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ABSTRACT 13 

Quantifying off-fault deformation (OFD) rates on geomorphic timescales (10
2
-10

5
 yr) 14 

along strike-slip faults is critical for resolving discrepancies between geologic and geodetic 15 

slip-rate estimates, improving knowledge of seismic hazard, and understanding the influence of 16 

tectonic motion on landscapes. Quantifying OFD over these timescales is challenging without 17 

displacement markers such as offset terraces or geologic contacts. We present a landscape 18 

evolution model coupled with distributed lateral tectonic shear to show how drainage basins 19 

sheared by lateral tectonic motion can reveal OFD rates. The model shows that OFD rate can 20 

control the orientation of drainage basin topography: the faster the OFD rate, the greater the 21 

deflection of drainage basins towards a fault-parallel orientation. We apply the model to the 22 



 

  

southern San Andreas Fault near the Mecca Hills, where drainages basins change in orientation 23 

with proximity to the fault. Comparison of observed and modeled topography suggests that the 24 

OFD rate in the Mecca Hills follows an exponential-like spatial pattern with a maximum rate 25 

nearest the fault of 3.5 ± 1.5 mm/yr, which decays to approximately zero at ~600 m distance 26 

from the fault. This rate is applicable since the initiation of differential rock uplift in the Mecca 27 

Hills at approximately 760 ka. Our results suggest that OFD in this 800 m study area may be as 28 

high as 10% of total plate motion. This example demonstrates that curved drainage basins may 29 

be used to estimate OFD rates along strike slip faults. 30 

 31 

INTRODUCTION 32 

Strike-slip fault systems can release stress by two means: slip on a master fault, and off-33 

fault deformation (OFD). OFD, here defined as permanent fault-parallel displacement at the 34 

surface (Gold et al. 2015), has been recognized along many faults, yet the controls on OFD are 35 

poorly understood (Milliner et al. 2015). Neglecting OFD can lead to underestimation of slip-36 

rates, plate loading rates, and associated seismic hazard (e.g. Shelef and Oskin, 2010). There 37 

are two major hypotheses for the dominant control on OFD. The first holds that the occurrence 38 

and rate of OFD depends on the structural maturity of the fault system, with increased maturity 39 

and decreased geometric complexity leading to decreased OFD (Dolan and Haravitch, 2014). 40 

An alternative view is that the occurrence and extent of OFD depends on the underlying 41 

lithology. For example, weakly lithified sediments could be more susceptible to non-42 

recoverable plastic strain due to granular flow and porosity changes (Maltman, 2012). The 43 

former implies that OFD rates will decrease with time whereas the latter suggests they should 44 

be steady in the absence of strain hardening/softening, all else equal. To uncover the controls 45 



 

  

on OFD, measurements over a range of timescales are needed. OFD measurements over single-46 

earthquake timescales using pixel-tracking methods show promise (Gold et al., 2015), as have 47 

longer-term (10
6 
yr) studies (Shelef and Oskin, 2010), yet measuring OFD over intermediate 48 

(10
2
–10

5
 yr) timescales remains challenging. 49 

One approach is to use basin shape or trunk stream orientation as a proxy for the OFD 50 

at the surface (Goren et al., 2015). In strike-slip landscapes, lateral tectonic motions re-orient 51 

drainage patterns through stream deflection and piracy (e.g. Duvall and Tucker, 2015). At the 52 

100–1000 km scale, entire drainage basins can be rotated by plate motion (Hallet and Molnar, 53 

2001; Castelltort et al., 2012) and this rotation can be used to quantify OFD (e.g. Goren et al., 54 

2015). However, the geomorphic effects of OFD at the sub-basin scale (10-1000 m) are not 55 

well known. This is a critical knowledge gap because the 0-1 km scale takes up most of the 56 

OFD, and thus has significant implications for tectonic dynamics (Shelef and Oskin, 2010).  57 

We develop a model of hillslope and channel evolution that incorporates OFD as 58 

distributed tectonic shear to understand and quantify the effects of OFD at the sub-basin scale 59 

over geomorphic timescales. We use this model to address two questions. First, can fault-60 

parallel OFD produce a measurable deflection in the orientation of ridges and valleys within an 61 

area subjected to distributed shear? Second, does the model predict a systematic relationship 62 

between the OFD rate and the ridge and valley orientation, such that one could infer OFD 63 

directly from topography? To test these concepts, we apply the model to dextrally curved 64 

drainage basins in the Mecca Hills along the San Andreas Fault (SAF; Fig. 1).  65 

 66 

CURVED DRAINAGE BASINS AT MECCA HILLS, SAN ANDREAS FAULT 67 



 

  

 Our study focuses on dextrally curved drainage basins within the Mecca Hills in the 68 

Coachella valley of Southern California. Here, drainage basin ridgelines and channels deviate 69 

from the regional fault-perpendicular trend towards a fault-parallel configuration with 70 

proximity to the fault (Fig. 1). The curved Mecca Hills drainage basins are ~100 m wide and 71 

extend up to 700–800 m from the SAF trace. Basins on the southwestern side of the fault do not 72 

demonstrate curvature. The northern part of the field area is bracketed by the NE dipping 73 

Skeleton Canyon Fault, which exhibits reverse faulting without lateral motion (Lindsay et al., 74 

2014; McNabb et al., 2017). As the fault is small near the border of our study area, and shows 75 

no evidence of lateral motion, we do not model it or consider it in our quantification of OFD 76 

rates. The basins are underlain by the weakly lithified to unlithified Late Cenozoic fluvio-77 

lacustrine silts of the Palm Spring Formation (McNabb et al., 2017). The presence of the 78 

Bishop Ash in regional stratigraphy implies that compression started after ~760 ka (McNabb et 79 

al., 2017) and that ongoing rock uplift is occurring due to transpression (Gray et al., 2014). We 80 

hypothesize that the dextrally curved basins result from OFD. To test the feasibility of this 81 

hypothesis, we develop a model of landform evolution under OFD, and compare its predictions 82 

with the observed topography in the Mecca Hills. 83 

 84 

LANDSCAPE EVOLUTION MODELING  85 

Following Duvall and Tucker (2015), we express landscape development and tectonic 86 

OFD using the equation: 87 

 88 
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where z is elevation, x is the fault-parallel direction, y is the fault-perpendicular direction, U is 91 

rock uplift rate (m/yr), V is the local lateral off-fault deformation/advection rate (m/yr) , K is 92 

erodibility (1/yr) , A is upstream drainage area (m
2
), S is local slope (unitless), and D is 93 

hillslope diffusivity (m
2
/yr). The first term in (1) represents rock uplift relative to baselevel, the 94 

second represents lateral advection, the third is river incision, and the fourth is hillslope 95 

transport. Here, Equation 1 is appropriate given the cohesive but fine-grained local lithology, 96 

which avoids complications associated with the wear and transport of large clasts (Shobe et al., 97 

2016; Glade et al., 2017). Here we assume that all fault-perpendicular shortening is 98 

accommodated via spatially uniform rock uplift. Duvall and Tucker (2015) give a full non-99 

dimensionalization and parameter space exploration of this model. We modify the Duvall and 100 

Tucker model (1) by adding a definition of V(y) that represents OFD: 101 

 102 

𝑉 𝑦 = 𝑣3𝑒
56

6∗           (2) 103 

 104 

where V is the fault-parallel OFD rate relative to interior North America (m/yr), at distance y 105 

(m) away from the fault. The maximum off-fault displacement rate, vo (m/yr), occurs 106 

immediately adjacent to, but not on, the fault, and the characteristic length scale for 107 

deformation is y* (m). In the model, y* is chosen as the value (200 m) that recreates the width of 108 

the zone of curved terrain in the field area, and vo is obtained by finding the best-fitting model 109 

using geomorphic metrics described below. Note that vo is not the fault slip rate; rather, it 110 

represents the maximum deformation rate on the northeast side of the fault relative to a fixed 111 

North American datum. 112 



 

  

Equations (1) and (2) are implemented on a rectangular grid using the Landlab 1.0 113 

modeling toolkit (Hobley et al., 2017). Values for fluvial erodibility K and the hillslope 114 

diffusivity D are obtained from a full model parameter exploration and sensitivity analysis 115 

(n=480) minimizing misfit between the model and modeled total relief (200 m), mean elevation 116 

above base level (90 m), and basin reorientation index (1.38, discussed below) of the study 117 

landscape (Fig. S1). We find best-fit values of K = 0.08 kyr
-1

 and D = 0.02 m
2
/kyr. We use a 118 

rock uplift rate of 1.8 m/kyr (Gray et al, 2014). The model produces curved basins that match 119 

the three landscape metrics and visually resemble those in the study area (Fig. 2). 120 

We introduce a basin reorientation geomorphic metric (BR) to compare observed and 121 

modeled topography. The BR value is computed from digital terrain data following: 122 

 123 

𝐵9 =
#:#;<	>?)@<A	B?#C	D;E<#FAEG>@H>@IJ?KE<;H	;A>@K#

#:#;<	>?)@<A	B?#C	D;E<#FAEG>;H;<<@<<	;A>@K#
       (3) 124 

 125 

where pixels with an aspect within ± 45° of the fault strike are classified as subparallel; others 126 

are subperpendicular.  We measure the BR value for the study area using the B4 LiDAR dataset 127 

(Bevis et al., 2005; Fig. 1), obtaining a value of 1.38 ± 0.02. By contrast, modeled landscapes 128 

of the size of our study area (2 km wide and 0.8 km long) without any imposed OFD have BR 129 

values of ~1.05 and catchments that do not appear curved. 130 

To assess whether the model predicts a systematic relationship between curvature and 131 

deformation rate, we ran the model at various maximum deformation-rate values (vo) and 132 

recorded the BR value at each time step for 2 Myr to collect statistically robust results. The 133 

modeled landscape demonstrates quasi-cyclic behavior in which OFD serves to increase the 134 

curvature of basins, whereas hillslope diffusion and stream piracy tend to straighten the 135 



 

  

channels (Fig. 3a, Movie S1). We count the number of time steps in which the model has a BR 136 

value within the interval 1.38 ± 0.02, and then divide this count by the total number of time 137 

steps. This number represents the likelihood that a model run with a given deformation rate will 138 

produce a BR value comparable to that of our field area. This process is repeated for a range of 139 

OFD rates to obtain a likelihood value associated with each rate. We fit the resulting likelihood 140 

values with a Rayleigh distribution to estimate a mean and standard deviation for our 141 

deformation-rate estimates (Fig. 3b). The distribution implies a most probable OFD rate of 3.5 142 

± 1.5 mm/yr. We assume that development of the curved basins began concurrently with local 143 

rock uplift after 760 ka (McNabb et al. 2017). Thus, our best-fit OFD rate at Mecca Hills is an 144 

average since the beginning of the mid Pleistocene. 145 

 146 

SAN ANDREAS DEFORMATION-RATE ESTIMATES 147 

Origin of the Curved Basins 148 

OFD appears to be the most likely process to form the curved basins. Duvall and Tucker 149 

(2015) found that an elastic strike-slip fault intersecting drainage basins can generate shutter 150 

ridges that divert streams. Their results show that pure on-fault deformation does not lead to 151 

curved basins, instead limiting channel diversion to the fault trace. Strike-slip fault motion 152 

alone does not appear sufficient to create curved basins. Another possibility is that bedding 153 

layers produce curved basins. However, the underlying submember of the Palm Spring 154 

Formation is only weakly lithified and exhibits no evident bedding control on drainage 155 

structure, nor do exposures of this submember elsewhere appear to control stream orientation. 156 

A final possibility is that the curved basins are a relic of an antecedent drainage network prior 157 

to the onset of uplift post 760 ka. While we cannot fully discount this possibility, the regional 158 



 

  

drainage pattern prior to uplift was orthogonal to the trace of the SAF as alluvial fans drained 159 

the upstream mountains (McNabb et al. 2017). It seems unlikely that the streams would divert 160 

from the direction of steepest descent, and such diversion is not observed in non-uplifted 161 

alluvial fans north of the Mecca Hills (Gray et al., 2014). The only remaining viable 162 

mechanism for formation of the curved basins is distributed tectonic shear, and the observed 163 

basin curvature is consistent with model predictions for distributed shear. We therefore 164 

interpret the curved basins in the Mecca Hills to be a consequence of OFD. If this interpretation 165 

is correct, it raises the question of whether modeling the curved basins yields a unique 166 

prediction of OFD rate.  To address this issue, we conducted a model sensitivity analysis and 167 

calibration procedure, with the goal of identifying an OFD rate that provides the best match 168 

between observed and simulated terrain. 169 

 170 

Model Sensitivity Analysis and Calibration 171 

We conduct a three-dimensional parameter study consisting of 480 model runs over a 172 

wide parameter space to assess whether our values for K, D, and OFD rate represent a unique 173 

combination that describes the curved drainages. We systematically vary K, D, and vo, and 174 

compare misfit in time-averaged BR, time-averaged mean elevation, and time-averaged total 175 

relief between the 480 model runs and the study landscape. Model results are sensitive to all 176 

three parameters, but we observe a coherent region of the parameter space with uniquely low 177 

misfit. We find that K = 0.08 kyr
-1

, D = 0.02 m
2
/kyr, and vo = 3.5 mm/yr produce the minimum 178 

misfit between observed and modeled topography (Fig. S1). We interpret the low best-fit 179 

diffusivity as reflecting the steep relief of the study site, which is characterized by narrow 180 

ridgelines (~3 m) and quasi-planar, heavily rilled hillslopes that are probably dominated by 181 



 

  

overland flow. This morphology is better represented by the water-erosion term in equation (1) 182 

than by the linear diffusion (soil-creep) term, and therefore the optimization procedure 183 

identifies a low value for D. The most important result of the parameter sensitivity study is that 184 

the calibrated model adequately captures the characteristic relief and ridge-valley structure of 185 

the study area (Fig. 1,2), and yields a unique best-fit value for vo. 186 

 187 

Model Applicability 188 

The applicability of our model to a given landscape depends on: (1) the appropriateness 189 

of an exponential function to describe the OFD profile, (2) the effectiveness of BR, mean 190 

elevation, and total relief as metrics for the field site comparison, and (3) the presence of 191 

curved basins. For (1), The appropriateness of an exponential function to describe OFD has 192 

theoretical and empirical support. England et al. (1985) derived a model for crustal deformation 193 

treating the crust as a thin viscous sheet, which resulted in an exponential model. Nelson and 194 

Jones (1987) and Rahl et al. (2011) found that this exponential model explained their OFD 195 

measurements at the 30 km and 150 km scales respectively. Shelef and Oskin (2010) noted that 196 

an exponential function described their OFD measurements at the 200-meter scale and 197 

concluded from a review of the literature that a nonlinear displacement pattern is not unique to 198 

the location or scale of the faults involved. An alternative approach using elastic dislocation 199 

theory produces approximately linear displacement profiles at the scale of our field area which 200 

do not appear to produce curved basins (see supplemental material). Although beyond the 201 

scope of this study, an exploration of the underlying OFD mechanisms presents an interesting 202 

avenue for future research. 203 



 

  

For (2), our analysis relies on the assumption that the BR metric is sensitive to basin 204 

curvature and OFD, but insensitive to other morphologic characteristics, such as aspect ratio. 205 

Comparison of model runs with different degrees of OFD demonstrates that BR is indeed 206 

sensitive to curvature and OFD rate (Fig. 3). Alternative metrics that we tested, such as basin 207 

angle, proved to be less robust. Moreover, sensitivity analysis shows that the BR metric is 208 

insensitive to the basin length-width ratio, provided the ratio is greater than unity (most basins 209 

are typically ~3; see Supplemental Information for details). Our analysis also assumes that 210 

drainage orientation in the Mecca Hills was perpendicular to the SAF prior to the onset of 211 

OFD, which is supported by field evidence as discussed above. 212 

 213 

Model Implications 214 

The smoothly curved topography in the field and our model results provides some clues 215 

to OFD mechanisms. OFD can occur in a range of styles, from pervasive shear to discrete faults 216 

to block rotation (Shelef and Oskin, 2010). Rotation of a block the size of the field area (700-217 

800 m long) would lead to a linear displacement profile, which is inconsistent with the 218 

curvilinear drainage basin geometry of the Mecca Hills. How rotation of small blocks (~10-100 219 

m long) would affect the landscape is unclear, but one possibility is that the creation of fault-220 

perpendicular shear zones to accommodate small-block rotation would lead to fault-221 

perpendicular drainage patterns as rivers preferentially erode the less-resistant zones between 222 

rotating blocks (e.g., Roy et al., 2016). A series of discrete, parallel faults would be expected to 223 

produce a landscape with shutter-ridge-like ridgelines and rectilinear channel networks (Duvall 224 

and Tucker, 2015), which are not observed in the Mecca Hills. A remaining option is pervasive 225 

continuous shear in which inelastic deformation is distributed across many sub-meter scale 226 



 

  

faults. In this case, we would expect that a drainage network would progressively shear, 227 

creating the apparent ductile-like deformation pattern in the Mecca Hills area. Lithology is 228 

unlikely to be the main control on OFD in this location as there are no curved basins northward 229 

along the SAF despite the occurrence of the same submember of the Palm Spring Formation. 230 

We conclude that pervasive continuous shear from a structural control remains the most 231 

probable first-order control of the curved basins in our field site. The exact mechanism of 232 

structural control is not clear, but could be a wide shear zone in the underlying crystalline 233 

bedrock distributed into weakly-lithified overlying sediments. As a final note, there is a 234 

possibility that fault-perpendicular shortening has contributed to reorientation of the basins, 235 

which would cause our model to slightly overestimate OFD rates. However, we note that the 236 

SAF is oriented nearly parallel to the plate motion vectors and thus the effect of any shortening 237 

on topography is likely to be small compared to the lateral deformation. 238 

Our results suggest that OFD may play a significant role in accommodating plate 239 

motion along the southern SAF. Generally, OFD can vary from 0-100% of the deformation rate 240 

of the main fault trace (Milliner et al. 2015). The 3.5 mm/yr of OFD measured across the 800 m 241 

study area accounts for 9-10% of total plate motion (35-40 mm/yr) and is consistent with 242 

distributed lateral motion across the region (Lindsay et al., 2014). Our values agree with the 9-243 

14% OFD percent at Durmid Hill, 30 km SE along the SAF, based on stratigraphic data 244 

(Bürgmann, 1991). Our findings provide both evidence for a structural control on OFD, and a 245 

new method that can obtain OFD data using topography. The model presented here should be 246 

generally applicable to locations where curved drainage basins are present along strike-slip or 247 

transpressional faults, which we suggest can be found where such faults uplift and/or cross-cut 248 

weakly lithified sediments.  249 
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FIGURES AND CAPTIONS 303 

 304 

Figure 1: A) Drainages deformed by right-lateral motion on the San Andreas Fault near 305 

Mecca, CA. The center of the figure is approximately at 33.5925° N / -116.0050°W. Red lines 306 

indicate fault trace. Tan line indicates study area. SAF: San Andreas Fault; SCF: Skeleton 307 

Canyon Fault. Image is a LiDAR hillshade (Bevis et al., 2005). B) Location of study area in 308 

southern California. SJF: San Jacinto Fault. EF: Elsinore Fault. 309 

 310 



 

  

 311 

Figure 2: A) Definition diagram for the model described with equations 1 and 2 in the main 312 

text. SCF: Skeleton Canyon Fault. SAF: San Andreas Fault. B) Examples of modeled 313 

topography after 700 ka of simulated landscape evolution. Increasing off-fault deformation (vo ) 314 

rate leads to an increase in drainage basin curvature, which is reflected in the geomorphic 315 

metric BR (defined in main text). 316 
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Figure 3: A) Geomorphic metric, BR, plotted versus time for three different landscape 319 

simulations. Off-fault deformation (OFD) increases the BR value, whereas stream piracy and 320 

hillslope diffusion decrease it. The landscape and metric reach a quasi-steady-state wherein the 321 

BR value varies around a mean. B) Relative likelihood that a model run with a given OFD rate 322 

will produce an BR with the same value as the field area. Because of the BR value’s variations, 323 

there is a probability that different OFD rates can produce the same landscape. Blue dots 324 

represent the relative likelihood that a model with given OFD rate matches the field area. Red 325 

line is a Rayleigh distribution fit to the data. We take the mean and standard deviation of the 326 

Rayleigh distribution fit of 3.5 ± 1.5 mm/yr as the most probable OFD rate. 327 


