mutations in the ELANE gene are associated with

development of periodontitis in patients with severe congenital

neutropenia. J Clin Immunol. 31(6):936–945. https://doi.org/10.

1007/s10875-011-9572-0 Epub 2011 Jul 29

Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, Zhai Z, Tian F,

Zhao J, Zhang H et al (2013) Quantitative genetic background of

the host influences gut microbiomes in chickens. Sci Rep 3:1163

Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer

M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S et al

(2016) Population-based metagenomics analysis reveals mark-

ers for gut microbiome composition and diversity. Science

352:565–569

Zhu B, Wang X, Li L (2010) Human gut microbiome: the second

genome of human body. Protein Cell 1:718–725

Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in

the evolution of animals and plants: the hologenome theory of

evolution. FEMS Microbiol Rev 32:723–735

Screening for host-microbe interactions REVIEW

© The Author(s) 2018 461

P
ro
te
in

&
C
e
ll

https://doi.org/10.1152/ajpgi.00017.2016
https://doi.org/10.1152/ajpgi.00017.2016
https://doi.org/10.1007/s10875-011-9572-0
https://doi.org/10.1007/s10875-011-9572-0

	Of genes and&#146;microbes: solving the&#146;intricacies in&#146;host genomes
	ABSTRACT
	INTRODUCTION
	INDIRECT EVIDENCE
	DIRECT EVIDENCE: DESIGNED GENETIC STUDIES
	Resolving confounders
	Candidate gene approach
	Quantitative genetics

	CONCLUSIONS
	Limitations
	Outlook

	ACKNOWLEDGEMENTS
	References


