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Abstract
We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were 
keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic 
disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we 
explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. 
Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolu-
tionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placental-
ization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based 
production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral 
replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind 
viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, 
angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, 
these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, 
and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like 
their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This 
adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also 
generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match 
virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and 
adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.

Keywords  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) · Corona virus disease 2019 (COVID-19) · 
Platelet · Coagulation · Toll-like receptor (TLR) · C–C chemokine receptors (CCR 1,3And 4)

 *	 David G. Menter 
	 dmenter@mdanderson.org

1	 Department of GI Medical Oncology, The University 
of Texas MD Anderson Cancer Center, Houston, TX, USA

2	 Division of Internal Medicine, Benign Hematology, The 
University of Texas MD Anderson Cancer Center, Houston, 
TX 77030, USA

3	 Department of Pathology, The University of Texas MD 
Anderson Cancer Center, Houston, TX, USA

4	 Department of Pathology, Bioactive Lipids Research 
Program, Wayne State University, 5101 Cass Ave. 430 
Chemistry, Detroit, MI 48202, USA

5	 Department of Pathology, Wayne State University School 
of Medicine, 431 Chemistry Bldg, Detroit, MI 48202, USA

6	 Cancer Biology Division, Wayne State University School 
of Medicine, 431 Chemistry Bldg, Detroit, MI 48202, USA

7	 Department of Gynecologic Oncology, The University 
of Texas MD Anderson Cancer Center, Houston, TX, USA

8	 Center for RNA Interference and Non-Coding RNA, The 
University of Texas MD Anderson Cancer Center, Houston, 
TX 77030, USA

9	 Department of Cancer Biology, The University of Texas MD 
Anderson Cancer Center, Houston, TX 77030, USA

/ Published online: 12 January 2022

Cancer and Metastasis Reviews (2022) 41:147–172

http://orcid.org/0000-0003-2967-4095
http://crossmark.crossref.org/dialog/?doi=10.1007/s10555-022-10019-5&domain=pdf


1 3

1 � Offerings from cancer expertise 
to understanding platelet evolution

We have acquired an informed perspective and extensive 
expertise in the field investigating the role of platelets in 
cancer biology [1–10]. One of the key discoveries that led 
to a better understanding of the links between coagulation 
and cancer was that of Trousseau’s syndrome, which is 
defined as a migratory thrombophlebitis found typically 
in patients with an underlying malignancy. Among other 
discoveries throughout the years, one of the key discover-
ies linking platelets to tumor cell interactions was made by 
Gasic et al. [11]. Our efforts in this field greatly expanded 
the knowledge base regarding platelet-tumor cell inter-
actions and the role of prostaglandins in particular dur-
ing cancer metastasis [2, 12]. Fast forward, this study is 
for expanding our current knowledge base in identifying 
unique aspects of platelet function and platelet biology in 
the growth and progression of ovarian cancer [4, 10]. It is 
from this unique cancer-centric perspective that we recog-
nized that the numerous venous-, arterial-, microvascular-, 
and macrovascular thrombotic events and immunologic 
disorders are caused by severe, acute-respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infections. This perspective 
led us to examine the evolutionary connections placing 
platelets at the epicenter of hemostasis, immunity, and 
adaptive phylogeny. All of these novel perspectives may 
provide new leads to better understand not only the role of 
platelets in vascular protection and immune function but 
also a keener insight into the role of platelets in cancer 
and metastasis.

2 � Viral and platelet evolution

2.1 � Single‑stranded RNA virus evolution

Positive sense, single-stranded RNA viruses are thought 
to be among the earliest forms of life; lineages have 
been traced through the conservation of RNA-dependent 
RNA polymerases within the picornavirus super-group 
[13–16]. Over the past century, multiple single-stranded 
RNA viruses, including human immunodeficiency virus-1, 
influenza A, and severe, acute-respiratory-syndrome coro-
navirus 2 (SARS-CoV-2), have emerged to infect humans 
on a large scale—a modern consequence of ancient virus 
evolution [17, 18]. Endogenous retroviruses help to record 
past RNA retroviral infections and are ubiquitous in ver-
tebrate genomes [19]. Coronaviruses are among the class 
of positive-strand RNA viruses that infect mammals and 
birds and can achieve zoonosis [20–22]. Evidence of a 

SARS-like coronavirus arising in bats shows zoonotic 
implications of a direct ancestor of SARS coronavirus [23, 
24]. Bats can carry viruses that are deadly to other mam-
mals without having serious symptoms, possibly involving 
unique immune- and rapid cellular-spreading properties 
[25]. During the current SARS-CoV-2 pandemic, key viral 
mutations may have also occurred via person-to-person 
transfer complicated by zoonotic passage, highlighting the 
rapid evolution of this virus [26–32]. Overall, the phylog-
eny of vertebrate RNA viruses reflects that of their verte-
brate hosts coevolving with a transition from ocean-to-land 
and exhibits origins that date back to the time of early 
terrestrial animals [18, 33, 34].

2.2 � Phylogenetic co‑evolution of platelets 
in adapting to viral pathogens

Many aspects of platelet biology and evolution remain 
unrecognized, especially regarding their rapid responsive-
ness to viruses [35–37]. Platelets may have coevolved with 
viruses to provide speedy responses but this possibility 
remains unexplored. However, platelets have been shown 
to endocytose viral particles and are activated via toll-like 
receptor signaling [38]. The severity of low-platelet count 
(thrombocytopenia), a common complication of influenza-
virus infection, predicts the clinical outcome of critically 
ill patients [39]. These platelet responses are biochemically 
and biologically rapid and may also involve integrin recep-
tors [40]. In the case of viral diseases like COVID-19, the 
responses may remain unnoticed during asymptomatic and 
early phases [41, 42]. As there is an expression gradient of 
entry factors for SARS-CoV-2 along the airways, these are 
the likely sites of initial viral infection, spread, and clearance 
[43]. General symptoms can consist of cough, myalgia, loss 
of appetite, and gastrointestinal discomfort. Olfactory and 
gastrointestinal disorders are prevalent with sudden anosmia 
(loss of smell), ageusia (loss of taste), or dysgeusia (metal-
lic taste), but not always fever, as informative symptoms 
of the COVID-19 infection [44–48]. Given the one-to-two, 
cell-layer separation between many airway passages and the 
microcirculation coupled with the evolutionary characteris-
tics of platelets, this suggests that they are the first throm-
bocyte/immunocyte that virions such as SARS-CoV-2 may 
encounter and thereby rapidly respond to in the bloodstream 
[38, 49]. For example, with the human immunodeficiency 
virus, platelets have been shown to reduce viral load [50] 
and harbor viral particles [51].

2.3 � Early evolutionary ties between innate 
immunity and coagulation

Coincident activation of innate immunity and the coagu-
lation system after an injury is a phylogenetically ancient, 
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adaptive response that can be traced back to the early stages 
of eukaryotic and chordate evolution [52–57]. Most inver-
tebrate species like the horseshoe crab (Limulus polyphe-
mus) lack differentiated phagocytic cells and platelets, but 
they do have large nucleated amoeboid granular hemocytes 
[58–60] (Fig. 1). Once their open circulatory system is 
breached, they respond to microbial threats via a common 
amoebocyte- and humoral pathway of inflammation and 
clotting [58–60]. Lysates prepared from the amebocytes 
of Limulus have long been known to undergo coagulation 

upon exposure to endotoxin and have been used to detect 
that endotoxin [61]. Archetypal functions of Limulus ame-
bocytes are found in human platelets, including aggrega-
tion, adhesion, spreading, and granule-based release of 
coagulation factors [62–64]. These properties are found 
throughout phylogenetic evolution as common antimicro-
bial and proinflammatory responses to stimuli that activate 
both the clotting cascade and the phagocytic effector cells. 
Non-mammalian vertebrates—that include early chordates, 
fish, birds, amphibians, and reptiles—have large, nucleated, 

Fig. 1   Platelet evolution. 
Thrombocyte and platelet 
evolution remain at the center of 
both hemostasis and immunity. 
Depicted are species and throm-
bocyte/platelet reproductions 
where transmission electron 
micrography-, morphological-, 
and functional data were avail-
able. Invertebrate thrombocytes 
of the horseshoe crab (Limulus 
polyphemus) are typically large 
amoeboid cells. Thrombocytes 
gradually became reduced 
in size, more elongated, and 
retained nuclei throughout the 
evolution of (1) the chordate 
and aquatic vertebrates such as 
agnatha or jawless fishes like 
the hagfish (Myxine gluti-
nosa), (2) the cartilaginous 
or Chondrichthyes fish such 
as the dogfish shark (Squalus 
acanthias), and (3) the boney 
or teleost fish such as zebrafish 
(Danio rerio). As vertebrates 
adapted to terrestrial life, these 
trends continued in amphibians 
such as the green frog (Rana 
clamitans), reptiles like croco-
diles (Crocodylus porosus), and 
even avian forms such as the 
chicken (Gallus gallus). Unique 
to mammals and marsupials, 
platelets dramatically decreased 
in size and developed improved 
biophysical properties, includ-
ing the elimination of nuclei
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often spindle-shaped thrombocytes that mediate thrombo-
cytic activity [36, 54–57, 65].

2.4 � Platelet adaptation through decreasing size 
and losing nuclei

Throughout evolution, the cell size and dimensions of 
thrombocyte nuclei have gradually decreased; this process 
accelerated as species became more terrestrial and began 
to thermoregulate (Fig. 1). In the jawless fish-like Hagfish 
(Myxine glutinosa) [66, 67], cartilaginous fish-like sharks 
(Squalus acanthias) [68, 69], boney fishes like Zebrafish 
(Danio rerio)[70], and other fish species, circulating nucle-
ated thrombocytes have some phenotypic features and func-
tional characteristics similar to those of mammalian platelets 
[71, 72]. As aquatic animals like the lungfish (Neoceratodus 
forsteri, Lepidosiren paradoxa) adapted to terrestrial life, 
thrombocytes remained large and retained large nuclei, while 
developing a sophisticated granule system to effectively 
regulate and maintain coagulation and immune functions, 
particularly during the dramatic changes associated with 
dry-season-based estivation or dormancy [73, 74]. Similar 
morphological associations found in thrombocytes of other 
non-mammalian vertebrates were retained in amphibians 
such as the green frog (Rana clamitans) [75], reptiles such 
as crocodiles (Crocodylus porosus) [75, 76], and birds such 
as the chicken (Gallus gallus) [76, 77]. In contrast, mammals 
[78] and marsupials have developed various essential evolu-
tionary changes during the processes of erythroid and throm-
bocytic development and differentiation. Examples include 
megakaryocyte endoreduplication and platelet enucleation, 
each involving a reduction in size and improvements in func-
tional biophysical morphology [36, 76, 79]. Mammals have 
also developed more intricate associations between platelets 
and other immune cells (neutrophils, monocytes, and mac-
rophages) to coordinate innate immunity and the coagula-
tion system [53]. From an evolutionary perspective directed 
at defending against viral threats, platelet adaptations may 
be an effective way to improve host responses. Platelets are 
important anucleate elements of the immune and hemostatic 
systems that have minimal nucleotide- or protein synthesis 
machinery to indefinitely make new gene products [80–82]; 
their ability to reproduce viral particles is limited or has been 
shown for only a few single-stranded-RNA viruses like Den-
gue virus and potentially SARS-CoV-2 [83–85]. Some viral 
replication may be excluded by restricting gene expression 
to a pre-existing, limited subset of ribosome-bound mes-
senger RNAs that engage the ribosome rescue-factor pelota 
(PELO) in regulating messenger-RNA decay [86]. The pos-
sibility also exists that viral replication may occur in mega-
karyocytes within the bone marrow prior to their budding 
from parent cells, but this has not been fully explored [87, 
88]. Although unrecognized as part of platelet evolutionary 

biology to date [36, 37], a more important function of plate-
lets in mammals may be the lack of nuclei and limited rep-
lication machinery to support long-term viral replication, 
providing a more highly evolved defense and, potentially, a 
sink against these infections.

The vertebrate transition from aquatic to terrestrial envi-
ronments applied significant selective pressure to the co-
evolution of viruses and animals. This was accompanied by 
multiple geophysical, external, selective pressures, which 
include changes in luminosity, oxygen, carbon dioxide, and 
asteroid-based impacts (Fig. 2). Co-evolution is a complex 
interaction of co-divergence between virus and host over an 
extended time and includes frequent cross-species transmis-
sions coupled with external survival pressures severe enough 
to elicit the change [18, 33]. In this manner, SARS-CoV-2 
evolution has accelerated in conjunction with zoonotic 
exchanges with humans over the past 100 years (on the time 
scale in Fig. 2, this would be approximately the size of a 
period).

3 � Adaptive characteristics

The evolution of platelets includes multiple adaptations 
to deal with viral infections. As one evolutionary mecha-
nism for dealing with viral pathogens, large, multinucleated 
megakaryocytes evolved in the bone marrow to protect and 
enable the production of high numbers of platelets [89–91]. 
These mechanisms have avian roots and enabled euthe-
rian placentalization [92, 93]. There is another significant 
advantage over the 2-N thrombocytes of lower vertebrates 
found in mammalian megakaryocytes. Significantly enlarged 
megakaryocytes provide a major amplification response to 
bleeding or viral immune threats incurred by increasing 
DNA content up to 128 N [93] No studies have yet deter-
mined whether these megakaryocytes serve and monoclonal 
source of targeted platelets responding to a specific threat. 
The adaptation of increasing DNA content significantly 
increases the capacity to produce even more platelets with 
increased receptor density; more organelles per unit cellular 
volume; and more prothrombotic proteins to reduce bleed-
ing time or adapt to viral threats. This process culminates 
in mammalian platelet evolution and hemochorial placenta-
tion because mammals are the only vertebrate group that 
has evolved with a highly effective and unique system of 
hemostasis [93]. This hemostasis effectiveness is essential 
at parturition where even minimally invasive placentae can 
hemorrhage [93]. Platelet evolution has enabled the preven-
tion of rapid blood loss and damage from massive injury or 
microinjury, which is particularly important when the brain 
is more advanced. Because microbes and viruses have a 
short ten-day life span, platelets must have co-evolved to cre-
ate survival advantages with adaptive mechanisms to meet 
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and sequester rapidly cycled microbial- and viral threats and 
pathogen response-based turnover.

The sheer number and biophysical properties of megakar-
yocyte-derived mammalian platelets make them more likely 
to be the first blood component to encounter virus particles 
and limit spread. Human platelet genesis is well studied and 
primarily occurs by membrane-bound, organelle-containing 
cytoplasmic extrusion into the blood stream of numerous 
small size- and volume blebs ranging between 9.7 and 12.8 
femtoliters or in plate-like structures of 2.6 to 2.9 μm in 
diameter [90]. This blebbing, subcellular, genesis process 
occurs primarily in the bone marrow from surfaces of mega-
karyocytes—the largest cell in the body (ranging between 40 
and 100 μm in diameter). Normal human-platelet concentra-
tions range between 150,000 and 400,000 per microliter. The 
roughly 1011 platelets produced each day are responsible for 
coagulation—specifically for creating a fibrin plug at the 
site of blood vessel injury. However, emerging data sug-
gest a greater impact on viral interdiction, pathogen surveil-
lance, cancer biology, and immune function. As part of the 

anti-viral response, platelets are known to actively engage 
and directly phagocytose viral pathogens [94–106]. Note 
that this ability of nucleated thrombocytes to phagocytose 
pathogens is also present in lower vertebrates [107], which 
also exhibit an extensive open-canalicular system [72]. 
Platelets have been shown to endocytose viral particles and 
become activated via toll-like receptor (TLR) signaling [38]. 
Mammalian virus uptake may also involve the platelet open-
canalicular system that exchanges factors with the surround-
ing microenvironment [95, 97, 108–111]. Once platelets take 
in virus particles, they may then undergo phagocytosis by 
other immune cells[106]. Platelet surface changes that occur 
after taking in viral particles can also mark the platelets for 
clearance by other organs including the liver and spleen.

3.1 � Platelet formation of plate‑like structures 
and wall shear biophysics

Other key aspects of adaptive evolution in the mammalian 
platelet are size decreases and improvements in biophysical 

Fig. 2   Evolutionary timeline. Using available transmission electron 
micrography- and morphological data from the literature, a nodal 
evolutionary tree for the species listed in Fig. 1 was constructed using 
the Time Tree Website, http://​www.​timet​ree.​org. A species list was 
generated as a text file list for the following: Limulus polyphemus, 
Myxine glutinosa, Squalus acanthias, Danio rerio, Rana clamitans, 
Crocodylus porosus, Gallus gallus domesticus, and Mammals/Homo 
sapiens. Egg-laying mammalian evolution began 220 MYA, pla-
cental-Eutherian evolution occurred 125 MYA and human evolu-
tion began 2.5 MYA. This file was then uploaded as a list file. Time: 
million years ago, MYA Periods: Cambrian, C:542.0–488.3; Ordo-

vician, O: 488.3–443.7; Silurian, S:443.70–416.0; Devonian, D: 
416.0–359.2; Mississippian, MIS: 359.2–318.1; Pennsylvanian, PEN: 
318.10–299.0; Permian, P: 299.0–251.0; Triassic, Tr: 251.0–199.6; 
Jurassic, J:199.6–145.5; Cretaceous, K:145.50–65.50; Paleogene, 
Pg:65.50–23.03; Neogene, N:23.03–0.0. Eras:  Neo-Proterozoic: 
1000.0–542.0; Paleozoic: 542.0–251.0; Mesozoic: 251.0–65.5; Ceno-
zoic, Cz: 65.50–0.0–542.0. Eons: Proterozoic: 2500.0–542.0; Phan-
erozoic: 542.0–0.0. Earth impacts: Sphere size equals the diameter of 
the impact (e.g., Chicxulub, location: Yucatan, Mexico, coordinates: 
21.333, − 89.50, diameter: 150.0 km, age: 65 MYA)
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shape properties to enhance encounters with virus-infected 
vascular surfaces. In lower vertebrates, nucleated thrombo-
cytes are less plate-like and10 to 20 times larger than plate-
lets causing them to primarily distribute in the center of 
laminar shear fields [36, 70, 72] (Fig. 1). In humans, resting 
platelets are plate-like discs designed to maximize planar-
surface interactions[112–114] that, due to their small size 
and shape, biophysically concentrate toward the outer fluid-
shear fields of flowing blood [115–122]. Taken together, 
these properties enhance encounters and recognition of any 
vascular-wall lesions, wounds, or tumors. Should platelets 
encounter basement membranes or their underlying matrix, 
the platelets undergo receptor-mediated activation [2, 
123–127]. This activation is connected to rapid cytoskel-
etal- and membrane changes to form filopodia leading to 
adhesion [128–135]. This is a process that occurs within 
seconds along with a shape change from exocytic degranula-
tion. Degranulation, in turn, encompasses the release of pro-
teins, growth factors, cytokines, and lysozymes along with 
a variety of bioactive lipids, small molecules, and other fac-
tors. Successful sequential recruitment of additional platelets 
and immune cells coupled with thrombogenesis ultimately 
seals any tissue gaps and sterilizes the lesion. Since platelets 
segregate within shear fields near the endothelial cell sur-
faces, they have a high probability of encountering viral par-
ticles that enter the bloodstream. This behavior also affords 
platelet endothelial-cell interactions that can occur with an 
aggressive, influenza-like cytokine storm that triggers cell 
damage in lung capillaries [136].

3.2 � Platelet microvesicle production and increased 
membrane surface area

Compared to any other form of circulating microvesicle, 
exocytic platelets generate the majority of microparticles 
and exosomes in circulation [137–142]—possibly another 
form of platelet evolution to deal with viral threats. In lower 
vertebrates, microparticle generation by thrombocytes plays 
a key role in thrombocyte function [70]. During laser-injury 
experiments in zebrafish, thrombocyte microparticles were 
the first cell-based entities to arrive at the injury site, even 
before the young thrombocytes [143, 144]. In the case of 
viral infections like SARS-CoV-2, platelet microparticle and 
exosome shedding would significantly increase the plate-
let-membrane surface area and possibly mitigate the threat 
potential through target decoration and further immune-
system stimulation[145].

3.3 � Tissue migration

A phylogenetic adaptive loss of platelet nuclei may also 
enable rapid endothelial transmigration into perivascular 
spaces. Platelets readily undergo tissue migration because 

of their small size, minimal displacement volume, and 
highly active cytoskeletal responses linked to activation, 
adhesion, and aggregation [146–148]. Even greater is the 
vascular-transmigration advantage of being unencumbered 
by the presence of nuclei, which limit the migration of other 
immune cells to interdict viral threats [146–150]. This nuclei 
absence may also limit the distance that platelets can move 
into tissue, which limits nucleotide and protein-synthesis 
capabilities. Due to limited nucleotide and protein-synthesis 
capabilities, platelets cannot indefinitely maintain protein 
replacement [80, 151]. These immune-surveillance and rapid 
viral-response properties facilitate speedy sterilization and 
quickly initiate the repair process during a virus-induced, 
tissue-injury response. With viral infections, platelets have 
been shown to influence viral invasion of the central nerv-
ous system in canine distemper-virus infection [152, 153]; 
however, few studies exist that examine platelet invasion or 
extravasation as part of a viral immune response. Alterna-
tively, because viral infection may lead to endothelial dam-
age and platelet extravasation, activation and granule release 
may promote the attraction of other immune cells that pro-
duce inflammation in the affected tissues.

Various factors in response to various stimuli can con-
tribute to platelet transmigration across leaky or inflamed 
vessel walls to aid in wound sterilization and tissue regen-
eration [154–160]. Platelet inflammatory responses can also 
cause them to undergo vascular transmigration and gran-
ule release that engages various additional immune cells 
[161–163]. Within the extravascular microenvironment, the 
release of the stromal cell-derived factor-1 named C-X-C 
chemokine-ligand 12 (CXCL12), along with other cytokines, 
can also provide a potent stimulus for platelet migration into 
extravascular spaces [10, 150, 164–167] [168–171]. Among 
the many response factors expressed by platelets are C-X-C 
chemokine-receptors 4 and 7 (CXCR-4, CXCR7), which are 
the cognate receptors for CXCL12. These platelet recep-
tors may be involved in inflammatory- or allergic responses 
or in platelet activation in human immunodeficiency virus 
and other viral infections [172]. Along with those involving 
lymphatic biology, these thrombo-immune responses and 
wound healing characteristics were conserved from lower 
vertebrates [107, 173–177] [178].

4 � Virus‑induced platelet activation 
and thrombotic complications

Cyclooxygenase and prostaglandin production, associ-
ated with gene duplications and losses, have been retained 
throughout metazoan and vertebrate evolution [179, 
180] that began in teleosts and resulted in a divergence 
between cyclooxygenase-1 and cyclooxygenase cyclooxy-
genase-2 (COX-1 and COX-2) [180]. A release of the 
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COX-2-associated prostacyclin PGI2 from vascular endothe-
lial cells helps to maintain the resting state of circulating 
platelets through G-protein-coupled receptors (GPCR) 
[181–185] (Fig. 3). Should platelets become activated during 
the virus uptake, responses are rapidly amplified by activat-
ing molecules such as thrombin or adenosine diphosphate 
(ADP). These molecules are released by platelets and trigger 
their cognate GPCRs at the cell surface or as a result of the 
release reaction. Similarly, COX-1-associated and endog-
enously synthesized thromboxane A2 (TXA2) amplifies the 
local platelet response to recruit additional platelets through 
TXA2-GPCRs that accelerate the thrombogenesis/clotting 
process (Fig. 4). Platelet TXA2 levels increase following 
virus infections and can be attenuated by aspirin treatment 
[186–190]. The production of TXA2 and other lipids initiates 
vasoconstriction [191, 192]. As a primary stimulant of plate-
let recruitment and aggregation, TXA2 is among the shorter-
lived prostaglandins due to molecular epoxide bond strain in 

the active part of the molecule that is prone to rapid (< 30 s) 
hydrolysis [193, 194]. Because these rapid changes acceler-
ate over a matter of minutes, a fibrin network is generated to 
trap and activate more platelets within the forming clot in a 
cyclic fashion to limit blood loss. This amplification process 
occurs over 20 min or less, while clot maturation and solidi-
fication continue for about an hour to initiate—over days to 
weeks—prompting immune-cell recruitment and inflamma-
tion. Recruitment of fibroblasts and immune cells through 
platelet-initiated, angiogenic repair mechanisms stimulates 
further wound healing and resolution [195].

4.1 � Granule release

The release of dense, δ-granule components influences the 
vascular microenvironment of the platelet (Fig. 3). The 
release of calcium and magnesium ions promotes platelet 
activation and aggregation. The release of nucleotides such 

Fig. 3   Platelet responses to SARS-CoV-2. Platelet responses to 
viruses include activation, aggregation, and granule release. Dense 
δ-granules contain bioactive small molecules including thrombox-
ane A2 (TxA2), adenosine diphosphate (ADP), serotonin (5-hydoxy-
tryptamine [5HT]), and histamine. The α-granule contains numer-
ous bioactive proteins involved in thrombus formation, coagulation, 
and aggregation including tissue factor and thrombin. It also con-
tains numerous bioactive molecules involved in immune regulation 
and inflammation including Cys-X-Cys (C-X-C) motif chemokines 
such as CXCL1 (GRO1 oncogene [GRO-α]), CXCL4 (platelet fac-
tor 4 [PF4]), CXCL5 (ENA-78), CXCL7 (β-thromboglobulin [β-TG], 
platelet binding protein [PBP], CTAP-III, and NAP-2), CXCL8 

(interleukin-8 [IL-8]), and CXCL12 (stromal cell-derived factor-α 
[SDF-1α]). Platelet α-granules also contain Cys-Cys (C–C) motif 
chemokines that include CCL2 (monocyte chemoattractant protein 
1 [MCP-1]), CCL3 (macrophage inflammatory protein [MIP-1α]), 
CCL5 (regulated on activation, normal T-cell expressed and secreted 
[RANTES]), CCL7 (MCP-3), and CCL17 (thymus and activation 
regulated chemokine [TARC]), along with interleukins IL1-β and 
IL-6, platelet-activating factor [PAF], defensins, and complement fac-
tors C3a and C5a. Alpha-granule release factors also include growth 
factors such as vascular endothelial-cell growth factor (VEGF), plate-
let-derived growth factor (PDGF), and angiopoietin
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as ADP activates platelets through P2Y1 and P2Y12 receptors 
[196, 197] and stimulates vasoconstriction [198] (Fig. 4). 
ADP can accumulate in the ischemic vascular microenvi-
ronment as a consequence of circulatory stasis or thrombus 
formation. The release of neurotransmitters such as seroto-
nin (5-hydroxytryptamine), epinephrine, and histamine can 
potentiate ADP-induced platelet activation and aggregation 
[196, 197, 199, 200]. Platelets may serve as neuronal and 
innate immune cells to help mediate T cells during tissue 
inflammation [201]. Epinephrine is also likely to worsen 
COVID-19-induced stress-related effects on platelets and 
platelet-mediated cytokine responses [202]. By contrast, 
lower-vertebrate thrombocytes do not aggregate in response 
to ADP or epinephrine; neither do they accumulate or pro-
duce serotonin [65, 203].

Conversely, platelet release of alpha (α)-granules in 
serum results in substantial increases in multiple proteins 

responsible for most of the coagulation, growth stimula-
tion, angiogenesis, immune function, and wound-repair 
factors. Adhesion molecules released from α-granules 
help to stimulate the rapid arrest of platelets in circula-
tion. This is a process that is mediated by adhesion fac-
tors such as the von Willebrand factor (vWF), fibrinogen, 
thrombospondin, and fibronectin as well as integrins and 
other adhesion receptors αIIbβ3, αvβ3, and P selectin. 
These adhesion proteins regulate platelet interactions 
with other platelets, and with endothelial cells, exposed 
basement-membrane extracellular matrix, leukocytes, neu-
trophils, monocytes, and tumor cells. These same storage 
α-granules release the prothrombin, fibrinogen, factor V, 
and factor VIII that stimulate and promote coagulation and 
fibrin formation [3, 9, 204–212].

Fig. 4   SARS-CoV-2 replication and platelet receptor interac-
tions. At the top, virus replication within vascular endothelial cells 
is initiated by SARS-CoV-2 spike-protein binding to angiotensin-
converting enzyme (ACE)  and enzymatic processing by transmem-
brane protease, serine 2 (TMPRSS2). Viral uptake results in viral-
particle uncoating, viral reverse transcriptase activity of the positive 
single-stranded (+ ssRNA) genome, and replication. The endoplasmic 
reticulum of the host cell supports protein synthesis, assembly in the 
Golgi apparatus, and delivery to the exterior by exosomal transport 
or host-cell disruption, death, and retraction. The platelet depicted at 
the center illustrates the numerous receptors that bind to various virus 
types. Those that bind coronavirus species are indicated by larger-
font text and include (alphabetically) coxsackie-adenovirus recep-
tor (CAR), CCL chemokine Cys-Cys (C–C motif) ligand, cluster of 

differentiation (CD), C-type lectin domain family 2 and 5 (CLEC-2 
and CLEC-5), complement receptor (CR 3a and CR 5a), Cys-X-Cys 
(C-X-C) motif chemokine receptor type (CXCR1, CXCR1-2, and 
CXCR1-4), dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN), Fc gamma receptor II (FcγRII), 
heparan sulfate proteoglycan (HSP), integrin (αvβ3), and toll-like 
receptor (TLR). Also depicted are the phosphate-transferring nucle-
otide-binding domain-like receptor protein 3 (NRLP3), the inflamma-
some-response switch serine/threonine-protein kinase (NEK7), and 
the pro-inflammatory cytokine caspase 1 that mediates the enzymatic 
processing of interleukin-1β (IL-1β) prior to microvesicle release. 
Also shown are the large numbers of G-protein-coupled recep-
tors involved in platelet signal transduction, activation, and granule 
release
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4.2 � Viral infection of endothelial cells

Endothelial cells express angiotensin-converting enzyme 
(ACE) and transmembrane protease, serine 2 (TMPRSS2) 
that are involved in the SARS-CoV-2 invasion via its spike-
surface protein binding and processing [213–218] (Fig. 4). 
After uptake, SARS-CoV-2 undergoes uncoating and viral-
RNA reverse transcription and replication in the rough endo-
plasmic reticulum followed by new SARS-CoV-2 assembly 
and release (Fig. 4). Should the virus infect endothelial cells, 
endotheliitis, complement activation, and endothelial-cell 
death can occur [219–224]. Endothelial-cell retraction, 
whether virus- or inflammation-induced, can lead to matrix 
exposure that triggers platelet activation and granule release. 
Blood-vessel injury can amplify platelet responses and may 
help trigger heightened immune responses during the second 
phases of COVID-19 infection [219, 222, 225].

Analysis of megakaryocytes in bone marrow data from 
the Human Cell Atlas did not identify expression of these 
receptors [226, 227]; however, the detection of ACE2- and 
TMPRSS2 receptors in platelets requires direct protein-char-
acterization technology, not RNA sequencing, because the 
platelets lack nuclei and the sequencing technique does not 
provide adequate sensitivity. As part of their immune-sur-
veillance properties, platelets can recognize foreign bodies 
or invading pathogens [9, 228–230]. Along with other plate-
let receptors, the toll-like receptors expressed by megakaryo-
cytes [231] may be involved in innate immune responses to 
viruses, may take part in endocytosis of a variety of patho-
gens by platelets [38, 232–234], and may release factors that 
can influence antiviral responses [157, 235–246] (Fig. 4).

4.3 � SARS‑CoV‑2 infection and platelet recognition

Normally, platelets serve to rapidly respond during the 
wounding process and hemostasis. When virally damaged, 
blood-vessel endothelial cells die, are lost, or retract; this 
exposes platelets to subendothelial elements that initiate 
receptor-based recognition of the extracellular matrix. These 
interactions are driven by a variety of platelet glycoprotein 
receptors that bind to endothelial cells and extracellular 
matrix factors including proteoglycans, laminin, fibronectin, 
vitronectin, and various isoforms of collagen. vWF binds 
to exposed collagen I, collagen III, and collagen VI fibers. 
vWF is also recruited into matrix networks by forming teth-
ering fiber strands [247–251]. Many vWF characteristics of 
hemostatic proteins are conserved during ancestral verte-
brate evolution, but the hagfish (Myxine glutinosa) jawless 
vertebrate (a cyclostome) lacks functional domains required 
for primary hemostasis under high flow [66]. Many of the 
typical platelet-surface receptors also bind to viruses [34] 
but the role of platelet binding that may sequester viral par-
ticles in the vasculature has not been studied in detail.

Platelets contextually encounter numerous bloodstream-
circulating ligands, cells, pathogens, and extracellular-
matrix ligands. Immediate platelet responses are governed 
by a variety of integrin receptors through transmembrane 
glycoprotein-α and glycoprotein-β heterodimers once 
ligands are engaged (Fig. 4). Resting platelets express 
low-affinity conformation integrins that are bent to protect 
binding sites and to form high-affinity- or open-binding 
states that, once activated, efficiently interact with ligands. 
Rolling platelet behavior is initiated by surface-level, mul-
timeric GPIb-complex interactions with vWF that acti-
vate a key stabilization integrin αIIbβ3 [252–255] to bind a 
variety of RGD (arginine-glycine-aspartic acid)-containing 
ligands [252–255] including fibrin, fibrinogen, fibronectin, 
vitronectin, thrombospondin, or vWF complexes. Plate-
lets also interact with hanta- and adenoviruses through 
αIIbβ3 receptors [94, 98, 256–260]. Certain integrins bind 
to echo- and rotaviruses[261] while vitronectin is engaged 
by platelet αvβ3 integrin heterodimers that also bind to 
echovirus9; coxsackieviruses A9 and -A16; and hanta-, 
parecho-, and coronaviruses [98, 256, 257].

Platelet C-type lectin-like receptors CLEC-2 and 
CLEC-5A initiate platelet activation and trigger sig-
nal transduction through molecular multimerization 
[262–266]. CLEC-2 binds to the transmembrane sialomu-
cin-glycoprotein podoplanin among other molecules 
[267–269]. Podoplanin is expressed on cells of the lym-
phatic endothelia, type I lung epithelia, choroid plexus 
epithelia, kidney podocytes, and lymph-node stroma to 
potentiate migration and invasion [267–270]. CLEC-2 
expression is maintained on activated platelets and on 
platelet microparticles to substantially increase the prob-
ability of platelet-mediated interactions with virus par-
ticles [271]. Platelet CLEC-2 and CLEC-5A receptors 
bind to the human immunodeficiency- and coronaviruses 
[271–273].

Platelet P-selectin, also known as membrane glycopro-
tein GMP-140 [274, 275], binds to P-selectin glycoprotein 
ligand 1 (PSGL-1) [276], neutrophil leukocyte-endothelial 
cell-adhesion molecule 1 (LECAM-1) [277], endothelial 
cell-leukocyte adhesion-molecule 1 (ELAM-1) [278], 
and Sialyl Lewis (x) oligosaccharide [279]. Along with a 
variety of immune cells and endothelial cells, P-selectin 
interaction is important in mediating inflammation, auto-
immunity, and wound healing, and plays a role in cox-
sackievirus-induced myocarditis [280–284]. P-, L-, and 
E-selectins help with the tethering and rolling of cells that 
flow past the vascular luminal surfaces during the initial 
phases of intravascular, adhesive interactions. These pro-
cesses are stabilized by other receptors [285–291] and may 
contribute to interactions with virus-laden platelets.
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4.4 � Thrombus initiation

Platelets often serve as foci for coordinating thrombus initia-
tion and formation. Tissue factor initiates platelet activation 
and aggregation [292] and may be linked to some virus-
induced prothrombotic states associated with septic shock, 
myocarditis, and respiratory viral infections[293–296]. 
Thromboemboli and thrombocytopenia can also lead to 
COVID-19-related complications as reported in a number 
of publications [297–306]. In vivo, the viral threat mitiga-
tion process is likely to be rapid, as platelets aggregate in 
response to circulating threats. In the case of platelet interac-
tions with virions such as SARS-CoV-2, intravital observa-
tions are unlikely due to the small, average-viral-particle 
size. Histologically, these changes are difficult to track 
microscopically due to the lack of nuclei as platelet reference 
points; the post-activation, morphological platelet changes; 
and dramatic, aggregation-related shape changes that create 
an amorphous mass. Rapid thrombocyte/platelet responses 
have been conserved phylogenetically in vertebrates[307]. 
Depending on the agonist, the initiation of zebrafish throm-
bocyte/platelet aggregation occurs within 20 s, plateaus over 
1–3 min, and involves conserved αIIb receptor subunits[307]. 
Thrombotic plug formation is stabilized and counterbal-
anced by the disaggregation of platelets and fibrinolysis. 
Platelets migrate and help to initiate immune sterilization, 
tissue repair, and scar formation [195, 308–311]. In criti-
cally ill patients with a significant viral load, these platelet-
mediated immune responses may be more rapid and severe.

5 � Consequences of platelet‑viral responses

Major and life-threatening events associated with SARS-
CoV-2 infections are common. A number of coagulation/
thrombotic disorders are linked to COVID-19 infections 
including stroke, disseminated intravascular coagulation, 
pulmonary embolisms, acute respiratory distress syndrome 
(ARDS), sepsis-induced coagulopathy, local microthrombi, 
venous thromboembolism, arterial thrombotic complica-
tions, and thrombo-inflammation connected to disease pro-
gress, severity, or mortality[312–315]. One tragic example 
in the young is the association between COVID-19-related 
strokes and amputations [316–326]. Platelets can play 
an integral role at any stage of coagulation/thrombotic 
disorders.

Like other viral infections, asymptomatic disease is 
present in a significant but hard-to-identify fraction of 
affected individuals. In most symptomatic patients, a 
1-week, self-limiting, viral respiratory disease often occurs 
[221, 327–333]. This phase of disease may end when neu-
tralizing-, anti-viral-, T-cell-, and antibody immunity is 
engaged. If cross-reactivity occurs with other serum-based 

coronavirus antigens, immunoglobulin (Ig)M-, IgA-, and 
IgG-type virus-specific antibody levels can be important 
indicators of population immunity against this disease. In the 
case of extreme viral load during the first infection course or 
repeated exposure to virus that can occur in healthcare work-
ers, the rate and extent of this response can be an important 
factor for severity and localization of disease[221, 327–332]. 
These stage- and extent-of-disease responses will influence 
the development of any high-specificity and a high-accuracy 
serological assay that is easy to use, reliable, reproducible, 
and critical to the successful measurement of COVID-19 
immunity in our global population [334–353].

5.1 � Platelet FcγRIIA (CD32a) receptors

As COVID-19 progression becomes more severe, antibod-
ies that platelet FcγRIIA (CD32a) receptors can recognize 
may be generated [259, 354] (Fig. 4). FcγRIIA—known to 
recognize aggregated IgG complexes [355]—can contrib-
ute to αIIbβ3 activation and aggregation [356]. Aggregated 
IgG complexes can trigger the release of microvesicles, as 
can happen with H1N1-virus (swine flu) exposure [354, 
356]. FcγRIIA receptors contribute to the production of 
COVID-19-related autoantigens also amplified by platelet 
microparticle release. This may underlie the formation of 
potent inflammatory components: the microparticle-asso-
ciated immune complexes [357]. Similarly, the complexes 
appear to play a role in heparin-induced thrombocytopenia, 
a prothrombotic disorder mediated by complexes between 
platelet factor 4 (PF4) and heparin or other polyanions 
[358]. This risk of thrombosis may extend beyond expo-
sure to heparin implicating other PF4 partners as well [358]. 
Platelet FcγRIIA receptors are capable of recognizing mul-
tiple antibody subclasses that include IgM, IgA, and IgG 
[359–364]—all produced by patients with COVID-19 [221, 
327, 339, 342, 365].

5.2 � Thrombocytopenia

Thrombocytopenia initially has been associated with severe 
COVID-19 adverse outcomes and mortality [297, 300, 
304–306, 366]—possibly due, in part, to the consumption 
of platelets during the ongoing platelet-virus interaction 
process. However, others have not found thrombocyto-
penia to be an infallible predictor of disease progression 
or adverse outcome [367]. Decreases in platelet numbers 
have been associated with poor outcomes in multiple stud-
ies [306, 368–374]. Platelet changes can be associated 
with neutrophil extracellular traps—extracellular webs of 
chromatin, microbicidal proteins, and oxidant enzymes that 
are released by neutrophils to contain infections[242, 375, 
376]. Some of these conserved higher-orders in response 
to microorganisms can lead to clustering around pathogens 
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that encapsulates them, properties which are also observed 
in thrombocytes of lower vertebrates [377–379].

5.3 � Thrombocytosis

Using ultrasound-guided, minimally invasive autopsy to 
assess COVID-19 pulmonary involvement revealed the 
presence of fibrinous thrombi in alveolar arterioles along 
with a high density of alveolar megakaryocytes that likely 
contribute to thrombocytosis [222] [380]. With accompany-
ing elevations in interleukin (IL)-1 and IL-6 in patients with 
COVID-19 [297, 370, 381–393], this may lead to throm-
bocytosis due to inflammation-induced platelet activation, 
inflammasome formation, and IL-1-laden microvesicle 
release (Fig. 4), all of which are processes that associate 
with consumption-based feedback. IL-6 elevates platelet 
production in the metastatic ovarian-cancer setting when 
generated by tumors that stimulate liver-based thrombopoi-
etin production [4, 10]. Thrombopoietin, in turn, stimulates 
megakaryocyte/platelet thrombocytosis in the bone marrow 
[4, 10]. By contrast with COVID-19, pathogenic T cells and 
inflammatory monocytes associated with large amounts of 
IL-6 secretion can incite an inflammatory (cytokine) storm, 
which may be curbed through treatment with tocilizumab, 
a monoclonal antibody treatment that targets IL-6 pathways 
[380].

5.4 � Aspirin

Controversy exists over the use of aspirin in patients with 
COVID-19 particularly in those who are pregnant and 
display skin reactions [394–396]. In other studies, aspirin 
has shown benefit when combined with rivaroxaban (dual 
pathway inhibition) for the prevention of ischemic events in 
patients with cardiovascular- and peripheral-artery disease 
[397] [398]. Whether platelet consumption is the body’s 
way of isolating these diseases or immediately mitigat-
ing the spread of COVID-19 remains to be determined. In 
other studies, anti-coagulation effects were associated with 
improved COVID-19 survival after adjusting for mechanical 
ventilation.

5.5 � Role of platelets in complications of viral 
infection

ARDS is among the most worrisome of all responses to 
SARS-CoV-2 infections [220, 221] (Fig. 5). Platelets can 
promote or contribute to all stages of ARDS development 
and progression, including thrombosis, inflammation, angio-
genesis, and fibrosis [219–221, 223, 313, 366, 399–402]. 
Platelets can also help initiate many of the inflammatory 
responses in the lung. Endothelial-cell death and retraction 
can trigger platelet activation and granule release [219–221, 

403], the latter of which includes many of the proinflamma-
tory molecules that contribute to immune-cell infiltration 
and cytokine storming [27, 404–412].

Autopsies of COVID-19 patients have been difficult to 
achieve but they reveal many details of ARDS [220–222, 
224, 413–418]. Certain reports suggest that in severe 
COVID-19 cases, platelets are centered within thrombotic 
responses with an absence of protective immune states [403, 
419, 420]. As ARDS progresses, exudative, diffuse alveo-
lar damage (DAD) occurs and can intensify the release of 
alveolar exudates to stimulate hyaline membranes, septal 
edema, and mild/moderate lymphocytic infiltration. This 
can lead to pleomorphic, alveolar, epithelial-cell alterations 
resulting from SARS-CoV-2 cytopathic effects, which then 
can cause diffuse epithelial desquamation. Epithelial cells 
can also develop distorted cytoplasm, large nuclei, eosino-
philic nucleoli, giant cells, and squamous alveolar metapla-
sia. The release of platelet α-granule proteins can stimulate 
epithelial-cell- and endothelial proliferation and fibroblast 
invasion. Proliferative DAD has been characterized by dis-
organized fibrous tissue within alveolar septa while alveo-
lar lumens can become severe with fibrinous thrombi[222]. 
These pulmonary changes are the result of severe epithelial 
injury and microthrombotic vascular phenomena[222].

5.6 � Platelet contributions to cytokine storms

In patients with COVID-19, platelets can associate with 
SARS-CoV-2 RNA to become hyperactivated and can 
contribute to an eicosanoid storm [421] [422]. Hyperac-
tivated platelets are characterized by proinflammatory 
granule release which includes C-X-C motif chemokines 
such as CXCL1 (GRO-α), CXCL4 (PF4), CXCL5 (ENA-
78), CXCL7 (PBP, β-TG, CTAP-III, and NAP-2), CXCL8 
(IL-8), and CXCL12 (also called stromal cell–derived 
factor-α) [171] (Fig. 4). Platelet α-granules that are C–C 
motif chemokines include CCL2 (MCP-1), CCL3 (MIP-1α), 
CCL5 (RANTES), CCL7 (MCP-3), and CCL17 (TARC); 
along with IL1-β, the platelet-activating factor acetylhydro-
lase, and lysophosphatidic acid [423]. In some cases, SARS-
CoV-2-infected lung tissue may not be heavily infiltrated by 
CD20 + B cells, CD57 + NK cells, or lymphoid aggregates. 
By contrast, the number of CD4 + and CD8 + T cells may be 
few-to-moderate and may form small aggregates in patients 
with fibroproliferative DAD [222]. CD68 + macrophages 
populate alveolar spaces and sites of tissue remodeling in 
fibroproliferative areas. Some multinucleated, atypical giant-
cells (CD68 + alveolar macrophages) [222] can amplify 
the production and release of factors that contribute to a 
cytokine storm [424–427]. In SARS-CoV-2-infected lung 
tissue ex vivo, platelets combined with resident and infiltrat-
ing immune cells led to the increased production of inter-
ferons IFNβ, IFNγ, IFNλ1, IFNλ2, and IFNλ3 as well as 
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interleukins IL-1β, IL-6, IL-8, MCP1, MIP1α, RANTES, 
CXCL1, CXCL2, and CXCL5 [427].

5.7 � Extrapulmonary disease

Platelets can also contribute to many of the extrapulmonary 
comorbidities related to ARDS [220–222, 402, 413–417]. In 
many cases, the extrapulmonary disease attributed to throm-
botic axis comorbidities (such as hypertension and diabetes 
mellitus) often shows renal arteriolosclerosis, cardiomyocytes 
hypertrophy, myocardial fibrosis, focal glomerular sclerosis, 
liver steatosis, and cerebral microvascular disease [222]. 
COVID-19-induced shock and thrombotic lesion formation 
may also be associated with liver-based centrilobular conges-
tion and acute kidney-tubular lesions. Syndromes secondary 
to SARS-COV-2 infection include systemic inflammation 

or shock linked to platelet activity associated with myositis, 
orchitis, lymphomononuclear myocarditis, and superficial 
perivascular mononuclear infiltrates in the skin.

Secondary platelet endothelial-cell-mediated changes in 
small vessels can include cell tumefaction, vessel wall edema, 
and fibrinoid alteration. Other secondary changes include 
fibrin microthrombi in the glomeruli, skin, testis, liver sinu-
soids, and heart; mesangial glomerulopathy; liver-based hyper-
reactive Kupffer cells; spleen-based lymphoid hypoplasia; and 
brain-based reactive gliosis.

Fig. 5   SARS-CoV-2 in acute respiratory distress syndrome 
(ARDS). In contrast to type 1 pneumocytes, type 2 pneumocytes con-
tain high levels of angiotensin-converting enzyme (ACE) and highly 
expressed transmembrane protease, serine 2 (TMPRSS2) –key targets 
for SARS-CoV-2 infection. The ensuing viral replication and vascu-
lar spread can trigger both vascular endothelial- and pneumocyte-cell 
death and matrix exposure that activates platelets. Pulmonary injury 
in SARS-CoV-2-induced COVID-19 can be amplified by many plate-
let-derived factors and bioactive processes[440]. Complete occlusion 
of blood vessels leads to hypoxia and additional damage. Acute res-
piratory distress and diffuse alveolar damage (DAD) can be induced 
by platelet factors and amplified by residential macrophages, neu-
trophils, and lymphocyte apoptosis. Platelets release cytokines and 
chemokines that also stimulate the production of residential, alveolar 
immune cells; recruitment of additional macrophages and neutro-

phils; lymphocyte apoptosis; formation of reactive oxygen species 
(ROS); and increased inflammation. Vascular endothelial-cell dam-
age resulting from viral damage and complement activation ampli-
fies the platelet activation and increases permeability and inflamma-
tory thrombus formation. Fibrin formation and fibrinolysis can also 
be activated, releasing fibrin degradation fragments. Blood-vessel 
changes can dominate while damage in the alveolar space remains 
relatively mild. Platelet-neutrophil extracellular traps (NETs) may 
also play a role in severe disease [441]. Damage that accelerates to 
the alveolar space becomes more severe with additional immune-cell-
death-related NET formation. Platelets, along with increased perme-
ability and edema, can contribute to any cytokine storm that ensues. 
Platelets can also contribute to recruitment and activation of fibro-
blasts and myofibroblasts, formation of fibrous tissue, and scarring
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6 � Summary and future directions

This paper describes the importance of platelet evolution 
and responses secondary to SARS-CoV-2 infection along 
with their likely role in the thrombotic and immune func-
tion of patients with COVID-19. As primordial life forms, 
viruses (particularly single-stranded-RNA viruses such as 
SARS-CoV-2) coevolved and diverged as did vertebrates 
as they adapted to major environmental selective pres-
sures while emerging from an aquatic to a terrestrial envi-
ronment. Invertebrate and vertebrate thrombocytes and 
immunocytes retained aggregation capabilities, coagula-
tion enzymes, and phagocytic properties involved in virus 
immobilization and uptake; these evolved into an active 
open-canalicular system. Retention of a highly active and 
responsive cytoskeletal system of granule release and 
rapid migratory capacity sustained cellular responsiveness 
to microbial threats. Thrombocyte/platelet evolution devel-
oped and maintained receptor-based, pathogen-directed, 
recognition capabilities to identify viruses. This evolution 
was coupled with active, membranous vesicle production 
to increase surface contacts and the probability of interact-
ing with virus particles. As receptor-based response times 
decreased significantly and diverged over time, a finely 
regulated balance between endothelial COX2/PGI2- and 
platelet COX1/TxA2 pathway enzymes emerged. Targeting 
platelet adenosine receptors may also have an impact on 
the COVID disease state [428]. Selective serotonin reup-
take inhibitors (SSRIs) are also candidates for potential 
intervention [429]. As vertebrates coevolved with viruses, 
their platelets typically remained elongated and retained 
morphological support by a circular ring of microtubules 
that ultimately formed the mammalian platelet. As they 
gradually became smaller and evolved into plate-like discs, 
this maximized planar-surface interactions and provided 
a biophysical advantage by concentrating the numerous 
platelets produced each day toward the outer fluid-shear 
fields of flowing blood. Management of severe COVID-19 
is likely to require case-specific considerations depending 
on viral-load exposure, clinical presentation, and assess-
ment of circulating platelets, megakaryocytes, cytokines, 
immune cells, and antibodies [430–439]. Much remains 
to be discovered regarding the evolution and biological 
function of platelets including a consideration of the many 
emerging selective pressures involved with SARS-CoV-2- 
and other viral infections. We continue to evolve in a glob-
ally connected world of rapid transit and exchange, which 
allows for the rapid dissemination of diseases that can out-
pace our ability to quickly respond with therapeutic inter-
ventions. Having learned so much from our experience 
studying the role of platelets in cancer and metastasis, we 
have tried to bring new insights into their role in immune 

defense mechanisms. From this perspective, we recognize 
that a better understanding of the platelet biology involved 
in the viral immune response is critical to being prepared 
for the rapid development of lethal viral threats such as 
SARS-CoV-2—and those yet to evolve.
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