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A general method is proposed for constructing the Bethe ansatz equations of integrable models without

Uð1Þ symmetry. As an example, the exact spectrum of the XXZ spin ring with a Möbius-like topological

boundary condition is derived by constructing a modified T �Q relation based on the functional

connection between the eigenvalues of the transfer matrix and the quantum determinant of the monod-

romy matrix. With the exact solution, the elementary excitations of the topological XX spin ring are

discussed in detail. It is found that the excitation spectrum indeed shows a nontrivial topological nature.
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Integrable models play important roles in statistical
physics, quantum field theory, and condensed matter phys-
ics because those models provide some benchmarks for
understanding the corresponding universal classes. Since
Yang and Baxter’s pioneering works [1–3], the Yang-
Baxter relation has become a cornerstone for constructing
and solving the integrable models. Especially, the T �Q
relation method [2,3] and the algebraic Bethe ansatz
method [4–6] developed from the Yang-Baxter equation
have become two very popular methods for dealing with
the exact solutions of the known integrable models.
Generally speaking, there are two classes of integrable
models. One possesses Uð1Þ symmetry, and the other
does not. Three well-known examples without Uð1Þ sym-
metry are the XYZ spin chain [5,7], the XXZ spin chain
with an antiperiodic boundary condition [8–14], and the
ones with unparallel boundary fields [15–19]. It has been
demonstrated that the algebraic Bethe ansatz and T �Q
relation can successfully diagonalize the integrable models
with Uð1Þ symmetry. However, for those without Uð1Þ
symmetry, only some very special cases such as the XYZ
spin chain with an even site number [5,7] and the XXZ spin
chain with constrained unparallel boundary fields [15–17]
can be dealt with because of the existence of a proper
‘‘local vacuum state’’ in these special cases. The main
obstacle applying the algebraic Bethe ansatz and Baxter’s
method to general integrable models without Uð1Þ sym-
metry lies in the absence of such a ‘‘local vacuum.’’ A
promising method for approaching such a kind of problems
is Sklyanin’s separation of variables method [20,21],
which has been recently applied to some integrable models
[11–14,18,19]. However, a systematic method is still
absent to derive the usual Bethe ansatz equations (BAEs)
which are crucial for studying the physical properties in the
thermodynamic limit.

In this Letter, we develop a general method for dealing
with the integrable models without Uð1Þ symmetry. The
central point lies in how to construct a T �Q relation and

the usual BAEs for those models based on the connection
between two basic invariants of the monodromy matrix:
i.e., its trace (transfer matrix) and its quantum determinant
which do not depend on the basis choice and whether there
exists a reference state. As a concrete example, we study
the spectrum of the XXZ spin ring with a Möbius-like
topological boundary condition, as it is tightly related to
the recent study on the topological states of matter. In fact,
the topological boundary problem in many body systems
has been rarely touched. With the inhomogeneous XXZ
topological spin ring model, we elucidate how our method
works to derive the exact spectrum and the BAEs by
constructing and solving recursive functional equations.
Particular attention is focused on the elementary excita-
tions of the homogeneous XX spin ring with an antiperi-
odic boundary condition, as it is the simplest quantum
realization of the Möbius stripe. Our exact solution shows
that the elementary excitations of this simple model indeed
exhibit a nontrivial topological nature.
We start from the following model Hamiltonian

H ¼ �XN
j¼1

½�x
j�

x
jþ1 þ �y

j�
y
jþ1 þ cosh��z

j�
z
jþ1�; (1)

with the antiperiodic boundary conditions ��
Nþ1 ¼

�x
1�

�
1�

x
1. N is the site number of the system, and ��

j (� ¼
x, y, z) is the Pauli matrix on the site j along the �
direction. With such a topological boundary condition,
the spin on the Nth site connects with that on the first
site after rotating the � angle along the x direction [a kink
on the (N, 1) bond] and forms a torus in the spin space.
With an unitary transformation UnHU�1

n , Un ¼ Q
n
j¼1 �

x
j ,

the kink can be shifted to the (n, nþ 1) bond without
changing the spectrum of the Hamiltonian. Notice here
the braiding is in the quantum space rather than in the
real space, and therefore the present model describes a
quantum Möbius stripe. We define a Z2 operator UN ¼QN

j¼1 �
x
j . It can be easily checked that U2

N ¼ 1 and
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½H;UN� ¼ 0. Therefore, the present model possesses a
global Z2 invariance, indicating the double degeneracy of
the eigenstates.

The integrability of the present model is associated with
the following Lax operator

L0jð�Þ¼
sinh

h
~�jþ�

2 ð1þ�z
jÞ
i

sinh���
j

sinh��þ
j sinh

h
~�jþ�

2 ð1��z
jÞ
i

0
B@

1
CA

and the monodromy matrix

T0ð�Þ ¼ L01ð�Þ � � �L0Nð�Þ ¼
Að�Þ Bð�Þ
Cð�Þ Dð�Þ

 !
;

where ~�j ¼ �� �j, � is the spectral parameter, �j are the

site inhomogeneous constants, � is the crossing parameter,
as usual, the index 0 indicates the auxiliary space, and j
indicates the quantum space. Both the Lax operator and the
monodromy matrix satisfy the Yang-Baxter relation

R12ð�1��2ÞL1jð�1ÞL2jð�2Þ¼L2jð�2ÞL1jð�1ÞR12ð�1��2Þ;
R12ð�1��2ÞT1ð�1ÞT2ð�2Þ¼T2ð�2ÞT1ð�1ÞR12ð�1��2Þ;

(2)

with R12ð�Þ ¼ L12ð�j�j ¼ 0Þ. The transfer matrix of the

system is defined as

�ð�Þ ¼ tr0�
x
0T0ð�Þ ¼ Bð�Þ þ Cð�Þ; (3)

where tr0 means tracing the auxiliary space. From Eq. (2),
one can prove that the transfer matrices with different
spectral parameters are mutually commutative, i.e.,
½�ð�Þ; �ð�Þ� ¼ 0. Therefore, �ð�Þ serves as the generating
functional of the conserved quantities of the corresponding
system. The first order derivative of logarithm of the
transfer matrix gives the Hamiltonian (1)

H ¼ �2 sinh�
@ ln�ð�Þ

@�

���������¼0;�j¼0
þN cosh�: (4)

Define the state j0i ¼ �j"ij. From the definition of the

Lax operator, we obtain

Cð�Þj0i ¼ 0; Að�Þj0i ¼ að�Þj0i; Dð�Þj0i ¼ dð�Þj0i;
(5)

where að�Þ ¼ QN
n¼1 sinhð�� �n þ �Þ and dð�Þ ¼Q

N
n¼1 sinhð�� �nÞ. Before going further, we introduce

the following useful formula [6]:

Cð�ÞYn
l¼1

Bð�lÞj0i ¼
Xn
l¼1

Ml
nð�; f�jgÞBl

n�1j0i

þX
k>l

~Mkl
n ð�; f�jgÞBkl

n�1j0i; (6)

which can be obtained from the commutation relations
derived from the Yang-Baxter relation (2), where

Bl
n�1 ¼

Yn
j�l

Bð�jÞ; Bkl
n�1 ¼ Bð�Þ Yn

j�k;l

Bð�jÞ;

and

Ml
nð�; f�jgÞ ¼ gð�;�lÞað�Þdð�lÞ

Y
j�l

fð�;�jÞfð�j;�lÞ

þ gð�l; �Það�lÞdð�Þ
Y
j�l

fð�j; �Þfð�l;�jÞ;

(7)

~Mkl
n ð�;f�jgÞ¼ gð�;�kÞgð�l;�Þfð�l;�kÞað�lÞdð�kÞ

� Y
j�k;l

fð�j;�kÞfð�l;�jÞþgð�;�lÞ

�gð�k;�Þfð�k;�lÞað�kÞdð�lÞ
� Y

j�k;l

fð�j;�lÞfð�k;�jÞ;

gð�;�Þ¼ sinh�

sinhð���Þ ; fð�;�Þ¼ sinhð�����Þ
sinhð���Þ :

(8)

We adopt the procedure introduced in Ref. [10]. Suppose
j�i is an eigenstate of �ð�Þ and independent of �. We have
�ð�Þj�i ¼ �ð�Þj�i. In addition, we define Fnðf�jgÞ ¼
h�jQn

j¼1 Bð�jÞj0i and put F0 ¼ h�j0i ¼ 1. Consider the

quantity h�j�ð�ÞQn
j¼1 Bð�jÞj0i. By acting �ð�Þ right and

left alternatively, we have the following functional relations:

�ð�ÞFn ¼
X
l

Ml
nð�ÞFl

n�1 þ
X
k>l

~Mkl
n ð�ÞFkl

n�1 þ Fnþ1;

F1ð�Þ ¼ �ð�Þ; FNþ1 � 0; (9)

where Fn ¼ Fnðf�jgÞ, Fl
n�1 ¼ Fn�1ðf�jgj�lÞ, Fkl

n�1 ¼
Fn�1ð�; f�jgj�k;lÞ, and f�jg, indicating the parameter set

f�1; . . . ; �ng for n ¼ 1; . . . ; N. Notice that we have N þ 2
equations and N þ 2 unknown functions � and Fn. The
function Fnðf�jgÞ is symmetric by exchanging the varia-

bles �j because of ½Bð�jÞ; Bð�lÞ� ¼ 0 and is a degree

N � 1 trigonometrical polynomial. The eigenvalue �ð�Þ
therefore can be parametrized as

�ð�Þ ¼ �0

YN�1

j¼1

ezj sinhð�� zjÞ; (10)

where�0 is a constant and fz1; . . . ; zN�1g is a set of roots of
�ð�Þ with �ðzjÞ ¼ 0. The recursion equations (9) deter-

mine the eigenvalue �ð�Þ. From Eq. (4), we can easily
derive the eigenvalue of the Hamiltonian as

E ¼ �2 sinh�
@ ln�ð�Þ

@�

���������¼0;�j¼0
þN cosh�

¼ �2 sinh�
XN�1

j¼1

cothzj þ N cosh�: (11)
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Since dð�jÞ ¼ 0, all the functions Mj
n and ~Mjk

n are zero

as long as their variables belong to the parameter set
f�1; . . . ; �Ng and �j � �k � �l � �. Therefore, the follow-

ing relations hold:

Fnð�1; . . . ; �nÞ ¼
Yn
j¼1

�ð�jÞ: (12)

From the n ¼ N case of Eq. (9), we obtain

�ð�Þ ¼ XN
j¼1

að�jÞdð�Þ
�ð�jÞ gð�j; �Þ

YN
l�j

fð�j; �lÞfð�l; �Þ

¼ �XN
j¼1

að�jÞdð�j � �Þ
�ð�jÞdjð�jÞ sinhð�� �j þ �Það�Þ; (13)

with djð�jÞ ¼
Q

N
l�j sinhð�j � �lÞ. This equation gives the

closed recursive solution of�ð�Þ. Putting � ! �j � �, we

readily have

�ð�jÞ�ð�j � �Þ ¼ �qð�jÞ; j ¼ 1; . . . ; N; (14)

where �qð�jÞ ¼ �að�jÞdð�j � �Þ is the quantum deter-

minant [6]. Similar relations were also derived in
Refs. [13,14,18] with the separation of variables method.
The above equations determine theN � 1 roots fzjg and�0

in Eq. (10). In fact, the operator identity Bð�jÞBð�j � �Þ ¼
0 can be demonstrated with the definition of the monod-
romy matrix. With this operator identity and considering
the quantity h�j�ð�jÞ�ð�j � �Þj0i, one can easily deduce

Eq. (14). Taking the limit of Eq. (14) with �j ! 0 leads to

the following equations which completely determine the
spectrum �ð�Þ of the homogeneous model

@l

@ul
ln½�sinhNðuþ�ÞsinhNðu��Þ�ju¼0

¼ @l

@ul
ln½�ðuÞ�ðu��Þ�ju¼0; l¼ 0; . . . ;N�1: (15)

However, these relations are quite hard to be used to study
the physical properties, especially in the thermodynamic
limit. Thus, a proper set of BAEs in the usual form is still
crucial. As �ð�Þ is a trigonometrical polynomial of degree
N�1 with the very periodicity�ð�þi�Þ¼ð�1ÞN�1�ð�Þ,
we conjecture the following modified T �Q relation [2,3]:

�ð�Þ ¼ e�að�ÞQ1ð�� �Þ
Q2ð�Þ � e����dð�ÞQ2ð�þ �Þ

Q1ð�Þ
� bð�Þ að�Þdð�Þ

Q1ð�ÞQ2ð�Þ ; (16)

where

Q1ð�Þ ¼
YM
j¼1

sinhð���jÞ; Q2ð�Þ ¼
YM
j¼1

sinhð�� 	jÞ;

(17)

and bð�Þ is an adjust function. For N even, M ¼ N=2,

bð�Þ ¼ ei
1þ� � ei
2����; (18)

with

i
1 ¼
XN
j¼1

�j �M�� 2
XM
j¼1

�j;

�i
2 ¼
XN
j¼1

�j �M�� 2
XM
j¼1

	j

(19)

to cancel the leading terms in Eq. (16) when � ! �1.
Obviously, the conjectured �ð�Þ satisfies Eq. (14) auto-
matically. The BAEs determined by the regularity of �ð�Þ
[which ensures�ð�Þ to be a trigonometrical polynomial of
degree N � 1] read

dð	jÞ ¼ e	j

bð	jÞQ1ð	j � �ÞQ1ð	jÞ;

að�jÞ ¼ � e��j��

bð�jÞ Q2ð�j þ �ÞQ2ð�jÞ; j ¼ 1; . . . ;
N

2
:

(20)

The BAEs for the homogeneous model are exactly the
above equations by putting all �j ¼ 0. The eigenvalues

of Hamiltonian (1) take the following form

Eðf�j; 	jgÞ ¼ 2 sinh�
XM
j¼1

�
coshð�j þ �Þ
sinhð�j þ �Þ �

coshð	jÞ
sinhð	jÞ

�

þ N cosh�� 2 sinh�: (21)

For odd N, we put M ¼ ðN þ 1Þ=2 and

bð�Þ ¼ 1

2
½ei
1þ2� þ ei
2�2��2��; (22)

where
1 and
2 take the same form as Eq. (19) withM ¼
ðN þ 1Þ=2 and �j ¼ 0. In this case, the BAEs and the

eigenvalue of the Hamiltonian are still given by Eqs. (20)
and (21), respectively. The nested nature of the BAEs is due
to the topological boundary and broken Uð1Þ symmetry.
Generally, the Bethe roots distribute in the whole com-

plex plane with the selection rules �j � �l, �j � 	l, and

�j � 	l � �which ensure the simplicity of ‘‘poles’’ in our

T �Q ansatz. Numerical solutions of the BAEs for small
size (up to N ¼ 6) with a random choice of � indicate that
the BAEs indeed give the complete solutions of the model
(namely, the eigenvalues calculated from the BAEs coin-
cide exactly to those obtained from exact diagonalization).
Numerical results for N ¼ 3 and � ¼ ln2 are shown in
Table I. For imaginary �, the numerical simulations for
N ¼ 8, 10 indicate that the distribution of the Bethe roots
in the ground state is almost on a straight line Imf�jg �
Imf	jg � ði�� �=2Þ � �ð ��=2Þ and fRe�jg � f�Re	jg.
This strongly suggests that in the thermodynamic limit
N ! 1, the BAEs for the ground state can be rewritten
as [Eq. (20) over its complex conjugate]
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sinhN
�
��j � ��

2

�
sinhN

�
��j þ ��

2

� ¼ ei�j

YM
l¼1

sinhð ��j þ ��l � ��Þ
sinhð ��j þ ��l þ ��Þ ; (23)

where ��j ¼ Reð�jÞ and �j accounts for the small devia-

tion of �j from ��j � ð ��=2Þ. Based on the above equation,

the energy can be derived with the ordinary method [6].
f�jg contribute a finite boundary energy and N�1 small

correction to the excitations. To get the excitations, we
need to either exchange two modes ��j and �	l ¼ � ��j or

put them onto the complex plane because of the selection
rules, indicating the topological nature of the system.

To show the physical effect of the topological boundary
clearly, let us focus on the � ¼ i�=2 case, i.e., the topo-
logical XX spin ring or equivalently the topological free
fermion ring (via a Jordan-Wigner transformation). This
model is tightly related to the problem of a Josephson
junction embedded in a Luttinger liquid (see, for example,
Refs. [22–24]). We note the BAEs about the roots fzjg can
also be derived from the recursive equations [Eq. (9)].
From the n ¼ N case of Eq. (9), we obtain that

FNðz; f�lgÞ ¼ 1

�0

XN�1

j¼1;z

M0j
NFN�1; (24)

where �1; . . . ; �N�1 ¼ f�lg are free parameters, z is one

of the roots of the eigenvalue �ð�Þ, and M0j
N ¼

lim�!1e�ðN�1Þ�Mj
Nð�; z; f�lgÞ. Meanwhile, �ðzÞ acting

on FN�1ðf�lgÞ gives

FNðz; f�lgÞ ¼ � XN�1

j¼1

Mj
N�1ðz; f�lgÞFj

N�2

� ~Mjk
N�1ðz; f�lgÞFjk

N�2ðz; f�lgÞ: (25)

From Eqs. (24) and (25), we have

Fj
N�2 ¼ � 1

Mj
N�1ðz; �jÞ

�X
l

M0l
NFN�1 þ

X
l�j

Ml
N�1F

l
N�2

�X
k>l

~Mkl
N�1F

kl
N�2

�
: (26)

The singular point of Eq. (26) is �j ¼ z� i�=2. Since

FN�1 is a polynomial for all the variables�j, the residue of

the right-hand side of Eq. (26) must be zero at the singular

point. Notice the fact that Mj
nðz; f�jgÞ ¼ 0 if �j � z�

i�=2 and ~Mkl
n ðz; f�jgÞ ¼ 0 as long as �k or �l ¼

z� i�=2. We readily have the conclusion that
FN�1ðz; f�lgÞ is proportional to F2ðz; z� i�=2Þ when
one of the �l’s is equal to z� i�=2, which must be zero
according to the above analysis. This gives the constraint
condition of the root z as aðzÞdðzþ i�=2Þ ¼ dðzÞaðzþ
i�=2Þ. Therefore, the roots zn of�ð�Þ satisfy the following
Bethe ansatz equation:

coth 2NðznÞ ¼ 1; zj � zk � �

2
i: (27)

Equivalently, we have

cothðznÞ ¼ ei�n=N � eikn ; n¼�1; . . . ;�ðN� 1Þ: (28)

The N � 1 pair solutions fzj; zj þ ð�=2Þig mod (i�) are

located on two lines with an imaginary part �i�=4. The
root sets are formed by choosing one and only one in each
pair. This selection rule comes from that the poles of the
right-hand side of Eq. (26) do not enter into the set of roots
fzjg because the poles and the zeros satisfy the same

equation (27). Therefore, there are 2N�1 possible choices
to form a solution of �ð�Þ. With the Z2 symmetry of the
system, we demonstrate that the solutions are complete.

TABLE I. Numerical solutions of the BAEs for � ¼ ln2, N ¼ 3, andM ¼ 2. E0 is the eigenenergy, and elv indicates the number of
the energy levels. The eigenvalues are exactly the same as those of the exact diagonalization.

�1 �2 	1 	2 E0 elv

�0:822 76� 0:500 00i� 0:646 39� 0:500 00i� �1:339 54� 0:500 00i� 0:129 62� 0:500 00i� �3:022 00 1

�0:484 93� 0:260 54i� �0:484 93þ 0:260 54i� �0:208 21� 0:260 54i� �0:208 21þ 0:260 54i� �3:022 00 1

�1:108 39þ 0:195 25i� �0:212 37þ 0:002 07i� �0:480 78þ 0:002 07i� 0:415 24þ 0:195 25i� �1:250 00 2

�0:247 63� 0:201 57i� �0:231 24� 0:495 75i� �0:461 90� 0:495 75i� �0:445 51� 0:201 57i� �1:250 00 2

�0:247 63þ 0:201 57i� �0:231 24þ 0:495 75i� �0:461 90þ 0:495 75i� �0:445 51þ 0:201 57i� �1:250 00 2

�1:108 39� 0:195 25i� �0:212 37� 0:002 07i� �0:480 78� 0:002 07i� 0:415 24� 0:195 25i� �1:250 00 2

�0:355 06þ 0:000 00i� �0:115 41þ 0:500 00i� �0:577 73� 0:500 00i� �0:338 09þ 0:000 00i� 5:522 00 3

�0:444 82� 0:091 94i� �0:444 82þ 0:091 94i� �0:248 33� 0:091 94i� �0:248 33þ 0:091 94i� 5:522 00 3

π/4

-π/4

π/4

-π/4

(a) (b)

FIG. 1. (a) Schematic diagram of the ground state of the XX
topological spin ring. The states in the lower solution line are all
filled, and the upper solution line is unoccupied. (b) The ele-
mentary excitation of the XX topological spin ring. The ‘‘parti-
cle’’ in the upper solution line must correspond to a ‘‘hole’’ in
the lower solution line with exactly the same real part.
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The ground state is formed by filling all roots along the
�i�=4 line [as shown in Fig. 1(a)], and the ground state
energy reads Eg ¼ �2 cotð�=2NÞ which is slightly differ-

ent from that of the periodic boundary condition case. The
elementary excitations of the system can be constructed by
digging some holes in the lower solution line and putting
the same number of particles in the upper solution line [as
shown in Fig. 1(b)]. However, the positions of the holes
and the particles are not arbitrary but obey the selection
rules of zj � zk � i�=2. That means if there is a hole at

�k, there must be a particle at k (as shown in Fig. 2). The
energy of a particle-hole excitation is thus �ðkÞ ¼ 4 sinjkj.
Such an excitation character is quite unlike that in the usual
Luttinger liquids, where both the forward scattering and
backward scattering are allowed and there is no constraint
for the particle-hole excitations besides the Pauli principle
in the charge neutral sector. In the present topological
boundary case, each particle with momentum k must lock
a hole with momentum �k to form a virtual bound state,
indicating the topological nature of the excitations.

In conclusion, we developed a general method for di-
agonalizing the integrable models without Uð1Þ symmetry.
As an example, we constructed the exact solution of the
XXZ spin ring with a topological boundary condition. We
remark that the present method could be used to other
integrable models without Uð1Þ symmetry. For those mod-
els, some off-diagonal elements of the monodromy
matrix enter into the transfer matrix expression �ð�Þ.
With the commutation relations derived from the corre-
sponding Yang-Baxter equation, a similar relation of
�ð�jÞ�ð�j � �Þ � �qð�jÞ can be obtained from some

operator identities, with which a modified T �Q relation
as well as the usual BAEs can be constructed. Details will
be given elsewhere.
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