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Abstract 

Existing query optimizers focus on Restrict-Project-Join 

queries. In practice, however, query languages such as SQL and 

DAPLEX have many powerful features (eg., control over dupli- 

cates, nested subqueries, grouping, aggregates, and quantifiers) 

that are not expressible as sequences of Restrict, Project, and 

Join operations. Existing optimizers are severely limited in their 

strategies for processing such queries; typically they use only 

tuple substitution, and process nested subquery blocks top 

down. Tuple substitution, however, is generally inefficient and 

especially so when the database is distributed. Hence, it is 

imperative to develop alternative strategies. This paper intro- 

duces new operations for these difficult features, and describes 

implementation methods for them. From the algebraic proper- 

ties of these operations, new query processing tactics are 

derived. It is shown how these new tactics can be deployed to 

greatly increase the space of interesting strategies for optimisa 

tion, without seriously altering the architecture of existing 

optimisers. The contribution of the paper is in demonstrating 

the feasibility and desirability of developing an integrated frame- 

work for optimising all of SQL or other query languages that 

have similiar features. 

1. Introduction 

Most research on query optimisation has focused on conjunc- 

tive queries, i.e. queries that can easily be translated into 

restrict-project-join expression8 of the relational algebra 

[CODD70]. However, practical query languages, such as 
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In [KIM82], Kii showed that some nested SQL queries could 

be transformed into equivalent “canonical” queries that did not 

contain nesting; for example, query 1 could be transformed into 

query 2 (the queries are not quite equivalent, but more on this 

issue later): 

Query 2 
SELECT 

FROM 

WHERE 

E.Name 

EMP E, DEPT D 

E.Dept# = D.Dept# AND 

D.Loc = ‘Denver’ AND 

E.Emp# = D.Mgr 

-P) 

..(Jl) 

..@) 

..(J2) 
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SQL (CHAM76, DATE851 and DAPLEX [SHIP81\, [SMIT831 

have many features (e.g. nested subquery blocks, control over 

duplicates, aggregation functions, grouping and quantifiers) that 

cannot be mapped to the restrict-project-join subset of the rela- 

tional algebra. Such languages pose an important challenge for 

query optimisation. The semantics of queries that use these 

features are often described procedurally, and existing query 

optimkers are severely limited in their tactics for processing 

such queries. 

Consider, for example, the following relations: 

EMP (Emp#, Name, Dept#, Sal) 
DEPT (Dept#, Name, Lot, Mgr) 

and the following SQL query, which contains a nested subquery 

block: 

QuerJ 1 

SELECT E.Name 

FROM EMP E 

WHERE E.Dept# IN 
SELECT D.Dept# 

FROM Dept D 
WHERE D.Loc = ‘Denver’ AND 

E.Emp# = D.Mgr 

The semantics of SQL prescribe that the tuples of the EMP 
relation be substituted in turn into the inner subquery block: for 

each tuple E of EMP, the inner block is evaluated to yield a lit 

of Dept# values; if E. Dept# is in this list, then E.Name is 

inserted into the result. The system R optimiier follows this 

prescription quite literally, optimiing only the execution of the 

inner block (after the substitution, the inner block contains two 

selections and the optimiser considers strategies for efficiently 

evaluating them) [SELI79]. 



Kim argued that query 2 was in a better form for optimization, 

because it allows the optimizer to consider more strategies. 

First, expressing the “nesting” predicate (... IN SELECT . ..) 

between query blocks as an explicit join enables the optimizer to 

consider alternative methods (e.g. sort-merge) for implementing 

the join instead of always using tuple substitution. (Note that 

tuple substitution corresponds to the nested iteration method of 

join implementation [BLAS77].) This is especially important in 

distributed database systems, because -- as the experimental 

results of IMACK86a, MACK86b] show -- it is inefficient to do 

tuple substitution across a network. Second, it is easier to see 

from the form of query 2 that the query contains two joins 

between the EMP and DEPT relations; the optimiier may 

decide that it is less expensive to join the two relations on the 

E.Emp# = D.Mgr predicate first (this is probably the more res- 

trictive predicate anyway), and to apply the other predicate as a 

restriction. 

In general, expressing a query more non-procedurally or in 

algebraic form, gives the optimiser more leeway in selecting 

efficient strategies. The goal of this paper is to describe tactics 

for increasing the strategy space considered by an optimizer for 

queries that contain nested blocks, control over duplicates, 

aggregate functions, grouping, and quantifiers. We use DB2 SQL 

(ss described in [DATE85]) to describe these tactics. However, 

the approach works just as well for other query languages (e.g. 

DAPLEX, QUEL) that enjoy some or all of these features. 

Our approach is quite eclectic: it builds upon previous work 

on nested subqueries [KIM82, LOHM84, GANS87], aggregate 

queries [KLUG82], quantified queries [DAYA~~], and outerjoins 

[ROSE84], but shows the feasibility and desirability of integrat- 

ing these ideas in a common framework. [KIM821 and [CANS871 

transform a nested SQL query into a collection of queries that 

are still expressed in SQL (or, in the case of [GANS87], a simple 

extension of SQL that includes outerjoins). However, existing 

SQL optimisers are not good at optimising collections of queries. 

[CERI85] shows how to compile SQL queries into an extended 

relational algebra (which includes one very interesting operator 

corresponding to the GROUP BY and aggregation constructs of 

SQL). However, while this algebra may be useful for defining the 

approximate semantics of SQL, it is of limited applicability to 

the query optimisation problem because it ignores the tricky 

semantics of duplicate control in SQL, and its transformation 

rules can produce algebraic expressions that are difficult to 

optimise. 

In contrast, our approach is to compile SQL queries into a 

more powerful internal form based on an algebra of duplicate 

elimination, generalised join, generalized restriction, and gen- 

eralised aggregation operations. We show that these generalised 

operations can be implemented by simple extensions to algo- 

rithms that are already implemented in existing query proces- 

sors. Using a unified algebraic framework makes it possible to 

optimise entire queries, instead of optimising subquery blocks 

piecemeal. Finally, we argue that the new operators can be 

accommodated without causing great violence to the tactics for 

strategy enumeration and cost estimation employed by existing 

optimisers. 

The focus of this paper is on the operations and how their 

properties can be used to increase the strategy space for optimi- 

zation; detailed heuristics for strategy enumeration and cost 

modelling are orthogonal issues. For concreteness, the reader 

may assume that strategies are enumerated by dynamic pro- 

gramming and that a cost model simiiar to that in [SELI79, 

LOHM84, MACK86a,b] is used. Also, a formal framework for 

proving the correctness of these tactics is beyond the scope of 

this paper. 

In Section 2, we briefly review the conventional approach to 

processing simple conjunctive queries, which do not contain 

nested blocks, aggregates, or quantifiers. In Section 3, we 

describe our approach for queries that may contain nested 

subquery blocks but are free of aggregates and quantifiers. 

Aggregates are considered in Section 4, and quantifiers in Sec- 

tion 5. Section 6 describes extensions to the basic technique to 

deal with other syntactic features of SQL such as nesting predi- 

cates other than IN, and disjunctions and unions. 

2. Simple Non-Nested Conjunctive 
Queries 

For queries that consist of a single block (i.e., with no nested 

subquery blocks), processing is straightforward. For simplicity, 

assume conjunctive queries (i.e., queries in which AND is the 

only logical connective); we relax this assumption in Section 6. 

Such queries can be processed completely by sequences of Res- 

triction, Projection, and Join operations. Our syntax for these 

operations is: Restrict(relation; predicate), Project(relation; 

attribute-list), and Join(relation1, relationa; join-predicate). For 

example, Query 2 of the last section can be evaluated by Res- 

tricting DEPT on R, Joining the result with EMP on Jl AND 

J2, and then Projecting on P. 

SQL semantics require two types of Project operators, one 

that preserves duplicates (Project) and another that eliminates 

them (Delta-Project). (Note that DelticProject is the projection 

operator of the “standard” relational algebra [CODD’IO].) Query 

2 requires the use of Project; however, if the SELECT statement 

were changed to SELECT DISTINCT E.Name, then we would 

have to change the last step to Delta-Project on E.Name. 

Note that Project is easily implemented in one scan of the 

relation. However, Delta-Project requires that the relation be 

grouped or sorted by the attributes over which we are project- 

ing, so that duplicates can easily be detected; alternatively, an 

index or hash function on the projection attributes may be used. 

The properties of Restrict, Join, and Delta-Project are well 

known. The properties of Project are similar to those of Delta- 

Project, except that Project and Delt*Project do not commute 

(see [DAYA82] for details). These properties are used to develop 

tactics for query optimization. Because joins commute and asso- 

ciate, any permutation of the joins in a query is feasible; restric- 

tions and projections can be positioned anywhere relative to the 

joins (except, of course, that attributes needed for later process- 

ing cannot be projected out). 

Thus, optimisation of single-block queries consists of choosing 

the best permutation of the joins, positioning restrictions and 

projections relative to joins, choosing the best implementation 

method for each join, and choosing access paths (e.g., indices, 

hash keys) [SELI79]. 

To allow the optimizer maximum flexibility in selecting join 

permutations, we use a canonical internal representation of the 

query, called a query graph [BERNal]. There is one node in 
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the query graph for each relation variable (synonym) appearing 

in the query; each node is labelled with any restriction condi- 

tions involving that variable, and with any attributes of that 

variable that appear in the SELECT list of the query. There is 

one edge between nodes R and S in the query graph for each 

simple join predicate of the type (R.A op S.B) in the query. For 

complez predicates, e.g., (R.A = S.B + T.C), we introduce spe- 

cial “restriction nodes” labelled with the complex condition, and 

“precedence edges” directed from the variables involved in the 

condition to the restriction node. (The reason for treating these 

conditions separately is that there are unlikely to be any special 

access paths for efhciently evaluating them, so they will have to 

be evaluated as restrictions during or after a join.) Completely 

disconnected nodes should be connected to every other node by 

join edges labelled “True”; these correspond to Cartesian Pro 

duct operations. Figure 2.1 shows the query graph for Query 2. 

EMPE 

Project E.Name 

E.Dept#=D.Dept# 

AND E.Emp#=D.Mgr 

DEI’T D I 

Restrict Loc=‘Denver’ 

Figure 2.1 Query Graph for Query 2 

The optimher can select any permutation of the join edges 

that form a spanning tree of the query graph. The remaining 

joins and complex restrictions are all evaluated as restrictions. 

In practice, restrictions and projections are evaluated as early as 

possible. The following property is used to combine a restriction 

with the last join that brings together all the attributes required 

to evaluate the restriction: Restrict( Join(R,S;J); P) = 

Join(R,S;J AND P). 

The output of the optimiser is an ezecution plan, which may 

be represented abstractly by a directed acyclic graph whose 

leaves are relations stored in the database, whose internal nodes 

are operators of the algebra, and whose edges prescribe an order 

of execution. 

3. Nested Queries without Aggregates 
or Quantifiers 

To extend the concepts of Section 2 to nested queries 

without aggregates or quantifiers we add a semijoin operator to 

our algebra. The semijoin of relation R by relation S on condi- 

tion J is defined as the subset of R-tuples for which there are 

matching S-tuples that satisfy J, i.e., Semijoin (R, S; J) = { r E 

R 1 3 s c S (J (r,s))}. Note that the semijoin operation is not 

symmetric. 

Semijoins were introduced as a tactic for distributed query 

processing in [BERN 811. It was shown in [CERI 851 that semi- 

joins are essential to correctly interpreting nested queries in 

SQL. In fact, the only difference between queries 2 and 1 of 

Section 1 is that where the former requires a join between 

DEPT and EMP, the latter requires a semijoin: if an EMP tuple 

E joins with more than one DEPT tuple, that E.Name will be 

repeated in query 2’ sresult as many times as there are matching 

DEPT tuples, but will show up only once in query 1’ sresult. 

Semijoins can be implemented by only slightly modifying join 

implementation methods. First, remark that although the join 

operation is defined symmetrically, all join implementation 

methods are asymmetric: for each tuple of one relation (called 

the “outer”) perhaps ordered in some sequence, an access path is 

used to find all matching tuples of the other relation (called the 

“inner”) also perhaps ordered in some sequence; these matching 

tuples of the inner relation are concatenated to the tuple of the 

outer relation to produce tuples of the result. If no matching 

tuples of the inner relation are found, then nothing is output. 

To produce the semijoin of the outer relation by the inner 

relation, we merely modify any join method as follows: output 

the tuple of the outer relation as soon as the first matching tuple 

of the inner relation is encountered, and then advance to the 

next tuple of the outer relation. When the two relations are 

stored at different sites in a distributed system, it may be 

cheaper to delta-project the inner relation on its join attributes, 

and to move this projection to the site of the outer relation, 

instead of moving the entire inner relation. (The trade-off is in 

the extra cost of the deltsproject versus the reduction in the 

amount of data moved. Other implementations are also possi- 

ble.) The cost of a semijoin is easily estimated by modifying the 

cost of the join. 

The rules for constructing the query graph of a nested query 

are simple extensions of those for a simple conjunctive query. 

Relation nodes and join edges are introduced for each relation 

and join condition occurring inside the nested block; in addition, 

for each nesting predicate of the type R.A IN (SELECT S.B . ..). 

a “semijoin edge” is introduced between the nodes for R and S, 

and is labelled semijoin(R, S; R.A = S.B); finally, for each 

correlation predicate of the type (R.C op S.D), where R and S 

are in different blocks, a semijoin edge is introduced. Figure 3.1 

shows the query graph for the following query: 

Query 3 

SELECT E.Name 

FROM EMP E 

WHERE E.Dept# IN 

SELECT D.Dept# 

FROM DEPT D 

WHERE D.Name = ‘R&D’ 

AND D.Mgr IN 

SELECT E2.Emp# 

FROM EMP E2 

WHERE E.Sal > E2.Sal 

..(Jl) 

..(J2) 

..(J3) 

The optimizer can consider semijoin edges together with join 

edges in choosing permutations. Sometimes, for cyclic queries, a 

semijoin has to be turned into a join (if attributes required for 

later processing must be retained). For Query 3, for example, if 

the permutation [Jl, J2j is used, Jl must be replaced by a join, 

because its Mgr attribute is needed for the second join; however, 

J2 and 53 cau be performed together as a semijoin. To produce 
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without the need for a Del&Project on D.* (the semijoin on Jl 

AND J3 eliminates duplicates anyway, and hence produces the 

correct result). 

Semijoin(E,D; 
E.Dept#=D.Dept#) 

EMPE 

Project E.Name Restrict D.Name='R&D' 

v 

DEPT D 

Semijoin(E.E2; Semijoin(D,E2; 
E.SalBE2.Sal) D.Mgr=Ez.Emp#) 

Et@ E2 

Figure 3.1 Query Graph for Query 3 

the correct result, a Delta-Project on E.* is necessary before the 

final Project. 

Before we give the formal rule to describe this transforma- 

tion, we must introduce some notation. We assume that each 

relation R has a TID (“tuple identifier”) attribute that serves as 

a primary key. (A user-supplied primary key attribute may be 

substituted for TID in the following discussion.) We also assume 

in practice that the operands of a join are duplicate-free. Rel;c 

tions stored in the database can be made duplicate-free by con- 

catenating the TID attributes. Then the result of the join is 

also duplicate-free; the TID of the result may be obtained by 

concatenating the TIDs of the operands. Whenever a Project 

operation is used to reduce the width of an operand, the TID is 

included, so that the operand is still duplicate-free. (Only the 

final Project may introduce duplicates.) We write R.* to mean 

all attributes of R. The rule for converting a semijoin to a join 

then is: 

Semijoin (R: S; J) = 

Delta-Project (Join (R, S; J) ; R.*) 

Because Delta-Project commutes with Join and Restrict, but 

not with Project, the optimizer can delay the Delta-Project 

operation, but not beyond the final Project on the attributes in 

the SELECT clause. In particular, it may be advantageous to 

delay the Delta-Project if at some subsequent stage, the inter- 

mediate result is going to be sorted or grouped on the projection 

attributes (this will reduce the cost of duplicate elimination). 

Even though Delta-Project and Project cannot be commuted, 

the following rule still allows us to reduce the size (width) of 

intermediate results by projection: 

Project( DeltsProject(R;X2); Xl) = 

Project( Delta-Project( Project(R;X3); X2); Xl), 

where Xl is contained in X2, which is contained in X3. Thus, 

we can project out attributes that are not required for future 

Delta-Projects or the final projection. 

Another useful transformation rule allows us to absorb 

Delta-Project into a subsequent Semijoin: 

Semijoin(R, Semijoin(S, T; J2) ; Jl) = 

Semijoin(R, Join(S, T ; 52) ; Jl) 

Using this rule in the permutation 152, Jl] for Query 3, allows us 

to solve J2 as a join, and then Jl and 53 together as a semijoin, 

200 

4. Queries with Aggregates 

To describe tactics for processing aggregates, we introduce in 

Section 4.1 three new operators: generalised aggregation, gen- 

eralized join, and generalised restriction. We define each of 

these operators in turn, describe implementation methods, and 

illustrate its use in processing SQL queries. Then, in Section 4.2, 

we describe tactics that use these operators for processing 

queries that contain aggregates. 

4.1 Operators for Queries with Aggregates 

Generallred-Aggregation 

The syntax of this operation is: G-Agg(R; X; fnvector), 

where R is a relation, X is a list of attributes of R (called the 

grouping attributes), and fnvector is a vector of aggregation func- 

tions applied to attributes of R. An aggregation function is a 

function that takes a set of tuples and computes a single value. 

The built-in aggregation functions in SQL are COUNT, SUM, 

MAX, MIN, AVERAGE and their DISTINCT variants. 

The meaning of the G-Agg operation is as follows: partition 

R is such a way that each block (group) of tuples has the same 

X-value; then evaluate each aggregation function in fnvector 

over the tuples in a group. The result of this operation is a rela- 

tion whose attributes are the grouping attributes X together 

with as many new attributes (named for the respective aggrega- 

tion functions) as there are aggregation functions in fnvector. 

(This is the FN operation introduced in [CERI85].) By conven- 

tion, if the list of grouping attributes, X, is empty, then all the 

tuples of R are in a single group. Note that the grouping attri- 

butes constitute a primary key of the result. 

G-Agg is implemented by modifying the implementation of 

Delta-Project as follows: Use any access paths (sorting, hiwhing, 

indexing, clustering) on the grouping attributes to scan the 

tuples in one group of the partition; accumulate the values of 

the aggregate functions; at the end of the group, output the 

grouping attribute values concatenated with the aggregated 

values; then move on to next group. Accumulating values is 

easy: for example, for COUNT, start with the initial value 0, 

and then increment the accumulator as each new tuple is 

scanned; for MAX, start with the initial value NULL, and then 

for each new tuple, replace the accumulator by the max of 

current value and the new tuple value (where MAX(NULL,a) = 

a, for a # NULL); for AVERAGE, accumulate both COUNT 

and SUM. Accumulating the DISTINCT variants is a little 

more complicated. The solution is to use an additional access 

path (eg. minor sort: second hash function) that further sub- 

groups the tuples in each group by the attributes to be aggre- 

gated. This will simplify the detection of duplicates in the 

group; only the first value in each subgroup is accumulated, and 

the scan then skips to the next subgroup. (Note that SQL disal- 

lows the occurrence of more than one DISTINCT variant in a 

SELECT clause. If this condition were reluced, the processing 

of Delta-Project and G-Agg would become more complicated, 
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because additional passes would be needed.) 

To see how G-Agg is used in processing SQL queries, con- 

sider the following query. 

Query 4 

SELECT E.Dept#, AVERAGE(E.Sal), 

COUNT DISTINCT(E.Name) 

FROM EMP E 

GROUP BYE.Dept# 

This query is equivalent to G-Agg(EMP; Dept#; 
AVERAGE(Sal), COUNT DISTINCT(Name)) 

The next example shows how G-Agg can be pipelined with 

the evaluation of Join. 

Query 5 

SELECT D.Dept#, AVERAGE(E.Sal) 

FROM EMP E, DEPT D 

WHERE E.Dept# = D.Dept# 

GROUP BY D.Dept# 

The query consists of a Join followed by a G-Agg. An efficient 

execution plan can be obtained by making the following impor- 

tant observation: all the join evaluation methods implemented 

by existing systems have the property that the result is grouped 

by tuples of the outer relation (or, equivalently, by the TID or 

other key of the outer relation). Hence, if DEPT is chosen as the 

outer relation, and if Dept# is its key, then the result of the 

join will already be grouped by D.Dept#, and so can be pipe- 

lined into the G-Agg computation. 

In general, pipelining will not be possible if the query 

requires grouping by non-key attributes. For example, if the 

grouping attribute was D.Loc, then the result of the join will not 

be grouped correctly for the G-Agg computation (unless DEPT 

was already grouped by Lot). That G-Agg could be implemented 

by accumulating aggregate values during a scan, and could be 

pipelined with Join, was described in [KLUG 821. However, the 

necessary condition for pipelining, v-is. that the grouping attri- 

butes form a key of the outer relation, is new. 

A similar strategy works for nested queries in which aggre- 

gates appear in the WHERE clause. Consider, for example, the 

following query: 

Query 6 

SELECT D.Name 

FROM DEPT D 

WHERE D.Budget < = 

SELECT 1000 * AVERAGE( E.&l) 

FROM EMP E 

WHERE E.Dept# = D.Dept# 

This query can be solved by pipelining the following sequence of 

operations: the join of E and D on predicate E.Dept# = 

D.Dept#; followed by the computation of the AVERAGE 
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(grouped by D.TID, D.Budget); followed by the restriction 

D.Budget <= 1000 * AVERAGE; followed by the projection on 
D.Name. (Note that we had to include D.Budget in the group 

ing attributes of the G-Agg operation, because we need 

D.Budget in order to do the restriction; this does not affect the 

computation of G-Agg, since D.Budget will be unique for each 

D.TID anyway.) 

An alternative plan for solving this query is to pipeline the 

following sequence of operations: compute G-Agg(E; E.Dept#; 

AVERAGE(E.Sal)); then join with D on the combined condi- 

tion D.Budget <= 1000 * AVERAGE AND D.Dept# = 

E.Dept#; followed by the final projection on D.Name. This strb 

tegy is an adaptation of Kim’s rule [KIM821, but unlike the 

latter does not produce two separate queries; including all opera 

tions in a single plan makes it possible to optimise the whole 

There is a tradeoff between these two plans. The first may 

compute the aggregate many times for the same D (if Dept# 

were not the key); the second requires that E be grouped or 

sorted by Dept#. Both alternatives must be considered by the 

optimiser. 

Generallred-Join and Generallred-Restrict 

The motivation for these operations proceeds in two steps. 

First, we show that outerjoins are necessary for certain queries 

that contain aggregates. Next, we show that regular joins (hith- 

erto simply called joins) and outerjoins do not ordinarily com- 

mute, but treating them as special cases of a generalized join 

results in a workable sort of commutativity. 

Consider Query 0 but with AVERAGE(E.Sal) replaced by 

COUNT(E.Emp#). We would like to be able to solve this query 

by plans similiar to the two described above for query 6. How- 

ever, we would not quite get the correct answer: the join would 

delete departments that have no employees, so the names of 
these departments would not appear in the result; evaluating 
the query using strict SQL semantics, however, would return 0 

for the COUNT of the employees in such departments, and of 

these, the ones with budgets <= 0 should appear iu the result. 
This is precisely the “count bug” in the rules of [KIM821 that is 

described in [GANSS’I]. There is no clean way of making the 

second plan (based on Kim’s rule) work; the first plan, however, 

can be modified to use an outerjoin instead of the regular join. 

The outerjoin of R by S on predicate J is the union of the 

regular join and tuples formed by padding out the unjoined 

tuples of R with NULL values. Formally, Outerjoin(R,S;J) = 

Union( Join(R,S;J), Product( Antijoin(R,S;J), NULL-S)), where 

NULLS is an all-null tuple of the same degree as S, and 

Antijoin(R,S;J) is the complement in R of Semijoin(R,S;J). 

Note that this operation is asymmetric [CODD79, LACR78, 

ROSE84j. 

To implement Outerjoin(R,S;J), modify any method for 

Join(R,S;J) with R as the outer relation as follows: for any tuple 

of R for which the set of matching S-tuples is empty, output the 

tuple of R padded with NULL values. 

If we replace the join of DEPT and EMP in our example by 

the outerjoin, then we will retain all DEPT tuples, and the sub- 

sequent COUNT and restriction will come out correct. Any res- 

‘tricti6ns on D (e.g., D.Loc = ‘Boston’) that occur inside the 
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nested block are treated as “outerrestrictions” and are combined 

with the join predicate of the outerjoin. Note that this problem 

arises only when the aggregate function is COUNT. The other 

aggregate functions return NULL when evaluated over the 

empty set, and since NULLS cannot satisfy any conditions in the 

WHERE clause, these DEPT tuples cannot possibly contribute 

to the query’s result. (In section 5 we shall see that Outerjoins 

also arise when the NOT EXISTS quantifier is used.) 

While [GANS87] correctly underscored the importance of 

outerjoins, its transformation rules are of limited utility for 

several reasons. First, its rules use symmetric outerjoins, which 

are more difficult to implement than our asymmetric outerjoin. 

Second, its rules would transform the above query into two 

queries, one containing the outerjoin, group by, and aggregation, 

and the other containing the <= restriction and final projection. 

Unless the optimizer can simultaneously optimiie a collection of 

queries, it will not discover that the join, aggregation, restriction 

and projection can all be pipelined. Third, a different rule is 

needed for queries where the join condition is different from 

equality. Finally, [GANS87] does not describe tactics that mix 

joins and outerjoins, as we do. 

A complex query may be transformed into an expression that 

contains both regular joins and outerjoins. In [DAYA83], we 

described strategies for such queries. We showed that it is 

always correct to process all regular joins before any outerjoin. 

In general, it is not possible to directly commute a regular join 

and an outerjoin (see Fig. 4.1), i.e., Outerjoin(R, Join(S,T;J2); 

Jl) # Join(Outerjoin(R,S;Jl), T; 52). However, this restricts 

the space of permutations that can be considered by the optim- 

izer. Sometimes it may be better to process an outerjoin before a 

regular join ( e.g., in Figure 4.1, the outerjoin Jl will knock out 

moat of relation S, thus making the later regular join 52 

cheaper.) To allow the optimizer to consider such permutations, 

we introduced ia [DAYA a graft operator, which operated on 

trees and generalised both regular join and outerjoin. We did 

not, however, describe how to implement grafts. In this paper, 

we introduce, instead, a generalized-join operator that can be 

implemented easily by join-like methods on relations. 

Let X be a subset of R’s attributes and let Y be R.* - X. 

Then the generalized-join of R by S on predicate J preserving 

attributes X is written G-Join(R,S;X;J) and is equal to the union 

of the regular join of R and S, together with tuples formed by 

delta-projecting the unjoined tuples of R on X and then padding 

them out with NULL values. Formally, G-Join(R,S;X;J) = 

Union( Join(R,S;J), Product( Delta-Project( Antijoin(R,S;J); 

X), NULGYS)), where NULL-YS is an all-null tuple over the 

union of attributes in Y and S. By convention, if R is 

duplicate-tiee, G-Join(R,S;@;J) is the regular join, and G- 

Join(R,S; R.*; J) is the outerjoin. Like the outerjoin, this opera- 

tion is asymmetric. A symmetric version is easy to define, but 

unnecessary for our purposes. 

Now, the reader can convince himself that, for the query in 

Figure 4.1, G-Join(R, G-Join(S,T;@;JZ); R.*; Jl), which 

corresponds to doing the regular join 52 before the outerjoin Jl, 

is equivalent to G-Join( G-Join(R,S; R.*; Jl), T; R.*; J2), which 

corresponds to doing the outerjoin Jl first and then a join on 

condition J2 that is neither an outerjoin nor a regular join. We 

will discuss later the rule for determining which attributes to 

preserve when we move a regular join past an outerjoin. 
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al b 

SA C TC D 

a c c d 

a cl 

a2 c 

a3 c 

. . . . 

a10 c 

Uuterjoin(R,Join(S,T;J2);Jl) 

R.A R.B S.A S.C T.C T.D 

a b a c c d 

al b - - - - 

Join(Outerjoin(R,S;Jl).T;J2) 

R.A R.B S.A S.C T.C T.D 

a b a c c d 

Figure 4.1 Joins and Outerjoins Do Not Commute 

G-Join is implemented by a straightforward modification to 

any method for implementing Outerjoin. Note that the Delt;c 

Project step requires grouping the outer relation R by the 

preserved attribute set X. 

We also need a Generalized-Restrict operator, which is 

analogous to the generalized-join and generalizes restrict and 

outerrestrict. G-Restrict(R; X; P), where X is a subset of R.* 

and P is a predicate, is the union of Restrict(R; P) together 

with the remaining tuples of R delt+projected on X and then 

padded out with NULLS. 

4.2 Tactics for Queriea that Contain Aggregates 

We describe in four steps the tactics for processing queries 

that contain nested subquery blocks and aggregates. First, we 

show how to construct query graphs for these queries. Second, 

we describe which enumerations of G-Joins are legal for the 

optimizer to consider. Third, we show how to position G-Age 
operations in a sequence of G-Joins (and G-Restricts). Fourth, 

we describe a generally useful tactic, pipelining. 

Query Graphs 

The query graphs of aggregate queries must represent outer- 

join, outerrestrict, and G-Agg operations. An outerjoin is 

represented by au edge directed from the outer relation to the 

inner. Outerrestrict and G-Agg operations are represented by 

special -nodes that are connected to other nodes by precedence 

edges (as we did with restriction nodes in section 2). In addi- 

tion, for outerrestricts, we must indicate the outer relations (i.e.: 

the preserved set). 

If the SELECT or HAVING clause of a block contains an 

aggregate function, we call it an aggregate block; if it contains a 

COUNT function, we also call it a COLINT block. The scope of a 

block is the block itself and all the blocks nested within it (to 
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any level). The immediate scope of an aggregate block is the set 

of blocks in its scope but not in the scope of any other aggregate 

block in its scope. 

We define a predicate that is in the immediate scope of a 

COUNT block B to lx an outer predicate if it involves any vari- 

ables that are defined outside the scope of B. Such variables are 

said to be outer variables with respect to B. All other predicates 

are said to be regular and all other variables defined in B’sscope 

are said to be inner with respect to B. 

The query graph of an aggregate query contains one node for 

each variable in the query. For regular predicates, the rules 

described in sections 2 and 3 apply: i.e., we introduce regular 

join edges for simple join predicates involving variables defined 

in the same block; restriction nodes and precedence edges for 

complex predicates; restriction labels for one-variable restriction 

predicates; and semijoin edges for simple nesting predicates and 

simple correlation predicates. Nesting predicates of the form 

R.A op (SELECT AGG(S.B)...) and HAVING AGGl (R.A) OP 

(SELECT AGGO(S.B)...) are treated as complex predicates; also 

unless R and S are already connected by a semijoin edge, intro- 

duce an edge labelled Semijoin (R,S; TRUE). 

For each simple outer predicate that involves an outer vari- 

able and an inner variable, introduce an outerjoin edge directed 

from the outer to the inner variable. For all other outer predi- 

cates, introduce outer-restriction nodes and precedence edges 

from all the variables involved; label “outer” the precedence 

edges from the outer variables. 

Finally, for each aggregate block B, introduce an aggregation 

node labelled with a G-Agg operation as follows: the grouping 

attributes include the outermost GROUP BY attributes, if any, 

the TIDs of all variables outside B’ sscope that occur in correl;c 

tion predicates in B’simmediate scope, and any other attributes 

that may be needed for future restrictions or projections; the 

fnvector consists of all the aggregate functions in the SELECT 

and HAVING clauses. Introduce precedence edges from all 

nodes corresponding to variables whose attributes appear in the 

G-Agg label and from all nodes corresponding to variables and 

predicates in the immediate scope. Introduce precedence edges 

from the aggregation node to any restriction node in which the 

result of the G-Agg operation is used. 

Figure 4.2 shows the query graph for the following query. 

Note the outerjoin edge and outerrestriction node corresponding 

to the predicates OJ and OR, respectively. 

Query 7 

SELECT D.Name, SUM(E.Sal) 

FROM DEPT D, EMP E 

WHERE D.Dept# = E.Dept# 

GROUP BY D.Dept#, D.Loc 

HAVING AVERAGE(E.Sal) >= 

SELECT loo0 * COUNT(E2.Emp#) 

FROM EMP E2 

WHERE Ea.Dept# IN 

SELECT DZ.Dept# 

FROM DEPT D2 

WHERE D2.Loc = D.Loc AND 

D.Name # Sales 

..(OJ) 

..(OR) 

Note that G-Joins and G-Restricts do not appear on query 

graphs. They appear only in execution plans derived as a result 

of permuting joins and outerjoins as discussed below. 

Legal Join Permutations 

As usual, we have to pick permutations of the join edges of 

the query graph that form a spanning tree; the other joins are 

performed as restrictions. First, consider the (skeletal) query 

graph of Figure 4.4. Because outerjoins (and G-Joins) are asym- 

DEPT D 0.. 

Project D.Name, Sum \\ . . 

G-Agg(;D.DeptP,D.Loc,D.Name; 

\Sum(E.Sal),Avg(E.Sal)) 

Restrict 

Avg>=ltXX*Connt 

Semijoin(E.E2;TRIJE) 
D.Loc = DS.Loc 

G-Agg(;D.Dept#,D.Loc.D.Name; 

Semijoin(E2,D2; 

E2.Dept#=D2.Deptl) 

Outerrestrict 

D.Name # ‘Sales’ 
- : Join edge 

h :Outerjoin edge 

--+ :Precedence edge 

Figure 4.2 Query Graph of Query 7 
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metric operations, if we pick the spanning tree {Jl,J3,J4}, then 

after performing any two of these joins, we will not be able to 

perform the third as a G-Join (nor 52 as a G-Restrict). How- 

ever, selecting {Jl,J2,J3} as the spanning tree will lead to 

correct permutations. 

The algorithm for deciding whether a spanning tree will yield 

correct join permutations is as follows. Assign a level number to 

each node in the query graph by setting the level number of the 

variables and restriction nodes in the outermost block to be 0; 

let the length of each outerjoin edge and each precedence edge 

labelled ‘outer” be 1; and the length of all other edges be 0; the 

level number of a node is the length of the longest path into it. 

Then, the spanning tree should not contain any edge (X,Y) 

where (level number of Y : level number of X) > 1. (We call 

such edges straddling edge.s). 

Next, we consider the question of which permutations of a 

spanning tree’s edges are legal. Any permutation in which all 

regular joins precede outerjoins is legal. However, to increase 

the space of strategies considered by the optimiier, we want to 

shuffle regular and outerjoins. Essentially, this means that we 

treat all joins as G-Joins; then any permutation of a correct 

spanning tree will be legal. 

Given a permutation, we must determine what the preserved 

attributes for each G-Join operation should be. For an edge J = 

(R,S) in the permutation, let X be the preserved attribute set 

for the G-Join corresponding to J. X is derived as follows. Sup 

pme J has no predecessor of the form J’ = (T,R) in the permu- 

tation. Then, X = 8 if J is a regular join or a semijoin edge, 

and X = R.* if J is an outerjoin edge. Suppcee, on the other 

hand, that J does have such a predecessor and that J’ = (T,R) 

is the nearest such predecessor. Let X’ be the preserved set of 

the G-Join corresponding to J’ . Then X = X’ if J is a regular 

join or semijoin edge, and X = X’ U R.* if J is an outerjoin 

edge. For G-Restricts, the preserved sets can be computed by 

an analogous rule. In practice, G-Restricts are combined with 

G-Joins as early as possible. 

For lack of space, we cannot justify these algorithms in 

detail. However, the interested reader is encouraged to try the 

algorithms out on the query graph of Figure 4.3 and to under- 

stand for himself the reasoning behind them. 
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Figure 4.3 Legal Join Permutations 

An optimiser such as that described in [SELI79, 

LOHM86a,b], which enumerates permutations and evaluates 

them by dynamic programming, must check which join or res- 

triction predicates can be applied next. It should be easy to 

extend the optimizer to check also for the condition that no 

straddling edge is added, and to compute the preserved set for 

the G-Join corresponding to each new edge that is added. 

Positioning EAgg operations 

The optimker also has some flexibility in positioning G-Agg 

operations relative to G-Joins, G-Restricts, Projects and Delta- 

Projects. Three rules delimit this flexibility: 

. In general, a G-Agg operation cannot be executed unless all 

predicates in its scope have been evaluated. This is 

guaranteed by the precedence edges introduced in the con- 

struction of the query graph. 

. To delay a G-Agg past a G-Join, add to the grouping attri- 

butes the TID (or other key) of the relation being joined to. 

This rule follows from the property: 

G-Join( G-Agg(R;X;F), S; Y; J) = G-Agg( G-Join(R,S;Y;J), 

(X,S.*); F). 

l In some special cases, Kim’s rule applies and a G-Agg can 

actually be moved ahead of a G-Join. If the fnvector of the 

G-Agg operation involves attributes of only one relation and 

does not contain a COUNT, and if the join predicate of the 

G-Join contains only equalities, then the following rule 

applies: 

G-Agg( G-Join( R, S; X; R.Al = S.Bl AND . . . AND R.An 

= S.Bn); R.*; Agg(S.Y)) = 

Project( G-Join( R, G-Agg(S; S.Bl,...,S.Bn; Agg(S.Y)); X; 

R.Al = Bl AND . . . AND R.An = Bn); (R.*, Agg)) 

Usually, it is a good idea to execute a G-Agg operation as soon 

as possible. For instance, applying this dictum to the following 

“uncorrelated” nested query means that the nested block is 

evaluated once, and the nesting condition is replaced by a res- 

triction (this follows as a special case of the third rule above): 

Query 8 

SELECT E.Emp# 

FROM EMP E 

WHERE E.Sal < 

SELECT AVERAGE(E2.Sal) 

FROM EMP E2 

However, sometimes it may be beneficial to delay a G-Agg 

operation, because subsequent operations may produce the 

correct grouping needed for the G-Agg, or because later joins 

inside a HAVING clause may reduce the number of groups to be 

aggregated. To see this, consider the following query, for which 

we have added a third relation FLEET( Location, #Cars) to our 

data base. 

Query 9 
SELECT D.Loc, SUM(D.Budget) 

FROM DEPT D 

GROUP BY D.Loc 
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HAVING COUNT(D.Mgr) = 

SELECT F.#Cars 

FROM FLEET F 

WHERE F.Loc = D.Loc ..(J) 

Since the join condition J is likely to be quite restrictive (not many 

locations have fleets), it may be better to do this join first, before 

aggregating. 

Moving G-Agg past a join requires same care, however, 

because the join may increase the number of tuples in each 

group. Our second rule above avoids this problem. If it is known 

a priori that each R-tuple will join with at most one S-tuple, 

then augmenting the grouping attributes is unnecessary. This is 

true of our previous example. 

Pipelining 

To reduce the cost of creating and storing temporary inter- 

mediate results, the query processor pipelines the results of one 

operation into the next whenever possible. We have seen 

several examples of this tactic already. The result of a G-Join 

can be pipelined into a G-Agg whose grouping attributes consist 

of a key of G-Join’s outer relation. The result of a G-Join or a 

G-Agg can be pipelined into a DeltsProject (again if the group 

ing requirements are met). The result of any operation can be 

pipelined into a Project or a G-Restrict. 

To effectively exploit pipelining, the optimizer must keep 

track of how intermediate results are grouped. The SQL optim- 

isers of [SELI79, LOHM84] already keep track of interesting sort 

orders; extending them to record interesting groupings is 

straightforward. 

5. Nested Queries with Quantifiers 

In this section, we consider queries that contain the EXISTS 

and NOT EXISTS quantifiers. Queries that contain only the 

existential quantifier (EXISTS) require no new techniques: they 

can easily be transformed into expressions involving Restrict, 

Project, Join, Semijoin, and Delta-Project. For example, the fol- 

lowing query is equivalent to Query 1 (of section 1): 

Query 10 

SELECT E.Name 

FROM EMP E 

WHERE EXISTS 

(SELECT * 

FROM 

WHERE 

DEPT D 

D.Dept# = E.Dept# AND 

D.Loc = ‘Denver’ AND 

E.Emp# = D.Mgr) 

A little care is necessary when transforming queries where the 

nested SELECT clause lists a proper subset of attributes, 

instead of *. For example, if the nested SELECT clause in the 

above query had read SELECT D.Budget, then we would first 

have to transform the query by conjoining the additional restric- 

tion condition (D.Budget IS NOT NULL) to the WHERE clause 

of the inner block. We will assume that queries containing 

EXISTS and NOT EXISTS have already been transformed like 
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this. 

For queries with mixed EXISTS and NOT EXISTS 

quantifiers a different class of strategies is required. Again, we 

want to consider more options than the straightforward tuple 

substitution approach of (SEL179, LOHM84]. Most previous 

work transforms quantified queries into expressions involving set 
differences, Cartesian products, and division opezatom 

[CODD72, PALE72, CERI85], which are quite inefficient to 

evaluate. [JARK82] describes transformations based on logical 

identities (e.g., distributing quantifiers over disjunctions, switch- 

iug the order of quantifiers), but does not relate these to 

detailed strategies for query optimisation. [KIM821 describes 

one rule for efficiently processing a quantified query using divi- 

sion, but the rule does not gene&se to arbitrary queries con- 

taining mixed quantifiers. 

In [DAYA83], we introduced an algebra of graft and prune 

operations on trees that yields efficient strategies for quantified 
queries. Our approach now is to replace the graft and prune 

operators on trees by the G-Join and GAgg operations on rela- 

tions. Then, we can use the implementation methods and tac- 

tics for optimisation that we have described in sections 2 - 4. 

Also, by using the same algebraic operators as for other nested 

queries, we can cast the optimization of all SQL queries into a 

common framework. 

First, we introduce two Boolean-valued aggregation func- 

tions EXISTS and NOTEXISTS. EXISTS(R) ill R # 8. 

NOTEXISTS = NOT(EXISTS(R)) These aggregation time- 

tions can be used in G-Agg exactly like any other aggregation 

function. 

EXISTS is accumulated by initialising to FALSE, and then 

replacing the accumulator with TRUE when the first tnple is 

encountered; of course, for each group, the accumulation can 

cease when the accumulator is first set to TRUE. (Not surpris- 

ingly, this is very much like the computation of semijoin.) NOT 

EXISTS is computed by accumul&ing EXISTS and then negat- 

ing the accumulator at the end of each group. 

To illustrate the use of these aggregation functions, consider 

Query 10 with EXISTS changed to NOT EXISTS). This query 

can be solved by replacing the Semijoin we used for Query 10 

with an Antijoin. Alternatively, we can 6rst perform the Outer- 

join of EMP by DEPT on the conditions in the WHERE clause, 

then G-Agg( ; E.TID, E.Name; NOT EXISTS), then Restrict 

where NOT EXISTS = True, and Bnally Project on E.Name. 

Of course, since the join and GAgg require the same grouping, 

we can pipeline these operations. Note that while the EXISTS 

aggregate requires a regular join, the NOTEXISTS aggregate 

requires an outerjoin. Hence, for queries with mixed quantifiers, 

we will use G-Joins as in Section 4. The G-Join step 

corresponds to the graft operation, and the G-Agg, G-Restrict 

sequence to the prune operation of [DAYA83]. 

While it is clearly preferable to use Semijoin or Antijoin 

operations rather than the G-Join, G-Agg etc. sequence, it is 

not always possible to do so when they are nested and the query 

graph is cyclic. 

The construction of the query graph uses the same rules as 

in Section 4.2, with NOT EXISTS behaving like COUNT. 

The optimizer enumerates join edges and positions G-Agg 

operations using the various tactics described in Section 4. 
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Additionally, we have the tactic of using semijoins and anti- 

joins wherever possible. In an execution plan in which the last 

G-Join in the scope of a quantifier is immediately followed by its 

corresponding GAgg, this sequence of operations can be 

replaced by .a Semijoin or an Antijoin, respectively, depending 

upon whether the quantifier is an EXISTS or NOT EXISTS. 

Formally stated, the rule is: 

Project( GAgg( GJoin( R,S;@;J); R.TID; EXISTS); R.*) 

= Semijom( R, S; J) 

An analogous rule is obtained for NOT EXISTS by substituting 

R.* for 8 as the preserved set in the G-Join on the left hand 

side, and substituting Antijoin for Semijoin on the right hand 

side. 

Finally, the tactics described in this section will work for 

other syntactic constructs of SQL such as ANY and IS NOT 

IN; we assume that these constructs are first transformed into 

EXISTS and NOT EXISTS as described in [DATE85]. 

6. Extensions 

6.1 Nesting Predicates other than IN 

Consider query 1 with the nesting predicate IN replaced by 

=, thus: . . . E.Dept# = (SELECT D.Dept# . ..). SQL semantics 

dictate that if the nested subquery returns more than one tuple, 

then an exception should be raised and the query should be 

aborted. To capture these semantics in our algebra, we need an 

additional operator: Test-FD. Let X, Y subsets of R.*, and let 

F:X->Y be a functional dependency statement. Then, Test- 

FD(R;F) = R if F holds in R; otherwise, raise an exception and 

abort. 

Test-FD can be implemented by modifying the method for 

implementing G-Agg(R; X, COUNT DISTINCT(Y)) to abort 

whenever more than one distinct value of Y is encountered for a 

group. 

The Test-FD operation can be delayed past G-Join and Pro- 

ject operations, but not past Restrict, Delta-Project, or G-Agg. 

Hence, the above query can be evaluated by pipelining the 

result of a regular join between EMP and DEPT into the Test- 

FD, and then into Delta-Project to get rid of duplicates for the 

semijoin. 

On query graphs, the nesting predicate (R.A op (SELECT 

S.B . ..)) is represented by a semijoin edge, labelled (R.A op 

SB), between R and S, together with a Test-FD node labelled 

with the FD R.TID -> S.B, and precedence edges to this node 

from R and from the variables and restrictions in the scope of 

S’ s block. 

6.2 Disjunctions and Unions 

Queries that contain disjunctions and unions are usually 

expensive to process, because their results are quite large, and 

database systems do not have access pathes to support their 

evaluation. 

Instead of describing in detail the construction of query 

graphs and execution plans for such queries, we highlight the 

salient features of our approach. Disjunctions that appear in 

one-variable restriction conditions (e.g., R.A=a or R.B=b) ere 
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processed during one scan of relation R. Disjunctions that 

appear in join conditions (e.g., R.A=S.B or R.C=S.D) can be 

processed in several ways: (a) as a restriction when R and S are 

joined on some other condition; (b) as two joins followed by a 

union (this is useful only if both joins are supported by fast 

access paths); or (c) more intelligently, by a join on one condi- 

tion followed by a join of the unjoined portions on the other con- 

dition. (For (c), we would need a symmetric operation that 

simultaneously produces the regular join, and the two antijoins 

of R by S and vice-versa.) 

The 1-t tactic is especially useful for queries that require the 

union of two semijoins of the same relation by two different rela- 

tions. To illustrate this point, consider the following query: 

Query 11 

SELECT R.A 

FROM R 

WHERE EXISTS (SELECT * 

FROM S 

WHERE R.B=S.C) 

OR EXISTS (SELECT * 

FROM T 

WHERE R.D=T.E) 

The query graph of this query is shown in Figure 6.1 (we 

introduce OR nodes to represent disjunctions). The query can 

be processed in one of three ways: 

(a) Use the tactics of section 5 to evaluate the two nested 

subqueries, which will result in the computation of an Agg attri- 

bute for each; the final answer is obtained by restricting R on 

the disjunction of these attributes. 

(b) Use a variant of the rule for replacing EXISTS with a 

semijoin to process the two subqueries by semijoins, and then 

construct the union. 

(c) Simultaneously do one semijoin and its corresponding 

antijoin (this operation was called a semiouterjoin in [DAYA85]; 

then use the antijoin in the subsequent semijoin. 

R Project R.A 

/ 
/ 

/ 

&- 

/- . / , \ / \ / \ 
/ OR 

/ 

R 
\ 

\ 

,‘R.B = S.c R.D 
\ 

= T.E 

G-A,&; R.TID,R.A; (‘.+A&; R.TID,R.A; 
EXISTS) EXISTS) 

Figure 6.1 Query Graph of a Disjunctive Query 

For more complicated cases (e.g., when disjunction of 

quantified nested subqueries occur, inside a quantifier), we may 

not be able to use semijoins or antijoins. However, we can adapt 

the G-Join, G-Agg technique of section 5 as in (a) above: essen- 

tially, evaluate each parallel nested aubquery to return an Agg 
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value. The G-Agg for the quantified subquery at the next level 

up then tests the disjunction of these Agg values instead of just 

testing for the empty set. This last tactic is extensible to other 

Boolean connectives (e.g., =>) as well. 

7. Conclusions 

Existing query optimisers consider many strategies for 

Restrict-Project-Join queries. They use heuristics to enumerate 

permutations of the joins, and to position restrictions and projec- 

tions relative to the joins, and use sophisticated cost models to 

compare strategies. 

In practice, however, query languages such as SQL contain 

many powerful features (e.g., control over duplicates, nested 

subqueries, aggregates, quantifiers, and disjunctions) that are 

not expressible as Restrict-Project-Join sequences. Existing 

query processors are severely limited in their strategies for pro- 

cessing such queries: typically, they just use tuple substitution. 

Unfortunately, however, tuple substitution is often inefficient, 

especially in a distributed system. Hence, there is a pressing 

need to expand the space of query processing strategies for such 

queries. 

In this paper, we introduced a collection of new operators, 

and described how they can be implemented by straightforward 

extensions to existing implementation methods. From the alge- 

braic properties of these operators: we derived new query pro- 

cessing tactics that greatly increase the space of strategies con- 

sidered by the optimiser, without changing the basic architec- 

ture of the optimiser. Instead of joins, the optimiser must now 

enumerate G-Joins, and must position G-Aggs, G-Restricts, Pro- 

jects, and Delta-Projects relative to the G-Jo&. The optimizer 

can consider the relative cost of tuple substitution (nested itera- 

tion) for implementing the G-Joins and other (e.g., sort-merge) 

implementation methods. Finally, the optimher can often pipe- 

line operations if the intermediate results are correctly grouped 

or ordered, thereby avoiding the cost of storing temporaries 

(which is basically the only advantage of tuple substitution). 

Hence, we now have a unified framework for optimking all of 

SQL (and other languages with similar features). 

Future work consists of working out detailed heuristics for 

enumeration, heuristics as in [WONG 761 for decomposing com- 

plex queries into simpler queries (to control the exponential 

growth in the size of the strategy space), formal proofs of the 

transformation rules, and a detailed cost model. 

Our style in this work is algebraic. Hence, it should be easy 

to add the new operations and rules into rule-driven and extensi- 

ble optimizers such as those described in [FREY 87, DEW1 871. 
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