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Abstract— In the field of information security, the usage of 

biometrics is growing for user authentication. Automatic 

signature recognition and verification is one of the biometric 

techniques, which is only one of several used to verify the 

identity of individuals. In this paper, a foreground and 

background based technique is proposed for identification of 

scripts from bi-lingual (English/Roman and Chinese) off-line 

signatures. This system will identify whether a claimed 

signature belongs to the group of English signatures or Chinese 

signatures. The identification of signatures based on its script is 

a major contribution for multi-script signature verification. 

Two background information extraction techniques are used to 

produce the background components of the signature images. 

Gradient-based method was used to extract the features of the 

foreground as well as background components.  Zernike 

Moment feature was also employed on signature samples. 

Support Vector Machine (SVM) is used as the classifier for 

signature identification in the proposed system. A database of 

1120 (640 English+480 Chinese) signature samples were used 

for training and 560 (320 English+240 Chinese) signature 

samples were used for testing the proposed system. An 

encouraging identification accuracy of 97.70% was obtained 

using gradient feature from the experiment. 
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I. INTRODUCTION 

Signatures are a socially accepted authentication medium 

and they are widely used as proof of identity in our daily 

life. Automatic signature recognition by computers has 

received wide research interests in the field of pattern 

recognition. There are two different ways to recognize the 

signature: verification and identification. Verification 

involves confirming or denying a person's claimed signature. 

On the other hand, identification decides the signature group 

among the number of groups where the claimed signature 

belongs.  
    Today, biometric technologies are increasing and more 
commonly being used to ensure identity authentication of 
access to sensitive data. For historical reasons, the 
handwritten signature continues to be the most commonly 
accepted form of transaction confirmation, as well as being 
used in civil law contracts, acts of volition, or authenticating 
one's identity. Signature verification has been a topic of 

intensive research during the past several years [1] due to the 
important role it plays in numerous areas, including in the 
financial system. 

Signatures have been accepted as an official means to 
verify personal identity for legal purposes on such 
documents as cheques, credit cards, wills etc. The 
handwritten signature is therefore well established and 
accepted as a behavioural biometric. Considering the large 
number of signatures verified daily through visual 
inspection by people, the construction of a robust and 
accurate automatic signature verification system has many 
potential benefits for ensuring authenticity of signatures and 
reducing fraud and other crimes. 

The goal of a signature authentication system is to verify 
the identity of an individual based on an analysis of his or her 
signature through a process that discriminates a genuine 
signature from a forgery. The identification/verification of 
human signatures is particularly concerned with the 
improvement of the interface between human-beings and 
computers [2]. A signature identification/verification system 
and the associated techniques used to solve the inherent 
problems of authentication can be divided into two classes 
[3]: (a) on-line methods [4] to measure temporal and 
sequential data by utilizing intelligent algorithms [5] and (b) 
off-line methods [6] that use an optical scanner to obtain 
handwriting data written on paper. Off-line signature 
identification/verification deals with the 
identification/verification of signatures, which appear in a 
static format [7]. On-line signature identification/verification 
has been shown to achieve much higher rates than off-line 
one [6], as a considerable amount of dynamic information is 
lost in the off-line mode. But off-line systems have a 
significant advantage as they do not require access to special 
processing devices when the signatures are produced. 
Moreover, the off-line method has many more practical 
application areas than that of the on-line variety. 

    The use of signatures has been one of the more 

convenient methods for the identification and verification of 

human beings. Signatures represent a particular writing style 

and very often are a combination of symbols and strokes. So 

it is obviously necessary to deal with a signature as a 

complete image with a special distribution of pixels, 

representing a particular writing style and is not considered 

as a collection of letters and words [8]. It is often difficult for 



  

a human to instantly verify two signatures of the same person 

because signature samples from the same person are similar 

but not identical, and signatures can change depending on 

elements such as mood, fatigue and time. In addition, a 

person’s signature often changes radically during their 

lifetime. Great inconsistency can even be observed in 

signatures according to country, habits, psychological or 

mental state, physical and practical conditions [9]. 

There are many pieces of work on script identification. 

K. Roy et al. [10] proposed a system for word-wise 

handwritten script identification for Indian Postal 

automation. Using matra/Shirorekha, water reservoir 

concept based feature, etc. a tree classifier was generated for 

word-wise Bangla/Devnagari and English scripts 

identification. Hochberg, et al. [11] proposed an algorithm 

for script and language identification from handwritten 

document images using statistical features based on 

connected component analysis. Hangarge and Dhandra [12] 

investigated a texture as a tool for determining the script of 

handwritten document image, based on the observation that 

text has a distinct visual texture. Further, K nearest 

neighbour algorithm was used to classify 300 text blocks as 

well as 400 text lines into one of the three major Indian 

scripts: English, Devnagari and Urdu, based on 13 spatial 

spread features extracted using morphological filters. Their 

proposed algorithm achieved average classification accuracy 

as high as 99.2% for bi-script and 88.6% for tri-script 

separation at text line and text block level respectively with 

five fold cross validation test. Roy and Pal [13] presented an 

automatic scheme for word-wise identification of hand-

written Roman and Oriya scripts for Indian postal 

automation. In their proposed scheme, a piecewise 

projection method was used for line and word segmentation. 

Finally, using different features like, water reservoir concept 

based features, fractal dimension based features, topological 

features, scripts characteristics based features etc., a Neural 

Network (NN) classifier was used for word-wise script 

identification. For experiment, 2500 words were considered 

and overall accuracy of 97.69% was obtained from the 

proposed identification scheme. Although there are many 

pieces of work on script identification for general text, to the 

best of our knowledge there is no work of script 

identification for signature written in Chinese and English 

scripts. 
Numerous techniques for feature extraction and 

classification have been put forward in the literature for the 
processing of signatures. Justino et al. [14] proposed an off-
line signature verification system based on Hidden Markov 
Models (HMMs) to detect random, casual, and skilled 
forgeries. Three features: a pixel density feature, a pixel 
distribution feature and an axial slant feature are extracted 
from a grid segmentation scheme. Lv et al. [15] developed a 
Chinese off-line signature verification system employing a 
data base of 1100 signatures. Support Vector Machines were 
employed for classification. Four different types of features 
such as Moment feature, Direction feature, Gray distribution 
and Stroke width distribution feature were used in their 

research. Nguyen et al. [16] developed an off-line signature 
verification system based on global features and the Support 
Vector Machine classifier. In their paper, the combination of 
the Modified Direction Feature (MDF) with three global 
features: a feature using Energy information, maxima feature, 
and ratio feature are reported. In addition, the survey by 
Weiping et al. [17] summarises some additional features and 
approaches that have been previously investigated.  

The remainder of this paper is structured as follows. 
Significance of multi-script signatures is described in Section 
II. Section III deals with describing the signature database. 
Section IV discusses the feature extraction technique 
employed. Section V introduces the experimental settings. 
Details of the classifier used are presented in Section VI. 
Results and discussions are given in Section VII and error 
analysis is detailed in Section VIII. Finally, conclusions and 
future work are discussed in Section IX. 

 

II. SIGNIFICANCE OF MULTI-SCRIPT SIGNATURE 

IDENTIFICATION 

 
Although, many systems involving off-line signature 

recognition and verification have been developed, all of these 
systems have solely considered single-script signatures. 
However, signatures may be written in different languages 
and there is a need to undertake a systematic study in this 
area. In the field of signature verification, most of the 
published work has been undertaken for English signatures. 
Only a few studies have been performed for Chinese, 
Japanese, Persian and Arabic signatures [18-21]. As 
indicated earlier, researchers have used different features for 
signature verification and it was noted that all the published 
work is based on foreground information. 
     Moreover, to the best of the authors’ knowledge, there is 

no published work employing signatures written in two 

different languages. However, sometimes the signatures of 

different scripts are desired for official transactions. Some 

countries have more than one or two scripts that are not only 

used for handwriting but also for signing purposes.  A multi-

lingual country like India has many different scripts such as 

such as Hindi, Bangla, Telugu, Tamil etc. that are used for 

writing as well as for signing purposes based on different 

locations or regions of the country. So, there is a need to 

work on signatures written in two or more languages, 

especially in off-line signature identification and 

verification, considering signatures of two or more scripts. 

In this paper, a signature identification system is proposed 

for two scripts: English and Chinese.  To the authors’ 

knowledge, background information has not so far been 

used in signature identification research, and this proposed 

system is one of the first of its kind that uses background 

and foreground information. Some English and Chinese 

signature samples are shown in Fig. 1 and Fig. 2, 

respectively. 

 



 

III. SIGNATURE DATABASE
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Figure 1. Examples of  Some English Sig

 
 

 
Figure 2. Examples of  Some Chinese Si
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Figure 3. Signature Collecting Fo

 

 

 

 

 

 
Figure 4. Example of a Scanned

 

 

 

 

 
Figure 5. Example of Binary Image of the
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A. 400 Dimensional Gradie
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Figure 6. Original English Sig

 
 

 

 

 

 

 

 
 

Figure 7. Background Part of English Sig
 
 

 

 

 

 

 

 

 

 
Figure 8. Original Chinese Sig

 

 
 
 
 
 
 
 

 

 
Figure 9. Background Part of Chinese Sig
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Figure 10. Extended Background Part of Eng

 

 

 

 

 

 

 

 
 

 
 
 

Figure 11. Extended Background Part of Chi
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Figure 12. An Error Sample Obtained
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IX. CONCLUSIONS AND FUTURE WORK 

 
This paper presents an off-line signature identification 

scheme of bi-script signatures. Gradient feature extraction 
from foreground and different background parts of signature 
images and the SVM classifier were utilized for this off-line 
signature identification scheme. Zernike Moment feature was 
also employed for foreground parts of signatures images.   
Encouraging results of 97.50% and 96.07% were obtained 
using foreground part from Gradient and Zernike Moment 
features respectively. The accuracies of 97.70% and 96.76% 
were obtained using two different background feature sets 
utilizing Gradient features. To the best of the authors’ 
knowledge, such background features have not been used for 
the task of signature verification/identification and this is the 
first work using background features in this area. This 
scheme of bi-script off-line signature identification is also a 
novel contribution to the field of signature verification. In the 
near future, we plan to extend our work for multi-script off-
line signature verification.  
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