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Abstract – A new approach to low-complexity chan-
nel estimation in orthogonal-frequency division
multiplexing (OFDM) systems is proposed. A low-
rank approximation is applied to a linear minimum
mean-squared error (LMMSE) estimator that uses
the frequency correlation of the channel. By using
the singular-value decomposition (SVD) an opti-
mal low-rank estimator is derived, where perfor-
mance is essentially preserved – even for low com-
putational complexities. A fixed estimator, with
nominal values for channel correlation and signal-
to-noise ratio (SNR), is analysed. Analytical mean-
squared error (MSE) and symbol-error rates (SER)
are presented for a 16-QAM OFDM system.

I. Introduction

Wireless digital communication systems using multi-
amplitude modulation schemes, such as quadrature am-
plitude modulation (QAM), require estimation and track-
ing of the fading channel. In general, this means a more
complex receiver than for differential modulation schemes,
such as differential phase-shift keying (DPSK), where the
receivers operate without a channel estimate [1].

In orthogonal frequency-division multiplexing (OFDM)
systems, DPSK is appropriate for relatively low data rates,
such as in the European digital-audio broadcast (DAB)
system [2]. On the other hand, for more spectrally-efficient
OFDM systems, coherent modulation is more appropriate.

The structure of OFDM signalling allows a channel esti-
mator to use both time and frequency correlation. Such a
two-dimensional estimator structure is generally too com-
plex for a practical implementation. To reduce the com-
plexity, separation of the use of time and frequency cor-
relation has been proposed in [3]. This combined scheme
uses two separate FIR-Wiener-filters, one in the frequency
direction and the other in the time direction.

In this paper we present and analyse a class of block-
oriented channel estimators for OFDM, where only the
frequency correlation of the channel is used in the esti-
mation. Whatever their level of performance, it may be
improved with the addition of a second filter using the
time correlation [3], [4].

Though a linear minimum mean-squared
error (LMMSE) estimator using only frequency correla-
tion has lower complexity than one using both time and
frequency correlation, it still requires a large number of

Fig. 1. Base band model of an OFDM system. A cyclic prefix is
used, but not displayed here.

operations. We introduce a low-complexity approximation
to a frequency-based LMMSE estimator that uses the the-
ory of optimal rank reduction. Other types of low-rank ap-
proximations, based on the discrete-time Fourier transform
(DFT), have been proposed for OFDM systems before [5],
[6], [7]. The work presented in this paper was inspired by
the observations in [7], where it is shown that DFT-based
low-rank channel estimators have limited performance for
non-sample-spaced channels and high SNRs.

After presenting the OFDM system model and our sce-
nario in Section 2, we introduce the estimators and their
mean-squared error (MSE) performance in Section 3. We
show that the main limitation on the achieved complexity
reduction is an irreducible MSE-floor inherent in low-rank
approximations of the LMMSE. Section 4 is devoted to
symbol-error rate (SER) comparisons.

A summary and concluding remarks appear in Section 5.

II. System description

Figure 1 displays the OFDM base-band model used in
this paper. We assume that the use of a cyclic pre-
fix [8] both preserves the orthogonality of the tones and
eliminates inter-symbol interference between consecutive
OFDM symbols. Further, the channel is assumed to be
slowly fading, i.e., it is considered to be constant during
the transmission of one symbol. The number of tones in
the system is N , and the length of the cyclic prefix is L
samples.

Under these assumptions we can describe the system as
a set of parallel Gaussian channels, shown in Figure 2, with
correlated attenuations hk.
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Fig. 2. The OFDM system, described as a set of parallel Gaussian
channels with correlated attenuations.

The attenuations on each tone are given by

hk = G

(
k

NTs

)
, k = 0 . . . N − 1,

where G (·) is the frequency response of the channel during
the OFDM symbol, and Ts is the sampling period of the
system. In matrix notation we describe the system as

y = Xh + n, (1)

where y is the received vector, X is a matrix containing the
transmitted signalling points on its diagonal, h is a channel
attenuation vector, and n is a vector of i.i.d. complex, zero-
mean, Gaussian noise with variance σ2

n.
We consider a fading multi-path channel model [1], con-

sisting of M impulses. The impulse response of the channel
is

g (τ) =
M−1∑
k=0

αkδ (τ − τkTs) , (2)

where αk are independent zero-mean, complex Gaussian
random variables, with power-delay profile θ (τk), and τk
is the delay of the kth impulse, normalized with respect to
the sampling period Ts.

Two versions of this channel model are used in the pa-
per. The first version is a model of a perfectly time-
synchronized OFDM system, where the first fading im-
pulse always has a zero-delay, τ0 = 0, and other fading im-
pulses have delays that are uniformly and independently
distributed over the length of the cyclic prefix. The im-
pulse power-delay profile, θ (τk) = Ce−τk/τrms , decays ex-
ponentially [9]. The second version is a uniform channel
model, where all impulses have the same average power and
their delays are uniformly and independently distributed
over the length of the cyclic prefix.

Our scenario consists of a wireless 16-QAM OFDM sys-
tem, designed for an outdoor environment, which is ca-
pable of carrying digital video. The system operates at
500 kHz bandwidth and is divided into 64 tones with a
total symbol period of 136 µs, of which 8 µs is the cyclic
prefix. One OFDM symbol thus consists of 68 samples
(N + L = 68), four of which are contained in the cyclic

prefix (L = 4). The uncoded data rate of the system is
1.9 MBit/sec. We assume that τrms = 1 sample in the
synchronized channel.

III. Estimator design

In the following we present the LMMSE estimate of the
channel attenuations h from the received vector y and
the transmitted data X. We assume that the received
OFDM symbol contains data known to the estimator –
either training data or receiver decisions.

The complexity reduction of the LMMSE estimator con-
sists of two separate steps. In the first step we modify the
LMMSE by averaging over the transmitted data, obtaining
a simplified estimator. In the second step we reduce the
number of multiplications required by applying the theory
of optimal rank-reduction [10].

A. LMMSE Estimation

The LMMSE estimate of the channel attenuations h, in
(1), from the received data y and the transmitted symbols
X is [7]

ĥlmmse = RhhlsR
−1
hlshls

ĥls (3)

= Rhh

(
Rhh + σ2

n

(
XXH

)−1
)−1

ĥls,

where

ĥls = X−1y =
[
y0

x0

y1

x1
· · · yN−1

xN−1

]T
(4)

is the least-squares (LS) estimate of h, σ2
n is the variance

of the additive channel noise, and the covariance matrices
are

Rhh = E
{

hhH
}
,

Rhhls = E
{

hĥHls
}
,

Rhlshls = E
{

ĥlsĥHls
}
.

In the following we assume, without loss of generality, that
the variances of the channel attenuations in h are normal-
ized to unity, i.e. E |hk|2 = 1.

The LMMSE estimator (3) is of considerable complexity,
since a matrix inversion is needed every time the training
data in X changes. We reduce the complexity of this es-
timator by averaging over the transmitted data [1], i.e.
we replace the term (XXH)−1 in (3) with its expectation
E(XXH)−1. Assuming the same signal constellation on
all tones and equal probability on all constellation points,
we get E(XXH)−1 = E|1/xk|2I, where I is the iden-
tity matrix. Defining the average signal-to-noise ratio as
SNR = E|xk|2/σ2

n, we obtain a simplified estimator

ĥ = Rhh

(
Rhh +

β

SNR
I
)−1

ĥls, (5)
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where
β = E |xk|2E |1/xk|2

is a constant depending on the signal constellation. In the
case of 16-QAM transmission, β = 17/9. Because X is no
longer a factor in the matrix calculation, no inversion is
needed when the transmitted data in X changes. Further-
more, if Rhh and SNR are known beforehand or are set
to fixed nominal values, the matrix Rhh(Rhh + β

SNRI)−1

needs to be calculated only once. Under these conditions
the estimation requires N multiplications per tone. To fur-
ther reduce the complexity of the estimator, we proceed
with low-rank approximations in the next section.

B. Optimal Low-rank Approximations

The optimal rank reduction of the estimator in (5), us-
ing the singular value decomposition (SVD), is obtained
by exclusion of base vectors corresponding to the smallest
singular values [10]. We denote the SVD of the channel
correlation matrix

Rhh = UΛUH , (6)

where U is a matrix with orthonormal columns u0, u1, . . . ,
uN−1 and Λ is a diagonal matrix, containing the singular
values λ0 ≥ λ1 ≥ . . . ≥ λN−1 ≥ 0 on its diagonal∗. This
allows the estimator in (5) to be written

ĥp = U∆UH ĥls,

where ∆ is a diagonal matrix containing the values

δk =
λk

λk + β

SNR
, k = 0, 1, . . . , N − 1 (7)

on its diagonal. The best rank−p approximation of the
estimator in (5) then becomes

ĥp = U
[

∆p 0
0 0

]
UH ĥls, (8)

where ∆p is the upper left p× p corner of ∆.
A block diagram of the rank−p estimator in (8) is shown

in Figure 3, where the LS-estimate is calculated from y by
multiplying by X−1.

Viewing the unitary matrix UH as a transform†, the sin-
gular value λk of Rhh is the channel energy contained in
the kth transform coefficient after transforming the LS es-
timate ĥls. The dimension of the space of essentially time-
and band-limited signals leads us to the rank needed in the
low-rank estimator. In [11] it is shown that this dimension
is about 2BT +1, where B is the one-sided bandwidth and
T is the time interval of the signal. Accordingly, the mag-
nitude of the singular values of Rhh should drop rapidly

∗Since we are dealing with Hermitian matrices, the λks are also
eigenvalues. However, we use the SVD terminology since it is required
in the general case of low-rank approximations.
†The transform in this special case of low-rank approximation is

the Karhunen-Loeve (a.k.a. Hotelling) transform associated with h.

Fig. 3. Block diagram of the rank−p channel estimator.

Fig. 4. Relative channel energy in the transform coefficients for the
two channels addressed.

after about L+ 1 large values, where L is the length of the
cyclic prefix (2B = 1/Ts, T = LTs and 2BT + 1 = L+ 1).

We present the relative channel energy contained in the
first 15 coefficients in Figure 4. The calculations are based
on our scenario. The magnitude of the channel energy
drops rapidly, in both cases shown, after about k = 4, i.e.
the fifth coefficient. This is consistent with the observa-
tion that the dimension of the space spanned by Rhh is
approximately L+ 1 = 5.

This prompts an analysis of the computational complex-
ity of the rank−p estimator. The implementation we have
chosen is based on writing (8) as a sum of rank-1 matrices,
which gives us the expression

ĥp =

(
p−1∑
k=0

δkukuHk

)
ĥls. (9)

The smaller p is, the lower the computational complexity
and the larger the approximation error. Further, by as-
signing qk = δkuk, the rank−p estimator (9) is simplified
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to

ĥp =
p−1∑
k=0

(
uHk ĥls

)
qk.

The argument in the sum consists of an inner product,
uHk ĥls, scaling the vector qk. Each summation term re-
quires 2N multiplications, and the sum contains p such
terms. The estimation thus requires 2pN multiplications
and the total number of multiplications per tone becomes
2p. In comparison with the full estimator (5), we have
managed to reduce the number of multiplications from N
to 2p per tone. As mentioned above, we expect p to be in
the range of samples in the cyclic prefix, which is usually
much smaller than the number of tones, N .

C. Mean-squared error

The mean-squared error (MSE) of the rank−p estimator
is mainly determined by the channel energy contained in
the transform coefficients. To get a general expression for
the estimator MSE, we derive it under the assumption that
the estimator is designed for Rhh and SNR, but the true
correlation matrix and signal-to-noise ratio are R̃hh and
S̃NR, respectively. This allows us to analyse this estima-
tor’s sensitivity to design errors. Under these assumptions
it can be shown that the MSE, mse (p) = E||h − ĥp||2, of
the rank−p estimate (8) is

mse (p) =
p−1∑
k=0

[
λ̃k (1− δk)2 +

β

S̃NR
δ2
k

]
+
N−1∑
m=p

λ̃m (10)

where δk is given by (7) and λ̃k is the kth diagonal ele-
ment of UHR̃hhU, cf. (6). The diagonal element λ̃k is the
channel energy contained in the kth transform coefficient,
under correlation mismatch. If the channel estimator is
designed for correct channel correlation and SNR, we have
λ̃k = λk and S̃NR = SNR in (10).

The MSE can be bounded from below by the channel en-
ergy in the transform coefficients not used in the estimate,
i.e., the last term in (10),

mse (p) ≥ mse (p)
4
=
N−1∑
m=p

λ̃m. (11)

We call the quantity mse(p) the MSE-floor of the low-rank
estimator.

The MSE-floor is the main limitation on the complexity
reduction achieved by optimal rank reduction. As an illus-
tration, Figure 5 displays the MSE relative to the channel
variance, for three different ranks, as a function of the
SNR. The ranks chosen are p = 5, 6 and 7, and the chan-
nel used in the example is the synchronized channel. The
corresponding MSE-floors are shown as horizontal lines.
For p = 7, the MSE-floor is relatively small, and the MSE
of the rank−7 estimator is comparable to the original es-
timator (5) in the range 0 to 30 dB in SNR. By choosing
the appropriate rank on the estimator, we can essentially

Fig. 5. Low-rank estimator mean-squared error as a function of SNR,
with ranks p = 5, 6 and 7. Corresponding MSE-floors shown as
horizontal lines. (Synchronized channel)

avoid the impact from the MSE-floor up to a given SNR.
When we have full rank, p = N , no MSE-floor exists.

Under correlation mismatch, the energy in the trans-
form coefficients changes from λk to λ̃k, as described above.
Since this also affects the MSE-floor, we use p = 8 in the
following to further suppress the MSE-floor in the SNR
range up to 30 dB.

To illustrate the differences between the low-rank es-
timators designed for different channel correlations, we
present the change in MSE, when the true channel alters
between synchronized to uniform, in Figure 6. The change
in MSE is smaller for the estimator designed for the uni-
form channel. It should also be noted that the loss in
MSE when the uniform design is used on the synchronized
channel is relatively small. In terms of 16-QAM symbol
error rate, the performance curves are even closer and are
hard to distinguish – less than 0.5 dB difference in SNR.
We can interpret a uniform channel estimator as one that
uses only the knowledge that the channel is time limited.
This results in an estimator that is relatively insensitive to
variations in the power-delay profile.

If we want a robust generic channel estimator design
for OFDM systems, the above analysis suggests the use
of the uniform channel correlation. The design of such an
estimator only requires knowledge about the length of the
cyclic prefix and the number of tones in the system. Based
on the target range of SNRs, a fixed design SNR can be
chosen. Using an estimator of this type, no tracking of
channel correlation and SNR is needed in the receiver.

IV. Symbol-error rate

Using the formulae presented in [12], we have calculated
the symbol-error rate (SER) for our scenario, uncoded 16-
QAM and all training data. The obtained SER curves are
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Fig. 6. Change in MSE when channel changes from synchronized
to uniform. MSE-curves under correlation mismatch are circled
(©). Estimator rank p = 8.

displayed in Figure 7. An uncoded OFDM system using
a generic rank−8 estimator, designed for a uniform chan-
nel and a nominal SNR of 30 dB, is compared with two
references. The first reference is a system using the LS
estimator (4). The second reference is a system where the
channel is known at the receiver.

As seen in Figure 7, the generic rank−8 estimator im-
proves the performance over the LS estimator by about
3.5 dB in SNR. Compared to the case where the channel
is known at the receiver, its loss in SNR is only about 1
dB. The generic rank−8 estimator requires 2p = 16 multi-
plications per estimated tone.

V. Conclusions

We have investigated low-complexity low-rank approx-
imations of the LMMSE channel estimator. The investi-
gation shows that an estimator error-floor, inherent in the
low-rank approximation, is the significant limitation to the
achieved complexity reduction. We show that a generic
low-rank estimator design, based on the uniform channel
correlation and a nominal SNR, can be used in our uncoded
64-tone scenario with only a small loss in SNR (about 1
dB) up to a SNR of 30 dB, compared to the case where
the channel is known at the receiver – this with 16 multi-
plications per estimated tone.

One of the appealing properties of the generic estimator
design is that it only requires knowledge about the length
of the cyclic prefix, the number of tones in the system and
the target range of SNRs for the application. No tracking
of channel correlation and SNR is needed at the receiver.

In general, when estimating the channel in an OFDM
system, we would like to use both time- and frequency cor-
relation. The general theory of low-rank approximations
may be applied in these cases too.

Fig. 7. SER for 16-QAM training data and a synchronized channel.
Generic rank−8 estimator, designed for a uniform channel and
30 dB in SNR, is compared to two references: The LS estimator
and known channel at the receiver.
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