
Of Nests aud Trees: A Untied Approach to Processing Queries
That Contain Nested Subqueries, Aggregates, and Quantifiers

Umeshwar Dayal

Computer Corporation of America

4 Cambridge Center

Cambridge, Massachusetts 02142-1489

Abstract

Existing query optimizers focus on Restrict-Project-Join

queries. In practice, however, query languages such as SQL and

DAPLEX have many powerful features (eg., control over dupli-

cates, nested subqueries, grouping, aggregates, and quantifiers)

that are not expressible as sequences of Restrict, Project, and

Join operations. Existing optimizers are severely limited in their

strategies for processing such queries; typically they use only

tuple substitution, and process nested subquery blocks top

down. Tuple substitution, however, is generally inefficient and

especially so when the database is distributed. Hence, it is

imperative to develop alternative strategies. This paper intro-

duces new operations for these difficult features, and describes

implementation methods for them. From the algebraic proper-

ties of these operations, new query processing tactics are

derived. It is shown how these new tactics can be deployed to

greatly increase the space of interesting strategies for optimisa

tion, without seriously altering the architecture of existing

optimisers. The contribution of the paper is in demonstrating

the feasibility and desirability of developing an integrated frame-

work for optimising all of SQL or other query languages that

have similiar features.

1. Introduction

Most research on query optimisation has focused on conjunc-

tive queries, i.e. queries that can easily be translated into

restrict-project-join expression8 of the relational algebra

[CODD70]. However, practical query languages, such as

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and tbe

title of the publication and its date appear, and notice is given that
copying is by permission of tbe Very Large Data Base Endow-

ment. To copy otbcxwise. or to republish. requires a fee and/or spe-

cial permission from the Endowment.

In [KIM82], Kii showed that some nested SQL queries could

be transformed into equivalent “canonical” queries that did not

contain nesting; for example, query 1 could be transformed into

query 2 (the queries are not quite equivalent, but more on this

issue later):

Query 2
SELECT

FROM

WHERE

E.Name

EMP E, DEPT D

E.Dept# = D.Dept# AND

D.Loc = ‘Denver’ AND

E.Emp# = D.Mgr

-P)

..(Jl)

..@)

..(J2)

Proceedings of the 13th VLDB Conference, Brighton 1987 197

SQL (CHAM76, DATE851 and DAPLEX [SHIP81\, [SMIT831

have many features (e.g. nested subquery blocks, control over

duplicates, aggregation functions, grouping and quantifiers) that

cannot be mapped to the restrict-project-join subset of the rela-

tional algebra. Such languages pose an important challenge for

query optimisation. The semantics of queries that use these

features are often described procedurally, and existing query

optimkers are severely limited in their tactics for processing

such queries.

Consider, for example, the following relations:

EMP (Emp#, Name, Dept#, Sal)
DEPT (Dept#, Name, Lot, Mgr)

and the following SQL query, which contains a nested subquery

block:

QuerJ 1

SELECT E.Name

FROM EMP E

WHERE E.Dept# IN
SELECT D.Dept#

FROM Dept D
WHERE D.Loc = ‘Denver’ AND

E.Emp# = D.Mgr

The semantics of SQL prescribe that the tuples of the EMP
relation be substituted in turn into the inner subquery block: for

each tuple E of EMP, the inner block is evaluated to yield a lit

of Dept# values; if E. Dept# is in this list, then E.Name is

inserted into the result. The system R optimiier follows this

prescription quite literally, optimiing only the execution of the

inner block (after the substitution, the inner block contains two

selections and the optimiser considers strategies for efficiently

evaluating them) [SELI79].

Kim argued that query 2 was in a better form for optimization,

because it allows the optimizer to consider more strategies.

First, expressing the “nesting” predicate (... IN SELECT . ..)

between query blocks as an explicit join enables the optimizer to

consider alternative methods (e.g. sort-merge) for implementing

the join instead of always using tuple substitution. (Note that

tuple substitution corresponds to the nested iteration method of

join implementation [BLAS77].) This is especially important in

distributed database systems, because -- as the experimental

results of IMACK86a, MACK86b] show -- it is inefficient to do

tuple substitution across a network. Second, it is easier to see

from the form of query 2 that the query contains two joins

between the EMP and DEPT relations; the optimiier may

decide that it is less expensive to join the two relations on the

E.Emp# = D.Mgr predicate first (this is probably the more res-

trictive predicate anyway), and to apply the other predicate as a

restriction.

In general, expressing a query more non-procedurally or in

algebraic form, gives the optimiser more leeway in selecting

efficient strategies. The goal of this paper is to describe tactics

for increasing the strategy space considered by an optimizer for

queries that contain nested blocks, control over duplicates,

aggregate functions, grouping, and quantifiers. We use DB2 SQL

(ss described in [DATE85]) to describe these tactics. However,

the approach works just as well for other query languages (e.g.

DAPLEX, QUEL) that enjoy some or all of these features.

Our approach is quite eclectic: it builds upon previous work

on nested subqueries [KIM82, LOHM84, GANS87], aggregate

queries [KLUG82], quantified queries [DAYA~~], and outerjoins

[ROSE84], but shows the feasibility and desirability of integrat-

ing these ideas in a common framework. [KIM821 and [CANS871

transform a nested SQL query into a collection of queries that

are still expressed in SQL (or, in the case of [GANS87], a simple

extension of SQL that includes outerjoins). However, existing

SQL optimisers are not good at optimising collections of queries.

[CERI85] shows how to compile SQL queries into an extended

relational algebra (which includes one very interesting operator

corresponding to the GROUP BY and aggregation constructs of

SQL). However, while this algebra may be useful for defining the

approximate semantics of SQL, it is of limited applicability to

the query optimisation problem because it ignores the tricky

semantics of duplicate control in SQL, and its transformation

rules can produce algebraic expressions that are difficult to

optimise.

In contrast, our approach is to compile SQL queries into a

more powerful internal form based on an algebra of duplicate

elimination, generalised join, generalized restriction, and gen-

eralised aggregation operations. We show that these generalised

operations can be implemented by simple extensions to algo-

rithms that are already implemented in existing query proces-

sors. Using a unified algebraic framework makes it possible to

optimise entire queries, instead of optimising subquery blocks

piecemeal. Finally, we argue that the new operators can be

accommodated without causing great violence to the tactics for

strategy enumeration and cost estimation employed by existing

optimisers.

The focus of this paper is on the operations and how their

properties can be used to increase the strategy space for optimi-

zation; detailed heuristics for strategy enumeration and cost

modelling are orthogonal issues. For concreteness, the reader

may assume that strategies are enumerated by dynamic pro-

gramming and that a cost model simiiar to that in [SELI79,

LOHM84, MACK86a,b] is used. Also, a formal framework for

proving the correctness of these tactics is beyond the scope of

this paper.

In Section 2, we briefly review the conventional approach to

processing simple conjunctive queries, which do not contain

nested blocks, aggregates, or quantifiers. In Section 3, we

describe our approach for queries that may contain nested

subquery blocks but are free of aggregates and quantifiers.

Aggregates are considered in Section 4, and quantifiers in Sec-

tion 5. Section 6 describes extensions to the basic technique to

deal with other syntactic features of SQL such as nesting predi-

cates other than IN, and disjunctions and unions.

2. Simple Non-Nested Conjunctive
Queries

For queries that consist of a single block (i.e., with no nested

subquery blocks), processing is straightforward. For simplicity,

assume conjunctive queries (i.e., queries in which AND is the

only logical connective); we relax this assumption in Section 6.

Such queries can be processed completely by sequences of Res-

triction, Projection, and Join operations. Our syntax for these

operations is: Restrict(relation; predicate), Project(relation;

attribute-list), and Join(relation1, relationa; join-predicate). For

example, Query 2 of the last section can be evaluated by Res-

tricting DEPT on R, Joining the result with EMP on Jl AND

J2, and then Projecting on P.

SQL semantics require two types of Project operators, one

that preserves duplicates (Project) and another that eliminates

them (Delta-Project). (Note that DelticProject is the projection

operator of the “standard” relational algebra [CODD’IO].) Query

2 requires the use of Project; however, if the SELECT statement

were changed to SELECT DISTINCT E.Name, then we would

have to change the last step to Delta-Project on E.Name.

Note that Project is easily implemented in one scan of the

relation. However, Delta-Project requires that the relation be

grouped or sorted by the attributes over which we are project-

ing, so that duplicates can easily be detected; alternatively, an

index or hash function on the projection attributes may be used.

The properties of Restrict, Join, and Delta-Project are well

known. The properties of Project are similar to those of Delta-

Project, except that Project and Delt*Project do not commute

(see [DAYA82] for details). These properties are used to develop

tactics for query optimization. Because joins commute and asso-

ciate, any permutation of the joins in a query is feasible; restric-

tions and projections can be positioned anywhere relative to the

joins (except, of course, that attributes needed for later process-

ing cannot be projected out).

Thus, optimisation of single-block queries consists of choosing

the best permutation of the joins, positioning restrictions and

projections relative to joins, choosing the best implementation

method for each join, and choosing access paths (e.g., indices,

hash keys) [SELI79].

To allow the optimizer maximum flexibility in selecting join

permutations, we use a canonical internal representation of the

query, called a query graph [BERNal]. There is one node in

198 Proceedings of the 13th VLDB Conference, Brighton 1987

the query graph for each relation variable (synonym) appearing

in the query; each node is labelled with any restriction condi-

tions involving that variable, and with any attributes of that

variable that appear in the SELECT list of the query. There is

one edge between nodes R and S in the query graph for each

simple join predicate of the type (R.A op S.B) in the query. For

complez predicates, e.g., (R.A = S.B + T.C), we introduce spe-

cial “restriction nodes” labelled with the complex condition, and

“precedence edges” directed from the variables involved in the

condition to the restriction node. (The reason for treating these

conditions separately is that there are unlikely to be any special

access paths for efhciently evaluating them, so they will have to

be evaluated as restrictions during or after a join.) Completely

disconnected nodes should be connected to every other node by

join edges labelled “True”; these correspond to Cartesian Pro

duct operations. Figure 2.1 shows the query graph for Query 2.

EMPE

Project E.Name

E.Dept#=D.Dept#

AND E.Emp#=D.Mgr

DEI’T D I

Restrict Loc=‘Denver’

Figure 2.1 Query Graph for Query 2

The optimher can select any permutation of the join edges

that form a spanning tree of the query graph. The remaining

joins and complex restrictions are all evaluated as restrictions.

In practice, restrictions and projections are evaluated as early as

possible. The following property is used to combine a restriction

with the last join that brings together all the attributes required

to evaluate the restriction: Restrict(Join(R,S;J); P) =

Join(R,S;J AND P).

The output of the optimiser is an ezecution plan, which may

be represented abstractly by a directed acyclic graph whose

leaves are relations stored in the database, whose internal nodes

are operators of the algebra, and whose edges prescribe an order

of execution.

3. Nested Queries without Aggregates
or Quantifiers

To extend the concepts of Section 2 to nested queries

without aggregates or quantifiers we add a semijoin operator to

our algebra. The semijoin of relation R by relation S on condi-

tion J is defined as the subset of R-tuples for which there are

matching S-tuples that satisfy J, i.e., Semijoin (R, S; J) = { r E

R 1 3 s c S (J (r,s))}. Note that the semijoin operation is not

symmetric.

Semijoins were introduced as a tactic for distributed query

processing in [BERN 811. It was shown in [CERI 851 that semi-

joins are essential to correctly interpreting nested queries in

SQL. In fact, the only difference between queries 2 and 1 of

Section 1 is that where the former requires a join between

DEPT and EMP, the latter requires a semijoin: if an EMP tuple

E joins with more than one DEPT tuple, that E.Name will be

repeated in query 2’ sresult as many times as there are matching

DEPT tuples, but will show up only once in query 1’ sresult.

Semijoins can be implemented by only slightly modifying join

implementation methods. First, remark that although the join

operation is defined symmetrically, all join implementation

methods are asymmetric: for each tuple of one relation (called

the “outer”) perhaps ordered in some sequence, an access path is

used to find all matching tuples of the other relation (called the

“inner”) also perhaps ordered in some sequence; these matching

tuples of the inner relation are concatenated to the tuple of the

outer relation to produce tuples of the result. If no matching

tuples of the inner relation are found, then nothing is output.

To produce the semijoin of the outer relation by the inner

relation, we merely modify any join method as follows: output

the tuple of the outer relation as soon as the first matching tuple

of the inner relation is encountered, and then advance to the

next tuple of the outer relation. When the two relations are

stored at different sites in a distributed system, it may be

cheaper to delta-project the inner relation on its join attributes,

and to move this projection to the site of the outer relation,

instead of moving the entire inner relation. (The trade-off is in

the extra cost of the deltsproject versus the reduction in the

amount of data moved. Other implementations are also possi-

ble.) The cost of a semijoin is easily estimated by modifying the

cost of the join.

The rules for constructing the query graph of a nested query

are simple extensions of those for a simple conjunctive query.

Relation nodes and join edges are introduced for each relation

and join condition occurring inside the nested block; in addition,

for each nesting predicate of the type R.A IN (SELECT S.B . ..).

a “semijoin edge” is introduced between the nodes for R and S,

and is labelled semijoin(R, S; R.A = S.B); finally, for each

correlation predicate of the type (R.C op S.D), where R and S

are in different blocks, a semijoin edge is introduced. Figure 3.1

shows the query graph for the following query:

Query 3

SELECT E.Name

FROM EMP E

WHERE E.Dept# IN

SELECT D.Dept#

FROM DEPT D

WHERE D.Name = ‘R&D’

AND D.Mgr IN

SELECT E2.Emp#

FROM EMP E2

WHERE E.Sal > E2.Sal

..(Jl)

..(J2)

..(J3)

The optimizer can consider semijoin edges together with join

edges in choosing permutations. Sometimes, for cyclic queries, a

semijoin has to be turned into a join (if attributes required for

later processing must be retained). For Query 3, for example, if

the permutation [Jl, J2j is used, Jl must be replaced by a join,

because its Mgr attribute is needed for the second join; however,

J2 and 53 cau be performed together as a semijoin. To produce

199 Proceedings of the 13th VLDB Conference, Brighton 1987

without the need for a Del&Project on D.* (the semijoin on Jl

AND J3 eliminates duplicates anyway, and hence produces the

correct result).

Semijoin(E,D;
E.Dept#=D.Dept#)

EMPE

Project E.Name Restrict D.Name='R&D'

v

DEPT D

Semijoin(E.E2; Semijoin(D,E2;
E.SalBE2.Sal) D.Mgr=Ez.Emp#)

Et@ E2

Figure 3.1 Query Graph for Query 3

the correct result, a Delta-Project on E.* is necessary before the

final Project.

Before we give the formal rule to describe this transforma-

tion, we must introduce some notation. We assume that each

relation R has a TID (“tuple identifier”) attribute that serves as

a primary key. (A user-supplied primary key attribute may be

substituted for TID in the following discussion.) We also assume

in practice that the operands of a join are duplicate-free. Rel;c

tions stored in the database can be made duplicate-free by con-

catenating the TID attributes. Then the result of the join is

also duplicate-free; the TID of the result may be obtained by

concatenating the TIDs of the operands. Whenever a Project

operation is used to reduce the width of an operand, the TID is

included, so that the operand is still duplicate-free. (Only the

final Project may introduce duplicates.) We write R.* to mean

all attributes of R. The rule for converting a semijoin to a join

then is:

Semijoin (R: S; J) =

Delta-Project (Join (R, S; J) ; R.*)

Because Delta-Project commutes with Join and Restrict, but

not with Project, the optimizer can delay the Delta-Project

operation, but not beyond the final Project on the attributes in

the SELECT clause. In particular, it may be advantageous to

delay the Delta-Project if at some subsequent stage, the inter-

mediate result is going to be sorted or grouped on the projection

attributes (this will reduce the cost of duplicate elimination).

Even though Delta-Project and Project cannot be commuted,

the following rule still allows us to reduce the size (width) of

intermediate results by projection:

Project(DeltsProject(R;X2); Xl) =

Project(Delta-Project(Project(R;X3); X2); Xl),

where Xl is contained in X2, which is contained in X3. Thus,

we can project out attributes that are not required for future

Delta-Projects or the final projection.

Another useful transformation rule allows us to absorb

Delta-Project into a subsequent Semijoin:

Semijoin(R, Semijoin(S, T; J2) ; Jl) =

Semijoin(R, Join(S, T ; 52) ; Jl)

Using this rule in the permutation 152, Jl] for Query 3, allows us

to solve J2 as a join, and then Jl and 53 together as a semijoin,

200

4. Queries with Aggregates

To describe tactics for processing aggregates, we introduce in

Section 4.1 three new operators: generalised aggregation, gen-

eralized join, and generalised restriction. We define each of

these operators in turn, describe implementation methods, and

illustrate its use in processing SQL queries. Then, in Section 4.2,

we describe tactics that use these operators for processing

queries that contain aggregates.

4.1 Operators for Queries with Aggregates

Generallred-Aggregation

The syntax of this operation is: G-Agg(R; X; fnvector),

where R is a relation, X is a list of attributes of R (called the

grouping attributes), and fnvector is a vector of aggregation func-

tions applied to attributes of R. An aggregation function is a

function that takes a set of tuples and computes a single value.

The built-in aggregation functions in SQL are COUNT, SUM,

MAX, MIN, AVERAGE and their DISTINCT variants.

The meaning of the G-Agg operation is as follows: partition

R is such a way that each block (group) of tuples has the same

X-value; then evaluate each aggregation function in fnvector

over the tuples in a group. The result of this operation is a rela-

tion whose attributes are the grouping attributes X together

with as many new attributes (named for the respective aggrega-

tion functions) as there are aggregation functions in fnvector.

(This is the FN operation introduced in [CERI85].) By conven-

tion, if the list of grouping attributes, X, is empty, then all the

tuples of R are in a single group. Note that the grouping attri-

butes constitute a primary key of the result.

G-Agg is implemented by modifying the implementation of

Delta-Project as follows: Use any access paths (sorting, hiwhing,

indexing, clustering) on the grouping attributes to scan the

tuples in one group of the partition; accumulate the values of

the aggregate functions; at the end of the group, output the

grouping attribute values concatenated with the aggregated

values; then move on to next group. Accumulating values is

easy: for example, for COUNT, start with the initial value 0,

and then increment the accumulator as each new tuple is

scanned; for MAX, start with the initial value NULL, and then

for each new tuple, replace the accumulator by the max of

current value and the new tuple value (where MAX(NULL,a) =

a, for a # NULL); for AVERAGE, accumulate both COUNT

and SUM. Accumulating the DISTINCT variants is a little

more complicated. The solution is to use an additional access

path (eg. minor sort: second hash function) that further sub-

groups the tuples in each group by the attributes to be aggre-

gated. This will simplify the detection of duplicates in the

group; only the first value in each subgroup is accumulated, and

the scan then skips to the next subgroup. (Note that SQL disal-

lows the occurrence of more than one DISTINCT variant in a

SELECT clause. If this condition were reluced, the processing

of Delta-Project and G-Agg would become more complicated,

proceedings of the 13th VLDB Conference, Brighton 1987

because additional passes would be needed.)

To see how G-Agg is used in processing SQL queries, con-

sider the following query.

Query 4

SELECT E.Dept#, AVERAGE(E.Sal),

COUNT DISTINCT(E.Name)

FROM EMP E

GROUP BYE.Dept#

This query is equivalent to G-Agg(EMP; Dept#;
AVERAGE(Sal), COUNT DISTINCT(Name))

The next example shows how G-Agg can be pipelined with

the evaluation of Join.

Query 5

SELECT D.Dept#, AVERAGE(E.Sal)

FROM EMP E, DEPT D

WHERE E.Dept# = D.Dept#

GROUP BY D.Dept#

The query consists of a Join followed by a G-Agg. An efficient

execution plan can be obtained by making the following impor-

tant observation: all the join evaluation methods implemented

by existing systems have the property that the result is grouped

by tuples of the outer relation (or, equivalently, by the TID or

other key of the outer relation). Hence, if DEPT is chosen as the

outer relation, and if Dept# is its key, then the result of the

join will already be grouped by D.Dept#, and so can be pipe-

lined into the G-Agg computation.

In general, pipelining will not be possible if the query

requires grouping by non-key attributes. For example, if the

grouping attribute was D.Loc, then the result of the join will not

be grouped correctly for the G-Agg computation (unless DEPT

was already grouped by Lot). That G-Agg could be implemented

by accumulating aggregate values during a scan, and could be

pipelined with Join, was described in [KLUG 821. However, the

necessary condition for pipelining, v-is. that the grouping attri-

butes form a key of the outer relation, is new.

A similar strategy works for nested queries in which aggre-

gates appear in the WHERE clause. Consider, for example, the

following query:

Query 6

SELECT D.Name

FROM DEPT D

WHERE D.Budget < =

SELECT 1000 * AVERAGE(E.&l)

FROM EMP E

WHERE E.Dept# = D.Dept#

This query can be solved by pipelining the following sequence of

operations: the join of E and D on predicate E.Dept# =

D.Dept#; followed by the computation of the AVERAGE

proceedings of the 13th VLDB Conference, Brighton 1987

(grouped by D.TID, D.Budget); followed by the restriction

D.Budget <= 1000 * AVERAGE; followed by the projection on
D.Name. (Note that we had to include D.Budget in the group

ing attributes of the G-Agg operation, because we need

D.Budget in order to do the restriction; this does not affect the

computation of G-Agg, since D.Budget will be unique for each

D.TID anyway.)

An alternative plan for solving this query is to pipeline the

following sequence of operations: compute G-Agg(E; E.Dept#;

AVERAGE(E.Sal)); then join with D on the combined condi-

tion D.Budget <= 1000 * AVERAGE AND D.Dept# =

E.Dept#; followed by the final projection on D.Name. This strb

tegy is an adaptation of Kim’s rule [KIM821, but unlike the

latter does not produce two separate queries; including all opera

tions in a single plan makes it possible to optimise the whole

There is a tradeoff between these two plans. The first may

compute the aggregate many times for the same D (if Dept#

were not the key); the second requires that E be grouped or

sorted by Dept#. Both alternatives must be considered by the

optimiser.

Generallred-Join and Generallred-Restrict

The motivation for these operations proceeds in two steps.

First, we show that outerjoins are necessary for certain queries

that contain aggregates. Next, we show that regular joins (hith-

erto simply called joins) and outerjoins do not ordinarily com-

mute, but treating them as special cases of a generalized join

results in a workable sort of commutativity.

Consider Query 0 but with AVERAGE(E.Sal) replaced by

COUNT(E.Emp#). We would like to be able to solve this query

by plans similiar to the two described above for query 6. How-

ever, we would not quite get the correct answer: the join would

delete departments that have no employees, so the names of
these departments would not appear in the result; evaluating
the query using strict SQL semantics, however, would return 0

for the COUNT of the employees in such departments, and of

these, the ones with budgets <= 0 should appear iu the result.
This is precisely the “count bug” in the rules of [KIM821 that is

described in [GANSS’I]. There is no clean way of making the

second plan (based on Kim’s rule) work; the first plan, however,

can be modified to use an outerjoin instead of the regular join.

The outerjoin of R by S on predicate J is the union of the

regular join and tuples formed by padding out the unjoined

tuples of R with NULL values. Formally, Outerjoin(R,S;J) =

Union(Join(R,S;J), Product(Antijoin(R,S;J), NULL-S)), where

NULLS is an all-null tuple of the same degree as S, and

Antijoin(R,S;J) is the complement in R of Semijoin(R,S;J).

Note that this operation is asymmetric [CODD79, LACR78,

ROSE84j.

To implement Outerjoin(R,S;J), modify any method for

Join(R,S;J) with R as the outer relation as follows: for any tuple

of R for which the set of matching S-tuples is empty, output the

tuple of R padded with NULL values.

If we replace the join of DEPT and EMP in our example by

the outerjoin, then we will retain all DEPT tuples, and the sub-

sequent COUNT and restriction will come out correct. Any res-

‘tricti6ns on D (e.g., D.Loc = ‘Boston’) that occur inside the

201

-”

nested block are treated as “outerrestrictions” and are combined

with the join predicate of the outerjoin. Note that this problem

arises only when the aggregate function is COUNT. The other

aggregate functions return NULL when evaluated over the

empty set, and since NULLS cannot satisfy any conditions in the

WHERE clause, these DEPT tuples cannot possibly contribute

to the query’s result. (In section 5 we shall see that Outerjoins

also arise when the NOT EXISTS quantifier is used.)

While [GANS87] correctly underscored the importance of

outerjoins, its transformation rules are of limited utility for

several reasons. First, its rules use symmetric outerjoins, which

are more difficult to implement than our asymmetric outerjoin.

Second, its rules would transform the above query into two

queries, one containing the outerjoin, group by, and aggregation,

and the other containing the <= restriction and final projection.

Unless the optimizer can simultaneously optimiie a collection of

queries, it will not discover that the join, aggregation, restriction

and projection can all be pipelined. Third, a different rule is

needed for queries where the join condition is different from

equality. Finally, [GANS87] does not describe tactics that mix

joins and outerjoins, as we do.

A complex query may be transformed into an expression that

contains both regular joins and outerjoins. In [DAYA83], we

described strategies for such queries. We showed that it is

always correct to process all regular joins before any outerjoin.

In general, it is not possible to directly commute a regular join

and an outerjoin (see Fig. 4.1), i.e., Outerjoin(R, Join(S,T;J2);

Jl) # Join(Outerjoin(R,S;Jl), T; 52). However, this restricts

the space of permutations that can be considered by the optim-

izer. Sometimes it may be better to process an outerjoin before a

regular join (e.g., in Figure 4.1, the outerjoin Jl will knock out

moat of relation S, thus making the later regular join 52

cheaper.) To allow the optimizer to consider such permutations,

we introduced ia [DAYA a graft operator, which operated on

trees and generalised both regular join and outerjoin. We did

not, however, describe how to implement grafts. In this paper,

we introduce, instead, a generalized-join operator that can be

implemented easily by join-like methods on relations.

Let X be a subset of R’s attributes and let Y be R.* - X.

Then the generalized-join of R by S on predicate J preserving

attributes X is written G-Join(R,S;X;J) and is equal to the union

of the regular join of R and S, together with tuples formed by

delta-projecting the unjoined tuples of R on X and then padding

them out with NULL values. Formally, G-Join(R,S;X;J) =

Union(Join(R,S;J), Product(Delta-Project(Antijoin(R,S;J);

X), NULGYS)), where NULL-YS is an all-null tuple over the

union of attributes in Y and S. By convention, if R is

duplicate-tiee, G-Join(R,S;@;J) is the regular join, and G-

Join(R,S; R.*; J) is the outerjoin. Like the outerjoin, this opera-

tion is asymmetric. A symmetric version is easy to define, but

unnecessary for our purposes.

Now, the reader can convince himself that, for the query in

Figure 4.1, G-Join(R, G-Join(S,T;@;JZ); R.*; Jl), which

corresponds to doing the regular join 52 before the outerjoin Jl,

is equivalent to G-Join(G-Join(R,S; R.*; Jl), T; R.*; J2), which

corresponds to doing the outerjoin Jl first and then a join on

condition J2 that is neither an outerjoin nor a regular join. We

will discuss later the rule for determining which attributes to

preserve when we move a regular join past an outerjoin.

202

RA B

a b

al b

SA C TC D

a c c d

a cl

a2 c

a3 c

. . . .

a10 c

Uuterjoin(R,Join(S,T;J2);Jl)

R.A R.B S.A S.C T.C T.D

a b a c c d

al b - - - -

Join(Outerjoin(R,S;Jl).T;J2)

R.A R.B S.A S.C T.C T.D

a b a c c d

Figure 4.1 Joins and Outerjoins Do Not Commute

G-Join is implemented by a straightforward modification to

any method for implementing Outerjoin. Note that the Delt;c

Project step requires grouping the outer relation R by the

preserved attribute set X.

We also need a Generalized-Restrict operator, which is

analogous to the generalized-join and generalizes restrict and

outerrestrict. G-Restrict(R; X; P), where X is a subset of R.*

and P is a predicate, is the union of Restrict(R; P) together

with the remaining tuples of R delt+projected on X and then

padded out with NULLS.

4.2 Tactics for Queriea that Contain Aggregates

We describe in four steps the tactics for processing queries

that contain nested subquery blocks and aggregates. First, we

show how to construct query graphs for these queries. Second,

we describe which enumerations of G-Joins are legal for the

optimizer to consider. Third, we show how to position G-Age
operations in a sequence of G-Joins (and G-Restricts). Fourth,

we describe a generally useful tactic, pipelining.

Query Graphs

The query graphs of aggregate queries must represent outer-

join, outerrestrict, and G-Agg operations. An outerjoin is

represented by au edge directed from the outer relation to the

inner. Outerrestrict and G-Agg operations are represented by

special -nodes that are connected to other nodes by precedence

edges (as we did with restriction nodes in section 2). In addi-

tion, for outerrestricts, we must indicate the outer relations (i.e.:

the preserved set).

If the SELECT or HAVING clause of a block contains an

aggregate function, we call it an aggregate block; if it contains a

COUNT function, we also call it a COLINT block. The scope of a

block is the block itself and all the blocks nested within it (to

l’meedings of the 13th VLDB Conference, Brighton 1987

any level). The immediate scope of an aggregate block is the set

of blocks in its scope but not in the scope of any other aggregate

block in its scope.

We define a predicate that is in the immediate scope of a

COUNT block B to lx an outer predicate if it involves any vari-

ables that are defined outside the scope of B. Such variables are

said to be outer variables with respect to B. All other predicates

are said to be regular and all other variables defined in B’sscope

are said to be inner with respect to B.

The query graph of an aggregate query contains one node for

each variable in the query. For regular predicates, the rules

described in sections 2 and 3 apply: i.e., we introduce regular

join edges for simple join predicates involving variables defined

in the same block; restriction nodes and precedence edges for

complex predicates; restriction labels for one-variable restriction

predicates; and semijoin edges for simple nesting predicates and

simple correlation predicates. Nesting predicates of the form

R.A op (SELECT AGG(S.B)...) and HAVING AGGl (R.A) OP

(SELECT AGGO(S.B)...) are treated as complex predicates; also

unless R and S are already connected by a semijoin edge, intro-

duce an edge labelled Semijoin (R,S; TRUE).

For each simple outer predicate that involves an outer vari-

able and an inner variable, introduce an outerjoin edge directed

from the outer to the inner variable. For all other outer predi-

cates, introduce outer-restriction nodes and precedence edges

from all the variables involved; label “outer” the precedence

edges from the outer variables.

Finally, for each aggregate block B, introduce an aggregation

node labelled with a G-Agg operation as follows: the grouping

attributes include the outermost GROUP BY attributes, if any,

the TIDs of all variables outside B’ sscope that occur in correl;c

tion predicates in B’simmediate scope, and any other attributes

that may be needed for future restrictions or projections; the

fnvector consists of all the aggregate functions in the SELECT

and HAVING clauses. Introduce precedence edges from all

nodes corresponding to variables whose attributes appear in the

G-Agg label and from all nodes corresponding to variables and

predicates in the immediate scope. Introduce precedence edges

from the aggregation node to any restriction node in which the

result of the G-Agg operation is used.

Figure 4.2 shows the query graph for the following query.

Note the outerjoin edge and outerrestriction node corresponding

to the predicates OJ and OR, respectively.

Query 7

SELECT D.Name, SUM(E.Sal)

FROM DEPT D, EMP E

WHERE D.Dept# = E.Dept#

GROUP BY D.Dept#, D.Loc

HAVING AVERAGE(E.Sal) >=

SELECT loo0 * COUNT(E2.Emp#)

FROM EMP E2

WHERE Ea.Dept# IN

SELECT DZ.Dept#

FROM DEPT D2

WHERE D2.Loc = D.Loc AND

D.Name # Sales

..(OJ)

..(OR)

Note that G-Joins and G-Restricts do not appear on query

graphs. They appear only in execution plans derived as a result

of permuting joins and outerjoins as discussed below.

Legal Join Permutations

As usual, we have to pick permutations of the join edges of

the query graph that form a spanning tree; the other joins are

performed as restrictions. First, consider the (skeletal) query

graph of Figure 4.4. Because outerjoins (and G-Joins) are asym-

DEPT D 0..

Project D.Name, Sum \\ . .

G-Agg(;D.DeptP,D.Loc,D.Name;

\Sum(E.Sal),Avg(E.Sal))

Restrict

Avg>=ltXX*Connt

Semijoin(E.E2;TRIJE)
D.Loc = DS.Loc

G-Agg(;D.Dept#,D.Loc.D.Name;

Semijoin(E2,D2;

E2.Dept#=D2.Deptl)

Outerrestrict

D.Name # ‘Sales’
- : Join edge

h :Outerjoin edge

--+ :Precedence edge

Figure 4.2 Query Graph of Query 7

Proceedings of the 13th VLDB Conference, Brighton 1987 203

metric operations, if we pick the spanning tree {Jl,J3,J4}, then

after performing any two of these joins, we will not be able to

perform the third as a G-Join (nor 52 as a G-Restrict). How-

ever, selecting {Jl,J2,J3} as the spanning tree will lead to

correct permutations.

The algorithm for deciding whether a spanning tree will yield

correct join permutations is as follows. Assign a level number to

each node in the query graph by setting the level number of the

variables and restriction nodes in the outermost block to be 0;

let the length of each outerjoin edge and each precedence edge

labelled ‘outer” be 1; and the length of all other edges be 0; the

level number of a node is the length of the longest path into it.

Then, the spanning tree should not contain any edge (X,Y)

where (level number of Y : level number of X) > 1. (We call

such edges straddling edge.s).

Next, we consider the question of which permutations of a

spanning tree’s edges are legal. Any permutation in which all

regular joins precede outerjoins is legal. However, to increase

the space of strategies considered by the optimiier, we want to

shuffle regular and outerjoins. Essentially, this means that we

treat all joins as G-Joins; then any permutation of a correct

spanning tree will be legal.

Given a permutation, we must determine what the preserved

attributes for each G-Join operation should be. For an edge J =

(R,S) in the permutation, let X be the preserved attribute set

for the G-Join corresponding to J. X is derived as follows. Sup

pme J has no predecessor of the form J’ = (T,R) in the permu-

tation. Then, X = 8 if J is a regular join or a semijoin edge,

and X = R.* if J is an outerjoin edge. Suppcee, on the other

hand, that J does have such a predecessor and that J’ = (T,R)

is the nearest such predecessor. Let X’ be the preserved set of

the G-Join corresponding to J’ . Then X = X’ if J is a regular

join or semijoin edge, and X = X’ U R.* if J is an outerjoin

edge. For G-Restricts, the preserved sets can be computed by

an analogous rule. In practice, G-Restricts are combined with

G-Joins as early as possible.

For lack of space, we cannot justify these algorithms in

detail. However, the interested reader is encouraged to try the

algorithms out on the query graph of Figure 4.3 and to under-

stand for himself the reasoning behind them.

204
Figure 4.3 Legal Join Permutations

An optimiser such as that described in [SELI79,

LOHM86a,b], which enumerates permutations and evaluates

them by dynamic programming, must check which join or res-

triction predicates can be applied next. It should be easy to

extend the optimizer to check also for the condition that no

straddling edge is added, and to compute the preserved set for

the G-Join corresponding to each new edge that is added.

Positioning EAgg operations

The optimker also has some flexibility in positioning G-Agg

operations relative to G-Joins, G-Restricts, Projects and Delta-

Projects. Three rules delimit this flexibility:

. In general, a G-Agg operation cannot be executed unless all

predicates in its scope have been evaluated. This is

guaranteed by the precedence edges introduced in the con-

struction of the query graph.

. To delay a G-Agg past a G-Join, add to the grouping attri-

butes the TID (or other key) of the relation being joined to.

This rule follows from the property:

G-Join(G-Agg(R;X;F), S; Y; J) = G-Agg(G-Join(R,S;Y;J),

(X,S.*); F).

l In some special cases, Kim’s rule applies and a G-Agg can

actually be moved ahead of a G-Join. If the fnvector of the

G-Agg operation involves attributes of only one relation and

does not contain a COUNT, and if the join predicate of the

G-Join contains only equalities, then the following rule

applies:

G-Agg(G-Join(R, S; X; R.Al = S.Bl AND . . . AND R.An

= S.Bn); R.*; Agg(S.Y)) =

Project(G-Join(R, G-Agg(S; S.Bl,...,S.Bn; Agg(S.Y)); X;

R.Al = Bl AND . . . AND R.An = Bn); (R.*, Agg))

Usually, it is a good idea to execute a G-Agg operation as soon

as possible. For instance, applying this dictum to the following

“uncorrelated” nested query means that the nested block is

evaluated once, and the nesting condition is replaced by a res-

triction (this follows as a special case of the third rule above):

Query 8

SELECT E.Emp#

FROM EMP E

WHERE E.Sal <

SELECT AVERAGE(E2.Sal)

FROM EMP E2

However, sometimes it may be beneficial to delay a G-Agg

operation, because subsequent operations may produce the

correct grouping needed for the G-Agg, or because later joins

inside a HAVING clause may reduce the number of groups to be

aggregated. To see this, consider the following query, for which

we have added a third relation FLEET(Location, #Cars) to our

data base.

Query 9
SELECT D.Loc, SUM(D.Budget)

FROM DEPT D

GROUP BY D.Loc

Fbmxdings of the 13th VLDB Conference, Brighton 1987

HAVING COUNT(D.Mgr) =

SELECT F.#Cars

FROM FLEET F

WHERE F.Loc = D.Loc ..(J)

Since the join condition J is likely to be quite restrictive (not many

locations have fleets), it may be better to do this join first, before

aggregating.

Moving G-Agg past a join requires same care, however,

because the join may increase the number of tuples in each

group. Our second rule above avoids this problem. If it is known

a priori that each R-tuple will join with at most one S-tuple,

then augmenting the grouping attributes is unnecessary. This is

true of our previous example.

Pipelining

To reduce the cost of creating and storing temporary inter-

mediate results, the query processor pipelines the results of one

operation into the next whenever possible. We have seen

several examples of this tactic already. The result of a G-Join

can be pipelined into a G-Agg whose grouping attributes consist

of a key of G-Join’s outer relation. The result of a G-Join or a

G-Agg can be pipelined into a DeltsProject (again if the group

ing requirements are met). The result of any operation can be

pipelined into a Project or a G-Restrict.

To effectively exploit pipelining, the optimizer must keep

track of how intermediate results are grouped. The SQL optim-

isers of [SELI79, LOHM84] already keep track of interesting sort

orders; extending them to record interesting groupings is

straightforward.

5. Nested Queries with Quantifiers

In this section, we consider queries that contain the EXISTS

and NOT EXISTS quantifiers. Queries that contain only the

existential quantifier (EXISTS) require no new techniques: they

can easily be transformed into expressions involving Restrict,

Project, Join, Semijoin, and Delta-Project. For example, the fol-

lowing query is equivalent to Query 1 (of section 1):

Query 10

SELECT E.Name

FROM EMP E

WHERE EXISTS

(SELECT *

FROM

WHERE

DEPT D

D.Dept# = E.Dept# AND

D.Loc = ‘Denver’ AND

E.Emp# = D.Mgr)

A little care is necessary when transforming queries where the

nested SELECT clause lists a proper subset of attributes,

instead of *. For example, if the nested SELECT clause in the

above query had read SELECT D.Budget, then we would first

have to transform the query by conjoining the additional restric-

tion condition (D.Budget IS NOT NULL) to the WHERE clause

of the inner block. We will assume that queries containing

EXISTS and NOT EXISTS have already been transformed like

F’roceediugs of the 13th VLDB Conference, Brighton 1987

this.

For queries with mixed EXISTS and NOT EXISTS

quantifiers a different class of strategies is required. Again, we

want to consider more options than the straightforward tuple

substitution approach of (SEL179, LOHM84]. Most previous

work transforms quantified queries into expressions involving set
differences, Cartesian products, and division opezatom

[CODD72, PALE72, CERI85], which are quite inefficient to

evaluate. [JARK82] describes transformations based on logical

identities (e.g., distributing quantifiers over disjunctions, switch-

iug the order of quantifiers), but does not relate these to

detailed strategies for query optimisation. [KIM821 describes

one rule for efficiently processing a quantified query using divi-

sion, but the rule does not gene&se to arbitrary queries con-

taining mixed quantifiers.

In [DAYA83], we introduced an algebra of graft and prune

operations on trees that yields efficient strategies for quantified
queries. Our approach now is to replace the graft and prune

operators on trees by the G-Join and GAgg operations on rela-

tions. Then, we can use the implementation methods and tac-

tics for optimisation that we have described in sections 2 - 4.

Also, by using the same algebraic operators as for other nested

queries, we can cast the optimization of all SQL queries into a

common framework.

First, we introduce two Boolean-valued aggregation func-

tions EXISTS and NOTEXISTS. EXISTS(R) ill R # 8.

NOTEXISTS = NOT(EXISTS(R)) These aggregation time-

tions can be used in G-Agg exactly like any other aggregation

function.

EXISTS is accumulated by initialising to FALSE, and then

replacing the accumulator with TRUE when the first tnple is

encountered; of course, for each group, the accumulation can

cease when the accumulator is first set to TRUE. (Not surpris-

ingly, this is very much like the computation of semijoin.) NOT

EXISTS is computed by accumul&ing EXISTS and then negat-

ing the accumulator at the end of each group.

To illustrate the use of these aggregation functions, consider

Query 10 with EXISTS changed to NOT EXISTS). This query

can be solved by replacing the Semijoin we used for Query 10

with an Antijoin. Alternatively, we can 6rst perform the Outer-

join of EMP by DEPT on the conditions in the WHERE clause,

then G-Agg(; E.TID, E.Name; NOT EXISTS), then Restrict

where NOT EXISTS = True, and Bnally Project on E.Name.

Of course, since the join and GAgg require the same grouping,

we can pipeline these operations. Note that while the EXISTS

aggregate requires a regular join, the NOTEXISTS aggregate

requires an outerjoin. Hence, for queries with mixed quantifiers,

we will use G-Joins as in Section 4. The G-Join step

corresponds to the graft operation, and the G-Agg, G-Restrict

sequence to the prune operation of [DAYA83].

While it is clearly preferable to use Semijoin or Antijoin

operations rather than the G-Join, G-Agg etc. sequence, it is

not always possible to do so when they are nested and the query

graph is cyclic.

The construction of the query graph uses the same rules as

in Section 4.2, with NOT EXISTS behaving like COUNT.

The optimizer enumerates join edges and positions G-Agg

operations using the various tactics described in Section 4.

205

Additionally, we have the tactic of using semijoins and anti-

joins wherever possible. In an execution plan in which the last

G-Join in the scope of a quantifier is immediately followed by its

corresponding GAgg, this sequence of operations can be

replaced by .a Semijoin or an Antijoin, respectively, depending

upon whether the quantifier is an EXISTS or NOT EXISTS.

Formally stated, the rule is:

Project(GAgg(GJoin(R,S;@;J); R.TID; EXISTS); R.*)

= Semijom(R, S; J)

An analogous rule is obtained for NOT EXISTS by substituting

R.* for 8 as the preserved set in the G-Join on the left hand

side, and substituting Antijoin for Semijoin on the right hand

side.

Finally, the tactics described in this section will work for

other syntactic constructs of SQL such as ANY and IS NOT

IN; we assume that these constructs are first transformed into

EXISTS and NOT EXISTS as described in [DATE85].

6. Extensions

6.1 Nesting Predicates other than IN

Consider query 1 with the nesting predicate IN replaced by

=, thus: . . . E.Dept# = (SELECT D.Dept# . ..). SQL semantics

dictate that if the nested subquery returns more than one tuple,

then an exception should be raised and the query should be

aborted. To capture these semantics in our algebra, we need an

additional operator: Test-FD. Let X, Y subsets of R.*, and let

F:X->Y be a functional dependency statement. Then, Test-

FD(R;F) = R if F holds in R; otherwise, raise an exception and

abort.

Test-FD can be implemented by modifying the method for

implementing G-Agg(R; X, COUNT DISTINCT(Y)) to abort

whenever more than one distinct value of Y is encountered for a

group.

The Test-FD operation can be delayed past G-Join and Pro-

ject operations, but not past Restrict, Delta-Project, or G-Agg.

Hence, the above query can be evaluated by pipelining the

result of a regular join between EMP and DEPT into the Test-

FD, and then into Delta-Project to get rid of duplicates for the

semijoin.

On query graphs, the nesting predicate (R.A op (SELECT

S.B . ..)) is represented by a semijoin edge, labelled (R.A op

SB), between R and S, together with a Test-FD node labelled

with the FD R.TID -> S.B, and precedence edges to this node

from R and from the variables and restrictions in the scope of

S’ s block.

6.2 Disjunctions and Unions

Queries that contain disjunctions and unions are usually

expensive to process, because their results are quite large, and

database systems do not have access pathes to support their

evaluation.

Instead of describing in detail the construction of query

graphs and execution plans for such queries, we highlight the

salient features of our approach. Disjunctions that appear in

one-variable restriction conditions (e.g., R.A=a or R.B=b) ere

-206.

processed during one scan of relation R. Disjunctions that

appear in join conditions (e.g., R.A=S.B or R.C=S.D) can be

processed in several ways: (a) as a restriction when R and S are

joined on some other condition; (b) as two joins followed by a

union (this is useful only if both joins are supported by fast

access paths); or (c) more intelligently, by a join on one condi-

tion followed by a join of the unjoined portions on the other con-

dition. (For (c), we would need a symmetric operation that

simultaneously produces the regular join, and the two antijoins

of R by S and vice-versa.)

The 1-t tactic is especially useful for queries that require the

union of two semijoins of the same relation by two different rela-

tions. To illustrate this point, consider the following query:

Query 11

SELECT R.A

FROM R

WHERE EXISTS (SELECT *

FROM S

WHERE R.B=S.C)

OR EXISTS (SELECT *

FROM T

WHERE R.D=T.E)

The query graph of this query is shown in Figure 6.1 (we

introduce OR nodes to represent disjunctions). The query can

be processed in one of three ways:

(a) Use the tactics of section 5 to evaluate the two nested

subqueries, which will result in the computation of an Agg attri-

bute for each; the final answer is obtained by restricting R on

the disjunction of these attributes.

(b) Use a variant of the rule for replacing EXISTS with a

semijoin to process the two subqueries by semijoins, and then

construct the union.

(c) Simultaneously do one semijoin and its corresponding

antijoin (this operation was called a semiouterjoin in [DAYA85];

then use the antijoin in the subsequent semijoin.

R Project R.A

/
/

/

&-

/- . / , \ / \ / \
/ OR

/

R
\

\

,‘R.B = S.c R.D
\

= T.E

G-A,&; R.TID,R.A; (‘.+A&; R.TID,R.A;
EXISTS) EXISTS)

Figure 6.1 Query Graph of a Disjunctive Query

For more complicated cases (e.g., when disjunction of

quantified nested subqueries occur, inside a quantifier), we may

not be able to use semijoins or antijoins. However, we can adapt

the G-Join, G-Agg technique of section 5 as in (a) above: essen-

tially, evaluate each parallel nested aubquery to return an Agg

Proceedings of the 13th VLDB Conference, Brighton 1987

value. The G-Agg for the quantified subquery at the next level

up then tests the disjunction of these Agg values instead of just

testing for the empty set. This last tactic is extensible to other

Boolean connectives (e.g., =>) as well.

7. Conclusions

Existing query optimisers consider many strategies for

Restrict-Project-Join queries. They use heuristics to enumerate

permutations of the joins, and to position restrictions and projec-

tions relative to the joins, and use sophisticated cost models to

compare strategies.

In practice, however, query languages such as SQL contain

many powerful features (e.g., control over duplicates, nested

subqueries, aggregates, quantifiers, and disjunctions) that are

not expressible as Restrict-Project-Join sequences. Existing

query processors are severely limited in their strategies for pro-

cessing such queries: typically, they just use tuple substitution.

Unfortunately, however, tuple substitution is often inefficient,

especially in a distributed system. Hence, there is a pressing

need to expand the space of query processing strategies for such

queries.

In this paper, we introduced a collection of new operators,

and described how they can be implemented by straightforward

extensions to existing implementation methods. From the alge-

braic properties of these operators: we derived new query pro-

cessing tactics that greatly increase the space of strategies con-

sidered by the optimiser, without changing the basic architec-

ture of the optimiser. Instead of joins, the optimiser must now

enumerate G-Joins, and must position G-Aggs, G-Restricts, Pro-

jects, and Delta-Projects relative to the G-Jo&. The optimizer

can consider the relative cost of tuple substitution (nested itera-

tion) for implementing the G-Joins and other (e.g., sort-merge)

implementation methods. Finally, the optimher can often pipe-

line operations if the intermediate results are correctly grouped

or ordered, thereby avoiding the cost of storing temporaries

(which is basically the only advantage of tuple substitution).

Hence, we now have a unified framework for optimking all of

SQL (and other languages with similar features).

Future work consists of working out detailed heuristics for

enumeration, heuristics as in [WONG 761 for decomposing com-

plex queries into simpler queries (to control the exponential

growth in the size of the strategy space), formal proofs of the

transformation rules, and a detailed cost model.

Our style in this work is algebraic. Hence, it should be easy

to add the new operations and rules into rule-driven and extensi-

ble optimizers such as those described in [FREY 87, DEW1 871.

Acknowledgemente

The author wishes to thank his colleagues, Arvola Chan, Anil

Nori, Joh Hee, Sara Haradhvala, Arnie Rosenthal, and Ken

Abbott for fruitful discussions of these ideas, and Andrea Fisher

and Julie Goyette for text processing support.

8. References

[BERN811 Bernstein, P.A. and D.M. Chiu, “Using Semijoins to

Solve Relational Queries,’ ’ J ACM .eS, 1 (Jan. 1981).

[BLAS77] Blasgen, M.W., and K.P. Eswaran, “On the Evalua-

tion of Queries in Relational Database Systems,’ ’ IBM

Research Report RJ1745, April 1976.

[CERI85] Ceri, S., and G. Gottlob, “Translating SQL in ReIa-

tional Algebra: Optimisation, Semantics, and

Equivalence of SQL Queries,” ZEEE Trans. SE-11, 4

(April 1985).

[CHAM76] Chamberlin, D.D., et al., “SEQUEL 2: A Unified

Appraoch to Data Definition, Manipulation, and Con-

trol,’ ‘ZBMJ. Res. and Dcu. 20, 6 (Nov. 1976).

[CODD’IO] Codd, E.F., “A Relational Model of Data for Large

Shared Data Banks,’ ’ CACM 13, 6 (June 1970).

[CODD72] Codd, E.F.: “Relational Completeness of Database

Sublanguages,’ ’ in Database Systems, Current C+mp.

Sci. Symp. 6 (R.Rustin, ed.), Prentice-Ha& Englewood

Cliffs, N.J. 1972.

[CODD79] Codd, E.F., “Extending the Database Relational

Model to Capture More meaning,” ACM TODS 4, 4
(Dec. 1979).

[DATE851 Date, C.J., A Guide to DB& Addison-Wesley Pub.

Co.: Reading Mass., 1985.

[DAYA82] Dayal, U., N. Goodman, and R.H. Kata, “An

Extended Relational Algebra with Control Over Dupli-

cate Elimination,’ ’ Proc. ACM PODS 1982.

[DAYA83] Dayal, U., “Processing Queries With Quantifiers: A

Horticultural Approach,’ ’ Proc. ACM PODS 1983.

[DAYA85] Dayal, U., “Query Optimisation in a Multidatabase

System,’ ’ in Query Processing in Database Systema.
(W. Kim, D. Reiner, D. Batory, eds.), Springer-Verlag,

1984.

[DEW1871 Dewitt, D.J., and G. Graefe, “The EXODUS Optim-

iser Generator,’ ’ Proc. ACM SZGMOD 1987.

[FREY871 Freytag, J.C., “A Rule-Based View of Query Optimi-

eation,’ ’ Proc. ACM SZGMOD 1987.

[GANS87] Ganski, R., and H.K.T. Wong, “Optimisation of

Nested SQL Queries Revisited,’ ’ Proc. ACM SZGMOD

1987.

[JARK82] Jarke, M., and J. Schmidt, “Query Processing Strut

tegies in the PASCAL/R Relational Database Manage-

ment System,’ ’ Proc. ACM SZGMOD 1982.

[KIM821 Kim, W., “On Optimising an SQL-Like Nested

Query,’ ’ ACM TODS 7, 3 (September 1982).

[KLUG82] Klug, A., “Access Paths in the ABE Statistical

Query Facility,’ ’ Proc. ACM SZGMOD 1982.

[LACR76] Lacroix, M., and A. Pirotte, “Generalized Joins,”

SZGMOD Record 8, 3 (Sept. 1976).

proceedings of the 13th VLDB Conference, Brighton 1987 207

(LOHM84] Lohman, G.M., et al., “Optimisation of Nested

Queries in a Distributed Relational Database,’ ’ Proc.
VLDB 1964.

[MACK86a] Mackert, L.F., and G.M. Lohman, “R* Optimizer

Validation and Performance Evaluation for Local

Queries,’ ’ Proc. ACM SIGMOD 1966.

[MACK86b] Mackert, L.F., and G.M. Lohman, “R* Optimizer

Validation and Evaluation for Distributed Queries,”

Proc. VLDB 1986.

[PALE721 PaIemio, F.P., “A Database Search Problem,’ ’ IBM

Research Report RJ1072, July, 1972.

[ROSE84] RosenthaI, A., and D. Reiner, “Extending the Alge-

braic Framework of Query Processing to Handle Outer-

joins,’ ’ Proc. VLDB 1984.

[SELI79] Sehnger, P.G., et aI., “Access path Selection in a Rela-

tional Database Management System,” Proc. ACM
SIGMOD 1979.

[SHIPB~] Shipman, D.W., “The Functional Data Model and the

Data Language DAPLEX,” ACM TODS 6, 1 (March

1981).

[SMIT83] Smith, J.M., S. Fox, and T. Landers, “ADAPLEX

Rationale and Reference Manual,’ ’ Tech Report CCA-

83-08, Computer Corp. of America, Jan. 1983.

[WONG76] Wong, E., and K. Youssefi, “Decomposition - A

Strategy for Query Processing,” ACM TODS 1, 3

(Sept. 1976).

208 Proceedings of the 13th VLDB Conference, Brighton 1987

