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This chapter describes a system that recognizes freely handwritten
words off-line. Based on Hidden Markov models (HMMs), this system
is designed in the context of a real application in which the vocabulary
is large but dynamically limited. After preprocessing, a word image is
segmented into letters or pseudo-letters and represented by two feature
sequences of equal length, each consisting of an alternating sequence of
shape-symbols and segmentation-symbols that are both explicitly mod-
eled. The word model is made up of the concatenation of appropriate
letter models which consist of elementary HMMs. Two mechanisms are
considered to reject unreliable outputs, depending on whether or not the
unknown word image is guaranteed to belong to the dynamic lexicon.
Experiments performed on real data show that HMMs can be success-
fully used for handwriting recognition.



1 Introduction

Today, handwriting recognition is one of the most challenging tasks and
exciting areas of research in computer science. Indeed, despite the
growing interest in this field, no satisfactory solution is available. The
difficulties encountered are numerous and include the huge variability
of handwriting such as inter-writer and intra-writer variabilities, writing
environment (pen, sheet, support, etc.), the overlap between characters,
and the ambiguity that makes many characters unidentifiable without
referring to context.

Owing to these difficulties, many researchers have integrated the lexi-
con as a constraint to build lexicon-driven strategies to decrease the
problem complexity. For small lexicons, as in bank-check processing,
most approaches are global and consider a word as an indivisible entity
[1] -  [5]. If the lexicon is large, as in postal applications (city name or
street name recognition) [6] -  [10], one cannot consider a word as one
entity, because of the huge number of models which must be trained.

Therefore, a segmentation of words into basic units, such as letters, is
required. Given that this operation is difficult, the most successful
approaches are segmentation-recognition methods in which a loose seg-
mentation of words into letters or pieces of letters is first performed, and
the optimal combination of these units to retrieve the entire letters
(definitive segmentation) is then obtained in recognition using dynamic
programming techniques [11], [12], [13]. These methods are less effi-
cient when the segmentation fails to split some letters. On the other
hand, they have many advantages over global approaches. The first is
that for a given learning set, it is more reliable to train a small set of
units such as letters than whole words. Indeed, the frequency of each
word is far lower than the frequency of each of its letters, which are
shared by all the words of the lexicon. Furthermore, unlike analytic
approaches, global approaches are possible only for lexicon-driven
problems and do not satisfy the portability criterion, since for each new
application, the set of words of the associated lexicon must be trained.

More recently, hidden Markov models (HMMs) [14], [15] have become
the predominant approach to automatic speech recognition [16], [17],
[18]. The main advantage of HMMs lies in their probabilistic nature,
suitable for signals corrupted by noise such as speech or handwriting,



and in their theoretical foundations, which are behind the existence of
powerful algorithms to automatically and iteratively adjust the model
parameters.

The success of HMMs in speech recognition has recently led many
researchers to apply them to handwriting recognition, by representing
each word image as a sequence of observations. According to the way
this representation is carried out, two approaches can be distinguished:
implicit segmentation [6], [19], [20], which leads to a speech-like repre-
sentation of the handwritten word image, and explicit segmentation [7],
[9] which requires a segmentation algorithm to split words into basic
units such as letters.

In this chapter, we propose an explicit segmentation-based HMM
approach to recognize unconstrained handwritten words (uppercase,
cursive and mixed). An example of the kind of images to be processed is
shown in Figure 1. This system uses three sets of features: the first two
are related to the shape of the segmented units, while the features of the
third set describe segmentation points between these units. The first set
is based on global features such as loops, ascenders and descenders,
while the second set is based on features obtained by an analysis of the
bidimensional contour transition histogram of each segment. Finally,
segmentation features correspond to either spaces, possibly occurring
between letters or words, or to the vertical position of the segmentation
points splitting connected letters. Given that the two sets of shape-fea-
tures are separately extracted from the image, we represent each word
by two feature sequences of equal length, each consisting of an alternat-
ing sequence of shape-symbols and segmentation-symbols.
      

In the problem we are dealing with, we consider a vocabulary which is
large but dynamically limited. For example, in city name recognition,

(b): STRASBOURG

Figure 1. Examples of handwritten word images of city names in France.

(a): Plomelin (c): EVREUX Cedex

(d): Fontaine (f): quimper(e): CHAmBeRy



the contextual knowledge brought by the postal code identity can be
used to reduce the lexicon of possible city names to a small size. How-
ever, since the entire lexicon is large, it is more realistic to model letters
rather than whole words. Indeed, this technique needs only a reasonable
number of models to train (and to store). Then each word (or word
sequence) model can be built by concatenating letter models. This mod-
eling is also more appropriate to available learning databases, which
often do not contain all the possible words that need to be recognized.

This chapter is organized as follows. Section 2 describes the theory of
HMMs, and particularly emphasizes on some variants that can enhance
the standard modeling. Section 3 recalls the steps of preprocessing, seg-
mentation and feature extraction. Section 4 deals with the application of
HMMs to handwritten word recognition in a dynamic vocabulary. Sec-
tion 5 presents the experiments performed to validate the approach. Sec-
tion 6 concerns the rejection mechanism considered by our system.
Finally, Section 7 presents some concluding remarks and perspectives.

2  Hidden Markov models

During the last 15 years, HMMs have been extensively applied in sev-
eral areas including speech recognition [18], [21], [22], [23], language
modeling [24], handwriting recognition [6], [9], [25], [26], on-line sig-
nature verification [27], human action learning [28], fault detection in
dynamic systems [29] and recognition of moving light displays [30].

A hidden Markov model is a doubly stochastic process, with an underly-
ing stochastic process that is not observable (hence the word hidden),
but can be observed through another stochastic process that produces
the sequence of observations [14]. The hidden process consists of a set
of states connected to each other by transitions with probabilities, while
the observed process consists of a set of outputs or observations, each of
which may be emitted by each state according to some output probabil-
ity density function (pdf). Depending on the nature of this pdf, several
kinds of HMMs can be distinguished. If the observations are naturally
discrete or quantized using quantization or vector quantization [31], and
drawn from an alphabet or a codebook, the HMM is called discrete [16],
[17]. If these observations are continuous, we are dealing with a contin-
uous HMM [17], [32], with a continuous pdf usually approximated by a
mixture of normal distributions. Another family of HMMs, a compro-



mise between discrete and continuous HMMs, are semi-continuous
HMMs [33] that mutually optimize the vector quantized codebook and
HMM parameters under a unified probabilistic framework.

In some applications, it is more convenient to produce observations by
transitions rather than by states. Furthermore, it is sometimes useful to
allow transitions with no output in order to model, for instance, the
absence of an event in a given stochastic process. If we add the possibil-
ity of using more than one feature set to describe the observations, we
must modify the classic formal definition of HMMs [17]. For discrete
HMMs, we can do this by considering the following parameters:

  T: length of the observation sequence O; O = O0, O1, ..., OT-1, where Ot

= (Ot
0, Ot

1, ..., Ot
p, ..., Ot

P-1), the observation Ot
p at time t being drawn

from the pth finite feature set, and p = 0, 1, ..., P -  1.

  N: number of states in the model.

  Mp: number of possible observation symbols for the pth feature set.

  S = {s0, s1,..., sN-1}: set of possible states of the model.

  Q = {qt}, t = 0, 1,..., T - 1; qt: state of the process at time t.

  Vp = {v1
p, v2

p,..., vM
p} codebook or discrete set of possible observation

symbols corresponding to the pth feature set.

  A = {aij }, aij  = Pr(qt+1=sj|qt=si): probability of going from state si at
time t to state sj at time t + 1, and at the same time producing a real
observation Ot at time t.

  A’ = {a’ij} = { a’ij }, a’ij = Pr(qt=sj|qt=si): probability of null transition
from state si at time t to state sj at time t, producing null observation
symbol Φ. Note here that there is no increase over time since no real
observation is produced.

  Bp = {bij
p(k)}, bij

p(k) = Pr(Ot
p = vk

p | qt=si, qt+1=sj): output pdf of

observing the kth symbol in the pth feature set when a transition from
state si at time t to state sj at time t + 1 is taken. If we assume the P out-
put pdfs are independent (multiple codebooks), we can compute the out-
put probability bij(k) as the product of the P output probabilities:



  Π = {πi}, πi = Pr(q1=si): initial state distribution. In general, it is more
convenient to have predefined initial and final states s0 and sN-1 that do
not change over time. In this case, π0 = 1 and πi = 0 for i = 1, 2,... N -  1.

A, A’ and Bp obey the stochastic constraints:

Given a model, to be represented by the compact notation λ = (A, A’, Bp)
where p = 0, 1, ..., P -  1, three problems must be solved.

1. Given an observation sequence O = O0, O1, ..., OT-1   and a model λ,
how do we compute the probability of O given λ, Pr(O|λ)? This is the
evaluation problem.

2. Given the observation sequence O = O0, O1, ..., OT-1 and the model λ,
how do we find the optimal state sequence in λ that has generated O?
This is the decoding problem.

3. Given a set of observation sequences and an initial model λ, how can
we re-estimate the model parameters so as to increase the likelihood of
generating this set of sequences? This is the training problem.

2.1.  The evaluation problem

To compute Pr(O|λ), we modify the well-known forward-backward pro-
cedure [17] to take into account the assumption that symbols are emitted
along transitions, the possibility of null transitions, and the use of multi-
ple codebooks. Hence, we define the forward probability αt(i) as

i.e., the probability of the partial observation sequence O0, O1, ..., Ot-1
(until time t -  1) and the state si reached at time t given the model λ.
αt(i) can be inductively computed as follows:

bij k( ) bij
p

k( )

p 0=

P 1–

∏= 1( )

aij a'i j+[ ] 1=

j 0=

N

∑ bij
p

k( ) 1=

k 0=

Mp 1–

∑ p 0 1 … P 1–, , ,= 2( )

αt i( ) Pr O0 O1 … Ot 1– qt si=, , , , λ( )= 3( )



Initialization

given that s0 is the only possible initial state.

Induction

by summing over all states that may lead to state sj, and picking the
appropriate time of a transition depending on whether we are dealing
with a real observation or a null observation.

Termination

given that sN-1 is the only possible terminal state. Similarly, we define
the backward probability βt(i) by

i.e., the probability of the partial observation sequence from time t to the
end, given state si reached at time t and the model λ. βt(i) can also be
inductively computed as follows

Initialization

given that sN-1 is the only possible terminal state.

α0 0( ) 1.0=

α0 j( ) a'i j α0 i( )

i 0=

N 1–

∑= j 0 1 … N 1–, , ,=
4( )

αt j( ) aij bi j
p

Ot 1–( )

p 0=

P 1–

∏
 
 
 
 

αt 1– i( ) a'i j αt i( )+

i 0=

N 1–

∑= 5( )

j 0 1 … N 1–, , ,= t 1 … T, ,=

Pr O λ( ) αT N 1–( )= 6( )

βt i( ) Pr Ot Ot 1+ … OT 1–, , , qt si= λ,( )= 7( )

βT N 1–( ) 1.0=

βT i( ) a'i j βT j( )

j 0=

N 1–

∑= i 0 1 … N 1–, , ,=
8( )



Induction

Termination

given that s0 is the only possible initial state.

2.2.  The decoding problem

The decoding problem is solved using a near-optimal procedure, the Vit-
erbi algorithm [34], [35], by looking for the best state sequence Q = (q0,
q1,..., qT) for the given observation sequence O = (O0, O1, ..., OT-1).
Again, we modify the classic algorithm [17] in the following way. Let

i.e., δt(i) is the probability of the best path that accounts for the first t
observations and ends at state si at time t. We also define a function
Ψt(i), the goal of which is to recover the best state sequence by a proce-
dure called backtracking. δt(i) and Ψt(i) can be recursively computed in
the following way:

Initialization

given that s0 is the only possible initial state.

Recursion

βt i( ) aij bi j
p

Ot( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j( ) a'i j βt j( )+

j 0=

N 1–

∑= 9( )

i 0 1 … N 1–, , ,= t 0 … T 1–, ,=

Pr O λ( ) β0 0( )= 10( )

δt i( ) max q0 q1 … qt 1–, , , Pr q0 q1 … qt si= O0 O1 … Ot 1–, , , , , , , λ( )= 11( )

δ0 0( ) 1.0=

Ψ0 0( ) 0=

δ0 j( ) max 0 i N 1–≤ ≤ a'i jδ0 i( )= j 0 1 … N 1–, , ,=

Ψ0 j( ) argmax 0 i N 1–≤ ≤ a'i j δ0 i( )= j 0 1 … N 1–, , ,=

12( )

δt j( ) max 0 i N 1–≤ ≤ aij bij
p

Ot 1–( )

p 0=

P 1–

∏
 
 
 
 

δt 1– i( ) a'i jδt i( );= 13( )



Termination

given that sN-1 is the only possible terminal state.

Path recovering: Backtracking procedure

As shown above, except for the backtracking procedure, Viterbi and for-
ward (Equations (4) -  (6)) procedures are similar. The only difference is
that the summation is replaced by a maximization.

2.3.  The training problem

The main strength of HMMs is the existence of a procedure called the
Baum-Welch algorithm [16], [17] that iteratively and automatically
adjusts HMM parameters given a training set of observation sequences.
This algorithm, which is an implementation of the EM (expectation-
maximization) algorithm [36] in the HMM case, guarantees the model to
converge to a local maximum of the probability of observation of the
training set according to the maximum likelihood estimation (MLE) cri-
terion. This maximum depends strongly on the initial HMM parameters.

To re-estimate HMM parameters, we first define ξt
1(i,j), the probability

of being in state si at time t and in state sj at time t + 1, producing a real

observation Ot given the model and the observation O, and ξt
2(i,j), the

probability of being in state si at time t and in state sj at time t, producing
the null observation Φ given the model and the observation O.

Ψ t j( ) argmax 0 i N 1–≤ ≤ aij bij
p

Ot 1–( )

p 0=

P 1–

∏
 
 
 
 

δt 1– i( ) a'i j δt i( );= 14( )

j 0 1 … N 1–, , ,= t 1 2 … T, , ,=

P∗ δT N 1–( )= 15( )

qT
∗ N 1–= 16( )

qt
∗ Ψt 1+ qt 1+

∗( )= t T 1– T 2– … 0., , ,= 17( )

ξt
1

i j,( ) Pr qt si= qt 1+ sj=, O λ,( )= 18( )

ξt
2

i j,( ) Pr qt si= qt sj=, O λ,( )= 19( )



The development of these quantities leads to

We also define γt(i) as the probability of being in state si at time t, given
the observation sequence and the model.

γt(i) is related to ξt
1(i,j) and ξt

2(i,j) by the following equation:

The re-estimations of HMM parameters {aij}, { a’ ij}, { bij
p(k)} are

Given the definitions of ξt
1(i,j), ξt

2(i,j) and γt(i), it is easy to see, when
we are using one observation sequence O, that

ξt
2

i j,( )
αt i( )a'i j βt j( )

Pr O λ( )
-------------------------------= 21( )

ξt
1

i j,( )

αt i( )aij bij
p

Ot( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j( )

Pr O λ( )
------------------------------------------------------------------------= 20( )

γt i( ) Pr qt si= O λ,( )= 22( )

γt i( ) ξt
1

i j,( ) ξt
2

i j,( )+[ ]

j 0=

N 1–

∑
α t i( )β t i( )
Pr O λ( )
------------------------= = 23( )

aij

expected number of transitions from si  at time t to sj  at time t 1+

expected number of being in si
---------------------------------------------------------------------------------------------------------------------------------------------------------------= 24( )

a'i j
expected number of transitions from si  to sj  and observing Φ

expected number of being in si
----------------------------------------------------------------------------------------------------------------------------------------------------= 25( )

bij
p

k( )
exp. num. of symbols vk

p
 in transition from si  at time t to sj  at time t 1+

exp. num. of transitions from si  at time t to sj  at time t 1+
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= 26( )

aij

ξt
1

i j,( )

t 0=

T

∑

γt i( )

t 0=

T

∑

---------------------------

αt i( )aij bi j
p

Ot( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j( )

t 0=

T

∑

αt i( )βt i( )

t 0=

T

∑

----------------------------------------------------------------------------------= = 27( )



For a set of training sequences O(0), O(1),..., O(U- 1) (size U), as is usu-
ally the case in real-world applications, the above formulas become

a'i j

ξt
2

i j,( )

t 0=

T

∑

γt i( )

t 0=

T

∑
---------------------------

αt i( )a'i j βt j( )

t 0=

T

∑

αt i( )βt i( )

t 0=

T

∑
-----------------------------------------= = 28( )

bij
p

k( )

δ Ot
p

vk
p,( )ξt

1
i j,( )

t 0=

T

∑

ξt
1 i j,( )

t 0=

T

∑
--------------------------------------------------

δ Ot
p

vk
p,( )αt i( )aij bij

p
Ot( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j( )

t 0=

T

∑

αt i( )aij bi j
p

Ot( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j( )

t 0=

T

∑

---------------------------------------------------------------------------------------------------------= = 29( )

where δ x y,( )
1 if x y=

0 otherwise 
 =

aij

ξt
1

i j u, ,( )

t 0=

T

∑
u 0=

U 1–

∑

γt i u,( )

t 0=

T

∑
u 0=

U 1–

∑
--------------------------------------------

1
P u( )
----------- αt i u,( )aij bi j

p
Ot

p
u( )( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j u,( )

t 0=

T

∑
u 0=

U 1–

∑

1
P u( )
----------- αt i u,( )βt i u,( )

t 0=

T

∑
u 0=

U 1–

∑
------------------------------------------------------------------------------------------------------------------------------= = 30( )

a'i j

ξt
2 i j u, ,( )

t 0=

T

∑
u 0=

U 1–

∑

γt i u,( )

t 0=

T

∑
u 0=

U 1–

∑
--------------------------------------------

1
P u( )
----------- αt i u,( )a'i j βt j u,( )

t 0=

T

∑
u 0=

U 1–

∑

1
P u( )
----------- αt i u,( )βt i u,( )

t 0=

T

∑
u 0=

U 1–

∑
-----------------------------------------------------------------------------= = 31( )

bij
p

k( )

δ Ot
p

u( ) vk
p,( )ξt

1 i j u, ,( )

t 0=

T

∑
u 0=

U 1–

∑

ξt
1 i j u, ,( )

t 0=

T

∑
u 0=

U 1–

∑
---------------------------------------------------------------------------=

bij
p

k( )

1
P u( )
----------- δ Ot

p
u( ) vk

p,( )αt i u,( )aij bij
p

Ot
p

u( )( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j u,( )

t 0=

T

∑
u 0=

U 1–

∑

1
P u( )
----------- αt i u,( )aij bi j

p
Ot

p
u( )( )

p 0=

P 1–

∏
 
 
 
 

βt 1+ j u,( )

t 0=

T

∑
u 0=

U 1–

∑

--------------------------------------------------------------------------------------------------------------------------------------------------------------= 32( )



In the above equations, the index u is introduced into α, β, ξ1, ξ2 and γ
to indicate the observation sequence O(u) currently used. Note that a
new quantity P(u) = Pr(O(u)|λ) appears, since this term is now included
in the summation and cannot be eliminated as before. Training can also
be performed using the segmental k-means algorithm or Viterbi training
[37]. The idea behind this algorithm is that after initializing the model
parameters with random values, each word is matched against its associ-
ated feature sequence via the Viterbi algorithm. According to the current
model, observation sequences of the training set are segmented into
states (or transitions) by recovering the optimal alignment path. The re-
estimations of the new HMM parameters are then directly obtained by
examining the number of transitions between states and the number of
observations emitted along transitions. This procedure is repeated (as in
Baum-Welch training) until the increase in the global probability of
observing training examples falls below a small fixed threshold.
Although this algorithm is less optimal than the Baum-Welch algorithm,
it generally leads to good results and is faster in computation.

3  Representation of Word Images

In Markovian modeling, each input word image must be represented as
a sequence of observations, which should be statistically independent,
once the underlying hidden state is known. To fulfill the latter require-
ment, the word image is first preprocessed by 4 modules: baseline slant
normalization, lower case letter area normalization when dealing with
cursive words, character skew correction, and finally, smoothing.

Indeed, beside the fact that these variabilities are not meaningful to rec-
ognition and cause a high writer-sensitivity in classification, thus
increasing the complexity in a writer-independent handwriting recog-
nizer, they can introduce dependence between observations. For
instance, a word with a highly slanted baseline is likely to give rise to
many segments (after the segmentation process) with incorrectly
detected descenders. In the absence of the baseline slant, none of these
descenders will be detected, hence the idea of dependence between
observations when the writing baseline is not normalized. The same
thought can be made about the character slant. After preprocessing, we
perform segmentation and feature extraction processes to transform the
input image into an ordered sequence of symbols (first assumption).



3.1.  Preprocessing

In our system, the preprocessing consists of four steps: baseline slant
normalization, lower case letter area (upper-baseline) normalization
when dealing with cursive words, character skew correction, and
finally, smoothing. The goal of the first two is to ensure a robust detec-
tion of ascenders and descenders in our first feature set. The third step is
required since the second feature set shows a significant sensitivity to
character slant (Section 3.3). Baseline slant normalization is performed
by aligning the minima of the lower contour after having removed those
corresponding to descenders and those generated by pen-down move-
ments, using the least square method and some thresholding techniques.
Upper-baseline normalization is similar, and consists of aligning the
maxima of the upper contour after having filtered those corresponding
to ascenders or uppercase letters. However, the transformation here is
non-linear since it must keep the normalized lower-baseline horizontal.
The ratio of the number of filtered maxima over the total number of
maxima is used as an a priori selector of the writing style: either cursive
or mixed if this ratio is above a given threshold (fixed at 0.4 after sev-
eral trials) or uppercase, in which case no normalization is done. Char-
acter skew is estimated as the average slant of elementary segments
obtained by sampling the contour of the word image, without taking into
account the horizontal and pseudo-horizontal segments. Finally, we
carry out a smoothing to eliminate noise appearing at the borders of the
word image, and resulting from the application of the continuous trans-
formations associated to the above preprocessing techniques in a dis-
crete space (bitmap). Figure 2 shows an example of the steps of
preprocessing. More details on the description of these techniques can
be found in [38].
      

(a) (b) (c)

(d) (e) (f)

Figure 2. Preprocessing steps applied to word images: (a) original image, (b) and (c) 
baseline slant normalization, (d) character slant normalization, (e) lower-case letter 

area normalization, (f) definitive image after smoothing.



3.2.  Character segmentation of words

As mentioned earlier, segmentation of words into smaller units is neces-
sary when dealing with large vocabularies. Segmentation techniques
used in the framework of HMM-based handwritten word recognition
approaches can be divided into implicit and explicit methods. Implicit
methods are inspired by those considered in speech recognition which
consist of sampling the speech signal into successive frames with a fre-
quency sufficiently large to separately detect the different phonetic
events (for instance, phonemes) using minimal supervised learning tech-
niques [16], [39]. In handwriting, they can either work at the pixel col-
umn level [6], [20] or perform an a priori scanning of the image with
sliding windows [19], [40]. Explicit methods, on the other hand, try to
find explicitly the segmentation points in a word by using some charac-
teristic points such as upper (or lower) contour minima, intersection
points, or spaces. Implicit methods are better than explicit methods in
splitting touching characters, for which it is hard to find regularly
explicit segmentation points. However, due to the bidimensional nature
of off-line handwritten word images, and to the overlap between letters,
implicit methods are less efficient here than in speech recognition or on-
line handwriting recognition. Indeed, vertical sampling makes it diffi-
cult to capture the sequential aspect of the strokes, which is better repre-
sented by explicit methods. Moreover, in implicit methods,
segmentation points have to be also learned.

On the other hand, when employing explicit methods, the basic units to
be segmented are naturally the alphabet letters. Unfortunately, because
of the ambiguity encountered in handwritten words, it is impossible to
correctly segment a word into characters without resorting to the recog-
nition phase. Indeed, the same pixel representation may lead to several
interpretations, in the absence of the context which can be a lexicon or
grammatical constraints. In Figure 3, for instance, the group of letters
inside the dashed square could be interpreted -  in the absence of context
given by the word Strasbourg  -  as "lreur ", "lrun ", "bour "
(correct spelling), "baun ", etc.



      

In view of the above remark, our concern is to design a segmentation
process that tries to detect all the potential segmentation points, instead
of only the real ones. This gives rise to several segmentation options,
with the optimal one to be implicitly recovered during recognition. Inte-
grating the above ideas, our segmentation algorithm is based on the fol-
lowing two hypotheses:

• There exist natural segmentation points corresponding to disconnected
 letters.
• The physical segmentation points between connected letters are 
 located at the neighborhood of the image upper contour minima.

The segmentation algorithm makes use of upper and lower contours,
loops, and upper contour minima. Then, to generate a segmentation
point, a minimum must be located at the neighborhood of an upper-con-
tour point that permits a vertical transition from the upper contour to the
lower one without crossing any loop, while minimizing the vertical tran-
sition histogram of the word image. This strategy leads to a correct seg-
mentation of a letter, to an undersegmentation of a letter (letter
omission), or to an oversegmentation in which case a letter is split into
more than one piece. Figure 4 gives an example of the behavior of the
segmentation algorithm.
      

Figure 3. Ambiguity in handwritten words.

Figure 4. Segmentation of words into letters (a) or pseudo-letters (b).
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3.3.  Feature Extraction

The aim of the feature extraction phase is to extract in an ordered way,
suitable to Markovian modeling, a set of relevant features that reduce
redundancy in the word image, while preserving the discriminative
information for recognition. Unlike in speech recognition where the
commonly used features are obtained using well defined physical and
mathematical concepts such as linear predictive coding (LPC) [17],
there is no such agreement about the optimal features to be extracted
from handwritten words. This is why topological features, features
based on the pixel level, on the distribution of black pixels and on global
transformations (Fourier, Walsh, Karhunen-Loeve, etc.) are often used
in handwritten word recognition. Our main philosophy in this phase is
that lexicon-driven word recognition approaches do not require features
to be very discriminative at the segment (grapheme) level, because other
information such as context (particular letter ordering in lexicon words,
nature of the segmentation points) and word length, are available and
permit high discrimination of words. Thus, our idea is to consider fea-
tures at the grapheme level with the aim of clustering letters into classes.

Given our segmentation algorithm, a grapheme may consist of a full
character, a piece of a character or more than a character. Such features
cannot capture fine details of the segments, but this allows on the other
hand a description of the segments with less variability, ensuring a better
learning of the distribution of the features over the characters.

In our system, the sequence of segments obtained by the segmentation
process is transformed into a sequence of symbols by considering two
sets of features. The first set [F1 in Figure 6] is based on global features
such as loops, ascenders and descenders. Ascenders (descenders) are
encoded in two ways according to their relative size compared to the
height of the upper (lower) writing zone. Loops are encoded in various
ways according to their membership in each of the three writing zones
(upper, lower, median), and their relative size compared to the sizes of
these zones. The horizontal order of the median loop and the ascender
(or descender) within a segment is also taken into account to ensure a
better discrimination between letters such as "b" and "d" or "p" and "q".

This encoding scheme can be described simply by representing a seg-
ment by a binary vector, the components of which indicate the presence



or the absence of the characteristics mentioned above. Each combina-
tion of these features within a segment is encoded by a distinct symbol.
For example, in Figure 6, the first segment is encoded by symbol "L",
reflecting the existence of a large ascender and a loop located above the
core region. The second segment is encoded by symbol "o", indicating
the presence of a small loop within the core region. The third segment is
represented by symbol "- ", which encodes shapes without any interest-
ing feature. This scheme leads to an alphabet of 27 symbols.

The second feature set [F2 in Figure 6] is based on the analysis of the
bidimensional contour transition histogram of each segment in the hori-
zontal and vertical directions. After a filtering phase, the histogram val-
ues may be 2, 4 or 6. We focus only on the median part of the histogram,
which represents the stable area of the segment. In each direction, we
determine the dominant transition number (2, 4 or 6). Each different pair
of dominant transition numbers is then encoded by a different symbol or
class. This coding leads to 3 x 3 = 9 symbols. In Figure 5, for instance,
letters "B", "C" and "O", whose pairs of dominant transition numbers are
(6,2), (4,2) and (4,4), are encoded by symbols called "B", "C" and "O",
respectively. In order to distinguish between the letters "A", "D", "O" and
"P", ideally encoded by the same symbol "A" (4,4), we added new sym-
bols by a finer analysis of the segments. The subclass ("O", "D") is cho-
sen if the number of points of the lower contour located on the baseline
and included in the median (or stable) zone of the segment is greater
than a threshold, depending on the width of this zone. The subclass "P"
is detected if the dominant number of transitions in the horizontal direc-
tion (4, in this case) loses its dominant character when focusing on the
lower part of the segment. Similar techniques are used to discriminate
between other letter classes, leading to a final feature set of 14 symbols.
      

Figure 5. Transition histograms of segmented shapes.
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In addition to the two feature sets describing segmented shapes, we also
use segmentation features that try to reflect the way segments are linked
together. These features consist of three categories. For not connected
segments, two configurations are distinguished: if the space width is less
than a third of the average segment width (ASW), we decide that there is
no space and encode this configuration by the symbol "n"; otherwise,
we validate the space and we encode it in two ways ("@" or "#"),
depending on whether the space width is larger or smaller than ASW.

For connected segments, the considered feature is the segmentation
point vertical position. This feature is encoded in two ways (symbols "s"
or "u") depending on whether the segmentation point is close to or far
from the writing baseline. Hence, we obtain 5 segmentation features.

Space features have been considered in order to increase the discrimina-
tion between cursive and uppercase letters, while the vertical position of
the segmentation or over-segmentation point is taken into account to
discriminate between pairs of letters such as ("a","o"), ("u","v"),
("m","w"), ("H","U").

Finally, given that the two sets of shape-features are extracted indepen-
dently, the feature extraction process represents each word image by two
symbolic descriptions of equal length, each consisting of an alternating
sequence of symbols encoding a segment shape and of symbols encod-
ing the segmentation point associated with this shape (Figure 6).
      

F1: L s  os  -u -s  -u  -s   os  -    #    Hs os  On HsosBson

 R   e    n  n  e  s # C e  d  e   x
Figure 6. Pair of feature sequences representing a word (or sequence of words) image.

F2: Bs Os ru r s ru r s  OsO   #    PsOs  On  |sCsOsrn



4 Markovian Modeling of Handwritten
   Words

This section addresses the application of HMMs in handwritten word
recognition. We begin first by briefly describing some related works in
this field. Then, we give the justifications behind the design of the
model we propose, and we detail the steps of learning and recognition as
used in our system.

4.1.  HMM use in handwritten word recognition

Recently, HMMs have been applied to several areas in handwriting rec-
ognition, including noisy printed text recognition [41], isolated charac-
ter recognition [42], [43], on-line word recognition [44], [45], [46] and
off-line word recognition. In the last application, several approaches
have been proposed.

Gillies [6] is one of the first to propose an implicit segmentation-based
HMM for cursive word recognition. First, a label is given to each pixel
in the image according to its membership in strokes, holes and concavi-
ties located above, within and below the core region. Then, the image is
transformed into a sequence of symbols which result from a vector
quantization of each pixel column. Each letter is characterized using a
different discrete HMM, the parameters of which are estimated on train-
ing data corresponding to hand-segmented letters. The Viterbi algorithm
is used in recognition and allows an implicit segmentation of words into
letters as a by-product of the word-matching process.

Bunke et al. [26] propose an HMM approach to recognize cursive words
produced by cooperative writers. The features used in their scheme are
based on the edges of the word skeleton graph. A semi-continuous
HMM is considered for each character, with a number of states corre-
sponding to the minimum number of edges expected of this character.
The number of codebook symbols (the number of gaussians) was
defined by manual inspection of the data, and recognition is performed
using a beam search-driven Viterbi algorithm.

Chen et al. [47] use an explicit segmentation-based continuous density
variable duration HMM for unconstrained handwritten word recogni-



tion. In this approach, observations are based on geometrical and topo-
logical features, pixel distributions, etc. Each letter is identified with a
state which can account for up to 4 segments per letter. The statistics of
the HMM (transition, observation and state duration probabilities) are
estimated using the lexicon and the manually labeled training data. A
modified Viterbi algorithm is applied to provide several outputs, which
are post-processed using a general string editing method.

Cho et al. [40] use an implicit segmentation-based HMM to model cur-
sive words. The word image is first split into a sequence of overlapping
vertical grayscale bitmap frames, which are then encoded into discrete
symbols using principal component analysis and vector quantization. A
word is modeled by an interconnection network of character and liga-
ture HMMs, with a number of states depending on the average sequence
length of corresponding training samples. A clustering of ligature sam-
ples is performed to reduce the number of ligature models so as to
ensure a reliable training. To improve the recognition strategy, several
combinations of Forward and Backward Viterbi are investigated.

Finally, Mohamed and Gader [20] use an implicit segmentation-based
continuous HMM for unconstrained handwritten word recognition. In
their approach, observations are based on the location of black-white
and white-black transitions on each image column. A 12-state left-to-
right HMM is designed for each character. The training of the models is
carried out on hand-segmented data, where the character boundaries are
manually identified inside word images.

4.2.  The proposed model

As shown above, several HMM architectures can be considered for
handwritten word recognition. This stems from the fact that the correct
HMM architecture is actually not known. The usual solution to over-
come this problem is to first make structural assumptions, and then use
parameter estimation to improve the probability of generating the train-
ing data by the models. In our case, the assumptions to be made are
related to the behavior of the segmentation and feature extraction pro-
cesses. As our segmentation process may produce a correct segmenta-
tion of a letter, a letter omission, or an oversegmentation of a letter into
two or three segments, we built an eight-state HMM having three paths
to take these configurations into account (Figure 7). In this model,



observations are emitted along transitions. Transition t07, emitting the
null symbol Φ, models the letter omission case. Transition t06 emits a
symbol encoding a correctly segmented letter shape, while transition t67
emits a symbol encoding the nature of the segmentation point associated
with this shape. Null transition t36 models the case of oversegmentation
into only 2 segments. Transitions t01, t23 and t56 are associated with the
shapes of the first, second and third parts of an oversegmented letter,
while t12 and t45 model the nature of the segmentation points that gave
rise to this oversegmentation.
      

This architecture is somewhat similar to that of other approaches such as
[4], [47], but with some differences. In our method, the first segment
presented to a character model is produced by two different transitions
depending on whether it corresponds to the entire shape of a correctly
segmented character (t06) or to the first part of an oversegmented char-
acter (t01), while in [4], [47] for example, the same transition is shared
between these two configurations. The architecture proposed here
allows the transitions of the model to be fed by homogeneous data
sources, leading to less variability and higher accuracy (for example, the
first part of an oversegmented "d" and a correctly segmented "d", which
are very different, would be presented to different kinds of transitions
(t01 and t06, respectively). In other words, the variability coming from
the inhomogeneity in the source data, since it is known a priori, is elim-
inated by separate modeling of the two data sources. We should also add
that as each segment is represented in the feature extraction phase by
two symbols related to our two feature sets, two symbols are indepen-
dently emitted along transitions modeling segment shapes (t06, t01, t23
and t56). In addition, we have a special model for inter-word space, in
the case where the input image contains more than one word (Figure 1).

Figure 7. The character model.
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This model simply consists of two states linked by two transitions, mod-
eling a space (in which case only the symbols corresponding to spaces
"@" or "#" can be emitted) or no space between a pair of words (Figure
8).
      

4.3.  The learning phase

The goal of the learning phase is to estimate the best parameter values of
the character models, given a set of training examples and their associ-
ated word labels. Since the exact orthographic transcription (labeling) of
each training word image is available, the word model is made up of the
concatenation of the appropriate letter models; the final state of an
HMM becomes the initial state of the next one, and so on (Figure 9).
      

The training is performed using the variant of the Baum-Welch proce-
dure described in Section 2. Note here that we consider a minimum
supervised training (given the exact transcription of words) in which the
units (segments) produced by the segmentation algorithm need not be
manually labeled by their associated letters or pseudo-letters. This is an
important consideration for two reasons: first, labeling a database is a
time-consuming and very expensive process, and is, therefore, not desir-
able; second, supervised training allows the recognizer to capture con-
textual effects, and permits segmentation of the sequence of units into
letters and re-estimation of the transitions associated with these units to
optimize the likelihood of the training database. Thus, the recognizer
decides for itself what the optimal segmentation might be, rather than

0 1

φ

Figure 8. The inter-word space model.
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Figure 9. Training model for the French word Metz .
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being heavily constrained by a priori knowledge based on human inter-
vention [39]. This is particularly true if we bear in mind the inherent
incorrect assumptions made about the HMM structure. From an imple-
mentation point of view, given a word composed of L letters, a new
parameter corresponding to the index of the currently processed letter is
added to the quantities involved in the Baum-Welch algorithm. Then,
the results of the final forward (initial backward) probabilities at the last
(initial) state of the elementary HMM associated with a letter are moved
forward (backward) to become the initial forward (final backward)
probabilities at the initial (last) state of the elementary HMM associated

with the following (previous) letter. If αt
l(i) (or βt

l(i)) denotes the stan-
dard forward (or backward) probability associated with the letter of
index l, then this process is carried out according to the following equa-
tions:

s0 and sN-1 being the initial and final states of elementary HMMs associ-
ated with letters. Similar modifications can be made to δt(i) if we want
to use Viterbi training.

We should also add that the analysis of the segmentation process shows
that splitting a character into three pieces is a rather rare phenomenon.
Thus, the associated parameters are not likely to be reliably estimated,
due to the lack of training examples that exhibit the desired events. The
solution to this problem is to share the transitions involved in the model-
ing of this phenomenon (t34, t36, t45, t56) over all character models, by
calling for the tied states principle. Two states are said to be tied when
there exists an equivalence relationship between them (transitions leav-
ing each of these two states are analogous and have equal probabilities)
[16]. Nevertheless, this procedure is not carried out for letters M, W, m or
w for which the probability of segmentation into 3 segments is high, and
therefore, there are enough examples to train separately the parameters
corresponding to the third segment for each of these letters. A further
improvement consisted of considering context-dependent models for
uppercase letters depending on their position in the word: first position
whether in an uppercase or cursive word, or any different position in an
uppercase word. The motivation behind this is that features extracted

αt
l 1+

0( ) αt
l

N 1–( )= l 0 … L 2–, ,= t 0 1 … T 1–, , ,= 33( )

βt
l 1– N 1–( ) βt

l
0( )= l 1 … L 1–, ,= t 0 1 … T 1–, , ,= 34( )



from these two categories of letters can be very different, since they are
based on global features such as ascenders which strongly depend on the
writing style by way of the writing baselines.

In addition to the learning set, we use a validation set in training on
which the re-estimated model is tested after each iteration of the training
algorithm. At the end of training, reached when the increase in the prob-
ability of generating the learning set by the models falls below a given
threshold, the stored HMM parameters correspond to those obtained at
the iteration, maximizing the likelihood of generating the validation set
(and not the learning set) by the models. This strategy allows the models
to acquire a better generalization over unknown samples.

4.4.  The recognition phase

The task of the recognition problem is to find the word w (or word
sequence) maximizing the a posteriori probability that w has generated
an unknown observation sequence O:

Applying Bayes’ rule to this definition, we obtain the fundamental equa-
tion of pattern recognition,

Since Pr(O) does not depend on w, the decoding problem becomes
equivalent to maximizing the joint probability,

Pr(w) is the a priori probability of the word w and is directly related to
the language of the considered task. For large vocabularies, Pr(w) is
very difficult to estimate due to the lack of sufficient training samples.
The estimation of Pr(O|w) requires a probabilistic model that accounts
for the shape variations O of a handwritten word w. We assume that such
a model consists of a global Markov model created by concatenating let-
ter HMMs. The architecture of this model remains basically the same as
in training. However, as no information in recognition is available on
the style (orthographic transcription) in which an unknown word has

Pr ŵ O( ) maxw Pr w O( )= 35( )

Pr w O( )
Pr O w( )Pr w( )

Pr O( )
--------------------------------------= 36( )

Pr w O,( ) Pr O w( )Pr w( )= 37( )



been written, a letter model here actually consists of two models in par-
allel, associated with the upper and lower case modes of writing a letter
(Figure 10). As a matter of fact, an initial state (I) and a final state (F)
are considered, and two consecutive letter models are now linked by
four transitions associated with the various ways two consecutive letters
may be written: uppercase-uppercase (UU), uppercase-lowercase (UL),
lowercase-uppercase (LU) and lowercase-lowercase (LL). The probabil-
ities of these transitions are estimated by their occurrence frequency
from the same learning database which served for HMM parameter esti-
mation. The probabilities of beginning a word by an uppercase (0U) or
lower-case letter (0L) are also estimated in the same way.
      

This architecture is more efficient than usually adopted methods which
generate a priori two or three possible ASCII  configurations of words
(fully uppercase, fully lower-case or lower-case word beginning with an
uppercase letter). Indeed, these methods quickly become tedious and
time consuming when dealing with a word sequence rather than a single
word, besides the fact that they cannot handle the problem of mixed
handwritten words (e.g. Figure 1e). The proposed model elegantly
avoids these problems, while the computation time increases only lin-
early. Recognition is performed using the variant of the Viterbi algo-
rithm described in Section 2, allowing an implicit detection during
recognition of the writing style which can be recovered by the back-
tracking procedure.

5 Experiments

Experiments were carried out on unconstrained handwritten French city
name images located manually on real mail envelopes. The sizes of the

Figure 10. Global recognition model for lexicon word METZ.
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learning, validation and test databases were 11,106, 3,610 and 4,280,
respectively. To simulate the address recognition task, we assume that
the city names in competition are independent for a given list of corre-
sponding postal code hypotheses. Under this assumption, for each
image in the test set, we choose N -  1 city names from a vocabulary of
9,313 city names. The prior probabilities were assumed to be equal, so
that the average perplexity was maximum and equal to N. In our tests,
the values chosen for N were 10, 100 and 1,000. These values have a
physical meaning since they simulate the case where 1, 2 or 3 digits in
the postal code are ambiguous (1, 2 or 3 ambiguous digits give rise to
10, 100 or 1,000 possible postal codes). Recognition was carried out
using the logarithmic version of the Viterbi procedure described in Sec-
tion 2, while for training we used the Baum-Welch algorithm. Results of
the tests are reported in Table 1, in which RR(k) corresponds to the pro-
portion of the correct answers among the k best solutions provided by
the recognition module. Figure 11 shows some well-recognized images
by our approach.

The results shown in Table 1 prove that HMMs can be successfully used
for designing a high-performance handwritten word recognition system.
As mentioned in Section 3.3, even though the features used are not very
discriminative at the grapheme level and do not capture fine details of
the letters, the association (sequence) of these features to describe words
in an ordered way is very discriminative, thanks to redundancy. This
discrimination is as high as the length of the feature sequence extracted
from the unknown word image. Furthermore, the description of the
graphemes with features which do not take into account details, make

TABLE 1. Recognition rates obtained on various lexicon sizes.

Lexicon RR(1) RR(2) RR(3) RR(4) RR(5)

10 99.0% 99.8% 99.9% 99.9% 100.0%

100 96.2% 98.2% 98.8% 99.2% 99.4%

1,000 88.5% 93.4% 94.8% 95.8% 96.4%

Epaignes La Motte Les Mathes Rennes Cedex

Figure 11. Some examples of well-recognized images.



these features more visible in the training set, thus ensuring a reliable
estimation of the probability of observation of these features. Prepro-
cessing and segmentation features also have been proven to signifi-
cantly contribute to recognition accuracy [38]. It is not obvious to
compare our approach with other works since we are not using the same
databases, and also because our system recognizes actual French city
names which may consist of one or several words. However, our results
seem to compare favorably with others in the literature [40], [47]. Con-
fusions in our system come mainly from poor images (Figure 12a),
words with overlapping and touching characters (Figure 12b), words
with truncated characters (Figure 12c), images with underline or with
line above them (Figure 12d), or the lack of examples to reliably esti-
mate some model parameters.

6 Rejection

Usually, systems designed for real tasks are required to have confusion
rates (CR) lower than some threshold depending on economical criteria.
A typical value of accepted CR in postal applications is 1%, while a
much lower value is required in the case of bank check processing.
Therefore, it is necessary to consider in our approach a rejection crite-
rion. In this perspective, we must go back to the Bayes formula in equa-
tion (36) to compute Pr(O). When O is known to belong to the lexicon,
as in our previous experiments, Pr(O) can be obtained simply by

Then rejection can be established by requiring Pr(w|O) to be greater
than a given threshold. Table 2 shows, when considering a dynamic lex-
icon of size 100, the evolution of the recognition rate and reliability
(defined as the proportion of correct answers among the accepted
images) as a function of the rejection rate by varying the threshold
value, when the correct answer is guaranteed to belong to the lexicon.

Figure 12. Some examples of misrecognized images.
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In real applications, however, the processed word image is not guaran-
teed to belong to the lexicon, since it can be the result of a city name
mislocation or a wrong dynamic generation of the lexicon (due to an
important error in postal code recognition). To cope with this problem,
we have randomly generated lexicons, half of which do not contain the
correct answers. In this case, we express Bayes probability as proposed
in [9] by

where pin = 0.5 is the a priori probability that w belongs to the lexicon
and pout is its complement; pout = 1 -  pin. We approximated the term
Pr(O|out) by the output of an ergodic HMM trained using the Baum-
Welch algorithm on the same set used to train the character models
(although a more accurate set should also have included words that do
not correspond to city names). The number of states of this HMM was
set to 14 after several trials. Table 3 shows, for a dynamic lexicon of size
100, the evolution of the recognition rate and reliability as a function of
the rejection rate, when the correct answer is not guaranteed to belong to
the lexicon. Note that in this experiment, the recognition rate cannot
exceed 50%, since pin = 0.5.

TABLE 2. Recognition rate (RC) and reliability (RL) as a function of rejection 
rate (RJ) when the word image is guaranteed to belong to the lexicon.

RJ 0.0 1.9 4.3 7.0 7.7 8.6 9.0 9.8 10.9

RC 96.2 95.4 94.0 92.0 91.5 90.8 90.4 89.8 88.8

RL 96.2 97.2 98.2 98.9 99.1 99.3 99.4 99.5 99.7

TABLE 3. Recognition rate (RC) and reliability (RL) as a function of rejection 
rate (RJ) when the word image is not guaranteed to belong to the lexicon.

RJ 0.0 24.9 29.0 34.2 41.4 48.2 51.6 53.6 57.3

RC 48.0 47.5 47.1 46.7 45.8 44.0 42.8 42.0 39.6

RL 48.0 63.2 66.4 70.9 78.2 84.9 88.6 90.6 92.8

Pr w O( )
pin Pr O w( ) Pr w( )××

pin Pr O w( ) Pr w( )×
w

∑× pout Pr O out( )×+

------------------------------------------------------------------------------------------------------------------= 39( )



7 Summary

In this chapter, we described a complete system designed to recognize
unconstrained handwritten words. The results obtained show that our
approach achieves good performance, given that the data come from
real-word images and that the writers were not aware that their words
were to be processed by computer. One of the main strengths of our sys-
tem lies in its training phase, which does not require any manual seg-
mentation of the data. Due to the large size of the vocabulary, our
Markovian modeling is carried out at the character level. Character
HMMs model not only segmented shapes, but also segmentation points,
leading to better discrimination between letters. By building the word
model as a sequence of character models, each consisting of a pair of
associated uppercase and lower-case HMMs, the writing style is implic-
itly detected during recognition. An error analysis shows that our system
can still be improved in most of its components. The segmentation algo-
rithm should be optimized so as to be able to systematically split all the
characters, particularly the overlapping and touching characters. Indeed,
it is better to have pieces of characters which can be gathered during
recognition, than segments containing more than one character. We also
need more relevant features, since uppercase letters, lower-case letters,
numerals and other special characters may be encountered in free-hand-
writing. This increases the level of ambiguity of the shapes generated by
our segmentation algorithm, and therefore, a high level of description of
these shapes is required. Moreover, given that our model assumes the
independency between different feature sets (see Section 2), adding new
feature sets does not increase the complexity from the training point of
view and increases only linearly the required amount of memory to store
the parameter values. A solution to avoid the inherent loss of informa-
tion when generating our codebooks or feature sets is to replace discrete
HMMs by semi-continuous HMMs. This can be particularly beneficial
for our histogram-based features and segmentation features.
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