

Off-chip Latency-Driven Dynamic Voltage and Frequency
Scaling for an MPEG Decoding

Kihwan Choi, Ramakrishna Soma, and Massoud Pedram
Dept. of EE-Systems, Univ. of Southern California, Los Angeles, CA 90089

{kihwanch, rsoma, pedram}@usc.edu

Abstract
This paper describes a dynamic voltage and frequency scaling
(DVFS) technique for MPEG decoding to reduce the energy
consumption using the computational workload decomposition. This
technique decomposes the workload for decoding a frame into on-
chip and off-chip workloads. The execution time required for the on-
chip workload is CPU frequency-dependent, whereas the off-chip
workload execution time does not change, regardless of the CPU
frequency, resulting in the maximum energy savings by setting the
minimum frequency during off-chip workload execution time,
without causing any delay penalty. This workload decomposition is
performed using a performance-monitoring unit (PMU) in the
XScale-processor, which provides various statistics such as cache
hit/miss and CPU stall, due to data dependency at run time. The on-
chip workload for an incoming frame is predicted using a frame-
based history so that the processor voltage and frequency can be
scaled to provide the exact amount of computing power needed to
decode the frame. To guarantee a quality of service (QoS) constraint,
a prediction error compensation method, called inter-frame
compensation, is proposed in which the on-chip workload prediction
error is diffused into subsequent frames such that run time frame
rates change smoothly. The proposed DVFS algorithm has been
implemented on an XScale-based Testbed. Detailed current
measurements on this platform demonstrate significant CPU energy
savings ranging from 50% to 80% depending on the video clip.

Categories and Subject Descriptors
C.4 [Information systems]: Special-purpose and application-based
systems.

General Terms
Algorithms, Measurement, Experimentations

Keywords
Low power, MPEG decoding, voltage and frequency scaling

1 Introduction
Demand for portable computing and communication devices has
been increasing rapidly. Because portable devices are battery-
operated, a design objective is to minimize the energy dissipation (to
thus maximize the battery service time) without any appreciable
degradation in the QoS. DVFS is a highly effective method to
achieve this design goal. This is because energy consumption in
CMOS VLSI circuits is quadratically proportional to the supply

voltage [1]. Therefore, reducing the supply voltage can result in
large energy savings. Reducing the voltage level, however, slows the
circuit down. The key idea behind DVFS techniques is to perform
dynamic voltage scaling so as to provide “just-enough” circuit speed
to process the workload while meeting the total compute time and/or
throughput constraints, thereby, reducing the energy dissipation. A
number of modern microprocessors such as Intel’s XScale [2] and
Transmeta’s Cruso [3] are equipped with the DVFS function.
Many DVFS techniques may be used to reduce the energy
consumption of an executed task while ensuring that the task meets
its deadline in real-time scenarios [4][5][6][7][8]. However, all of
these techniques assume that critical information about all tasks,
such as task arrival time, deadline, workload, and worst-case
execution time (WCET) are known in advance. These assumptions
are not directly applicable to the case when a task’s workload
exhibits a large variability. An archetypal example of such a task is
MPEG decoding in which the computational workload fluctuates
greatly depending on the frame type. Moreover, in all of the
previous DVFS approaches for real-time applications, either hard
real-time or soft real-time, the workload of a task is often
represented by the number of CPU clock cycles required to complete
the task regardless of whether the workload consists of mainly CPU-
bound or memory-bound instructions. The latter information is of
course critical in determining the idle time of the CPU.
In this paper, we present a DVFS technique for low power MPEG
decoding in which CPU energy savings is maximized through
workload partitioning into either CPU-bound or memory-bound
workload. The intuition for workload partitioning is that memory is
asynchronous with the processor and often has its own clock. More
precisely, we propose to lower the CPU frequency during the CPU
idle times, which are in turn due to external memory stalls. To
capture the CPU idle time at run time, the performance-monitoring
unit (PMU) in the Intel’s XScale processor is used. In addition, in
attempt to guarantee a user-specified QoS for the video playback, we
describe a method, called “inter-frame compensation”, in which the
frame rate fluctuation, due to workload prediction error, is
effectively localized to a small number of subsequent frames.
The proposed DVFS technique has been implemented on an XScale-
based embedded system platform and detailed energy savings have
been obtained by actual current measurements in hardware. On this
platform, a significant CPU energy savings has been achieved which
ranges from 50% to 80%, depending on the test video sequence.
The main contributions of our work are: (1) The work presents one
of the first actual implementations of a DVFS policy for low power
MPEG decoding that exploits the different characteristic of CPU-
bound and memory-bound instructions in the computational
workload required to decode a frame (2) Recognition of the CPU
stalls is performed dynamically by using the PMU, thus allowing us
to take into account the effect of various events at run time. (3) It
presents an effective error compensation method to guarantee a QoS
constraint by eliminating severe frame rate fluctuations. (4)
Evaluation of the proposed method is performed through actual
hardware measurements for a number of different video sequences.

This research was supported in part by DARPA PAC/C program under
contract DAAB07-02-C-P302 and by NSF under grant no. 9988441.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first pate. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04, June 7-11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

The remainder of this paper is organized as follows: Related work is
described in Section 2. In Section 3, a method to separate on-chip
and off-chip execution times for MPEG decoding using PMU is
considered. Details of the proposed DVFS policy for an MPEG
decoding are presented in Section 4. Experimental results and
conclusions are given in Sections 5 and 6, respectively.

2 Related work
A number of researchers have applied DVFS to MPEG video
decoding in order to achieve lower energy consumption
[9][10][11][12][13]. In [9] and [12], DVFS with interval-based
prediction is performed based on the ratio of the number of idle and
busy cycles of the CPU while the MPEG stream is decoded.
Although significant energy reduction has been reported, there is no
guarantee that the deadline for each frame is met. A method using
feedback control is proposed in [10] in which decoding time is
predicted based on encoded code size of a frame. This code size
prediction scheme is inaccurate, however, and may frequent miss
deadlines. Furthermore, the linear prediction equation must be
changed when different resolutions of the video image or different
frame pixel sizes are encountered. In [13] a frame-based workload
prediction is used for DVFS in which the different steps of decoding
sequence are divided into frame-independent and frame-dependent
parts. The prediction error for the frame-dependent part is
compensated during the frame-independent part which consists of
memory-intensive work and the execution time during this part can
be scaled by the CPU frequency. However, this approach is
inapplicable to the high performance processors such as XScale and
Cruso in which external memory clock cycle is asynchronous to the
CPU. In [11], the estimation of decoding time is performed in units
of group of picture (GOP) that consists of 12 or 15 frames, in
general. In this approach, sizes and types of the frames of an
incoming GOP are observed and the time needed to decode the next
GOP is estimated based on statistics of the previous GOPs. It is
highly probable that severe QoS degradation may occur when the
prediction is inaccurate because the same frequency (voltage) is
applied for all frames in a GOP. There have been studies on using
buffers in multimedia processing [14][15]. One of the most
important advantages of using buffers is that no explicit frame-
decode time prediction is needed, and therefore, missed deadlines
due to prediction errors are avoided. These techniques, however,
suffer from underflow/overflow of the finite buffer when the
decoding time variation is high [14] or for improper gain of the
proportional-integral controller [15]. None of the previous works on
low-power MPEG decoding consider the decomposition of the
computational workload, as proposed in this paper.
There are different DVFS approaches that make use of the
asynchrony of memory access to the CPU clock during task
execution. In [16] and [17], compiler-assisted DVFS techniques
were proposed, in which frequency is lowered in the memory-bound
region of a program with little performance degradation. DVFS
approaches that rely on micro-architecture or embedded hardware
without any assistance from a compiler or a simulator have also been
reported. In [18] a microarchitecture-driven DVFS technique was
proposed in which a cache miss drives the voltage scaling. In [19]
the IPC (instruction per cycle) rate of a program execution was used
to direct the voltage scaling. Reference [20] presented a policy to
choose the optimal CPU clock frequency under a fixed performance
degradation constraint (of say 10%) based on dynamic program
behavior such as the number of executed instructions and memory
access counts during the whole execution time using a performance-
monitoring unit (PMU). The authors defined the optimal frequency
domains in 2-D space comprising of points of the monitored events
by exhaustive simulation, resulting in a table lookup scheme for
frequency scaling. This scheme comprises of using the PMU to

obtain certain run time information, which is then used as a key in
the table lookup, to recover and apply the pre-computed frequency
level stored in the table. Unfortunately, the technique of [20] cannot
be applied to real-time applications where the performance loss
constraint changes rapidly over time (for example, the performance
loss constraint for an I-frame is much tighter than that for a B-frame
in MPEG stream) because in that case the lookup table cannot
provide the optimal frequency. To handle such a situation, frequency
and voltage level calculation must be done at run time in response to
the dynamically changing performance loss constraint value. In
addition, an error compensation method must be put into effect in
order to soften the effect of any misprediction, which was not the
case in [20].
In this paper, we propose a DVFS method for MPEG decoding in
which the time for memory-bound operations is accurately singled
out of the whole decoding time such that CPU energy savings can be
maximized under a given frame rate by setting lower CPU frequency
during memory-bound operations. The calculation of memory-bound
operation time is performed at run time based on the dynamic events
reported by the PMU without any help from an off-line simulator or
compiler.

3 Workload Partitioning in MPEG Decoding
3.1 Workload Partitioning
Generally speaking, a task consists of a sequence of instructions to
be performed. The execution time of a task is the sum of latencies of
all instructions in the task. The instruction latencies can in turn be
classified as on-chip latencies (data dependency, cache hit, branch
prediction) or off-chip latencies (memory latency, PCI latency). The
on-chip latencies are caused by events that occur inside the CPU.
They are synchronized to the internal clock and may linearly be
reduced by increasing the CPU frequency. The off-chip latencies, on
the other hand, are independent of the internal frequency and are
thus not affected by changing the CPU frequency. Accesses to
external devices such as SDRAM and PCI peripheral devices are
synchronized to the bus clock, which is independent of the CPU
frequency.
As a motivating example, Figure 1 shows the different degrees of
execution time increases for two applications as CPU frequency
varies.

0

20

40

60

80

100

120

733 666 600 533 466 400 333

Frequency [MHz]

Ex
ec

ut
io

n
tim

e
in

cr
es

e
[%

] Memory-bound : qsort

CPU-bound : crc

Figure 1: Execution time changes according to CPU frequency

For example, in the case of the “crc”, lowering frequency introduces
significant performance losses compared to “qsort” implying that
these programs are CPU-bound. On the contrary, it is known that
“qsort” is memory-bound by observing little execution time increase
with lowered frequency. Based on these observations, we found that,
when the same amount of timing constraint is provided, a lower
CPU clock frequency can be applied for memory-bound programs
when compared to CPU-bound programs. This, in turn, results in
higher relative energy savings for DVFS when it is applied to
memory-bound programs.

Definition 1: on-chip workload, WON, is the number of CPU clock
cycles required to perform instructions which cause on-chip
latencies.
Definition 2: off-chip workload, WOFF, is the number of external bus
clock cycles during off-chip accesses. Note that during these
accesses, the CPU is stalled and waiting for transactions to complete
outside the CPU.
Let TON and TOFF denote the required time to process WON and WOFF.
We have:

 1

n
ON

ONON i
ON AVGi

CPU CPU CPU

CPI
n CPIWT

f f f
= ⋅= = =
∑ (1)

 1

m
OFF
j OFFOFF

jOFF AVG
EXT EXT EXT

CPI
m CPIWT

f f f
= ⋅= = =
∑ (2)

where n is the total number of instructions in the instruction stream,
m is the number of off-chip accesses in that stream, CPIi

ON
 denotes

the number of CPU clock cycles for the ith instruction due to on-chip
transactions, CPIj

OFF
 denotes the number of memory clock cycles for

the jth off-chip access, CPIAVG
ON and CPIAVG

OFF denote the average
on-chip and off-chip CPI, fCPU and fEXT denote the current clock
frequency of the CPU and the clock frequency of the off-chip bus.
Intuitively, the on-chip CPI denotes the CPI when no off-chip
accesses occur. When the CPU frequency is changed for executing a
task, the variation in the execution time is solely dependent upon
WON of the task, because fEXT is independent of the fCPU and is not
scaled. The CPU frequency for a task can be calculated differently
depending on temporal distribution of WON and WOFF as well as
values of WON and WOFF. Consider a task, which has WON
comprising of W1

ON and W3
ON and WOFF comprising of W2

OFF and
W4

OFF. Furthermore, assume that the four subtasks are executed in
the order shown in Figure 2. Then, there are two different scenarios,
(I) and (II), according to whether we know the complete execution
sequence of WON and WOFF or not. In scenario (I), it is assumed that
we know the temporal execution sequence of subtasks inside the
task, i.e. W1

ON →→→→ W2
OFF →→→→ W3

ON →→→→ W4
OFF, whereas, this

information is not available in scenario (II). Now, the CPU
frequencies for W2

OFF and W4
OFF can be set to the minimum possible

level in scenario (I) while it is not possible to assign the minimum
CPU frequency for WOFF in scenario (II). Thus, not surprisingly,
more CPU energy can be saved in scenario (I) compared to scenario
(II). More precisely, the CPU clock frequencies for the two
scenarios are given as:

+=
 +−  
 

1 3

2 4

 () : , =
ON ON

CPU CPU CPU
ON OFF MINOFF OFF

EXT

W Wscenario I f f f
W WD

f

 (3)

+= =

 +−  
 

1 3

2 4

 () :
ON ON

CPU CPU
ON OFF OFF OFF

EXT

W Wscenario II f f
W WD

f

 (4)

where Wi
ON (Wi

OFF) denote the on-chip (off-chip) workload of the ith
subtask, D is the deadline, fMIN

CPU is the minimum CPU frequency,
and fON

CPU (fOFF
CPU) denote the CPU frequency during the period of

time that we are servicing on-chip (off-chip) accesses.
The definition of these two scenarios is useful for MPEG decoding
as will be shown in a later section because different steps in the
MPEG decoding sequence can be mapped to one of these two
scenarios. Notice that to set the minimum frequency during off-chip
accesses in scenario (I), W1

OFF and W2
OFF should be large compared

to the frequency and voltage-scaling overhead in actual hardware.
For example, if a task results in a large number of small WOFF’s that

are scattered over the whole execution time of the task, then the
CPU frequency for such a case is calculated as in scenario (II) even
when the execution sequence is known.

CPU Freq.#.of cycles

W2
OFF

W3
ON

W4
OFF

W1
ON W2

OFF W3
ON W4

OFF

W1
ON

W2
OFF W3

ON
W4

OFF

t1 t2 t3 t4

t1 t2 t3 t4

D

D

DVFS

fOFF
CPU

fON
CPU

fCPU

fOFF
CPU

Execution sequence Time

W1
ON

WON + WOFF

Scenario (I)

Scenario (II)

CPU Freq.#.of cycles

W2
OFF

W3
ON

W4
OFF

W1
ON W2

OFF W3
ON W4

OFF

W1
ON

W2
OFF W3

ON
W4

OFF

t1 t2 t3 t4

t1 t2 t3 t4

D

D

DVFS

fOFF
CPU

fON
CPU

fCPU

fOFF
CPU

Execution sequence Time

W1
ON

WON + WOFF

Scenario (I)

Scenario (II)

Figure 2: DVFS with detailed knowledge of subtasks and their relative
order and workload requirement (scenario I) and without this
information (scenario II)

3.2 Using PMU on XScale for Identifying the Off-chip
Access Times

It is very difficult to get the exact WON and WOFF of a program in a
static manner such as during the compilation time. This is because
on/off-chip latencies are severely affected by dynamic behavior of
the program such as cache statistics and different access overheads
for different external devices. So, these unpredictable dynamic
behaviors should be captured at run time. This can be achieved by
using a performance-monitoring unit that is often available in
modern microprocessors. In our target system, the CPU is Intel’s
XScale, which supports monitoring of 20 performance events
including cache hit/miss, TLB hit/miss, and number of executed
instructions. The overhead for accessing PMU (read/write) is less
than 1usec [20] and can be ignored. However, there is a limitation in
using these events in the sense that only two events can be
monitored at the same time. We performed many experiments to
determine which events can give valuable clues about WON and WOFF
and the following two events were proven to be the most helpful
based on experimental results: (i) the number of instructions being
executed (INSTR) and (ii) the number of memory accesses (MEM).
3.3 MPEG Decoding
Two objectives of DVFS in MPEG decoding are to maximize CPU
energy savings and to guarantee a given QoS constraint such as a
given frame rate. There are three frame types I-, P-, and B-frame in
an MPEG video stream and each frame type results in a different
workload. It takes several steps in decoding a frame as shown in
Figure 3. Careful examination of what operations are performed in
each step is quite helpful in partitioning the MPEG decoding
workload into on-chip and off-chip. For example, the inverse
discrete cosine transform (IDCT) is a CPU-intensive operation in
which iterative multiplication-accumulation computations over an
8x8 array of integer or floating-point values are required, so the
IDCT step is classified as WON, whereas the dithering and display
steps are memory-intensive, requiring a frame-size data movement
between the processed video stream and display frame buffer
causing frequent cache misses, which can be considered as WOFF.
To empirically confirm this observation, we played a test video clip
using “mpeg_play” software decoder program [21] and recorded the
MEM event reported by the PMU. From this experiment, we found
that high MEM counts occurred during “dithering” and “display”
step compared to all other steps. Furthermore, the MEM value was
nearly the same for all types of frames. While “dithering” and
“display” are clearly classified as operations that are intensive in
terms of the off-chip accesses, it is difficult to extract WOFF for the
remaining steps since MEM counts are scattered over repeated short
loops as shown in Figure 3.

Read blocks

Reconstruct
MB

IDCT

Merge MB

Make frame

Dither frame

Display frame

Read streams

MBs/frame

blocks/MB

MB : Macroblock
IDCT : Inverse discrete

cosine transformation

TVAR

TCON

Decoding
sequence

Read blocks

Reconstruct
MB

IDCT

Merge MB

Make frame

Dither frame

Display frame

Read streams

MBs/frame

blocks/MB

MB : Macroblock
IDCT : Inverse discrete

cosine transformation

TVAR

TCON

Decoding
sequence

Figure 3: MPEG decoding sequence

The situation is complex and more closely resembles scenario (II) of
Figure 2. We therefore opted to divide the whole decoding time of a
frame into two parts, TCON and TVAR, where TCON is CPU frequency-
independent and comprises of the “dithering” and “display” times
while TVAR is the elapsed time for the remaining steps, which are
CPU frequency-dependent. Figure 4 shows the actual experimental
results of TVAR and TCON of each frame type while changing CPU
frequency from 733MHz to 333MHz. As we expected, TCONs of all
frames are independent of the CPU frequency, regardless of frame
type, while TVAR changes according to the CPU frequency. This
means that we can assign the minimum frequency during TCON, i.e.,
“dithering” and “display” steps as in scenario (I).
To calculate the target CPU frequency during TVAR, it is required to
know the accurate ratio of the on-chip and off-chip times during
TVAR, which can, in turn, be collected by using dynamic events from
the PMU.

0

20

40

60

80

100

120

140

333 400 466 533 600 666 733

CPU frequency [MHz]

Ti
m

e
[m

se
c]

(2) Siberian Tiger

TVAR : I
TCON : I,P,B

TVAR : P

TVAR : B

0

20

40

60

80

100

120

140

333 400 466 533 600 666 733

CPU frequency [MHz]

Ti
m

e
[m

se
c]

(2) Siberian Tiger

TVAR : I
TCON : I,P,B

TVAR : P

TVAR : B

Figure 4: Decoding time variation as a function of the CPU clock
frequency

4 Proposed DVFS Policy
The off-chip time, TOFF, can be obtained by making use of the fact
that it is independent of the CPU frequency. To relate a PMU event
with TOFF, we plotted many combinations of PMU events and
measured TVAR with changing CPU frequency and found that INSTR,
the number of executed instructions, can give quite accurate
information about TOFF in TVAR. In Figure 5, we have plotted TVAR on
the y-axis and INSTR on the x-axis at a CPU frequency of 333MHz
and at 733MHz. Each dot in the plot represents one PMU report for
a B-type frame at the corresponding clock frequency. From this
figure, we can see that TVAR for all B-frames in the test video form a
line and that TOFF can be obtained as y-axis intercept point in a
linear equation as follows:
 ON

VAR OFFAVG
CPU

CPIT INSTR T
f

 
= ⋅ + 
 

 (5)

Based on the equation (5), CPIAVG
ON is calculated as about 2.7,

regardless of the CPU frequency, and TOFF at both frequencies

converged to 7.5msec. TOFF for each frame type is different with B-
frame having the largest TOFF while the I-frame has the smallest
TOFF. This observation can be justified by recalling that predictive
frames (P- and B-frame) need macroblocks that have already been
reconstructed and decoded in the previous I-frames; thereby, causing
more off-chip access delays due to frequent data cache-misses.
Finally, the proposed DVFS method is quite effective in MPEG
decoding application if we consider that an MPEG video clip usually
has 10 times more P- and B-frames than I-frames. In Table 1, the
obtained ratios of TOFF and TVAR at 733MHz for each frame type of
six different video clips are reported.

0
10
20
30
40

50
60
70
80

0 2 4 6 8 10

Executed Instructions [106]

TVA
R [m

se
c]

(2) Siberian Tiger (B-type)

333MHz

733MHz

0
10
20
30
40

50
60
70
80

0 2 4 6 8 10

Executed Instructions [106]

TVA
R [m

se
c]

(2) Siberian Tiger (B-type)

333MHz

733MHz

Figure 5: Contour plots of TVAR versus INSTR for different CPU clock

frequencies
Table 1. The ratio of TVAR and TOFF of each frame type in each video clip

Frame type Test video Frame size I P B
(1) Terminator2 352 X 240 3.49 % 11.60 % 40.58 %
(2) Siberian Tiger 320 X 240 7.96 % 11.87 % 25.74 %
(3) Deploy 352 X 288 15.01 % 58.01 % 47.19 %
(4) Wg_wt 304 X 224 10.12 % 43.95 % -
(5) Badboy2 480 X 208 20.64 % 38.85 % 50.76 %
(6) Final3 160 X 120 26.11 % 36.80 % 59.34 %

Let the linear equation for the regression be y=a*x+b, where x and y
denote INSTR and TVAR of some frame type, respectively.
Coefficients a and b at frame t ≥ N, are calculated from the last N
PMU reports as follows:

1 1 1 1 1

1 1
2 2

1

() () ()
,

() ()

t N t N t N t N t N

i i i i i i
i t i t i t i t i t

t N t N

i i
i t i

N x y x y y x
a b a

N NN x x

− + − + − + − + − +

= = = = =
− + − +

= =

⋅ ⋅ − ⋅
= = − ⋅

⋅ −

∑ ∑ ∑ ∑ ∑

∑ ∑

 (6)

The regression coefficients are updated at the end of every frame.
Recall that the regression equation is maintained for each frame type
because MEM varies for different frame types, resulting in different
execution times for off-chip accesses.
For varying TON of each frame, we maintained a moving-average of
the last M INSTRs for each frame type (three averages, one per
frame type). Here, M can be the same as N, that is, the number of
data for the regression equation. The expected decoding time for an
incoming frame under a given frame rate, R, is thus determined
based on the following: the moving average of INSTR and CPIAVG

ON

from the regression equation for on-chip latency, the y-axis intercept
of the regressed equation for off-chip latency, TEXP

OFF, and constant
TCON which is easily obtained after decoding the first frame for a
given video clip. Then, the CPU frequency for t+1th frame, ft+1

CPU is
calculated as:

1
1

EXP ON
CPU t AVG

t CON OFF
EXP

INSTR CPIf
D T T

+
+

⋅=
− −

 (7)

where INSTRt+1
EXP is the average of INSTR (until the tth frame) of

the frame type that matches frame type at time t+1.

In MPEG decoding, meeting a QoS constraint such as a given frame
rate is quite important. In fact, the proposed DVFS method is based
on the prediction for on-chip and off-chip times for a frame. This
kind of prediction may not be perfect when each frame exhibits
severe variation in the computational workload such that target
frame rate cannot be maintained. So, a method that can compensate
for the prediction error and effectively maintain the user-specified
QoS is required.
There is a commonly used technique in video rendering called error
diffusion [22] in which the quantization error of previously
quantized pixel is filtered and distributed forward to unquantized
pixels in the neighborhood such that a smooth image can be
achieved. This same idea can be used to eliminate severe
fluctuations in frame rate due to prediction error. In inter-frame
compensation methods, the amount of error is diffused over the
subsequent frames and the CPU frequencies for the following frames
are calculated by considering not only their own predicted decoding
times, but also accounting for the timing slack that occurred due to
the imperfect prediction in the previous frames. This error diffusion
makes the prediction error localized into a small number of
neighboring frames, thereby, it can effectively compensated for by
decreasing (increasing) the CPU frequency in case of over-
prediction (under-prediction), resulting in soft and stable variation in
the frame rate. In some way, and indirectly, the proposed inter-frame
compensation method is analogous to considering “excess cycles”
from the previous time slots in interval-based workload prediction
techniques [23].
Adopting inter-frame compensation, the equation (7) is modified as
follows;

 1
1

EXP ON
CPU t AVG

t CON OFF SLACK
EXP t

INSTR CPIf
D T T T

+
+

⋅=
− − +

 (8)

where Tt
SLACK is the time difference between D and actually elapsed

time expended on decoding the tth frame.

5 Experimental Results
We implemented the proposed DVFS technique, called OL-DVFS
which stands for off-chip latency driven DVFS) for MPEG decoding
with on-chip vs. off-chip workload partitioning on an XScale-based
system which includes an on-board variable voltage generator to
generate a suitable CPU voltage at each frequency level. The block
diagram of the XScale-based system as well as the allowed CPU
clock frequencies with the corresponding minimum voltage levels
are shown in Figure 6. Sizes of window, N and M, are set to 25
through exhaustive experiments. For the actual measurement, a data
acquisition system (DAQ) with a sampling rate up to 40 KHz is used.

12-bit parallel
D/A

converter

DC-DC
converter

XScale
processor

CPLD

Main board

1.26
1.49

1.05
1.12
1.19

0.99
0.91

Freq.
[MHz]

Volt.
[V]

666
733

400
466
533
600

33312-bit parallel
D/A

converter

DC-DC
converter

XScale
processor

CPLD

Main board

1.26
1.49

1.05
1.12
1.19

0.99
0.91

Freq.
[MHz]

Volt.
[V]

666
733

400
466
533
600

333

 Figure 6: Block diagram of XScale-based system

Figure 7 depicts the CPU power consumption while decoding an I-
frame followed by a B-frame in which two different frequencies are
set during TCON (a) 666MHz and (b) 333MHz. A 733MHz is used
for TVAR. As mentioned in the previous section, TCON, which contains
the off-chip access latencies during “dithering” and “display”, does
not change with the CPU frequency, i.e., it remains at 37msec at
both frequencies. The average power consumption during TCON is
significantly reduced from 510mW to 186mW (64% reduction) as a
result of voltage scaling.
We measured the actual CPU power consumptions while playing
back six test video clips on the XScale-based system with the

proposed DVFS method (OL-DVFS) and compared the results with
the case of conventional DVFS without workload partitioning
(CON-DVFS). The proposed inter-frame compensation is used for
both OL-DVFS and CON-DVFS. CON-DVFS refers to state-of-the-
art work prior to OL-DVFS and comprises of the following: The
computational workload (i.e., the number of CPU clock cycles
needed to decode the frame) is calculated as the elapsed total
decoding time divided by the current CPU frequency. Voltage and
frequency scaling is done as a function of this calculated workload.

0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200
Time [msec]

C
PU

 P
ow

er
co

ns
um

pt
io

n
[m

W
]

I-frame

TVAR

(2) Siberian Tiger

TCON

TVAR @733MHz
TCON @666MHz

TCONTVAR

B-frame

Dithering

Display
0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200
Time [msec]

C
PU

 P
ow

er
co

ns
um

pt
io

n
[m

W
]

I-frame

TVAR

(2) Siberian Tiger

TCON

TVAR @733MHz
TCON @666MHz

TCONTVAR

B-frame

Dithering

Display

(a) TVAR : 733MHz, TCON : 666MHz

0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200
Time [msec]

C
PU

 P
ow

er
co

ns
um

pt
io

n
[m

W
] (2) Siberian Tiger TVAR @733MHz

TCON @333MHz

I-frame

TVAR TCON TCONTVAR

B-frame

Dithering

Display
0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200
Time [msec]

C
PU

 P
ow

er
co

ns
um

pt
io

n
[m

W
] (2) Siberian Tiger TVAR @733MHz

TCON @333MHz

I-frame

TVAR TCON TCONTVAR

B-frame

Dithering

Display

(b) TVAR : 733MHz, TCON : 333MHz

Figure 7: Decoding time and power consumption at different CPU
frequencies and voltage levels

64.33

78.08
72.38

79.97

40.45

71.60

79.68

22.17

0

20

40

60

80

100

12 13 14 15
Frame rate [fps]

C
PU

 E
ne

rg
y

sa
vi

ng
 [%

] (1) Terminator 2CON-DVFSOL-DVFS

64.33

78.08
72.38

79.97

40.45

71.60

79.68

22.17

0

20

40

60

80

100

12 13 14 15
Frame rate [fps]

C
PU

 E
ne

rg
y

sa
vi

ng
 [%

] (1) Terminator 2CON-DVFSOL-DVFS

Figure 8: CPU energy savings using proposed DVFS

Figure 8 shows the CPU energy savings of a test video for both OL-
DVFS and CON-DVFS compared to no DVFS. As we can see, the
OL-DVFS method enables much higher energy savings as the frame
rate becomes higher compared to CON-DVFS. Results for other test
videos are summarized in Table 2, demonstrating a CPU energy
savings ranging from 50% to 80% for various frame rates.
We also compared the OL-DVFS method with a DVFS technique
(called MIX-DVFS) that uses the minimum CPU clock frequency
for TCON (this is similar to OL-DVFS) and a policy similar to the
CON-DVFS for TVAR. The results are reported in Figure 9. Notice
that in this experiment, the minimum CPU frequency is set during
TCON for both OL-DVFS and MIX-DVFS in order to clearly
highlight the effect of considering TOFF during TVAR. Inter-frame
compensation is not used in this experiment for both cases. As in
Figure 9, TOFF identification becomes more effective as the frame

rate goes higher. In particular, with off-chip latency separation
during TVAR, a 6.5% higher energy savings at a frame rate of 14 is
achieved for the test video (clip 5). Finally, Figure 10 shows the
effectiveness of inter-frame compensation method.

61.29
66.10

77.66

63.89

76.21
71.80 65.32

58.06

0

20

40

60

80

100

120

(2) Siberian Tiger (5) Badboy2

Test video

C
PU

 E
ne

rg
y

Sa
vi

ng
 [%

]

11 fps 12 fps

13 fps 14 fps

OL-DVFS MIX-DVFS

61.29
66.10

77.66

63.89

76.21
71.80 65.32

58.06

0

20

40

60

80

100

120

(2) Siberian Tiger (5) Badboy2

Test video

C
PU

 E
ne

rg
y

Sa
vi

ng
 [%

]

11 fps 12 fps

13 fps 14 fps

OL-DVFS MIX-DVFS

Figure 9: CPU energy savings with off-chip latency separation during

TVAR

11

12

13

14

15

16

0 30 60 90 120 150

Frame number

Fr
am

e
ra

te
 [f

ps
]

(1) Terminator 2 Frame rate target : 13f ps

without

with "inter-frame compensation"

Figure 10: Frame rate variation with the proposed DVFS

With this compensation scheme, the run time frame rate smoothly
converges to the target frame rate (here, 13 fps). Notice that the
frame rate diverges from the target rate without this compensation,
resulting in wasted CPU energy. The reason that the divergent rate is
higher (rather than lower) than the target frame rate is that the I- and
P-frames need maximum frequency to meet the deadline, and are
unaware of positive timing slacks that are carried over from the
previous B-frames.

6 Conclusions
A DVFS for MPEG decoding was proposed and implemented on the
XScale-based portable system. In this DVFS, the computational
workload in decoding a frame is partitioned as on-chip and off-chip
workload by using a dynamic event from PMU and which results in
significant CPU energy savings. To avoid QoS degradation due to
misprediction of on-chip and off-chip latencies, an inter-frame
compensation method was proposed in which an error occurring in
a frame was diffused into a small number of subsequent frames and
compensated for with a negligible fluctuation in the frame rate. On
this platform the significant CPU energy savings ranges from 50%
to 80% depending on the test video sequence under which various
frame rates were achieved.

References
[1] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital design,”

IEEE Symp. On Low Power Electronics, 1994, pp. 8-11.
[2] Developer manual: “Intel 80200 Processor Based on Intel XScale

Microarchitecture,”
http://developer.intel.com/design/iio/manuals/273411.htm

[3] “Cruso SE Processor TM5800 Data Book v2.1,”
http://www.transmeta.com/everywhere/products/embedded/embedded_sefa
mily.html .

[4] F. Yao, A. Demers, and S. Shenker, “ A scheduling model for reduced CPU
energy,” IEEE Annual Foundations of Computer Science, 1995, pp.374-382

[5] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processors,” Proc. Int’l Symp. on Low Power Electronics
and Design, Monterey, CA, Aug. 1998, pp.197-202.

[6] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task voltage scheduling
using static timing analysis,” Proc. Design Automation Conf. 2001, pp. 438-
443.

[7] I. Hong, G. Qu, M. Potkonjak, and M.B. Srivastava, “Power optimization of
variable-voltage core-based systems,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, Vol.18, No.12, December 1999,
pp. 1702-1714

[8] G. Quan and X. Hu, “Minimum energy fixed-priority scheduling for
variable voltage processors,” Proc. Design Automation and Test in Europe,
March 2002, pp. 782-787.

[9] T. Pering, T. Burd, and R. Broderson, “The simulation and evaluation of
dynamic voltage scaling algorithms,” Proc. Int’l Symp. on Low Power
Electronics and Design, 1998, pp.76-81.

[10] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-aware
video decoding,” 22nd Picture Coding Symp., Seoul, Korea, 2001.

[11] D. Son, C. Yu, and H. Kim, “Dynamic voltage scaling on MPEG decoding,”
Int’l Conf. of Parallel and Distributed System, June 2001

[12] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld, “Policies
for dynamic clock scheduling,” Symp. on Operating Systems Design &
Implementation, Oct. 2000

[13] K. Choi, K. Dantu, W. Cheng, and M. Pedram, “Frame-based dynamic
voltage and frequency scaling for a MPEG decoder,” Proc. Int’l Conf. on
Computer Aided Design, November 2002, pp. 732-37

[14] C. Im, H. Kim, and S. Ha, “Dynamic voltage scheduling technique for low-
power multimedia applications using buffers,” Proc. Int’l Symp. on Low
Power Electronics and Design, Aug. 2001, pp.34-39

[15] Z. Lu, J. Lach, M. Stan, K. Skadron, “Reducing multimedia decode power
using feedback control,” Proc. Int’l Conf. on Computer Design San Jose,
CA, Oct. 2003.

[16] C. Hsu and U. Kremer, “Compiler-directed dynamic voltage scaling for
memory-bound applications,” Technical Report DCS-TR-498, Department
of Computer Science, Rutgers University, Aug. 2002.

[17] C. Hsu and U. Kremer, “Single region vs. multiple regions: A comparison
of different compiler-directed dynamic voltage scheduling approaches,”
Proc. Workshop on Power-Aware Computer Systems, Feb. 2002.

[18] D. Marculescu, “On the use of microarchitecture-driven dynamic voltage
scaling,” Proc. Workshop on Complexity-Effective Design, June 2000.

[19] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC variation in workloads
with externally specified rates to reduce power consumption,” Workshop on
Complexity Effective Design, June 2000.

[20] A. Weissel and F. Bellosa, “Process Cruise Control,” Proc. Compilers,
Architectures and Synthesis for Embedded Systems, October 2002, pp.238-
246

[21] http://bmrc.berkeley.edu/frame/research/mpeg.
[22] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial grayscale,”

Proc. the Society for Information Display, 17 (2), 1976, pp. 75-77
[23] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced

CPU energy,” Proc. 1st Symp. on Operating Systems Design
Implementation, 1994, pp. 13-23.

Table 2. CPU Energy saving comparison - OL: OL-DVFS, CON: CON-DVFS. (*: numbers in parenthesis are for (6))

(1) Terminator2 (2) Siberian Tiger (3) Deploy (4) Wg_wt (5) Badboy2 (6) Final3
fps*

CON OL CON OL CON OL CON OL CON OL CON OL
10 - - 73.15 % 77.78 % - - - - - - - -

11 (27) 80.46 % 80.75 % 55.49 % 71.39 % - - - - - - 80.88 % 82.62 %
12 (28) 79.68 % 79.97 % 43.39 % 60.66 % - - - - 79.33 % 79.45 % 82.04 % 82.63 %
13 (29) 71.60 % 78.08 % 25.36 % 49.54 % - - 75.27 % 77.74 % 78.85 % 79.48 % 81.85 % 81.96 %
14 (30) 40.45 % 72.38 % - - 57.94 % 75.69 % 60.59 % 73.18 % 71.34 % 75.16 % 81.65 % 81.99 %

15 22.17 % 64.33 % - - 35.53 % 64.44 % 41.33 % 66.99 % 46.99 % 61.64 % - -

