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Abstract 
This paper describes a dynamic voltage and frequency scaling 
(DVFS) technique for MPEG decoding to reduce the energy 
consumption using the computational workload decomposition. This 
technique decomposes the workload for decoding a frame into on-
chip and off-chip workloads. The execution time required for the on-
chip workload is CPU frequency-dependent, whereas the off-chip 
workload execution time does not change, regardless of the CPU 
frequency, resulting in the maximum energy savings by setting the 
minimum frequency during off-chip workload execution time, 
without causing any delay penalty. This workload decomposition is 
performed using a performance-monitoring unit (PMU) in the 
XScale-processor, which provides various statistics such as cache 
hit/miss and CPU stall, due to data dependency at run time. The on-
chip workload for an incoming frame is predicted using a frame-
based history so that the processor voltage and frequency can be 
scaled to provide the exact amount of computing power needed to 
decode the frame. To guarantee a quality of service (QoS) constraint, 
a prediction error compensation method, called inter-frame 
compensation, is proposed in which the on-chip workload prediction 
error is diffused into subsequent frames such that run time frame 
rates change smoothly. The proposed DVFS algorithm has been 
implemented on an XScale-based Testbed. Detailed current 
measurements on this platform demonstrate significant CPU energy 
savings ranging from 50% to 80% depending on the video clip. 

Categories and Subject Descriptors 
C.4 [Information systems]: Special-purpose and application-based 
systems. 

General Terms 
Algorithms, Measurement, Experimentations 

Keywords 
Low power, MPEG decoding, voltage and frequency scaling 

1 Introduction 
Demand for portable computing and communication devices has 
been increasing rapidly. Because portable devices are battery-
operated, a design objective is to minimize the energy dissipation (to 
thus maximize the battery service time) without any appreciable 
degradation in the QoS. DVFS is a highly effective method to 
achieve this design goal. This is because energy consumption in 
CMOS VLSI circuits is quadratically proportional to the supply 

voltage [1]. Therefore, reducing the supply voltage can result in 
large energy savings. Reducing the voltage level, however, slows the 
circuit down. The key idea behind DVFS techniques is to perform 
dynamic voltage scaling so as to provide “just-enough” circuit speed 
to process the workload while meeting the total compute time and/or 
throughput constraints, thereby, reducing the energy dissipation. A 
number of modern microprocessors such as Intel’s XScale [2] and 
Transmeta’s Cruso [3] are equipped with the DVFS function. 
Many DVFS techniques may be used to reduce the energy 
consumption of an executed task while ensuring that the task meets 
its deadline in real-time scenarios [4][5][6][7][8]. However, all of 
these techniques assume that critical information about all tasks, 
such as task arrival time, deadline, workload, and worst-case 
execution time (WCET) are known in advance. These assumptions 
are not directly applicable to the case when a task’s workload 
exhibits a large variability. An archetypal example of such a task is 
MPEG decoding in which the computational workload fluctuates 
greatly depending on the frame type. Moreover, in all of the 
previous DVFS approaches for real-time applications, either hard 
real-time or soft real-time, the workload of a task is often 
represented by the number of CPU clock cycles required to complete 
the task regardless of whether the workload consists of mainly CPU-
bound or memory-bound instructions. The latter information is of 
course critical in determining the idle time of the CPU. 
In this paper, we present a DVFS technique for low power MPEG 
decoding in which CPU energy savings is maximized through 
workload partitioning into either CPU-bound or memory-bound 
workload. The intuition for workload partitioning is that memory is 
asynchronous with the processor and often has its own clock. More 
precisely, we propose to lower the CPU frequency during the CPU 
idle times, which are in turn due to external memory stalls. To 
capture the CPU idle time at run time, the performance-monitoring 
unit (PMU) in the Intel’s XScale processor is used. In addition, in 
attempt to guarantee a user-specified QoS for the video playback, we 
describe a method, called “inter-frame compensation”, in which the 
frame rate fluctuation, due to workload prediction error, is 
effectively localized to a small number of subsequent frames. 
The proposed DVFS technique has been implemented on an XScale-
based embedded system platform and detailed energy savings have 
been obtained by actual current measurements in hardware. On this 
platform, a significant CPU energy savings has been achieved which 
ranges from 50% to 80%, depending on the test video sequence. 
The main contributions of our work are: (1) The work presents one 
of the first actual implementations of a DVFS policy for low power 
MPEG decoding that exploits the different characteristic of CPU-
bound and memory-bound instructions in the computational 
workload required to decode a frame (2) Recognition of the CPU 
stalls is performed dynamically by using the PMU, thus allowing us 
to take into account the effect of various events at run time. (3) It 
presents an effective error compensation method to guarantee a QoS 
constraint by eliminating severe frame rate fluctuations. (4) 
Evaluation of the proposed method is performed through actual 
hardware measurements for a number of different video sequences.  

This research was supported in part by DARPA PAC/C program under
contract DAAB07-02-C-P302 and by NSF under grant no. 9988441. 
 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first pate. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. 
DAC’04, June 7-11, 2004, San Diego, California, USA 
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00. 



 

The remainder of this paper is organized as follows: Related work is 
described in Section 2. In Section 3, a method to separate on-chip 
and off-chip execution times for MPEG decoding using PMU is 
considered. Details of the proposed DVFS policy for an MPEG 
decoding are presented in Section 4. Experimental results and 
conclusions are given in Sections 5 and 6, respectively. 

2 Related work 
A number of researchers have applied DVFS to MPEG video 
decoding in order to achieve lower energy consumption 
[9][10][11][12][13]. In [9] and [12], DVFS with interval-based 
prediction is performed based on the ratio of the number of idle and 
busy cycles of the CPU while the MPEG stream is decoded. 
Although significant energy reduction has been reported, there is no 
guarantee that the deadline for each frame is met. A method using 
feedback control is proposed in [10] in which decoding time is 
predicted based on encoded code size of a frame. This code size 
prediction scheme is inaccurate, however, and may frequent miss 
deadlines. Furthermore, the linear prediction equation must be 
changed when different resolutions of the video image or different 
frame pixel sizes are encountered. In [13] a frame-based workload 
prediction is used for DVFS in which the different steps of decoding 
sequence are divided into frame-independent and frame-dependent 
parts. The prediction error for the frame-dependent part is 
compensated during the frame-independent part which consists of 
memory-intensive work and the execution time during this part can 
be scaled by the CPU frequency. However, this approach is 
inapplicable to the high performance processors such as XScale and 
Cruso in which external memory clock cycle is asynchronous to the 
CPU. In [11], the estimation of decoding time is performed in units 
of group of picture (GOP) that consists of 12 or 15 frames, in 
general. In this approach, sizes and types of the frames of an 
incoming GOP are observed and the time needed to decode the next 
GOP is estimated based on statistics of the previous GOPs. It is 
highly probable that severe QoS degradation may occur when the 
prediction is inaccurate because the same frequency (voltage) is 
applied for all frames in a GOP. There have been studies on using 
buffers in multimedia processing [14][15]. One of the most 
important advantages of using buffers is that no explicit frame-
decode time prediction is needed, and therefore, missed deadlines 
due to prediction errors are avoided. These techniques, however, 
suffer from underflow/overflow of the finite buffer when the 
decoding time variation is high [14] or for improper gain of the 
proportional-integral controller [15]. None of the previous works on 
low-power MPEG decoding consider the decomposition of the 
computational workload, as proposed in this paper.  
There are different DVFS approaches that make use of the 
asynchrony of memory access to the CPU clock during task 
execution. In [16] and [17], compiler-assisted DVFS techniques 
were proposed, in which frequency is lowered in the memory-bound 
region of a program with little performance degradation. DVFS 
approaches that rely on micro-architecture or embedded hardware 
without any assistance from a compiler or a simulator have also been 
reported. In [18] a microarchitecture-driven DVFS technique was 
proposed in which a cache miss drives the voltage scaling. In [19] 
the IPC (instruction per cycle) rate of a program execution was used 
to direct the voltage scaling. Reference [20] presented a policy to 
choose the optimal CPU clock frequency under a fixed performance 
degradation constraint (of say 10%) based on dynamic program 
behavior such as the number of executed instructions and memory 
access counts during the whole execution time using a performance-
monitoring unit (PMU). The authors defined the optimal frequency 
domains in 2-D space comprising of points of the monitored events 
by exhaustive simulation, resulting in a table lookup scheme for 
frequency scaling. This scheme comprises of using the PMU to 

obtain certain run time information, which is then used as a key in 
the table lookup, to recover and apply the pre-computed frequency 
level stored in the table. Unfortunately, the technique of [20] cannot 
be applied to real-time applications where the performance loss 
constraint changes rapidly over time (for example, the performance 
loss constraint for an I-frame is much tighter than that for a B-frame 
in MPEG stream) because in that case the lookup table cannot 
provide the optimal frequency. To handle such a situation, frequency 
and voltage level calculation must be done at run time in response to 
the dynamically changing performance loss constraint value. In 
addition, an error compensation method must be put into effect in 
order to soften the effect of any misprediction, which was not the 
case in [20].  
In this paper, we propose a DVFS method for MPEG decoding in 
which the time for memory-bound operations is accurately singled 
out of the whole decoding time such that CPU energy savings can be 
maximized under a given frame rate by setting lower CPU frequency 
during memory-bound operations. The calculation of memory-bound 
operation time is performed at run time based on the dynamic events 
reported by the PMU without any help from an off-line simulator or 
compiler. 

3 Workload Partitioning in MPEG Decoding 
3.1 Workload Partitioning 
Generally speaking, a task consists of a sequence of instructions to 
be performed. The execution time of a task is the sum of latencies of 
all instructions in the task. The instruction latencies can in turn be 
classified as on-chip latencies (data dependency, cache hit, branch 
prediction) or off-chip latencies (memory latency, PCI latency). The 
on-chip latencies are caused by events that occur inside the CPU. 
They are synchronized to the internal clock and may linearly be 
reduced by increasing the CPU frequency. The off-chip latencies, on 
the other hand, are independent of the internal frequency and are 
thus not affected by changing the CPU frequency. Accesses to 
external devices such as SDRAM and PCI peripheral devices are 
synchronized to the bus clock, which is independent of the CPU 
frequency. 
As a motivating example, Figure 1 shows the different degrees of 
execution time increases for two applications as CPU frequency 
varies.  
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Figure 1: Execution time changes according to CPU frequency 

For example, in the case of the “crc”, lowering frequency introduces 
significant performance losses compared to “qsort” implying that 
these programs are CPU-bound. On the contrary, it is known that 
“qsort” is memory-bound by observing little execution time increase 
with lowered frequency. Based on these observations, we found that, 
when the same amount of timing constraint is provided, a lower 
CPU clock frequency can be applied for memory-bound programs 
when compared to CPU-bound programs. This, in turn, results in 
higher relative energy savings for DVFS when it is applied to 
memory-bound programs. 



 

 
Definition 1: on-chip workload, WON, is the number of CPU clock 
cycles required to perform instructions which cause on-chip 
latencies. 
Definition 2: off-chip workload, WOFF, is the number of external bus 
clock cycles during off-chip accesses. Note that during these 
accesses, the CPU is stalled and waiting for transactions to complete 
outside the CPU. 
Let TON and TOFF denote the required time to process WON and WOFF. 
We have: 

  1

n
ON

ONON i
ON AVGi

CPU CPU CPU

CPI
n CPIWT

f f f
= ⋅= = =
∑                   (1) 

  1

m
OFF
j OFFOFF

jOFF AVG
EXT EXT EXT

CPI
m CPIWT

f f f
= ⋅= = =
∑                (2) 

where n is the total number of instructions in the instruction stream, 
m is the number of off-chip accesses in that stream, CPIi

ON
 denotes 

the number of CPU clock cycles for the ith instruction due to on-chip 
transactions, CPIj

OFF
 denotes the number of memory clock cycles for 

the jth off-chip access, CPIAVG
ON and CPIAVG

OFF denote the average 
on-chip and off-chip CPI,  fCPU and fEXT denote the current clock 
frequency of the CPU and the clock frequency of the off-chip bus. 
Intuitively, the on-chip CPI denotes the CPI when no off-chip 
accesses occur. When the CPU frequency is changed for executing a 
task, the variation in the execution time is solely dependent upon 
WON of the task, because fEXT is independent of the fCPU and is not 
scaled. The CPU frequency for a task can be calculated differently 
depending on temporal distribution of WON and WOFF as well as 
values of WON and WOFF. Consider a task, which has WON 
comprising of W1

ON and W3
ON and WOFF comprising of W2

OFF and 
W4

OFF. Furthermore, assume that the four subtasks are executed in 
the order shown in Figure 2. Then, there are two different scenarios, 
(I) and (II), according to whether we know the complete execution 
sequence of WON and WOFF or not. In scenario (I), it is assumed that 
we know the temporal execution sequence of subtasks inside the 
task, i.e. W1

ON →→→→ W2
OFF →→→→ W3

ON →→→→ W4
OFF, whereas, this 

information is not available in scenario (II). Now, the CPU 
frequencies for W2

OFF and W4
OFF can be set to the minimum possible 

level in scenario (I) while it is not possible to assign the minimum 
CPU frequency for WOFF in scenario (II). Thus, not surprisingly, 
more CPU energy can be saved in scenario (I) compared to scenario 
(II). More precisely, the CPU clock frequencies for the two 
scenarios are given as: 
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where Wi
ON (Wi

OFF ) denote the on-chip (off-chip) workload of the ith 
subtask, D is the deadline, fMIN

CPU is the minimum CPU frequency, 
and fON

CPU (fOFF
CPU ) denote the CPU frequency during the period of 

time that we are servicing on-chip (off-chip) accesses.  
The definition of these two scenarios is useful for MPEG decoding 
as will be shown in a later section because different steps in the 
MPEG decoding sequence can be mapped to one of these two 
scenarios. Notice that to set the minimum frequency during off-chip 
accesses in scenario (I), W1

OFF and W2
OFF should be large compared 

to the frequency and voltage-scaling overhead in actual hardware. 
For example, if a task results in a large number of small WOFF’s that 

are scattered over the whole execution time of the task, then the 
CPU frequency for such a case is calculated as in scenario (II) even 
when the execution sequence is known. 
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Figure 2: DVFS with detailed knowledge of subtasks and their relative 
order and workload requirement (scenario I) and without this 
information (scenario II) 

3.2 Using PMU on XScale for Identifying the Off-chip 
Access Times 

It is very difficult to get the exact WON and WOFF of a program in a 
static manner such as during the compilation time. This is because 
on/off-chip latencies are severely affected by dynamic behavior of 
the program such as cache statistics and different access overheads 
for different external devices. So, these unpredictable dynamic 
behaviors should be captured at run time. This can be achieved by 
using a performance-monitoring unit that is often available in 
modern microprocessors. In our target system, the CPU is Intel’s 
XScale, which supports monitoring of 20 performance events 
including cache hit/miss, TLB hit/miss, and number of executed 
instructions. The overhead for accessing PMU (read/write) is less 
than 1usec [20] and can be ignored. However, there is a limitation in 
using these events in the sense that only two events can be 
monitored at the same time. We performed many experiments to 
determine which events can give valuable clues about WON and WOFF 
and the following two events were proven to be the most helpful 
based on experimental results: (i) the number of instructions being 
executed (INSTR) and (ii) the number of memory accesses (MEM).  
3.3 MPEG Decoding 
Two objectives of DVFS in MPEG decoding are to maximize CPU 
energy savings and to guarantee a given QoS constraint such as a 
given frame rate. There are three frame types I-, P-, and B-frame in 
an MPEG video stream and each frame type results in a different 
workload. It takes several steps in decoding a frame as shown in 
Figure 3. Careful examination of what operations are performed in 
each step is quite helpful in partitioning the MPEG decoding 
workload into on-chip and off-chip. For example, the inverse 
discrete cosine transform (IDCT) is a CPU-intensive operation in 
which iterative multiplication-accumulation computations over an 
8x8 array of integer or floating-point values are required, so the 
IDCT step is classified as WON, whereas the dithering and display 
steps are memory-intensive, requiring a frame-size data movement 
between the processed video stream and display frame buffer 
causing frequent cache misses, which can be considered as WOFF.  
To empirically confirm this observation, we played a test video clip 
using “mpeg_play” software decoder program [21] and recorded the 
MEM event reported by the PMU. From this experiment, we found 
that high MEM counts occurred during “dithering” and “display” 
step compared to all other steps. Furthermore, the MEM value was 
nearly the same for all types of frames. While “dithering” and 
“display” are clearly classified as operations that are intensive in 
terms of the off-chip accesses, it is difficult to extract WOFF for the 
remaining steps since MEM counts are scattered over repeated short 
loops as shown in Figure 3.  



 

Read blocks

Reconstruct 
MB

IDCT

Merge MB

Make frame

Dither frame

Display frame

Read streams

MBs/frame

blocks/MB

MB    : Macroblock
IDCT : Inverse discrete 

cosine transformation

TVAR

TCON

Decoding 
sequence

Read blocks

Reconstruct 
MB

IDCT

Merge MB

Make frame

Dither frame

Display frame

Read streams

MBs/frame

blocks/MB

MB    : Macroblock
IDCT : Inverse discrete 

cosine transformation

TVAR

TCON

Decoding 
sequence

 
Figure 3: MPEG decoding sequence 

The situation is complex and more closely resembles scenario (II) of 
Figure 2. We therefore opted to divide the whole decoding time of a 
frame into two parts, TCON and TVAR, where TCON is CPU frequency-
independent and comprises of the “dithering” and “display” times 
while TVAR is the elapsed time for the remaining steps, which are 
CPU frequency-dependent. Figure 4 shows the actual experimental 
results of TVAR and TCON of each frame type while changing CPU 
frequency from 733MHz to 333MHz. As we expected, TCONs of all 
frames are independent of the CPU frequency, regardless of frame 
type, while TVAR changes according to the CPU frequency. This 
means that we can assign the minimum frequency during TCON, i.e., 
“dithering” and “display” steps as in scenario (I). 
To calculate the target CPU frequency during TVAR, it is required to 
know the accurate ratio of the on-chip and off-chip times during 
TVAR, which can, in turn, be collected by using dynamic events from 
the PMU. 
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Figure 4: Decoding time variation as a function of the CPU clock 
frequency 

4 Proposed DVFS Policy 
The off-chip time, TOFF, can be obtained by making use of the fact 
that it is independent of the CPU frequency. To relate a PMU event 
with TOFF, we plotted many combinations of PMU events and 
measured TVAR with changing CPU frequency and found that INSTR, 
the number of executed instructions, can give quite accurate 
information about TOFF in TVAR. In Figure 5, we have plotted TVAR on 
the y-axis and INSTR on the x-axis at a CPU frequency of 333MHz 
and at 733MHz. Each dot in the plot represents one PMU report for 
a B-type frame at the corresponding clock frequency. From this 
figure, we can see that TVAR for all B-frames in the test video form a 
line and that TOFF can be obtained as y-axis intercept point in a 
linear equation as follows: 
                                      ON

VAR OFFAVG
CPU

CPIT INSTR T
f

 
= ⋅ + 
 

                  (5) 

Based on the equation (5), CPIAVG
ON is calculated as about 2.7, 

regardless of the CPU frequency, and TOFF at both frequencies 

converged to 7.5msec. TOFF for each frame type is different with B-
frame having the largest TOFF while the I-frame has the smallest 
TOFF. This observation can be justified by recalling that predictive 
frames (P- and B-frame) need macroblocks that have already been 
reconstructed and decoded in the previous I-frames; thereby, causing 
more off-chip access delays due to frequent data cache-misses. 
Finally, the proposed DVFS method is quite effective in MPEG 
decoding application if we consider that an MPEG video clip usually 
has 10 times more P- and B-frames than I-frames. In Table 1, the 
obtained ratios of TOFF and TVAR at 733MHz for each frame type of 
six different video clips are reported. 
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Figure 5: Contour plots of TVAR versus INSTR for different CPU clock 

frequencies 
Table 1. The ratio of TVAR and TOFF of each frame type in each video clip  

Frame type Test video Frame size I P B 
(1) Terminator2 352 X 240 3.49 % 11.60 % 40.58 % 
(2) Siberian Tiger 320 X 240 7.96 % 11.87 % 25.74 % 
(3) Deploy 352 X 288 15.01 % 58.01 % 47.19 % 
(4) Wg_wt 304 X 224 10.12 % 43.95 % - 
(5) Badboy2 480 X 208 20.64 % 38.85 % 50.76 % 
(6) Final3 160 X 120 26.11 % 36.80 % 59.34 % 

 
Let the linear equation for the regression be y=a*x+b, where x and y 
denote INSTR and TVAR of some frame type, respectively. 
Coefficients a and b at frame t ≥ N, are calculated from the last N 
PMU reports as follows: 
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The regression coefficients are updated at the end of every frame. 
Recall that the regression equation is maintained for each frame type 
because MEM varies for different frame types, resulting in different 
execution times for off-chip accesses. 
For varying TON of each frame, we maintained a moving-average of 
the last M INSTRs for each frame type (three averages, one per 
frame type). Here, M can be the same as N, that is, the number of 
data for the regression equation. The expected decoding time for an 
incoming frame under a given frame rate, R, is thus determined 
based on the following: the moving average of INSTR and CPIAVG

ON
 

from the regression equation for on-chip latency, the y-axis intercept 
of the regressed equation for off-chip latency, TEXP

OFF, and constant 
TCON which is easily obtained after decoding the first frame for a 
given video clip. Then, the CPU frequency for t+1th frame, ft+1

CPU is 
calculated as: 
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where INSTRt+1
EXP is the average of INSTR (until the tth frame) of 

the frame type that matches frame type at time t+1. 



 

In MPEG decoding, meeting a QoS constraint such as a given frame 
rate is quite important. In fact, the proposed DVFS method is based 
on the prediction for on-chip and off-chip times for a frame. This 
kind of prediction may not be perfect when each frame exhibits 
severe variation in the computational workload such that target 
frame rate cannot be maintained. So, a method that can compensate 
for the prediction error and effectively maintain the user-specified 
QoS is required. 
There is a commonly used technique in video rendering called error 
diffusion [22] in which the quantization error of previously 
quantized pixel is filtered and distributed forward to unquantized 
pixels in the neighborhood such that a smooth image can be 
achieved. This same idea can be used to eliminate severe 
fluctuations in frame rate due to prediction error. In inter-frame 
compensation methods, the amount of error is diffused over the 
subsequent frames and the CPU frequencies for the following frames 
are calculated by considering not only their own predicted decoding 
times, but also accounting for the timing slack that occurred due to 
the imperfect prediction in the previous frames. This error diffusion 
makes the prediction error localized into a small number of 
neighboring frames, thereby, it can effectively compensated for by 
decreasing (increasing) the CPU frequency in case of over-
prediction (under-prediction), resulting in soft and stable variation in 
the frame rate. In some way, and indirectly, the proposed inter-frame 
compensation method is analogous to considering “excess cycles” 
from the previous time slots in interval-based workload prediction 
techniques [23]. 
Adopting inter-frame compensation, the equation (7) is modified as 
follows; 

                        1
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                     (8) 

where Tt
SLACK is the time difference between D and actually elapsed 

time expended on decoding the tth frame. 

5 Experimental Results 
We implemented the proposed DVFS technique, called OL-DVFS 
which stands for off-chip latency driven DVFS) for MPEG decoding 
with on-chip vs. off-chip workload partitioning on an XScale-based 
system which includes an on-board variable voltage generator to 
generate a suitable CPU voltage at each frequency level. The block 
diagram of the XScale-based system as well as the allowed CPU 
clock frequencies with the corresponding minimum voltage levels 
are shown in Figure 6. Sizes of window, N and M, are set to 25 
through exhaustive experiments. For the actual measurement, a data 
acquisition system (DAQ) with a sampling rate up to 40 KHz is used.  
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 Figure 6: Block diagram of XScale-based system 

Figure 7 depicts the CPU power consumption while decoding an I-
frame followed by a B-frame in which two different frequencies are 
set during TCON (a) 666MHz and (b) 333MHz. A 733MHz is used 
for TVAR. As mentioned in the previous section, TCON, which contains 
the off-chip access latencies during “dithering” and “display”, does 
not change with the CPU frequency, i.e., it remains at 37msec at 
both frequencies. The average power consumption during TCON is 
significantly reduced from 510mW to 186mW (64% reduction) as a 
result of voltage scaling. 
We measured the actual CPU power consumptions while playing 
back six test video clips on the XScale-based system with the 

proposed DVFS method (OL-DVFS) and compared the results with 
the case of conventional DVFS without workload partitioning 
(CON-DVFS). The proposed inter-frame compensation is used for 
both OL-DVFS and CON-DVFS. CON-DVFS refers to state-of-the-
art work prior to OL-DVFS and comprises of the following: The 
computational workload (i.e., the number of CPU clock cycles 
needed to decode the frame) is calculated as the elapsed total 
decoding time divided by the current CPU frequency. Voltage and 
frequency scaling is done as a function of this calculated workload. 
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(a) TVAR : 733MHz, TCON : 666MHz 
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(b) TVAR : 733MHz, TCON : 333MHz 

Figure 7: Decoding time and power consumption at different CPU 
frequencies and voltage levels 
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Figure 8: CPU energy savings using proposed DVFS 

Figure 8 shows the CPU energy savings of a test video for both OL-
DVFS and CON-DVFS compared to no DVFS. As we can see, the 
OL-DVFS method enables much higher energy savings as the frame 
rate becomes higher compared to CON-DVFS. Results for other test 
videos are summarized in Table 2, demonstrating a CPU energy 
savings ranging from 50% to 80% for various frame rates. 
We also compared the OL-DVFS method with a DVFS technique 
(called MIX-DVFS) that uses the minimum CPU clock frequency 
for TCON (this is similar to OL-DVFS) and a policy similar to the 
CON-DVFS for TVAR. The results are reported in Figure 9. Notice 
that in this experiment, the minimum CPU frequency is set during 
TCON for both OL-DVFS and MIX-DVFS in order to clearly 
highlight the effect of considering TOFF during TVAR. Inter-frame 
compensation is not used in this experiment for both cases. As in 
Figure 9, TOFF identification becomes more effective as the frame 



 

rate goes higher. In particular, with off-chip latency separation 
during TVAR, a 6.5% higher energy savings at a frame rate of 14 is 
achieved for the test video (clip 5). Finally, Figure 10 shows the 
effectiveness of inter-frame compensation method. 
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Figure 9: CPU energy savings with off-chip latency separation during 

TVAR  

11

12

13

14

15

16

0 30 60 90 120 150

Frame number

Fr
am

e 
ra

te
 [f

ps
]

(1) Terminator 2 Frame rate target : 13f ps

without

with "inter-frame compensation"

 
Figure 10: Frame rate variation with the proposed DVFS 

With this compensation scheme, the run time frame rate smoothly 
converges to the target frame rate (here, 13 fps). Notice that the 
frame rate diverges from the target rate without this compensation, 
resulting in wasted CPU energy. The reason that the divergent rate is 
higher (rather than lower) than the target frame rate is that the I- and 
P-frames need maximum frequency to meet the deadline, and are 
unaware of positive timing slacks that are carried over from the 
previous B-frames. 

6 Conclusions 
A DVFS for MPEG decoding was proposed and implemented on the 
XScale-based portable system. In this DVFS, the computational 
workload in decoding a frame is partitioned as on-chip and off-chip 
workload by using a dynamic event from PMU and which results in 
significant CPU energy savings. To avoid QoS degradation due to 
misprediction of on-chip and off-chip latencies, an inter-frame 
compensation method was proposed in which an error occurring  in 
a frame was diffused into a small number of subsequent frames and 
compensated for with a negligible fluctuation in the frame rate. On 
this platform the significant CPU energy savings ranges from 50% 
to 80% depending on the test video sequence under which various 
frame rates were achieved. 

References 
[1] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,” 

IEEE Symp. On Low Power Electronics, 1994, pp. 8-11. 
[2] Developer manual: “Intel 80200 Processor Based on Intel XScale 

Microarchitecture,” 
http://developer.intel.com/design/iio/manuals/273411.htm 

[3] “Cruso SE Processor TM5800 Data Book v2.1,”  
http://www.transmeta.com/everywhere/products/embedded/embedded_sefa
mily.html . 

[4] F. Yao, A. Demers, and S. Shenker, “ A scheduling model for reduced CPU 
energy,” IEEE Annual Foundations of Computer Science, 1995, pp.374-382 

[5] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically 
variable voltage processors,” Proc. Int’l Symp. on Low Power Electronics 
and Design, Monterey, CA, Aug. 1998, pp.197-202. 

[6] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task voltage scheduling 
using static timing analysis,” Proc. Design Automation Conf. 2001, pp. 438-
443. 

[7] I. Hong, G. Qu, M. Potkonjak, and M.B. Srivastava, “Power optimization of 
variable-voltage core-based systems,” IEEE Trans. on Computer-Aided 
Design of Integrated Circuits and Systems, Vol.18, No.12, December 1999, 
pp. 1702-1714 

[8] G. Quan and X. Hu, “Minimum energy fixed-priority scheduling for 
variable voltage processors,” Proc. Design Automation and Test in Europe, 
March 2002, pp. 782-787. 

[9] T. Pering, T. Burd, and R. Broderson, “The simulation and evaluation of 
dynamic voltage scaling algorithms,” Proc. Int’l Symp. on Low Power 
Electronics and Design, 1998, pp.76-81. 

[10] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-aware 
video decoding,” 22nd Picture Coding Symp., Seoul, Korea, 2001. 

[11] D. Son, C. Yu, and H. Kim, “Dynamic voltage scaling on MPEG decoding,” 
Int’l Conf. of Parallel and Distributed System, June 2001 

[12] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld, “Policies 
for dynamic clock scheduling,” Symp. on Operating Systems Design & 
Implementation, Oct. 2000 

[13] K. Choi, K. Dantu, W. Cheng, and M. Pedram, “Frame-based dynamic 
voltage and frequency scaling for a MPEG decoder,” Proc.  Int’l Conf. on 
Computer Aided Design, November 2002, pp. 732-37 

[14] C. Im, H. Kim, and S. Ha, “Dynamic voltage scheduling technique for low-
power multimedia applications using buffers,” Proc. Int’l Symp. on Low 
Power Electronics and Design, Aug. 2001, pp.34-39 

[15] Z. Lu, J. Lach, M. Stan, K. Skadron, “Reducing multimedia decode power 
using feedback control,” Proc. Int’l Conf. on Computer Design San Jose, 
CA, Oct. 2003. 

[16] C. Hsu and U. Kremer, “Compiler-directed dynamic voltage scaling for 
memory-bound applications,” Technical Report DCS-TR-498, Department 
of Computer Science, Rutgers University, Aug. 2002. 

[17] C. Hsu and U. Kremer, “Single region vs. multiple regions: A comparison 
of different compiler-directed dynamic voltage scheduling approaches,” 
Proc. Workshop on Power-Aware Computer Systems, Feb. 2002. 

[18] D. Marculescu, “On the use of microarchitecture-driven dynamic voltage 
scaling,” Proc. Workshop on Complexity-Effective Design, June 2000. 

[19] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC variation in workloads 
with externally specified rates to reduce power consumption,” Workshop on 
Complexity Effective Design, June 2000. 

[20] A. Weissel and F. Bellosa, “Process Cruise Control,” Proc. Compilers, 
Architectures and Synthesis for Embedded Systems, October 2002, pp.238-
246 

[21] http://bmrc.berkeley.edu/frame/research/mpeg. 
[22] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial grayscale,” 

Proc. the Society for Information Display, 17 (2), 1976, pp. 75-77 
[23] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced 

CPU energy,” Proc. 1st Symp. on Operating Systems Design 
Implementation, 1994, pp. 13-23. 

 
Table 2. CPU Energy saving comparison - OL: OL-DVFS, CON: CON-DVFS. (*: numbers in parenthesis are for (6)) 

(1) Terminator2 (2) Siberian Tiger (3) Deploy (4) Wg_wt (5) Badboy2 (6) Final3 
fps* 

CON OL CON OL CON OL CON OL CON OL CON OL 
10 - - 73.15 % 77.78 % - - - - - - - - 

11 (27) 80.46 % 80.75 % 55.49 % 71.39 % - - - - - - 80.88 % 82.62 % 
12 (28) 79.68 % 79.97 % 43.39 % 60.66 % - - - - 79.33 % 79.45 % 82.04 % 82.63 % 
13 (29) 71.60 % 78.08 % 25.36 % 49.54 % - - 75.27 % 77.74 % 78.85 % 79.48 % 81.85 % 81.96 % 
14 (30) 40.45 % 72.38 % - - 57.94 % 75.69 % 60.59 % 73.18 % 71.34 % 75.16 % 81.65 % 81.99 % 

15 22.17 % 64.33 % - - 35.53 % 64.44 % 41.33 % 66.99 % 46.99 % 61.64 % - - 
 


