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ABSTRACT Recent advance on signal processing has witnessed increasing interest in machine learning.

In this paper, we revisit the problem of direction-of-arrival (DOA) estimation for colocated multiple-input

multiple-output (MIMO) radar from the perspective of machine learning. The reduced-complexity transfor-

mation is first applied on the array data from matched filters, thus eliminating the redundancy of the array

data for the relief of calculational burden. Furthermore, the pre-whitening is followed to obtain a simplified

noise model. Finally, the DOA estimation is linked to off-grid sparse Bayesian learning (OGSBL), which

does not require to update the noise hyper-parameter, and a block hyper-parameter is utilized to accelerate

the convergence of the OGSBL algorithm. The proposed estimator provides better DOA estimation accuracy

than the existing peak searching algorithm. The effectiveness of the proposed algorithm is verified via

numerical simulation.

INDEX TERMS Array signal processing, MIMO radar, DOA estimation, off-grid, sparse Bayesian learning.

I. INTRODUCTION

The past decade has witnessed an explosive growth in

machine learning. As one of the most important subset of

artificial intelligence, machine learning enables the computer

system to perform a specific task efficiently, while only

patterns and inference are utilized. Usually, machine learn-

ing is interpreted as a comprehensive subject that mix data

mining, optimization and statistics. Owing to its potential

prospect, machine learning has been extensively used in med-

ical science [1], internet-of-thing [2], wireless communica-

tions [3]–[7] and image processing [8], [9].

Direction-of-arrival (DOA) estimation is one of the

basic tasks in colocated multiple-input multiple-output

(MIMO) radar. Up to now, thousands of algorithms have

been reported in this topic. Typical estimation algorithms

including multiple signal classification (MUSIC) [10], [11],

estimation of signal parameters via rotational invari-

ance techniques (ESPRIT) [12], [13], and tensor-based

methods [14]–[19]. Besides, many efforts have been devoted

to direction finding in the presence of sensor errors [20]–[25].

The associate editor coordinating the review of this manuscript and
approving it for publication was Derek Abbott.

Generally, ESPRIT can obtain closed-form solutions for

DOA estimation at the cost of a few computationally load,

while the tensor approaches provides more accurate DOA

estimation performance with higher complexity, as the tensor

nature can be explored. The spectrum grid search methods

(such as MUSIC) have drawn extensive attention in the

past decades since they often provide more accurate DOA

estimation performance than ESPRIT, as more degree-of-

freedom (DOF) can be exploited by the former. In the peak

search methods, a grid must be initialized by the algorithm.

However, it is often very hard to choose a ‘proper’ grid. As it

is well known, a refined grid leads to accurate estimation

performance but the estimator may suffers from exhaustive

peak search. On the contrary, a sparse grid is helpful to lower

the computational load, but it is quite possible to obtain

imprecise DOA estimation, as the true DOAs are off-the-grid

with high probability. To obtain off-grid DOA estimation,

the perturbed sparse model is established by exploiting coarse

grid as dictionary matrix and some strategies have been put

forward to recovery the sparse support [26]–[30]. In [26],

the perturbations (the intervals between true DOAs and

the nearest grids) is approximated by the first-order Taylor

series, and a sparse total least squares algorithm is presented.
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An off-grid sparse Bayesian learning (OGSBL) framework is

investigated in [27], where the off-grid gaps are considered

to fulfill the uniform distribution. An iterative framework

is proposed in [28], which is suitable to solve the off-grid

DOA estimation problem form the one-bit measurement.

In [29], an improved Bayesian inference method is derived,

in which the root method replace the evidence procedure

in [27] to update the grid more efficiently. Besides, a covari-

ance matrix-based Bayesian learning algorithm is introduced

in [30], the block sparse model is formulated, which taken

the temporal correlation into consideration. In [31], an off-

grid solver is developed for monostatic MIMO radar. Unlike

the methods in [26]–[30], it is mainly focus on the off-grid

DOA estimation problem in the presence of unknown mutual

coupling.

Although the above mentioned algorithms in [27], [29],

[30] are suitable to solve the off-grid problem, they are

unsuitable for colocated MIMO radar directly as they

involve huge calculation. In the presence of uniform lin-

ear array (ULA) geometries, the array measurements from

matched filters of colocated MIMO radar are redundant.

Fortunately, there are some reduce-dimension strategies to

reduce the complexity of the multi-dimensional measure-

ment. For instance, the reduced-dimension (RD) trans-

form scheme [10], [11], [32], the reduced-complexity (RC)

framework [33], the unitary transform methodology [18].

Usually, the RD method is utilized to transform a multi-

parameters optimization problem into a quadratic prob-

lem, while the unitary transform is adopted to change a

complex-value problem into a real-value problem. In con-

trast to the RD method and the unitary transform approach,

RCmethod try to remove the redundancy of themeasurement,

which coincides the ULA-based colocated MIMO radar.

Several RC algorithms have been developed for DOA esti-

mation in monostatic MIMO radar, e.g., RC-ESPRIT [33],

RC-MUSIC [34] and RC-based optimization method [35].

In [36], a RC-OGSBL algorithm is presented, which extend

the OGSBL framework to colocated MIMO configuration.

Unfortunately, the RC operation in which will cause the

nonuniform noise problem, thus degrades the estimation

performance.

In this paper, we revisit DOA estimation problem in colo-

cated MIMO radar, and a novel RC-OGSBL estimator is

proposed. The main contributions of this paper are listed as

follows:
• The RC operation is applied in colocated MIMO radar

to decrease the computational load. Unlike the RC trans-

formation in [36], nonuniform noise would not appear in

the proposed estimator.

• A pre-whitening model is constructed via the covari-

ance measurement. By exploiting the covariance matrix

model, the dimension of the model is reduced, and the

noise variance is normalized to one.

• An off-grid framework is derived. Similar to [30],

the temporal correlation of sparse measurements

FIGURE 1. Illustration of monostatic MIMO radar.

are explored. Moreover, the dictionary in sparse recov-

ery can be adapted with the algorithm.

• Numerical simulations are designed to exam the estima-

tion performance of the proposed algorithm.
Compared with the OGSBL algorithm in [27], the proposed

algorithm has the following advantages: a). It has much lower

complexity as the redundancy of the measurement has been

removed via the RC transformation. b). It does not need to

estimate the noise variance, thus it decreases the complexity

in the iteration. Although the proposed algorithm provides

very close estimation accuracy to the OGSBL algorithm, it is

computationally more efficient, thus it is superior than the

OGSBL algorithm.

This paper is organized as follows. The data model for

DOA estimation in colocated MIMO radar is given in

section II. The proposed estimator is elaborated in section III.

Numerical simulations and discussions are provided in

section IV. Finally, the paper is ended with a brief conclusion

in section V.

II. SIGNAL MODEL

Let us consider a narrowbandmonostaticMIMO radarmodel,

as illustrated in Fig. 1. The radar system is equipped withM1

transmit elements andM2 receive elements, both of which are

one dimensional ULAs. Suppose that the transmit array emit

M1 normalized orthogonal pulse waveforms
{

pm1 (t)
}M1

m1=1
,

i.e.,
∫

Tp

pm1 (t) p∗
m2

(t) dt = δ (m1 − m2), (1)

where t denotes the fast time index (time index during a radar

pulse), Tp accounts for the pulse duration, (·)∗ denotes the

conjugate operation, δ (·) is the Kronecker delta. Assume that

there are K far field targets, the reflected echoes received by

the receive antenna array can be shown as

r (t, τ ) =
K
∑

k=1

sk (τ ) ar (θk) a
T
t (θk)p (t) + w (t, τ ), (2)
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where τ is the slow time index (pulse index), sk (τ ) stands

for the associate reflection coefficient, θk is the DOA of

the k-th (k = 1, 2, · · · ,K ) target, at (θk) ∈ C
M1×1 and

ar (θk) ∈ C
M2×1 are the transmit steering vector and the

receive steering vector corresponding to the k-th target,

respectively, p (t) =
[

p1 (t) , p2 (t) , · · · , pM1 (t)
]T

is the

waveform vector. w (t, τ ) is the zero mean Gaussian noise

vector with variance is σ 2 i.e.,

E
{

w (t1, τ )wH (t2, τ )

}

= σ 2I · δ (t1 − t2), (3)

where E {·} returns the expectation of a variable. The con-

tribution of the m1-th (m1 = 1, 2, · · · ,M1) entity to at (θk)

and the contribution of m2-th (m2 = 1, 2, · · · ,M2) entity of

ar (θk) are

am1 (θk) = exp {−j2π (m1 − 1) dcos (θk) /λ}, (4)

am2 (θk) = exp {−j2π (m2 − 1) dcos (θk) /λ}, (5)

where d is the inter-element distance, λ is the carrier wave-

length. Next, r (t, τ ) is matched with p (t) and yields

x (τ ) = vec

(
∫

Tp

r (t, τ )pH (t) dt

)

=
K
∑

k=1

[at (θk) ⊗ ar (θk)] sk (τ ) + e (τ )

= As (τ ) + e (τ ), (6)

where vec (·) denotes the vectorization operation, the super-

script (·)H denotes the Hermitian transpose, e (τ ) =
vec

(
∫

Tp
w (t, τ )pH (t) dt

)

is the matched noise vector.

A = [at (θ1) ⊗ ar (θ1) , at (θ2) ⊗ ar (θ2) , · · · , at (θK ) ⊗
ar (θK )] ∈ C

M1M2×K is the visual response matrix, s (τ ) =
[s1 (τ ) , s2 (τ ) , · · · , sK (τ )]T is the reflection coefficient vec-

tor. It has been proven in [32] that n (τ ) is still a Gaussian

vector with zero mean and variance σ 2, i.e.,

Rn = E
{

n (τ )nH (τ )

}

= σ 2I (7)

III. THE PROPOSED ALGORITHM

The DOF (size of the effective sensor array) is very

important in MIMO radar. Since there are only M1 +
M2 − 1 distinct elements in each column of A, thus

A is redundant. In this paper, we try to estimate the

DOA form x (τ ) via OGSBL framework. However, signal

processing based on the redundant signal x (τ ) involves

extensive computation, some measures can be taken to

reduce the burden. To this end, the reduced-dimension

transform and the pre-whiting processing are applied

successively.

A. REDUCED-DIMENSION TRANSFORM

Firstly, the following reduced-dimension transform matrix

C ∈ C
M1M2×(M1+M2−1) is defined

C =





























1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0













M1

0 1 0 . . . 0 . . . 0

0 0 1 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

0 0 0 . . . 1 . . . 0













M1

...
...

...
...

...
...

...

0 . . . 0 1 0 . . . 0

0 . . . 0 0 1 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 1













M1





























(8)

One can easily find that

A = CB, (9)

whereB = [b (θ1) ,b (θ2) , · · · ,b (θK )] ∈ C
N×K ,N , M1+

M2 −1. The contribution of the n-th (n = 1, 2, · · · ,N ) entity

to b (θk) is

bn (θk) = exp {−j2π (n− 1) dcos (θk) /λ}, (10)

Although C is effective to eliminate the redundancy of A,

left multiply x (τ ) with CH will result in nonuniform

noise. To avoid noise imperfectly, a weight matrix F is

defined [33], [34]

F = CHC

= diag




1, 2, · · · ,M , · · · ,M

︸ ︷︷ ︸

|M1−M2|+1

, · · · , 2, 1






= FH , (11)

where diag (·) returns a diagonal matrix with the diagonal

elements are the entities in the brackets, M , min(M1,M2).

Thereafter, multiplying x (τ ) with F−1/2CH yields

y (τ ) = F−1/2CHx (τ )

= F−1/2CHAs (τ ) + F−1/2CHe (τ )

= F−1/2CHCBs (τ ) + F−1/2CHe (τ )

= F1/2Bs (τ )
︸ ︷︷ ︸

signal

+F−1/2CHe (τ )
︸ ︷︷ ︸

noise

(12)

Now we focus on the noise counterpart, the covariance of

which is

F−1/2CHE
{

e (τ ) eH (τ )

}

CF−1/2 = σ 2I (13)
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Eq. (13) reveals that the noise after Reduced-dimension trans-

form is still Gaussian with invariant statistical characteristics.

In the presence of uncorrelated targets, i.e.,

Rs = E
{

s (τ ) sH (τ )

}

= diag (β1, β2, · · · , βK ), (14)

where βk (k = 1, 2, · · · ,K ) is the variance of the reflect coef-

ficients associate to the k-th target. Consequently, the covari-

ance matrix of y (τ ) can be expressed as

Ry = E
{

y (τ ) yH (τ )

}

= F1/2BRsB
HF1/2 + σ 2I (15)

In practice, L samples y1, y2, · · · , yL are available, where

yl , y (τ ) |τ=lTs . Ry can be estimated via

R̂y = 1

L

L
∑

l=1

yly
H
l (16)

B. PRE-WHITENING

The data model in Eq. (12) is non-redundant and more brief

than that in Eq. (6). Nevertheless, the OGSBL framework

based on Eq. (12) is still suffer from the underestimation

of the noise variance. In this subsection, the pre-whitening

processing is carried out to normalized the noise variance.

Now, we define the error matrix

1Ry = Ry − R̂y (17)

Therefore, we have

vec
(

1Ry

)

= vec
(

F−1/2CH
(

Rx − R̂x

)

CF−1/2
)

=
((

F−1/2CH
)∗

F−1/2CH
)

vec (1Rx)

= Qvec (1Rx), (18)

where Rx and R̂x account for, respectively, the covariance

matrix and its estimation of x (τ ), 1Rx = Rx − R̂x ,

Q =
(

F−1/2CH
)∗

F−1/2CH . It has been proven in the pre-

vious literature that vec (1Rx) satisfy an asymptotic Gaus-

sian distribution [30], Since Gaussian distribution is also

called Normal distribution, asymptotic Gaussian distribution

is often denoted by AsN, thus

vec (1Rx) ∼ AsN (0, Ŵx) , (19)

where Ŵx = 1/L
(

RT
x ⊗ Rx

)

, and it can be approximated via

Ŵ̂x = 1/L
(

R̂T
x ⊗ R̂x

)

. Accordingly, vec
(

1Ry

)

fulfills the

following asymptotic Gaussian distribution

vec
(

1Ry

)

∼ AsN
(

0, Ŵy

)

, (20)

where Ŵy = QŴ̂xQ
H . Denote W = R

−1/2
y , then the

weighted covariance vector,
√
L (W∗ ⊗ W) vec

(

1Ry

)

, ful-

fills the asymptotic standard normal distribution, i.e.,

√
L
(

W∗ ⊗ W
)

vec
(

1Ry

)

∼ AsN (0, I) (21)

Eq. (21) revels that the elements of
√
LW1RyW

H are inde-

pendent and fulfill the standard normal distribution. As a

result, we construct

Z =
√
LW

(

R̂y − σ 2I
)

WH

=
√
LW

(

F1/2BRsB
HF1/2 + 1Ry

)

WH

= GBD + N, (22)

where G = WF1/2, D =
√
LRsB

HF1/2WH , N =√
LW1RyW

H . Now we focus on D, the covariance matrix

of which is

Ŵd = L/MRsB
HF1/2R−1

y F1/2BRH
s

= L/MRsB
HF1/2

(

F1/2BRsB
HF1/2 + σ 2I

)−1

×F1/2BRH
s

≈ L/MRsB
H
(

BRsB
H
)†

BRH
s

= L/MRs, (23)

where the superscript † denotes the pseudo-inverse,

the approximation is established since the noise can be

omitted. Eq. (23) implies that each row ofD are uncorrelated.

C. THE PROPOSED OGSBL

Actually, targets can be regarded to be sparse in the back-

ground. A fixed DOA grid ϕ1, ϕ2, · · · , ϕP (K < N ≪ P)

is formed through the dispersion of possible directions. As a

result, a dictionary matrix 9 = [b (ϕ1) ,b (ϕ2) , · · · ,b (ϕP)]

is obtained. It should be emphasized that there are K

grids ϕ�1
, ϕ�2

, · · · , ϕ�K that lying nearest to θ1, θ2, · · · , θK ,

{�k}Kk=1 is the associate indexes in the set {1, 2, · · · ,P}. The
off-grid DOA estimation of Z can be expressed as

Z = G (9 + 8)X + N

= 2X + N, (24)

where 8 is the perturbation to 9, 2 = G (9 + 8). In this

paper, it is approximated by the first-order derivative of b
(

ϕp
)

with respective to ϕp (p ∈ {1, 2, · · · ,P}), i.e.,

8 =
[

α1
∂b (ϕ1)

∂ϕ1
, α2

∂b (ϕ2)

∂ϕ2
, · · · , αP

∂b (ϕP)

∂ϕP

]

(25)

where αp is the grid interval between the real DOA θk (k ∈
{1, 2, · · · ,K }) and its nearest grid ϕp, X is the sparse coeffi-

cient matrix that
{

αp = ϕp − θk , Xp,· = Dk,· if ϕp = ϕ�k

αp = 0, Xp,· = 0, otherwise
(26)

where Xp,· accounts for the p-th row of X and similar to

others. In Eq. (24), Z and 9 are known. Once the support

of X and the intervals αp (p = 1, 2, · · · ,P) are obtained,

the DOAs estimation problem is accomplished. Hence DOA

estimation is linked to the following optimization problem

argmin
X,8

‖Z − 2X‖2F + εf (X), (27)
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where f (X) is a penalty term that encourage sparsity, which

various with different recovery strategies. In this paper,

the OGSBL framework is utilized to solve the problem in

Eq. (27).

As one of a statistical method, OGSBL is relay on the

linear system and additive Gaussian noise model. Before the

detailed derivation of the OGSBL algorithm, the following

assumptions are given:

A.1: A hierarchical prior is assigned to X. The rows of

X are Gaussian process and share the same structural prior

H ∈ C
P×P. The density of Xp,· (p = 1, 2, · · · ,P) is given by

p
(

Xp,·; γp,H
)

∼ N
(

0, γpH
)

(28)

A.2: A Gamma hyper-prior is assigned to γp

p
(

γp
)

∼ Ŵ
(

γp | 1, ρ
)

(29)

where ρ is an empirical coefficient. In this paper, we set

ρ → 0.01.

A.3: The grid interval αp satisfies a uniform prior

p
(

αp
)

∼ U ([−1/2r, 1/2r]), (30)

where r is the interval distance of the uniform grid

ϕ1, ϕ2, · · · , ϕP.

To explore the row sparse property of X, the matrix model

in Eq. (24) is formulated into vector version as

z = ϒx + n, (31)

where z = vec
(

ZT
)

, ϒ = 2 ⊗ I, s = vec
(

ST
)

and n =
vec

(

NT
)

. According to A.1, the prior for s is given by

p (x; γ ,H) ∼ N (0, 60), (32)

where γ = [γ1, γ2, · · · , γP]
T , 60 = 6 ⊗ H with

6 = diag (γ1, γ2, · · · , γP). Under the above assumptions,

the Gaussian likelihood of z is

p (z | x; ϒ) =
(
1

π

)N 2

exp
{

− ‖ z − ϒx ‖22
}

(33)

According to the Bayes rule, the posterior density p (x | y) is
still Gaussian and can be expressed as

p (x | z; ϒ, γ ) = N
(

µx , 6x

)

, (34)

with
{

µx = 6xϒ
Hz

6x =
(

ϒHϒ + 60

)−1 (35)

Herein, the EM strategy is adopted to update the hyper-

parameters 3 = {γ , 8,H}. To this end, we try to maximize

p (z; 3), which is equal to minimize − ln p (z; 3). The cost

function of the EM strategy is

f (3) = Ex|z;3(old) [ln p (z, x; 3)]

= Ex|z;3(old) [ln p (z | x; 8)]

+Ex|z;3(old) [ln p (x; γ ,H)], (36)

where 3(old) denote the parameter set in the last iteration.

To update one of the hyper-parameters, EM strategy treat

all but one of the hyper-parameters as hidden variables.

Therefore, it obtain the update rule by setting the derivative of

f (3) with respect to the non-hidden variable to zero. Using

this method, the learning rules for γ and H are

γ p =
−N +

√

N 2 + 4ρTr
[

H−1
(

6
p
x + µ

p
x

(

µ
p
x

)H
)]

2ρ
,

(37)

and

H =







P
∑

p=1

6
p
x + µ

p
x

(

µ
p
x

)H

γp






/P, (38)

where µ
p
x denotes the p-th block (with size M × 1). Since

the updates of (35), (37) and (38) are alternate in high

dimensional space, the iteration is computationally ineffi-

cient. In this paper, a fast version is derived by combining

the MSBL idea. It calculate the mean matrix and covariance

matrix in the original space as
{

X̃ = 6̃2HZ

6̃ =
(

2H2 + 6
)−1 (39)

The learning rule for γ p is derived as

γ p =
−M +

√

M2 + 4ρ
[

6̃p,p + X̃∗
p·H−1X̃T

p·
]

2ρ
, (40)

where 6̃p,p is the (p, p)-th entity of 6̃, and the learning rule

for H is

H = H̃ + ηI

‖H̃ + ηI‖F
, (41)

with

H̃ =
P
∑

p=1

XT
p,·X

∗
p,·

γp
, (42)

where η is a balance parameter that ensures H is positive

define, and it set to η = 2‖H̃‖F empirically. Finally, we con-

cerning on 8, which can be rewritten as

8 = B′diag (α1, α2, · · · , αP) , (43)

where B′ =
[

∂b(ϕ1)
∂ϕ1

,
∂b(ϕ2)
∂ϕ2

, · · · ,
∂b(ϕP)
∂ϕP

]

, which is also

known to us. Let a = [α1, α2, · · · , αP]
T , one can easy

observe that the update of 8 is rely on the update of a.

According to [27], a can be updated via

arg min
αp∈[−1/2r,1/2r]

aTTa − 2vT a, (44)

with

T = real

[
(

B̃′H B̃′
)∗

⊙
(

6̃ +
M
∑

m=1

X̃·,mX̃
H
·,m

)]

, (45)
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v = 1

M
real

[
M
∑

m=1

diag
(

X̃∗
·,m
) (

B̃′
)H (

Z·,m − B̃X̃·,m
)
]

− 1

M
real

[

diag
(

B̃′H B̃6̃
)]

, (46)

where B̃′ = GB′ and B̃ = GB, X̃·,m denotes the m-th column

of X̃. The latter diag (·) in (46) returns a column vector. It is

recommend by the author that if T is invertible, a is updated

via

a = T−1v (47)

Otherwise, it is updated entity-by-entity via computing

ãp =
vp −

(

Tp·
)

−p a−p

Tp,p
, (48)

and then calculate

ap =









ãp, if ãp ∈ [−r/2, r/2]
−r/2, if ãp < −r/2
r/2, otherwise,

(49)

where a−p returns a vector without the p-th element for

a vector a. The iteration will undergo before convergence,

e.g., the iteration number reaches a pre-determined value,

or the relative residual on γ is smaller than a given threshold.

For more algorithmic details, the reader is recommend to

refer [27].

Now we have achieved the proposal of the RC-OGSBL

estimator. To help the reader to understand the proposed

estimator, we list the main steps of RC-OGSBL as follows:

Step 1: Construct C according to (8), and get the

non-redundant measurement y (τ ) via (12);

Step 2: Estimate the covariance matrix Ry via (16), and

obtain Z via (22);

Step 3: Form B and B′. Initial a H and γ ;

Step 4: Update the mean X̃ and the covariance matrix Ŵ̃

via (39);

Step 5: Update γ p and H via (40) and (41), respectively;

Step 6: Refine the grid via (47) or (49);

Step 7:Repeat step.4 to step.6 until algorithm convergence.

IV. RELATED REMARKS

Remark 1: It is obvious that the proposed algorithm has

blind character, while theMUSIC algorithm requires the prior

information of the target number.

Remark 2: It should be pointed out that the proposed

RC-OGSBL algorithm is only suitable for monostatic MIMO

radar system with ULA geometry, otherwise it will fail to

work.

Remark 3: The graphical model of the OGSBL framework

in [27] and the graphical model of the improved OGSBL

algorithm are illustrated in Figure 2 and Figure 3, respec-

tively. In Figure 2 and Figure 3, the circles denote the param-

eters or signals, rectangles account for the hyper-parameters.

FIGURE 2. Graphical model of the OGSBL framework in [27].

FIGURE 3. Graphical model of the improved OGSBL algorithm.

It is shown that the OGSBL in [27] requires necessary learn-

ing for the noise, but this process is neglected in the pro-

posed algorithm. Besides, a blcok parameter H is given in

our algorithm, which is helpful in accelerating convergence.

V. SIMULATION RESULTS

To verify the effectiveness of the improvedOGSBL estimator,

numerical simulations have been carried out. In this section,

we consider a monostatic MIMO radar system, which is

configured withM transmit antennas andN receive antennas,

both of which are assumed to be ULAs with half-wavelength

spacing. Suppose K = 3 uncorrelated sources, the reflec-

tion coefficients fulfill the Swerling II model, and L snap-

shots are collected. In the simulation, the grid interval

is 1, and the signal-to-noise ratio (SNR) is defined as

SNR = 10log10‖x (τ ) − e (τ )‖2 /‖e (τ )‖2 [dB], where x (τ )

and e (τ ) are the signal in (6). In Example 2-Example 5,

K = 3 targets are considered with DOAs are set to 31.2◦,
60.3◦ and 120.5◦, respectively. The simulation is carried

out on a HP Z840 workstation with two Intel(R) Xeon(R)

E5-2650 v4 2.20 GHz processors, and 128 GB of RAM.

Example 1: We compare the spectrum of the proposed

algorithm with RC-MUSIC in [34], where M = 6, N = 8,

L = 200, 1 = 4◦ and SNR = −10dB. Figure 4 and Figure 5

illustrate the results with K = 2 and K = 4, respectively.

It is seen that the although both algorithms work correctly,

the proposed estimator providesmuch lower sidelobe then the

MUSIC algorithm. Moreover, as shown in the small rectan-

gles, the peaks of the proposed estimator is more closer to the
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FIGURE 4. Spectrum comparison with K = 2 targets.

FIGURE 5. Spectrum comparison with K = 4 targets.

real DOAs, since the grid in the proposed algorithm can be

updated adaptively, while it is fixed in MUSIC algorithm.

Example 2: We exam the estimation performance of the

proposed estimator in terms of root mean square error

(RMSE), where M = 6, N = 8, L = 200 and 1 = 4◦

are considered. The RMSE is defined as

RMSE = 1

K

K
∑

k=1

√
√
√
√

1

500

500
∑

i=1

(

θ̂i,k − θk

)2
, (50)

where θ̂i,k and ϕ̂i,k are the estimates of θk and ϕk
in the i th trial. For comparison, the performance of

the RC-ESPRIT [33] (marked with ESPRIT), RC-MUSIC

in [34] (marked with MUSIC), OGSBL [27] as well as the

Cramer-Rao bound (CRB) are added. All the curves are

based on 500 Monte Carlo trials. One can observe from

Figure 6 that RC-MUSIC algorithms provide better RMSE

than RC-ESPRIT, as more DOF has been exploited in

RC-MUSIC. Besides, RMSE performance of RC-MUSIC is

improved with increasing SNR, and smaller search interval1

results in more accurate DOA estimation performance. Obvi-

ously, both OGSBL and the proposed estimator have very

close RMSE performance, and both of which provider much

lower RMSE than RC-MUSIC. Their superior performance

FIGURE 6. RMSE comparison of various method versus SNR.

FIGURE 7. RMSE versus SNR with different 1.

benefit from the fact that the grid of both estimators can

be updated during the iteration, while the grid is fixed

in MUSIC.

Example 3: We compared the estimation performance of

OGSBL, RC-MUSIC and the proposed estimator with var-

ious 1, where M = 6, N = 8 and L = 200 are set.

Two meters are adopted herein, one is the RMSE and the

other is the average running time. Also, the performance of

RC-RSPRIT has been added. The results are given in Figure 7

and Figure 8. It is obvious that RC-MUSIC and RC-ESPRIT

need less running time, as they does not involve iterative

calculation. However, they provide higher RMSE than the

Bayesian estimators (OGSBL and the proposed estimator).

Moreover, smaller 1 leads to heavier computational load,

as shown in Figure 8. Besides, the complexity of the proposed

estimator is improved by one order of magnitude in contrast

to the OGSBL algorithm. This improvement benefit from two

aspects. On the one hand, the RC technique in the proposed

estimator helps to reduce the dimension of the measurement

without hurt the DOF of MIMO radar. On the other hand,

the pre-whitening process in the proposed estimator makes

the noise variance to be determined, thus reduces the param-

eter number in the iteration. It should be noticed that the

proposed estimator share very close RMSE with the OGSBL
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FIGURE 8. Average running time versus SNR with different 1.

FIGURE 9. RMSE versus SNR with different N .

FIGURE 10. Average running time versus SNR with different N .

approach at low SNR regions. However, it may performworse

than OGSBL with high SNR, as depicted in Figure 7, since

the formula (23) is approximate established.

Example 4:We repeat the performance test with variousN ,

where M = 6, L = 200 and 1 = 4. Figure 9 and Figure 10

present the performance curves. It is shown in Figure 9 that

large N bring better DOA estimation accuracy, since larger

N means the effective aperture of MIMO radar is larger.

Similar to Example 3, more running time is required when

FIGURE 11. RMSE versus SNR with different L.

FIGURE 12. Average running time versus SNR with different L.

N is increasing, but the necessary running time corresponding

to different N is very close when SNR>-9dB.

Example 5:We test the estimation performance in terms of

various L, where M = 6, N = 8 and 1 = 4 are considered.

The RMSE performance and the average running time perfor-

mance are depicted in Figure 11 and Figure 12, respectively.

It is displays that larger L results in fewer calculation, thus

less running time is required. Furthermore, it is shown that

more snapshot L leads to better RMSE performance, as the

noise model is more accurate with larger L.

VI. CONCLUSION

In this paper, we revisit the DOA estimation problem in

colocated MIMO radar with ULA geometries. A reduced-

complexity OGSBL framework is presented. The proposed

estimator can be summarized into three main steps. Firstly,

it removes the redundancy of the array measurement via

reduced-complexity transformation. Thereafter, a covariance

matrix model is established by pre-whitening the non-

redundant signal, in which the noise is white with vari-

ance is 1. Finally, the DOA estimation problem is linked to

OGSBL with less hyper-parameters. The RC technique and

the pre-whitening process reduce the redundancy of colocated

MIMO radar without hurt the visual aperture, and they can
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help to achieve an off-grid Bayesian model with less vari-

ables, which enable the proposed estimator more efficient

than the OGSBL algorithm. The performance of the proposed

algorithm is verified via numerical simulations.
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