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Schistosoma haematobium affects more than 100 million people throughout Africa and
is the causative agent of urogenital schistosomiasis. The parasite is strongly associ-
ated with urothelial cancer in infected individuals and as such is designated a group
I carcinogen by the International Agency for Research on Cancer. Using a protein
microarray containing schistosome proteins, we sought to identify antigens that were the
targets of protective IgG1 immune responses in S. haematobium-exposed individuals that
acquire drug-induced resistance (DIR) to schistosomiasis after praziquantel treatment.
Numerous antigens with known vaccine potential were identified, including calpain
(Smp80), tetraspanins, glutathione-S-transferases, and glucose transporters (SGTP1), as
well as previously uncharacterized proteins. Reactive IgG1 responses were not elevated in
exposed individuals who did not acquire DIR. To complement our human subjects study,
we screened for antigen targets of rhesus macaques rendered resistant to S. japonicum
by experimental infection followed by self-cure, and discovered a number of new and
known vaccine targets, including major targets recognized by our human subjects. This
study has further validated the immunomics-based approach to schistosomiasis vaccine
antigen discovery and identified numerous novel potential vaccine antigens.

Keywords: schistosomiasis, protein microarray, vaccine, human, drug-induced resistance

Introduction

The carcinogenic blood fluke, Schistosoma haematobium, infects more than 100 million people
throughout Africa and is the most prevalent of the human schistosomes, causing more than half
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of all infections (1). S. haematobium adult flukes migrate to the
vasculature of the organs of the pelvis. Severe morbidity results
from host immune responses to eggs in tissues and includes peri-
portal fibrosis, portal hypertension, and hepato-splenic disease
(2). Formerly known as urinary schistosomiasis, S. haematobium
infection was recently renamed “urogenital schistosomiasis” in
recognition that the disease affects both the urinary and genital
tracts of women and men. Female S. haematobium lay between
20 and 200 eggs daily (3), which penetrate the vessel wall and
move toward the lumen of the bladder. Some of the eggs become
sequestered in the tissue of the pelvic organs such as the uri-
nary bladder, ureters, cervix, vagina, prostate gland, and seminal
vesicles, where they cause chronic inflammation, pelvic pain,
bleeding, and an altered cervical epithelium in women (4). S.
haematobium is unique among the schistosomes in its recognition
as a group I carcinogen by the International Agency for Research
on Cancer because of its robust association with urothelial carci-
noma (5). S. haematobium infection also increases susceptibility
to infection with HIV-1, progression to disease, and results in a
higher likelihood of transmitting infection to others (6).

Praziquantel (PZQ) is widely used to treat human schistosome
infections and has two main effects on schistosomes – paralysis
and tegument damage (7). An added benefit of PZQ treatment is
that it mediates destruction of flukes thereby exposing antigens on
the worm surface to the host immune system. This release of sur-
face antigens induces and/or enhances parasite-specific immune
responses (8), resulting in immune-mediated killing of the par-
asite. Early studies reported modifications in T-cell proliferative
responses (9), whereas recent studies noted modifications in the
levels and types of antibody (10–13) and cytokine responses (14–
16) following PZQ treatment. The immune response triggered by
PZQ treatment is thought to last for more than 1 year (14, 17–
19) and confer at least some level of resistance to re-infection.
This phenomenon is referred to as “drug-induced resistance”
(DIR) (20). The mechanisms behind DIR differ significantly from
those of putative natural resistance (PR, resistant individuals who
have not received PZQ therapy) and can be related to the origin
(developmental stage) and concentration of the released antigen,
as well as the type of antigen-presenting cells (APCs) involved.
PZQ treatment introduces a large amount of adult fluke antigen
directly into the bloodstream as a result of many worms dying at
once (21), whereas naturally acquired resistance in the absence of
PZQ treatment (PR) is stimulated by the introduction of smaller
quantities of adult antigen due to amore gradual worm death. The
process of PR is additionally stimulated by the release of antigens
from naturally dying larval schistosomes (schistosomula) primar-
ily through the skin and pulmonary vasculature, thus inducing
different APCs and resulting in different interactions between the
antigens and the immune system (22). This additional stimulus
does not appear to factor significantly in DIR due to the ineffec-
tiveness of PZQ against schistosomula (7, 8). Whatever the mech-
anism, it is important that an antigen threshold is reached in order
to sufficiently stimulate anti-schistosome immunity (23, 24).

Studies with car washers in schistosome-infected waters of
Lake Victoria in Kenya showed that a subset of the men devel-
oped resistance to re-infection after PZQ therapy while others
remained susceptible despite treatment (25, 26). It was found

that IgE production to soluble worm antigen preparation (SWAP)
paralleled the development of resistance, and did not occur in
those who remained susceptible to re-infection (25). Additionally,
our own immuno-proteomic studies have used S. haematobium
SWAP to identify a number of antigens that are released by PZQ
treatment and/or are the target of DIR immune responses (27,
28). However, despite the power of these proteomic studies in
identifying individual parasite proteins, the utilization of SWAP
(where worms are homogenized and solubilized under native
conditions in the absence of detergents that will solubilize the
cell membranes) does not result in full representation of the S.
haematobium proteome. Indeed, numerous abundantly expressed
proteins with multiple membrane spanning domains that are
released from the tegument with detergents (29, 30) are accessible
to chemical labeling on the surface of live worms (30), are recog-
nized by sera from PR individuals, and are lead vaccine antigens
against schistosomiasis (31–33).

A third mechanism of resistance to schistosomiasis is seen in
the rhesus macaque (Macaca mulatta). It is unique among ani-
mal models of schistosomiasis in that, once an infection reaches
patency, worm death starts to occur from week 10 (34) and
egg output diminishes over time until the infection is eliminated
(35, 36). This phenomenon only occurs above a threshold worm
burden (35, 36), presumably as sufficient immune stimulus is
required for this process to occur (23, 24). This self-cure mech-
anism is thought to be antibody-mediated because of a strong
inverse association between the rapidity and intensity of the IgG
response and the number and morphology of surviving worms
(34). Two-dimensional immunoblotting of worm extracts showed
the immune response to be directed at gut digestive enzymes,
tegument surface hydrolases, and anti-oxidant enzymes (34).

The use of protein microarrays to profile the immune response
to pathogens has become widespread over recent years and offers
significant advantages over the conventional immuno-proteomic
approaches described above. In parasitology, protein array studies
have been used extensively in malaria (37) to compare antibodies
from un-protected and protected subjects, identifying the anti-
bodies (and their cognate antigens) that confer immunity (38–
40). For schistosomes (37), similar studies have profiled antibody
responses in S. japonicum- and S. mansoni-infected rodents (41,
42) and human subjects who are naturally resistant or susceptible
to S. mansoni (20).

Based on the success of our previous immunomics approach
which analyzed antibody signatures of PR and chronically infected
(CI) individuals from an S. mansoni-endemic area of Brazil (20),
we decided to use the same experimental approach to identify
antigens which are the targets of humoral immune responses in
(1) DIR human subjects from an S. haematobium-endemic area
in Africa and (2) rhesus macaques that had undergone self-cure
after experimental S. japonicum infection. Given the extensive
similarities in protein-coding gene sequences between the three
major human schistosomes (86–92%) (43), as well as the exten-
sive recognition of S. japonicum proteins on our array by sera
from S. mansoni-infected individuals (20), we reasoned that sera
from S. haematobium-infected individuals would strongly recog-
nize many of the arrayed S. mansoni and S. japonicum proteins.
Moreover, these cross-reactive antigens would potentially form
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the basis of a pan-schistosome vaccine that protects against all
three human species. Leveraging existing protein arrays from
our previous study, which contain antigens primarily from the
antibody-accessible teguments of the adult fluke and the immuno-
logically vulnerable schistosomulum stage, we show thatDIR indi-
viduals and self-curing rhesus macaques make robust antibody
responses to a number of tegument-associated proteins, including
novel and previously described schistosome vaccine candidates.

Materials and Methods

Ethical Statement
Ethical and institutional approval was granted by the Medical
Research Council of Zimbabwe and the University of Zimbabwe
Institutional Review Board. Local permission for the study was
granted by the Provincial Medical Director. The study design,
aims, and procedures were explained in the local language, Shona,
prior to enrollment. Participants were free to drop out of the
study at any time and informed written consent was obtained
from all participants prior to taking part in the study and to
receiving anthelmintic treatment. As routine, all participants were
offered treatment with the standard dose of PZQ (40mg/kg) at
the end of the study. All work involving experimental procedures
with Rhesus macaques was approved by the Ethics Committee
of Kunming Institute of Zoology, Chinese Academy of Sciences
(CAS) (ID: SYDW-2011017).

Study Cohort
The study participants were residents of a S. haematobium-
endemic rural village in Murewa in the Mashonaland East
Province of Zimbabwe (31°94′E; 17°67′S). The villagewas selected
because health surveys regularly conducted in the region showed
little or no infection with soil-transmitted helminths (STH) and a
low S. mansoni prevalence (<2%). Serum samples were provided
from a cohort of S. haematobium-infected individuals (n= 106)
aged 5–14 years who had never been treated with PZQ prior to
this study and were free from co-infection with other helminths,
Plasmodium, andHIV (14, 44). At the start of the study (baseline),
subjects who were positive for S. haematobium eggs (at least one
egg found in at least one of three urine samples, each collected
on a separate day) following urinalysis were treated with PZQ
by weight (40mg/kg) and then assessed by urinalysis at 6 weeks
to confirm clearance of the infection (no eggs found in any of
three urine samples, each collected on a separate day). Individuals
were followed for 18months andmaintained regular water contact
throughout this period. Subjects were assessed for infectivity with
S. haematobium at 6months and at the end of the study. Individ-
uals who were egg-positive at 18months post-treatment (n= 32)
were deemed CI and those who were egg-negative (n= 74) were
categorized as DIR (Figure 1). Serum samples were obtained from
both 0- and 18-month timepoints.

For this study, we selected a subset of subjects as follows: CI sub-
jects that had the highest post-treatment egg burdens (eggs/10ml
10–104; n= 10) and DIR subjects that had some of the highest
egg burdens at baseline (eggs/10ml 44–743; n= 10), reasoning
that these individuals represented extremities of the DIR and
CI spectrums and therefore would maximize the likelihood of

FIGURE 1 | Characterization of study cohort and sub-cohort used for
the study described herein. *Treatment efficacy was assessed by urinalysis
6weeks after praziquantel therapy – all subjects were egg-negative (no eggs
found in any of three urine samples, each collected on a separate day).
∧Subjects remained in the endemic study area and had regular water contact
for the study duration.

identifying differences in antibody signatures between CIs and
DIRs. Subject ages (in years) were as follows: CIs (5, 8, 8, 9, 10, 10,
11, 11, 12, 14), range= 5–14, mean= 9.8, median= 10; DIRs (6,
8, 8, 8, 8, 9, 9, 10, 11, 12), range= 6–12, mean= 8.9, median= 8.5.

Infection of Self-Curing Rhesus Macaques
The study used six captive-bred adult male rhesus macaques (M.
mulatta; mean age 9.67± 0.82 years, mean weight 7.98± 0.85 kg)
from the Kunming Primate Research Center, CAS. Macaques
were group-housed prior to the experiment but then singly after
infection for fecal sampling. Cercariae of S. japonicum were
shed from patent snails (Oncomelania hupensis) provided by the
Jiangsu Institute of Parasitic Diseases (Wuxi, China), collected
from the water surface using a bacteriological loop and placed
on glass cover slips for infection. Rhesus macaques anesthetized
with ketamine hydrochloride (6mg/kg body weight, Gutian Phar-
maceutical Corporation, Fujian, China) were infected percuta-
neously with 600 cercariae via the shaved abdominal skin for
30min. Blood was obtained by intravenous sampling prior to
infection (week 0) and at 12 and 20weeks after exposure. Elim-
ination of infection was confirmed at week 20 by assessment of
eggs per gram of feces using both the Percoll technique (45) and
Kato-Katz method (46).

Probing of Protein Microarrays with Human and
Macaque Sera
Protein microarrays were leveraged from a previous study by us
(20) and contained both S. mansoni (n= 45) and S. japonicum
(n= 172) proteins which were either (1) known or predicted to be
localized to the tegument and/or (2) expressed in the schistosomu-
lum (41), which is vulnerable to immune attack. Human IgG1 and
IgE responses to antigens were determined by probing arrays with
sera as previously described (20). Macaque antibody responses

Frontiers in Immunology | www.frontiersin.org May 2015 | Volume 6 | Article 2133

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Pearson et al. Immunomic profiling of schistosome infection

were determined by probing of arrays with sera as described for
human sera with the exception that a goat anti-monkey IgG-biotin
(1:500) (Sigma) secondary antibody was used.

Protein Array Data Analysis and Bioinformatics
Array data analysis was conducted using the “group average”
method (20), where the mean signal intensity (SI) of the neg-
ative control (empty vector) spots for all sera were subtracted
from the SI of each protein spot. The following reactivity cut-offs
(calculated as one standard deviation above the negative control
spots for all groups) were used: human IgG1 – 8239; human IgE –
1861; macaque IgG – 3210. Statistical analyses (Student’s t-test)
were conducted with Graphpad Prism 6 to determine significant
differences between samples for a given reactive protein.

The transcription of genes in the adult and egg stages of S.
haematobium was assessed for S. haematobium orthologs of all
arrayed S. mansoni and S. japonicum proteins that were the tar-
gets of significantly different IgG responses between DIR and CI
post-treatment sera using publicly available RNA-seq data (43).
These data were filtered for quality (PHRED score of >30) using
Trimmomatic (47) and aligned to the open reading frames of the
published gene set (43) using Bowtie (v2.1.0) (48). Normalized
levels of gene transcription were calculated using the software
package RSEM (v1.2.11) (49) and reported as the numbers of
transcripts per million reads sequenced (TPMs). The TPM value
of each gene was log2-transformed and subjected to heat map
visualization using R (v3.1.2)1, and utilizing the heatmap.plus
(v1.3)2 package.

Results

Antibody Signatures of DIR Human Subjects
Differ Before and After PZQ Treatment
To investigate the difference in antibody responses to arrayed
antigens of the DIR cohort before and after PZQ treatment (there-
fore identifying antigens which are putatively exposed by drug
therapy), sera from this group at baseline and 18months after drug
therapy were used to probe protein microarrays. IgG1 responses
were significantly higher in DIRs at 18months post-treatment
compared to baseline for all 24 reactive proteins. Antigens which
were the target of the most significantly different (p< 0.0001)
responses pre- and post-drug treatment included AY810700 (glu-
cose transporter), AY815303 [glutathione-S-transferase (GST)],
and AY809911 (Ig domain-containing, sensory guidance protein)
(Figure 2A). In contrast, IgG1 responses of the CI cohort to
reactive proteins before and after PZQ treatment were not signifi-
cantly different for any protein (data not shown). Additionally, IgE
responses in the DIR group were significantly lower at 18months
post-PZQ treatment compared to baseline for the majority (78%)
of the 18 reactive antigens (Figure 2B). Arrayed antigens that
were the targets of IgE in post-treatmentDIRs includedAY814430
(calpain), AY812195 [extracellular superoxide dismutase (SOD)],
and AY814497 (Na+/K+ ATPase β subunit – SNaK1β).

1http://www.R-project.org
2http://cran.r-project.org/web/packages/heatmap.plus

FIGURE 2 | Antibody responses to arrayed antigens differ in
Schistosoma haematobium-infected humans before and after
praziquantel treatment. (A) IgG1. (B) IgE. Average adjusted signal intensity
values depicting the antibody response to each reactive antigen are shown for
the drug-induced resistant (DIR) cohort before and after praziquantel
treatment. The dashed and solid lines are the respective cut-offs for IgG1
(8239) and IgE (1861) reactivity, calculated as one standard deviation of the
mean of the no-DNA control spots on the array. Statistical analysis was
performed using Student’s t-test. *p< 0.05, **p< 0.01, ***p< 0.001.

IgG1 Profiles Differ Between S.
haematobium-Infected Humans Who Do and Do
Not Acquire DIR After PZQ Treatment
In order to analyze changes in antibody signatures to arrayed
antigens related to the acquisition of DIR (thereby identi-
fying proteins which are potential inducers of a protective
antibody response), arrays were interrogated with sera from
post-treatment CIs and DIRs and probed for IgG1 reactivity.
IgG1 responses were significantly elevated in DIRs compared
to CIs at 18months to 20 of the 24 (83%) reactive proteins.
The three antigens that were targets of the most significantly
different (p< 0.0001) IgG1 responses were AY810792 (butyl-
cholinesterase), AY812951 (mastin), and AY815196 [a homolog
of human tetraspanin (TSP)-33] (Figure 3). Homologs and/or
family members of known schistosome vaccine candidates such
as calpain (50) (AY814430), a 28-kDa GST – Sh28GST (51)
(AY815303), and the TSPs Sm-TSP-1 and Sm-TSP-2 (33, 52)
(AY815196) were also identified. Table 1 lists all of the antigens
depicted in Figure 3 along with their S. haematobium orthologs
as we reasoned that these were probably the native parasite
antigens that our DIR and CI sera were targeting during the
course of S. haematobium infection. Of the 20 antigens that
were targets of significantly elevated IgG1 responses in post-
treatment DIRs compared to CIs, only 7 (35%) were targets of
IgE responses that were deemed to be above the reactivity cut-off
(Figure 4).
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FIGURE 3 | IgG1 antibody profiles to arrayed antigens differ between
Schistosoma haematobium-infected humans who do and do not
acquire drug-induced resistance after praziquantel treatment. Average
adjusted signal intensity values depicting IgG1 antibody responses to each
reactive antigen are shown for the drug-induced resistant (DIR) and
chronically infected (CI) cohorts after praziquantel treatment. Boxed antigens
indicate homologs of known vaccine candidates. The dashed line is the
cut-off for IgG1 reactivity (8239), calculated as one standard deviation of the
mean of the no-DNA control spots on the array. Statistical analysis was
performed using Student’s t-test. *p< 0.05, **p<0.01, ***p< 0.001.

Transcription Analysis
The transcription of genes in the adult and egg stages of S. haema-
tobiumwas assessed for orthologs of all 20 arrayed S. mansoni and
S. japonicum proteins that were the target of significantly different
DIR IgG responses post-treatment using publicly available RNA-
seq data. We did not find any significant difference in the level of
transcription between life stages for a given protein. MS3_02176
(the gene encoding microsomal GST-3) was expressed most
highly and relatively constitutively in all developmental stages
examined (Figure 5).

IgG Profiles of S. japonicum-Infected Self-Curing
Rhesus Macaques Differ During the Course of
Infection
To investigate IgG responses of rhesus macaques to arrayed pro-
teins during the course of a self-curing infection, protein arrays
were probed with sera taken at week 0 (primary infection),
week 12, and week 20 (after parasite elimination). Antibody
responses to all (eight proteins – Table 1) but one reactive pro-
tein (AY812195 – extracellular SOD) were significantly elevated
between 0 and 12weeks post-infection (p.i.), with the three most
robust and highly significant responses being aimed at proteins of
unknown function (AY815838 and AY812161) and a MARVEL
domain-containing lipid-raft-associated protein (AY815056). The
IgG reactivity of only one protein (AY812195 – extracellular SOD)
was elevated at 20weeks compared to 12weeks p.i. (Figure 6;
Table 1).

Three Different Disease Models of Resistance to
Schistosomiasis Reveal Common Reactivity to
Some Arrayed Proteins
We searched for reactive proteins common to DIR human sub-
jects, S. japonicum-infected self-curing rhesus macaques (both
described herein), and humans living in an S. mansoni-endemic
area of Brazil who, unlike DIRs, have never been treated with
PZQ but are putatively resistant to infection (20). Three reactive

proteins were common targets of “protective” antibody responses
in the DIR and macaque models: a MARVEL domain-containing
lipid-raft-associated protein; a glucose transporter (SGTP1); and
an extracellular SOD (although the IgG response to this protein
was not significantly elevated between DIRs and CIs after PZQ
treatment). Two reactive antigens were commonly recognized by
both DIRs and PRs: ribosome-binding protein 1 and the beta
subunit of Na+/K+ ATPase (SNaK1β) (Figure 7).

Discussion

The critical role that antibodies play in resistance to schisto-
somiasis resistance has been well established in animal models
by numerous passive transfer studies [e.g., Ref. (59, 60)), and
there is evidence that some mechanisms of protective immunity
in humans are antibody-mediated, both in individuals naturally
resistant to schistosomiasis (20) and those who acquire resistance
after PZQ therapy (25).Herein,we describe the antibody reactivity
profiling of a schistosome protein array with sera from S. haema-
tobium-exposed DIR and CI individuals and rhesus macaques
self-cured of a S. japonicum experimental infection (34) in an
effort to identify schistosome antigens that might be the targets
of resistant human and non-human primate hosts. We previously
utilized this protein microarray to define the antibody signatures
of individuals that are either naturally resistant to or CI with S.
mansoni in a schistosomiasis endemic area of Brazil (20). We
restricted our antibody isotype analyses to IgG1 and IgE. IgG1
is one of the main drivers of the protective humoral response
to schistosomiasis (23, 24), an observation supported by studies
showing that key tegument vaccine antigens like Smp80 (cal-
pain), Sm-TSP-2, and Sm29 are the targets of these responses
in schistosome-resistant individuals (32, 33, 61). IgE is thought
to be critical in resistance to schistosomiasis, including the DIR
process (25, 62, 63), but caution is warranted in development of
anti-helminth vaccines that drive IgE responses due to potential
anaphylactic responses in individuals who are pre-sensitized from
chronic helminth infection/exposure (64).

Significantly elevated IgG1 responses were detected to 24 anti-
gens in DIR subjects 18months after therapy compared to pre-
treatment responses. In stark contrast, we did not detect elevated
IgG1 responses to any proteins in CI subjects at 18months post-
treatment compared to pre-treatment levels. None of these anti-
gens were recognized in a previous study by us in which pooled
sera from S. haematobium-exposed individuals before and after
PZQ treatment were used to probe 2D gels containing S. haema-
tobium SWAP (27), likely because the majority of proteins on the
array are membrane-associated tegument proteins and might not
be well represented in SWAP due to the very mild solubilizing
nature (Tris) of the preparation.

It is noteworthy that IgG1 reactivity to a further 105 (48%)
arrayed antigens was significantly higher in post- compared to
pre-treatment DIRs but signal intensities were below the cut-
off, so the proteins were deemed non-reactive. This decreased
level of reactivity possibly reflects the heterogeneity of the anti-
gen–antibody interaction, i.e., antibodies to S. haematobium pro-
teins are reacting with a protein array containing S. mansoni
and S. japonicum antigens. Indeed, significant differences in
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TABLE 1 | Arrayed proteins significantly reactive to S. haematobium-infected DIR post-treatment sera and S. japonicum-infected, self-curing rhesus macaque sera.

Array ID
(GenBank
accession
number)

Description Reactivity
differencea

(p value)

Frequency of
recognition (%)

S. haematobium homolog; amino acid identity with arrayed antigen Therapeutic use

GenBank
accession
number

Description/aa
homology

Length
(aa)

TM
domainsb

DIR-reactive proteins

AY810792 Butylcholinesterase
(S. japonicum)

6.97× 10−6 100 MS3_01257 Acetylcholinesterase; 86% 745 1 IgG to S. mansoni AchE drives
complement-mediated killing of somules by
75–95% (53)

AY812951 Mastin (S. japonicum) 7.10× 10−6 90 MS3_04920 Plasminogen; 70% 492 1

AY815196 Similar to NM_079585
tetraspanin 86D in Drosophila
melanogaster (S. japonicum)

1.40× 10−5 50 MS3_02232 Tetraspanin-33; 81% 259 4 Vaccination with members of this family
(Sm-TSP-1 and Sm-TSP-2) induces 65–69%
protection in a mouse model of
schistosomiasis (33). Vaccination with a
member of this family (Sj23) induces 35%
protection in a mouse model of
schistosomiasis (54)

AY815945 SJCHGC09124 protein
(S. japonicum)

2.29× 10−5 100 MS3_10649 Hypothetical protein; 73% 141c 3

AY809911 SJCHGC02149 protein
(S. japonicum); putative
immunoglobulin domain
superfamily (sensory guidance
protein) (S. mansoni); 90%

3.06× 10−5 MS3_07405 Hypothetical protein; 87% 574c 1

C609117.1 Succinate dehydrogenase
(S. mansoni)

1.37× 10−4 100 MS3_03684 Succinate dehydrogenase
cytochrome b560 subunit,
mitochondrial; 93%

379 2

AY815690 Myosin-7 (S. japonicum)d 2.25× 10−4 80 MS3_09744 Ribosome-binding protein
1; 90%

775 0

AY812591 SJCHGC04069 protein
(S. japonicum)

4.25× 10−4 100 MS3_01313 Hypothetical protein (RNA
binding); 71%

392 0

AY222868 SJCHGC06654 protein
(S. japonicum)

4.45× 10−4 90 MS3_04717 Large subunit ribosomal
protein; 48%

150 1

AY808953 Zinc finger CCCH
domain-containing protein 3
(S. japonicum)

0.0023 100 MS3_10292 Hypothetical protein; 41% 201 0

AY814497 SJCHGC02432 protein
(S. japonicum)

0.0027 100 MS3_04817 Hypothetical protein; 58% 351 0

AY814261 Ectonucleotide pyrophos-
phatase/phosphodiesterase
family member 5 (S. japonicum)

0.0033 90 MS3_08684 Ectonucleotide pyrophos-
phatase/phosphodiesterase
family member 5; 67%

452 1 Suppression of S. mansoni ortholog
(SmNPP-5) impairs the parasite’s ability to
establish infection in vivo (55)

AY816000 Cytochrome b-561
(S. japonicum)

0.0081 60 MS3_10028 Cytochrome b-561; 85% 242 6

AY815303 Similar to microsomal glutathione
S-transferase in Oryctolagus
cuniculus (S. japonicum)

0.0099 50 MS3_02176 Microsomal glutathione
S-transferase 3; 85%

151 3 A member of this protein family (Sh28GST) is
undergoing clinical trial as a vaccine against
S. haematobium (51)

(Continued)
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TABLE 1 | Continued

Array ID
(GenBank
accession
number)

Description Reactivity
differencea

(p value)

Frequency of
recognition (%)

S. haematobium homolog; amino acid identity with arrayed antigen Therapeutic use

GenBank
accession
number

Description/aa
homology

Length
(aa)

TM
domainsb

AY810700 Solute carrier family 2 protein
(S. japonicum)

0.0100 50 MS3_02545 Solute carrier family 2,
facilitated glucose
transporter member 1; 85%

522 12 Suppression of S. mansoni ortholog (SGTP1)
impairs the parasite’s ability to establish
infection in vivo (56)

AY812972 SJCHGC02374 protein
(S. japonicum)

0.0106 60 MS3_11481 Hypothetical protein; 90% 71c 0

AY814817 SJCHGC06849 protein
(S. japonicum)

0.0130 90 MS3_05945 Hypothetical protein
(TATA-box binding); 71%

416c 0

AY815056 SJCHGC06191 protein
(S. japonicum), marvel-containing
potential lipid-raft-associated
protein (S. mansoni); 90%

0.0155 80 MS3_07473 Hypothetical protein; 91% 215 4

AY814977 Nervana 2 (S. japonicum) 0.0381 70 MS3_03655 Sodium/potassium-
transporting ATPase subunit
beta-2; 87%

293 1 Suppression of S. mansoni ortholog (SNaK1β)
impairs the parasite’s ability to establish
infection in vivo (57)

AY814430 Calpain (S. japonicum) 0.0497 100 MS3_02003 Calpain; 83% 2028 0 S. mansoni ortholog (Smp80) induces 64%
protection in a baboon model of
schistosomiasis (50)

Macaque-reactive proteins
AY815838 SJCHGC05998 protein

(S. japonicum)
1.18× 10−8e,
2.29× 10−8f

100 N/A

AY812161 UPF05056 protein (S. japonicum) 8.72× 10−4 e,
1.02× 10−6f

100 N/A

AY815056 SJCHGC06191 protein
(S. japonicum), marvel-containing
potential lipid-raft-associated
protein (S. mansoni); 90%

5.80× 10−8e,
2.36× 10−4f

100 N/A

AY810700 Solute carrier family 2 protein
(S. japonicum)

0.0071e 33 N/A Suppression of S. mansoni ortholog (SGTP1)
impairs the parasite’s ability to establish
infection in vivo (56)

AY812195 Extracellular superoxide
dismutase (Cu–Zn)
(S. japonicum)

0.0071f 83 N/A S. mansoni ortholog (SmCT-SOD) induces
39% protection in a mouse model of
schistosomiasis (58)

AY814158 Major egg antigen (p40)
(S. japonicum)

0.0444e 67 N/A

AY808379 SJCHGC09517 protein
(S. japonicum)

0.0454e 17 N/A

AY09526 SJCHGC09219 protein
(S. japonicum)

0.0504e,
0.0067f

67 N/A

aFor DIR-reactive proteins, difference is in elevation of IgG1 response of DIRs compared to CIs post-treatment.
bTransmembrane (TM) domains predicted by TMHMM 2.0. For full-length proteins, first TM domain contains an N-terminal signal sequence.
cProteins lack start methionine.
dWe believe the sequence represented by AY815690 [“myosin-7 (S. japonicum)”] has been incorrectly annotated due to its high degree of homology with other parasite orthologs of ribosome-binding protein 1 and lack of hits with any form
of myosin.
eDifference in elevation of IgG response between 0 and 12weeks p.i.
fDifference in elevation of IgG response between 0 and 20weeks p.i.
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FIGURE 4 | Some arrayed antigens that induce IgG1 responses in
Schistosoma haematobium-infected humans who acquire
drug-induced resistance after praziquantel treatment are not the
targets of IgE. Average adjusted signal intensity values depicting IgG1 and
IgE antibody responses to each IgG1 antigen reactive to post-treatment sera
from drug-induced resistant (DIR) humans. The dashed and solid lines are the
respective cut-offs for IgG1 (8239) and IgE (1861) reactivity, calculated as one
standard deviation of the mean of the no-DNA control spots on the array.
Schistosoma japonicum SEA is included for comparative purposes.

antibody recognition patterns were observed when using sera
from S. haematobium-exposed people to probe crude antigen
preparations from the closely related S. bovis, and vice versa (65).
Moreover, sequence variation in the epitopes of Sh28GST, and its
homologs from S. mansoni and S. bovis significantly altered the
immune response generated by the host (66).

Twenty reactive arrayed antigens were the targets of signif-
icantly greater IgG1 responses in DIRs compared to CIs post-
treatment. A further 72 (33%) proteins were the target of signif-
icantly different IgG1 recognition profiles between DIRs and CIs
but were below the reactivity cut-off. We hypothesize that at least
some of these IgG1-reactive proteins are major targets of protec-
tive immunity, engendering resistance to schistosomiasis through
an antibody-mediated neutralization of the cognate antigen, the
role of which is essential to the survival of the parasite within
the host (e.g., nutrient acquisition, immune evasion) such that
disruption of its function results in worm impairment. Indeed,
some of these antigens are protective in animal challenge models
of schistosomiasis; for example, vaccination with and the Ca2+-
activated protease, calpain (AY814430), induces 64% in baboons
(50). Sh28GST (a homolog of the arrayed immunoreactive protein
AY815303) is a multi-functional enzyme present in the tegument
and sub-tegument of adult (67) and larval (68) schistosomes
and the current focus of vaccine trials in humans (51). Its exact
function is unknown [studies suggest it may aid in immune
evasion by the parasite through its role in fatty acid metabolism
and prostaglandin D2 synthesis (69), but vaccine efficacy has
been attributed to the induction of antibodies that neutralize
enzyme activity (70)]. Other extracellular enzymes were promi-
nent amongst the IgG1-reactive proteins, including proteases (cal-
pain, mastin), esterases, and superoxide dismutase, so it is tempt-
ing to speculate that antibodies to these enzymes neutralize key
physiological processes (71, 72), and this now warrants further
investigation. Members of the TSP family in schistosomes (Sm-
TSP-1 and Sm-TSP-2) are four-transmembrane domain proteins
located within the tegument of larval and adult worms that have
functions in membrane biogenesis (73). TSP-based vaccines have
shown to be efficacious against schistosomiasis with Sm-TSP-1

and Sm-TSP-2 (33, 52) and Sj23 (54, 74) conferring protection in
animal challenge models.

Other significant IgG1 responses were aimed at tegument-
associated proteins that play fundamental roles in parasitism.
Surface-associated acetylcholinesterase (AChE) (AY810792) has
been implicated in the regulation of glucose scavenging from
host blood (75) and anti-AChE antibodies facilitate complement-
mediated killing of larval schistosomes (53). Genes encoding
the glucose transporter SGTP1 (AY810700), Na+/K+ ATPase
subunit SNaK1β (AY814977) and ectonucleotide pyrophos-
phatase/phosphodiesterase SmNPP-5 (AY814261) have all been
functionally silenced within schistosomes using RNAi (55–57),
resulting in impairment of the worm’s ability to establish infection
in the host and highlighting their importance to parasite survival.

Significantly IgG1-reactive proteins whose therapeutic poten-
tial has not yet been examined include mastin (AY812951)
and a MARVEL domain-containing lipid-raft-associated protein
(AY815056). Mastin is a trypsin-like serine protease and, in schis-
tosomes, proteases of this class are known as cercarial elastases
(CEs) for their role in skin degradation to facilitate penetration
of the free-living cercaria into the definitive host (76). Mastin,
however, differs in structural homology to CEs and has been
assigned to a group of “non-CE” serine proteases (77). The five
members of this group are yet to be functionally characterized
in terms of their roles in parasitism, but mastin is unique in
that it is highly upregulated in the intra-mammalian schistoso-
mula and adult stages [60 and 150% relative to the constitutively
expressed smcox1, respectively (77) compared to the free-living
stages of the parasite (78, 79), alluding to a fundamental parasitic
function]. MARVEL domains have four-transmembrane helix
architecture and proteins containing these motifs associate with
membrane micro-domains and have been implicated in mem-
brane biogenesis (80). In a pathogenesis context, the MARVEL
domain-containing protein Nce102 regulates actin organization
and invasive growth of Candida albicans, with Nce102 deletion
mutants showing decreased virulence in mice (81). Antigens such
as mastin and the MARVEL domain protein are attractive vaccine
candidates for the reasons described herein as well as the success-
ful use of proteases (82–84) and membrane structural proteins as
anti-helminth vaccines [e.g., Ref. (33, 54, 85, 86)].

A group of ribosome-associated proteins were also the tar-
gets of significantly higher IgG1 responses in DIRs compared
to CIs post-treatment and included ribosome-binding protein
1. Ribosome-associated proteins have received attention in the
field of parasite immunology because of their classification as
“patho-antigens” – conserved intracellular molecules capable of
inducing an immunopathological response (87). Patho-antigens
such as acidic ribosomal protein P0 conferred protection as vac-
cines against the intracellular parasites Leishmania major (87)
and Plasmodium yoelii (88) in mouse challenge models of infec-
tion, and antibodies to P. falciparum P0 have been detected
in individuals who are immune to malaria (89). The roles of
these antigens, such as ribosome-binding protein 1, in the induc-
tion of anti-schistosome immunity is unclear, but it is possible
that these intracellular molecules are stimulating host immune
effectors through exosome-mediated pathways [recently identi-
fied in related helminths (90, 91)]. It should also be noted that
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FIGURE 5 | Gene transcription in the adult and egg stages of S.
haematobium for all arrayed proteins inducing significantly different and
reactive IgG responses to DIR post-treatment sera. Data were assembled
from publicly available RNA-seq databases (43). These data were filtered for
quality (PHRED score of >30) using Trimmomatic (8) and aligned to the open

reading frames of the published gene set (7) using Bowtie (v2.1.0) (9).
Normalized levels of gene transcription were calculated using the software
package RSEM (v1.2.11) (10) and reported as the numbers of transcripts per
million reads sequenced (TPMs). The TPM value of each gene was
log2-transformed and subjected to heat map visualization using R.

ribosome-binding protein 1 was one of the two antigens recog-
nized by both S. mansoni-exposed PR subjects in Brazil and S.
haematobium-exposed DIR subjects in Africa (Figure 6), pos-
sibly highlighting a common role in different mechanisms of
schistosomiasis resistance.

IgE responses to arrayed antigenswere, for themost part, signif-
icantly weaker in post-therapy DIRs compared to pre-treatment
responses, which appears to be in contrast to the positive asso-
ciation between IgE levels and the process of acquiring DIR
status (25, 62). This could be likely for two reasons: (1) these
earlier studies on DIR employed soluble antigen preparations to
detect IgE responses, whereas the majority of arrayed proteins are
membrane-associated and therefore would not have been present
in buffer-soluble parasite extracts or (2) the DIR cohort, being
egg-negative, does not receive the IgE-inducing stimulus of egg
antigens (92). The latter explanation may be supported by the
case of extracellular SOD (AY812195); the IgE response to this

protein was significantly lower in egg-negative, post-treatment
DIRs (Figure 2B) but significantly higher in egg-positive, post-
treatment CIs (data not shown). Indeed, a recent study describing
the prediction of IgE-binding antigens in S. mansoni-infected
individuals reported no significant change in the IgE response
to extracellular SOD before and 5weeks after PZQ treatment
(93), which lends support to the observation that the waning
IgE response to some antigens in DIRs might be due to the
reduced amount of IgE-inducing stimulus received by this cohort.
Less than half of the antigens that were significantly reactive for
DIR post-treatment IgG1 compared to pre-treatment levels were
reactive (above the cut-off) for IgE responses.

IgE poses somewhat of a conundrum for helminth vaccinolo-
gists due to its clear association with naturally acquired protec-
tion (22, 63), but the accompanying risk of vaccinating people
with a recombinant protein that is the target of pre-existing IgE
responses and poses the risk of inducing atopy (64), or potentially
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FIGURE 6 | IgG antibody profiles to arrayed antigens differ in
Schistosoma japonicum-infected, self-curing rhesus macaques
during the course of infection from exposure to perfusion. Average
adjusted signal intensity values depicting IgG antibody responses to each
significantly reactive antigen are shown at baseline (0weeks), 12weeks
post-infection, and elimination (20weeks post-infection). The dashed line is
the cut-off for IgG reactivity (3210), calculated as one standard deviation of
the mean of the no-DNA control spots on the array. Statistical analysis was
performed using Student’s t-test. *p< 0.05, **p<0.01, ***p< 0.001.

FIGURE 7 | Different disease models of schistosomiasis resistance
show common IgG responses to some arrayed antigens. Venn diagram
depicting common IgG reactive proteins between Schistosoma
haematobium-infected humans from an endemic area in Africa who acquire
drug-induced resistance (DIR) after praziquantel treatment, Schistosoma
japonicum-infected self-curing rhesus macaques, and Schistosoma
mansoni-infected humans from an endemic area of Brazil who are naturally
resistant (PRs). *Data from Gaze et al. (20); % IgG1 response to AY812195 is
significantly different between DIRs before and after praziquantel treatment
but not between DIRs and CIs post-treatment; #AY814977 and Smp_124240
are the respective S. japonicum and S. mansoni orthologs of SNaK1β. ∧We
believe the sequence represented by AY815690 [“myosin-7” (S. japonicum)]
has been incorrectly annotated due to its high degree of homology with other
parasite orthologs of ribosome-binding protein 1 and lack of BlastP hits with
any form of myosin.

anaphylaxis. Instead of excluding potentially protective IgG1-
inducing antigens that are the targets of parasite-derived IgE in
exposed individuals from further vaccine development, we pro-
pose that the molecules be assessed for allergenicity through the
use of basophil-activation studies, given that the induction of IgE

and clinical manifestation of allergy are not mutually inclusive
events (94). Another strategy aimed at minimizing potential aller-
genicity of helminth proteins involves their fusion to Fcγ, thereby
directing the chimeric protein to the negative signaling receptor
FcγRIIb expressed on pro-allergic cells (95).

The IgG1 response in S. japonicum-infected self-curing
macaques to the majority of reactive antigens was significantly
higher at 12weeks p.i. [around the time that worm death starts
to occur (34)] compared to week 0. Proteins that were the tar-
get of these antibodies included a protein with weak sequence
homology to a bacterial hydrolase (AY815838), extracellular
SOD (AY812195), and the previously discussed glucose transport
and MARVEL domain-containing proteins. Extracellular SOD is
thought to facilitate the parasite’s evasion of the immune response
by neutralizing the effects of reactive oxygen and nitrogen species
and has proven efficacious in murine vaccine trials (58). More-
over, both hydrolases and anti-oxidant enzymes were suggested to
be the targets of IgG-mediated worm elimination in a previously
established macaque self-cure model of schistosomiasis (34).

Given the cognate recognition of antigen by both B and helper
T cells in the immune response, we hypothesize that the best
antigens for a recombinant protein vaccine are those that elicit
responses by both antibodies and T cells during the acquisi-
tion of DIR. The antigens described herein should now be sub-
jected to further refinement by assessing their ability to drive T-
cell proliferation ex vivo. T-cell profiling of B-cell antigens has
been conducted for the vaccinia virus (discovered using protein
array profiling) where plasmids encoding arrayed proteins were
expressed as inclusion bodies and screened for T-cell reactivity in
a high-throughput format (96).

In this pilot study, we have described the screening of a schis-
tosome protein array to identify potential targets of protective
immunity in S. haematobium-infected people who acquire DIR
after PZQ treatment, with the hypothesis that these antigens are
responsible for essential parasitic functions such that antibody-
mediated neutralization of thesemolecules result in worm impair-
ment or death. While the modest number of targets identified
from this work may be reflective of the heterogeneity between the
antigens and sera used in the study, a benefit of this approach is
the identification of proteins that are cross-reactive between S.
haematobium, S. japonicum, and S. mansoni, a desirable feature
of a vaccine antigen if it is to be protective against all medically
important schistosome species. If a pan-schistosome vaccine is
developed, it will likely be part of a control program that inte-
grates a vaccination cocktail of multiple recombinant antigens
with chemotherapy, and so a comprehensive portfolio of the
targets of DIR is a crucial component of the vaccine discovery
strategy. Future iterations of our protein array will be expanded to
represent even more of the schistosome proteome, ensuring that
an extensive complement of DIR-reactive vaccine antigens will be
available for progression into further development.
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