
S.I.: MACHINE LEARNING APPLICATIONS FOR SECURITY

Off-line signature verification using elementary combinations
of directional codes from boundary pixels

Md Ajij1 • Sanjoy Pratihar2 • Soumya Ranjan Nayak3 • Thomas Hanne4 • Diptendu Sinha Roy1

Received: 6 December 2020 / Accepted: 19 February 2021

� The Author(s) 2021

Abstract

Verifying the genuineness of official documents, such as bank checks, certificates, contract forms, bonds, etc., remains a

challenging task when it comes to accuracy and robustness. Here, the genuineness is related to the degree of match of the

signature contained in the documents relating to the original signatures of the authorized person. Signatures of authorized

persons are considered known in advance. In this paper, a novel feature set is introduced based on quasi-straightness of

boundary pixel runs for signature verification. We extract the quasi-straight line segments using elementary combinations

of the directional codes from the signature boundary pixels and subsequently we obtain the feature set from various quasi-

straight line classes. The quasi-straight line segments provide a blending of straightness and small curvatures resulting in a

robust feature set for the verification of signatures. We have used Support Vector Machine (SVM) for classification and

have shown results on standard signature datasets like CEDAR (Center of Excellence for Document Analysis and

Recognition) and GPDS-100 (Grupo de Procesado Digital de la Senal). The results establish how the proposed method

outperforms the existing state of the art.

Keywords Signature verification � Quasi-straightness � Biometrics � Person identification

1 Introduction

Today, recognition of persons by machines is an active

area of research in which biometrics plays an essential role

in the recognition models. The developed models are

generally based on two common biometric feature types,

physical features, such as face, fingerprint, retina, etc.

[14, 23, 32], and behavioral features, such as voice and

handwriting [22, 42]. Signature is considered as human

behavioral characteristic with which individuals can be

uniquely identified. Therefore, when it comes to security

and fraud prevention, the signature feature can be used to

design authentication systems. Bank checks, contract doc-

uments, certificates, for example, are often faked and

claimed to be an original. Thus, for the verification of this

type of document, we should have prior knowledge about

the original signers and their original signature style.

Therefore, to investigate the genuineness of a signed doc-

ument, an automated signature verification can be applied.

Here, we consider that we have prior knowledge of the

signers and a ready-made dataset with genuine signatures

of the signers (for the training of the recognition model).

& Thomas Hanne

thomas.hanne@fhnw.ch

Md Ajij

mdajij@nitm.ac.in

Sanjoy Pratihar

sanjoy@iiitkalyani.ac.in

Soumya Ranjan Nayak

nayak.soumya17@gmail.com

Diptendu Sinha Roy

diptendu.sr@nitm.ac.in

1 Department of Computer Science and Engineering, National

Institute of Technology Meghalaya, Shillong, India

2 Department of Computer Science and Engineering, Indian

Institute of Information Technology Kalyani, Kalyani, India

3 Amity School of Engineering and Technology, Amity

University Uttar Pradesh, Noida, India

4 School of Business, FHNW University of Applied Sciences

and Arts Northwestern Switzerland, Riggenbachstrasse 16,

CH – 4600 Olten, Switzerland

123

Neural Computing and Applications

https://doi.org/10.1007/s00521-021-05854-6 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5636-1660
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-05854-6&domain=pdf
https://doi.org/10.1007/s00521-021-05854-6

There are two types of approaches to automating signature

verification: online verification [1, 11, 12, 17, 41] and off-

line verification [10, 13, 18, 33, 35, 44]. Off-line signature

verification is considered more challenging than online

verification, because dynamic information, such as pen-tip

pressure, velocity, and acceleration of the pen-tip, is not

available in case of off-line signature images. On the

contrary, the special arrangements for the acquisition of the

signatures make the online method unsuitable in practice

on several occasions. Here, too, we have to go offline to

verify the genuineness of existing legal documents or

papers.

This paper presents a novel feature set for off-line sig-

nature verification. The objective is to detect a faked sig-

nature in relation to a particular signer if we have a ready

dataset of genuine and a sample of faked signatures of the

signer. There are three basic types of forgeries, namely

random forgeries, simple forgeries, and skilled forgeries.

For the first two types, the faked signature is created

without knowing the name, signature shape, etc., or they

are not done skillfully. But, in the case of skilled forgeries,

the creator of the faked signature is assumed to be an expert

in imitating the signature shape and style, and the genuine

signature style is known to the imitator. It is obvious that

skilled forgery detection is more challenging in the absence

of dynamic features.

Related works and motivation: The performance of a

verification model depends on the set of features being

used for the model. A lot of work has been done related to

off-line signature verification which uses various types of

feature sets for the working of the model. In most of the

works, the features are topology, geometric information,

gradient, structural information, and concavity bases

[13, 26, 28, 33, 39]. For example, Ferrer et al. [13] pro-

posed a method that uses a set of geometric features

specified in the description of the signature envelope and

the distributions of the strokes. Subsequently, hidden

Markov model, support vector machine and Euclidean

distance classifier were used for the verification process.

ZulNarnain et al. [52], in a recent work, have introduced a

signature verification scheme based on geometric features

like side, angle, and perimeter of the triangles which are

derived after triangulation of a signature image. For the

classification, they used the Euclidean classifier and voting-

based classifier. Some works are reported which are based

on gray value distribution [21, 24, 48], directional run of

pixels [5, 35, 36], pixel surroundings [31] and curvature

related features [18]. Also, graphometric feature-based

works are available in the literature [4]. In [29], the authors

proposed a shape feature called chord moment to analyze

upper and lower signature envelopes. For signature verifi-

cation, a support vector machine (SVM) was used with the

chord moment-based features. Frequently, in a model,

multiple features have been used in combination to

improve the classification accuracy of the model. For

example, in [35], along with the directional feature,

moment information and gray value distribution have been

used. The authors have used 16-directional feature obtained

from the distribution of pixels in the thinned signature

strokes. A combination of different types of features makes

the feature extraction part costly. Clearly, the computation

of moment information along with the 16-directional fea-

ture is computationally costly considering the model to be

used for real-time applications. In a very recent work [44],

proposed by Serdouk et al., the directional distribution is

not the sole feature extraction policy. Here, a directional

distribution-based longest run feature is combined with

gradient local binary patterns (GLBP) to strengthen the

feature set where the longest runs have been considered in

horizontal, vertical, and two major diagonal directions. So,

they have used a combination of topological and gradient

features. As a topological feature, the longest run of pixels

has been used. Gradient information is extracted using

Local Binary Pattern (GLBP) in the neighborhood. Com-

puting GLBP at each pixel of the signature image can be

considered costly. Serdouk et al. proposed a verification

system which is based on the Artificial Immune Recogni-

tion System (AIRS). A template-based verification

scheme was also presented [50]. The method they provide

is based on encoding the geometric structure of signatures

using grid templates.

We also note that many works in the state-of-the-art use

ensembles of multiple classifiers to produce best results.

For example, Ooi et al. [37], in a recent work, presented a

framework based on Discrete Radon Transform (DRT),

Principal Component Analysis (PCA) and a Probabilistic

Neural Network (PNN) to identify forgeries from genuine

signatures. But in applications, the designed hardware

device should act quickly for classification and decision

making. A summary of the existing methods and their

classification techniques is given in Table 1.

Though several methods or recognition models have

been developed, the results from the existing methods

corroborate that there is still plenty of scope for

improvement in terms of accuracy and robustness. In

addition, there is scope to propose a strong feature set

that can collaborate with a low-complexity classifier to

emerge as a better performer. It will be an additional

advantage if the feature set can be easily extracted from

the signature images. In this paper, we have proposed a

novel set of features from the quasi-straight digital curve

segments defining the signature strokes. The following

sections describe the proposed method and experimental

results in detail. The contributions in this paper are

mentioned below.

Neural Computing and Applications

123

1. We used the idea of quasi-straightness of the pixel runs

along the edges defining the signature boundaries. The

orientations of the quasi-straight edge segments lead to

the categorization of the edge segments based on the

singular and non-singular directions. The categories or

the various classes gave us a vector of features. The

idea of quasi-straightness enabled us to catch longer

edge segments with bends up to some extent.

2. In the proposed method, feature extraction is very fast

and robust as it computes the quasi-straight edge

segments from the edge contour, using Freeman’s 8-N

chain code. The complexity is linear with the number

of edge pixels in the signature boundary.

3. The method is invariant to the presence of noises like

dots, blobs, or small strokes in the signature images.

4. From results on standard signature datasets, such as

CEDAR (Center of Excellence for Document Analysis

and Recognition) and GPDS-100 (Grupo de Procesado

Digital de la Senal), it is perceived that the feature set

selected by us outperforms the existing state of the art.

2 Proposed method

The directional distribution of edge pixels is often con-

sidered an important feature. Here, in this paper, we pro-

posed a set of features using the run of pixels along the

signature edge boundary. To do so, we introduced classes

of almost straight line segments following some straight-

ness criteria. In the beginning, the set of edge pixels E,

coming from the signature boundary, is obtained by

Table 1 Working policies of the

existing methods and the

associated classifiers (listed

chronologically)

Method Features Classifier

Kalera et al. 2004 [26] Gradient, structural & concavity Bayes classifier

Lv et al. 2005 [35] Directional features SVM

Justino et al. 2005 [25] Pixel density, gravity center, SVM & HMM

Curvature

Hanmandlu et al. 2005 [21] Angular distribution of pixels Takagi-Sugeno (TS) model

Ferrer et al. 2005 [13] Geometric features HMM, SVM

Chen-Srihari 2006 [10] Graph matching TPS mapping

Larkins-Mayo 2008 [33] Gradient direction Similarity score heuristic

Ruiz-del Solar et al. 2008 [46] Local interest points Bayes classifier

Vargas et al. 2008 [48] High pressure points& k-NN and PNN

Polar distribution

Nguyen et al. 2010 [36] Direction feature and gradient SVM

Kumar et al. 2010 [30] Morphological features SVM

Bertolini et al. 2010 [4] Graphometric features, curvature Genetic algorithm

Kumar et al. 2012 [31] Pixel surroundedness RBF-SVM, MLP

Hamadene et al. 2012 [20] Contourlet transform SVM

Kovari-Charaf, 2013 [28] Height, width, area, etc. Probabilistic model

Jiang et al. 2013 [24] GLBP and Improved GLBP SVM

Kumar-Puhan, 2014 [29] Upper and lower SVM

Envelope; chord moments

Guerbai et al. 2015 [18] Curvelet transform RBF-SVM, MLP

Pham et al. 2015 [39] Geometry-based features. Likelihood ratio

Serdouk et al. 2016 [44] Gradient Local Binary k-NN

Patterns (GLBP) and LRF

Pal et al. 2016 [38] Uniform Local Binary Nearest Neighbor

Patterns (ULBP)

Loka et al. 2017 [34] Long range correlation (LRC) SVM

Zois et al. 2019 [51] Lattice arrangements and Decision tree

Pixel distribution

Sharif et al. 2020 [45] Local pixel distribution GA, SVM

Batool et al. 2020 [3] GLCM, geometric features SVM

Proposed Quasi-straight line segments SVM

Neural Computing and Applications

123

applying a 3� 3 filter on the binarized signature image

[15]. We make the boundary edge 1-pixel thick, through

the removal of redundant pixels, using a morphological

thinning procedure [15]. For binarization, we used the

method given in [43]. The edge boundary for a sample

signature image (cropped and zoomed portion) is shown in

Fig. 1. The edge pixels coming from E can be understood

as a set of digital straight line segments. The neighbors of a

pixel are represented using the values coming from the

range f0; 1; 2; . . .; 7g (considering 8-N). The pixel in the

east with respect to the center pixel is represented by 0 and

the other pixels by 1, 2, 3, 4, 5, 6, and 7 in counter

clockwise order. So, the southeast pixel gets the code 7.

This scheme is referred to as Freeman’s chain code. The

straight-line segments are represented as a sequence of

pixels which follow some regularity properties (in terms of

the chain code values) [27, 40]. A curve segment is said to

be digitally straight if and only if there are at most two

values, differing by �1 mod 8, in the chain code of the

segment, and for one of these two values, the run-length

must be 1 (Property–1). The code always with run-length 1

is referred to as singular code (s) and the code other than

the singular code is referred to as non-singular code (n).

Also, the runs of the non-singular code n can have only two

lengths, which are consecutive integers (Property–2). Here,

only Property-1 was used for the detection of the straight

line segments and subsequent feature extraction. Hence-

forth, as we only use Property–1, the extracted straight line

segments will be referred to as quasi-straight line seg-

ments. We considered twelve quasi-straight line classes,

using all possible combinations of singular and non-sin-

gular codes. The features used in our proposed method are

based on the distribution of the boundary edge pixels

among the twelve different quasi-straight line classes. The

flowchart shown in Fig. 2 represents the proposed method.

2.1 Quasi-straight line segment classes

Twelve different classes C1;C2;C3; . . .;C12 of quasi-

straight line segments are considered in connection with

Property-1 of digital straightness. Class-wise singular (s)

and non-singular (n) code values are: C1: n ¼ 0, s ¼ �; C2:

n ¼ 0, s ¼ 1; C3: n ¼ 1, s ¼ 0; C4: n ¼ 1, s ¼ �; C5: n ¼ 1,

s ¼ 2; C6: n ¼ 2, s ¼ 1; C7: n ¼ 2, s ¼ �; C8: n ¼ 2, s ¼ 3;

C9: n ¼ 3, s ¼ 2; C10: n ¼ 3, s ¼ �; C11: n ¼ 3, s ¼ 4; C12:

n ¼ 4, s ¼ 3. Figure 4 demonstrates the classes concerning

an example digital curve. Here, the code value � denotes

that the code is absent or not defined. In understanding the

quasi-straight line segments present in the signature stroke

boundaries, no restriction was applied on the run lengths of

the non-singular code (n). The number of classes could be

further increased considering the variations in non-singular

code run length, but it would be over-sensitive to detect the

genuine signatures.

The method used for the detection of quasi-straight line

segments is given in Algorithm 1. The algorithm takes the

edge map E, non-singular code n and singular code s as

input. It selects an initial run of two consecutive pixels p1
and p2, where the direction code from p1 to p2 is n, i.e.,

dir(p1,p2) ¼ n. Then, this run, initiated from the seed

ðp1; p2Þ, extends along the curve, if possible, in two

prospective directions n and ðnþ 4Þ mod 8 (the non-sin-

gular direction n and its opposite direction). The singular

direction s is an important part of this extension which is

another input to the algorithm. To extend the current run,

the Procedure Extend-Segment is invoked as shown in

Line 6 and Line 7 of Algorithm 1. The maximal quasi-

straight line segment is finally reported, which started from

the seed ðp1; p2Þ (see Fig. 3). The process is continued to

report all quasi-straight line segments that suit non-singular

code n and singular code s, thereby giving a set (class) of

quasi-straight line segments. Different sets (classes) are

reported by varying the code values n and s. The algorithm

shown here considers that s 6¼ �. In case of s ¼ � (e.g., C1:

n ¼ 0, s ¼ �), the segment from the seed ðp1; p2Þ is

extended in direction n and ðnþ 4Þ mod 8 just by checking

the neighborhood of the pixels. The algorithm halts at a

point if either its neighbor is not in direction n (or

ðnþ 4Þ mod 8) or there exists no unvisited neighbor pixel.

It must be noted that the Procedure Extend-Segment

returns Status= TRUE only if the singular code s appears at

Fig. 1 Sample signature from CEDAR dataset, the binarized image

(top row); the set of boundary edge pixels, E (shown as cropped and

zoomed for clarity; bottom row)

Neural Computing and Applications

123

least once in the run when s 6¼ �. In our proposed method, a

quasi-straight line segment is considered for inclusion into

a class if its length is at least a predefined threshold l (see

Line 8 of Algorithm 1). The first-hand selection of l is

made on the basis of experimentations so that very small

segments are removed from consideration. Necessary dis-

cussions are provided in Sect. 3.3.

Algorithm 1: Detect-Quasi-Straight-Segments
Input: Thin boundary edge E, non-singular code n, singular code s.
Output: The set of quasi-straight segments, Q = {q1, q2, q3, . . . , qk} made of n and

s.

1 Q ← {φ}, i ← 1, qi ← {φ}
2 Continue ← False, Visited ← {φ}
3 if ∃(p1, p2) ∈ E s.t. dir(p1, p2) = n and {p1, p2} /∈ Visited then

4 Continue ← True, qi ← {p1, p2}, Visited ← {p1, p2}

5 while Continue do

6 qi ← Extend-Segment(p2, n, s, qi, Visited)
7 qi ← Extend-Segment(p1, (n + 4) mod 8, (s + 4) mod 8, qi, Visited)
8 if |qi| ≥ l then

9 Q ← Q ∪ {qi}, i ← i + 1, qi ← {φ}

10 Search for the next seed-pair (p1, p2) ∈ E
11 if ∃(p1, p2) s.t. dir(p1, p2) = n and {p1, p2} /∈ Visited then

12 qi ← {p1, p2}, Visited ← {p1, p2}

13 else

14 Continue ← False

15 return Q

Procedure Extend-Segment(p, n, s, qi, Visited)

1 Cond ← True, d ← n
2 while Cond do

3 if ∃p′ in 8-N of p and p′ /∈ Visited then

4 if d = n and (dir(p, p′) = n or dir(p, p′) = s) then

5 if dir(p, p′) = n then

6 p ← p′, qi ← qi ∪ {p}, Visited ← {p}
7 d ← n

8 else

9 p ← p′, qi ← qi ∪ {p}, Visited ← {p}
10 d ← s

11 else if d = s and dir(p, p′) = n then

12 p ← p′, qi ← qi ∪ {p}, Visited ← {p}
13 d ← n

14 else

15 Cond ← False

16 else

17 Cond ← False

18 return qi

Neural Computing and Applications

123

2.2 Features from the classes

Of each of the twelve different quasi-straight line classes,

we have the following three features.

– The number of quasi-straight line segments in the class

Ci, denoted as ni.

– The pixel density of the class Ci, i.e.,
pi
P
, where pi is the

number of edge pixels in the class and P is total edge

pixels from the signature boundary E.

– Average edge length, i.e., pi
ni
(in terms of pixels) in the

class.

Hence, from the twelve classes of line segments, we

have the following 36 feature values. So, from this part, we

have a feature vector hf1; f2; f3; . . .; f36i, directly using the

distribution of edge pixels among classes. Here, as an

example, the distribution of edge pixels in class C5 and

class C6 are shown in Fig. 5 with respect to the signature

image shown in Fig. 1.

Further, the count of common pixels (cp) in two

neighboring classes Ci and Cj where j ¼ ðiþ 1Þ mod 12 is

considered as a feature of Ci. The existence of common

pixels in two neighboring classes defines the smoothness of

the boundary curves. We consider the ratio
cp
P
for every

class and this adds twelve more features to the feature

vector, i.e., we get hf37; f38; f39; . . .; f48i.
In addition to these 48 features, we added 30 more

features. The rectangular signature area is first divided into

six equal-sized rectangular regions R1;R2; . . .;R6, as shown

in Fig. 6. Then, we ask the two questions as given below.

Fig. 2 Flowchart showing the

proposed scheme for signature

verification

Fig. 3 Extending the segment

from a seed (p1; p2) in direction

n and ðnþ 4Þ mod 8

Neural Computing and Applications

123

1. Considering a region Ri, which class Cj has maximum

contribution in Ri, i.e., which class is the leader in a

given region?

2. Given the class Cj, in which region does it have the

maximum contribution and what is the contribution

(pixel density)?

These pieces of information help us to measure the degree

of presence of the classes within the signature image area.

The first question provides us with 6 values, i.e., the six

class numbers, which are region-wise leaders. On the other

hand, the second question provides us with 24 values. If the

class Ci (one of the 12 classes) is the leader in region Rj

ðj ¼ 1; 2; . . .; 6Þ, we have feature values j and
rij
P
, where, rij

is the count of pixels in region Rj concerning class Ci.

Hence, from this part, we obtain a total of 30 feature val-

ues, i.e., we have the feature vector, hf49; f50; f51; . . .; f78i.

2.3 Sample feature vector

We have a feature vector of length 78 for every signa-

ture image. As an example, the extracted feature vector for

the signature image shown in Fig. 1 is presented in

Table 2. The first three columns represent the feature val-

ues hf1; f2; f3; . . .; f36i providing the number of quasi-

straight line segments (ni), pixel density (pi=P), and aver-

age edge length (pi=ni) of all the twelve classes. The fourth

column lists 12 values corresponding to 12 classes giving

common pixel densities (cp=P) with the neighboring clas-

ses. The fifth column shows 12 values (one against each

class), mentioning the region number where the class Ci

has a maximum contribution, denoted by mCi
. The sixth

column contains another 12 values showing the class-wise

pixel densities indicated by rij=P (for all i ¼ 1; 2; . . .; 12, as

discussed in Sect. 2.2). The last column shows which class

Fig. 4 The classes of quasi-

straight line segments for a

digital curve

Neural Computing and Applications

123

Ci has a maximum contribution in a region Rj i.e., the

region-wise leaders, denoted as lRj
. Here, for example, C6

is the leader in R2, R3, R4, R5; C3 is the leader in R6; C11 is

the leader in R1. We obtain 6 values from this part.

Thereby, in total, we have a 78-dimensional feature vector.

Representative comparisons of the feature values repre-

senting objects from the same class, and objects from

different classes are shown in Figs. 7, 8, 9, 10, 11, and 12.

The plots clearly show that our features can be used to

differentiate the genuine signatures from the faked.

3 Experiments

Our presented signature verification scheme is signer

dependent. For performance evaluation, we have carried

out the tests for each signer individually. Also, we have

used standard available performance measurement meth-

ods. One of them is, False Rejection Rate (FRR), is defined

by the percentage of genuine signatures rejected by the

system. The other is the False Acceptance Rate (FAR),

which gives the percentage of faked signatures accepted as

genuine. Also, FRR and FAR are combined to report the

total verification error and termed as Average Error Rate

(AER). The AER is a simple average of FAR and FRR

when the CEDAR dataset is considered, but for the GPDS-

100, the weighted mean of FAR and FRR are taken,

because test counts for genuine signatures and faked sig-

natures differ. Effectively, AER reflects the total verifica-

tion error. For various set-wise results (different training

and test sets of images), we have shown an equal error rate

(EER) also. Here, EER is computed as the mean (weighted

mean in case of GPDS-100) of respective FAR and FRR of

the set, which shows the minimum difference in FAR and

FRR values. Experiments were conducted on two standard

datasets, as discussed in the following sections.

3.1 Test datasets

The CEDAR dataset contains signatures of 55 different

signers. For each signer, there are 24 genuine signatures

and 24 skillfully faked signatures. So, the CEDAR dataset

has a total of 1320 genuine signatures and 1320 skilled

forgeries. The signature images have 8-bit gray value levels

and they were scanned at 300 dpi. The dataset is created by

the Center of Excellence for Document Analysis and

Recognition [8].

The GPDS corpus was prepared by Grupo de Procesado

Digital de Senals [16]. The collection consisting of the first

Fig. 5 Edge pixels in Class C5,

n ¼ 1, s ¼ 2 (left) and Class C6,

n ¼ 2, s ¼ 1 (right) for the

signature image shown in Fig. 1

Fig. 6 The six regions R1, R2, R3, R4, R5 and R6 of the signature

content area

Table 2 Extracted feature set used in the proposed method in relation

to the signature image shown in Fig. 1

Class ðCiÞ ni pi/P pi/ni cp=P mCi
rij/P lRj

C1 36 0.10 9.92 0.06 4 0.07 –

C2 45 0.16 12.60 0.05 4 0.05 –

C3 41 0.16 14.63 0.06 1 0.05 R6

C4 32 0.08 8.78 0.06 2 0.02 –

C5 85 0.28 12.09 0.16 4 0.10 –

C6 75 0.41 19.81 0.13 4 0.15 R2, R3, R4, R5

C7 69 0.14 7.62 0.08 3 0.05 –

C8 53 0.17 11.45 0.03 3 0.06 –

C9 24 0.06 9.75 0.02 1 0.02 –

C10 11 0.02 7.55 0.02 1 0.01 –

C11 22 0.09 15.18 0.04 1 0.06 R1

C12 48 0.15 11.52 0.08 4 0.08 –

Neural Computing and Applications

123

100 signers, referred to GPDS-100, was used by us. With

respect to each person, there are 24 genuine signatures and

30 skilled forgeries. This gives a total of 2400 genuine

signatures and 3000 skilled forgeries. The signature images

are obtained as binary images.

Sample signature images, both genuine and faked, from

CEDAR and GPDS-100 datasets are shown in Figs. 15

and 16, respectively. In many cases, it is difficult to find

out differences between the faked signatures and the gen-

uine signatures of the respective person. Hence, we con-

sider these types of forgeries as skilled forgeries.

Fig. 7 Comparison of 12 feature values showing ni class-wise: between original sample-1 and original sample-9 related to Person-34 in CEDAR

(left); between original sample-1 and faked sample-9 related to Person-34 in CEDAR (right)

Fig. 8 Comparison of 12 feature values showing pi=P class-wise: between original sample-1 and original sample-9 related to Person-34 in

CEDAR (left); between original sample-1 and faked sample-9 related to Person-34 in CEDAR (right)

Fig. 9 Comparison of 12 feature values showing pi=ni class-wise: between original sample-1 and original sample-9 related to Person-34 in

CEDAR (left); between original sample-1 and faked sample-9 related to Person-34 in CEDAR (right)

Fig. 10 Comparison of 12 feature values showing cP=P class-wise: between original sample-1 and original sample-9 related to Person-34 in

CEDAR (left); between original sample-1 and faked sample-9 related to Person-34 in CEDAR (right)

Neural Computing and Applications

123

3.2 Support vector machine (SVM)

The support vector machine (SVM) is a well-accepted

classifier in two-class classification problems. It is

observed that in the signature verification problem, the

SVM was used extensively [2, 5, 6, 29, 47, 50]. In our

proposed method, performance evaluation is done for each

individual signer, and our problem is considered a two-

class classification problem. We considered Class-0 and

Class-1 to correspond with the genuine signature class and

the faked signature class, respectively.

For both CEDAR and GPDS-100, signatures from the

genuine category and signatures from the faked category

were taken to train the model. How many signatures are to

be taken from each category depends on the training size in

use. For example, we refer to this training size as h16?16i

when 16 signatures from the genuine category and 16

signatures from the faked category were taken to train the

model. Other than the size h16?16i, we used training sizes

h12?12i and h8?8i for experimentation. We found that the

LINEAR kernel shows better results than POLY, RBF, and

SIGMOID on our feature set. So, we used the LINEAR

kernel SVM for the classification work.

We used 8-fold cross-validation to set the value of

parameter C. For every person, a set of 48 random signa-

tures (equal contribution from genuine and faked signa-

tures of that person) was considered, and they were divided

into 8 equal groups (6 images per group). During cross-

validation, 7 groups, i.e., 42 images were used for training,

and one group (6 images) was tested. The selection of the

training and testing groups was made in all possible com-

binations, thereby giving a total of 48 test results (con-

sidering all different training samples). Again, the C value

was updated/incremented in a loop with a small variation

(0.0001), starting at 0.0001, and we checked up to 1. The

corresponding C was selected for the person for whom we

have reached a maximum accuracy rate during cross-vali-

dation. Accuracy means how many times Class-0 objects

are reported as Class-0 objects and how many Class-1

objects are reported as Class-1 objects. It must be noted

that 48 tests were carried out for every C value in the loop.

3.3 Results and discussions

For the implementation of the system, we have used C??

in Ubuntu 12.04, Kernel Linux 3.2.0-54-generic 64-bit,

Intel� Core
TM

i5-2310 CPU 2.90GHz. SVM class of

OpenCV has been used for classification. Our system takes

edge length threshold, l, as user input, and this is the only

parameter used as input. This parameter is used to restrict

the small quasi-straight line segments from taking part in

the feature extraction phase. A quasi-straight segment is

considered if its length is at least l. We experimented with

various l values empirically and observed that the system

works well for l ¼ 4. The average error rates, as found by

the proposed method taking various l, for the CEDAR

dataset, are shown in Fig. 13.

Fig. 11 Comparison of 12 feature values showing mCi
class-wise: between original sample-1 and original sample-9 related to Person-34 in

CEDAR (left); between original sample-1 and faked sample-9 related to Person-34 in CEDAR (right)

Fig. 12 Comparison of 12 feature values showing rij=P class-wise: between original sample-1 and original sample-9 related to Person-34 in

CEDAR (left); between original sample-1 and faked sample-9 related to Person-34 in CEDAR (right)

Neural Computing and Applications

123

As an initial setup, for every individual, we had a

training size of h16þ 16i, i.e., 16 genuine signatures and

16 faked signatures were used for training, as mentioned in

Sect. 3.2. Further, to report the error rates (FAR, FRR, and

AER), we carried out the experiments four times by

changing the training set randomly (test set consisting of

the remaining signatures of that individual). The four types

of different random arrangements are referred to as Set-1,

Set-2, Set-3, and Set-4. Such a test result for Set-4 from the

CEDAR dataset is shown in Table 3.

During each test, the corresponding error rates are

recorded, and finally, the resultant FAR, FRR, and AER are

reported. Other than the training size h16?16i, as men-

tioned in Sect. 3.2, we have tested the performance of our

algorithm on training sizes h8?8i and h12?12i also. The

corresponding set-wise results are shown in Tables 4 and 5

with respect to CEDAR and GPDS-100 datasets. The EER

values are reported in Tables 4 and 5 against each training

size considering the various sets of training-test

arrangements.

Comparative results with existing methods are shown in

Tables 6 and 7. Only those existing methods that use

CEDAR and GPDS-100/160/200/300 datasets to report

their results are shown. The corresponding results are taken

from the respective papers where the works are reported.

First, we will discuss the results we obtained in the

CEDAR dataset and then we will discuss GPDS-100. We

notice an average error rate below 3% (FAR = 3.35 and

FRR = 2.39) for the proposed method when applied to the

CEDAR dataset, considering training size h16?16i. We

now discuss the training policies of the other models, and

the corresponding FAR and FRR values. Four methods

corresponding to the four best results, as shown in Table 6,

other than the proposed method, are considered for the

discussion. In their method, Bharathi and Shekar [5] used

chain-code (4-directional)-based directional features from

the contour of the signature. They have also used SVM as

the classifier and obtained FAR = 7.84 and FRR = 9.36. In

their model, they used 12 genuine samples of a person, and

108 random forgeries from other persons for training

(taking 2 from the remaining other persons; 54� 2 ¼ 108).

So, the test size against each person was 12 genuine sig-

natures and 24 forgeries of the same person. Results of the

proposed method using training size h12?12i are better

than their results. Larkins and Mayo [33] used 16 genuine

signatures for training. Then, eight genuine signatures

along with 24 forgeries were used for testing in relation to

the same person. They used the adaptive feature thresh-

olding (AFT)-based similarity score finding method, and

the automatic verification method resulted in FAR = 10.96

and FRR = 8.16. The training policy of these methods is

not directly comparable with ours; still, these pieces of

information give us an idea about the performance of our

proposed method. Kumar and Puhan [29] used the same

training size as we, i.e., 16 genuine and 16 forgeries for

each person. As a classifier, they also used SVM. Corre-

sponding FAR and FRR values are 5.68 and 6.36,

Fig. 13 The error rates (FRR, FAR and AER) are shown with respect

to various edge length threshold l when applied on CEDAR dataset

Table 3 Sample test results on CEDAR dataset; FR: false rejection,

FA: false acceptance

Persons #FR #FA Persons #FR #FA

1 0 1 29 0 1

2 0 0 30 0 0

3 1 0 31 0 1

4 0 0 32 0 0

5 0 0 33 0 0

6 1 1 34 0 0

7 0 0 35 1 0

8 0 1 36 0 0

9 0 0 37 0 0

10 0 1 38 0 1

11 0 0 39 0 0

12 0 1 40 0 0

13 0 0 41 0 0

14 0 0 42 0 0

15 0 0 43 0 0

16 1 1 44 0 0

17 0 0 45 1 0

18 0 0 46 0 1

19 0 0 47 0 0

20 0 0 48 1 1

21 0 0 49 0 0

22 0 1 50 0 0

23 3 2 51 0 0

24 0 0 52 0 0

25 0 0 53 0 0

26 0 0 54 1 0

27 1 1 55 0 0

28 0 0 Total 11 15

Neural Computing and Applications

123

respectively. In their recent work [44], Serdouk et al. used

the same training size as we. So, 16 genuine signatures and

16 forgeries are used in the training stage, and the

remaining signatures (eight genuine ? eight forgeries for

CEDAR and eight genuine ? 14 forgeries for GPDS-100)

are used to test the verification performance. Indeed, we

find this method perfectly comparable with our proposed

method. It is also noted that the work has achieved a

comparable and sometimes better performance than other

systems. Now, in comparison with Serdouk et al., we see

that our proposed method exhibits better FAR=3.35 (Ser-

douk et al.: 4.93) and comparable FRR=2.39 (Serdouk

et al.: 2.12). Loka et al. [34] used two types of training

strategies. In the first strategy, they used genuine and

simulated forgeries, whereas in the second, they used

genuine and only random forgeries. In the testing phase,

the remaining genuine and forgery samples were tested

using a binary SVM. The second strategy is found to be

Table 4 Set-wise verification

results according to the

proposed method on CEDAR

dataset

Training-size: 8þ 8 Training-size: 12þ 12 Training-size: 16þ 16

Set FAR FRR AER FAR FRR AER FAR FRR AER

(%) (%) (%) (%) (%) (%) (%) (%) (%)

1 3.73 2.73 3.23 4.70 2.12 3.41 1.81 2.05 1.93

2 5.00 3.64 4.32 2.88 2.72 2.80 3.86 2.27 3.07

3 4.32 2.39 3.36 4.39 2.57 3.48 4.32 2.73 3.53

4 5.23 2.73 3.98 3.79 2.12 2.96 3.41 2.50 2.96

Mean 4.57 2.87 3.72 3.94 2.38 3.16 3.35 2.39 2.87

EER 3.23 2.80 1.93

Table 5 Set-wise verification

results according to the

proposed method on GPDS-100

dataset

Training-size: 8þ 8 Training-size: 12þ 12 Training-size: 16þ 16

Set FAR FRR AER FAR FRR AER FAR FRR AER

(%) (%) (%) (%) (%) (%) (%) (%) (%)

1 19.73 13.19 16.97 16.73 10.34 14.16 14.86 7.00 12.0

2 19.50 15.69 17.89 14.45 13.84 14.2 15.29 8.13 12.68

3 21.77 13.38 18.23 15.73 12.67 14.5 15.43 8.00 12.72

4 19.68 13.69 17.15 12.45 12.75 12.57 14.57 8.25 12.28

Mean 20.17 13.99 17.56 14.84 12.40 13.85 15.04 7.85 12.42

EER 17.89 12.57 12.28

Table 6 Results of the proposed

method (considering training

size h16?16i) on the CEDAR

dataset in comparison with other

methods

Dataset Method FARð%Þ FRRð%Þ AERð%Þ

CEDAR Surroundedness [31] 08.33 08.33 08.33

Morphological features [30] 11.23 12.39 11.59

Curvelet transform [18] 08.25 07.41 07.83

Gradient, structural and concavity [10] 08.20 07.70 07.90

Gradient direction [33] 07.42 07.75 07.58

Chain code histogram [5] 07.84 09.36 08.60

Chord moments [29] 05.68 06.36 06.02

GLBP and LRF [44] 04.93 02.12 03.54

GSC [26] 19.50 22.45 21.50

Zernike moments [9] 16.30 16.60 16.40

Proposed 3.35 2.39 2.87

Neural Computing and Applications

123

comparable with our proposed method, as we are also

employing random forgeries in training. Taking training

size 16, they obtained FRR=6.22 and FAR=5.33. In con-

clusion, on the CEDAR dataset, the performance of our

proposed method is either better than or comparable to

other methods.

The GPDS dataset is available in various sizes. GPDS-

100 consists of the samples of the first 100 persons, GPDS-

160 of the first 160 persons, GPDS-200 of the first 200

persons and GPDS-300 refers to the set for all 300 persons.

Our test results shown here refer to the GPDS-100 dataset.

For the GPDS-100 dataset, the average error rate according

to our method is 12.42, which is comparable to other

methods (see Table 7). We obtained this result when the

training size h16?16i was used. Serdouk et al. also pro-

vided results for GPDS-100, and the corresponding FAR

and FRR are reported as 13.16 and 11.38 (AER = 12.52)

taking training size = 16, which are comparable to our

results. Our proposed method leads to FAR = 15.04 and

FRR = 7.85, respectively. Good results are obtained for

many individuals (100 signers), but poor results for some

persons downgrade the overall average accuracy. We have

shown group-wise error rates of GPDS-100 in Fig. 14,

where each group contains 10 signers. Group-1 is from

signer 1 to 10, Group-2 is from signer 11 to 20, and so on.

If we consider the best four groups (40% best results) with

a lower average error rate, we have an AER close to 10%.

Fig. 15 Sample signature

images (binarized) from

CEDAR dataset; genuine

signatures in the top row and

faked signatures in the bottom

row

Fig. 16 Sample signature

images (binarized) from GPDS-

100 dataset; genuine signatures

in the top row and faked

signatures in the bottom row

Table 7 Results of the proposed

method (considering training

size h16?16i) on the GPDS-100
dataset in comparison with other

methods

Dataset Method FARð%Þ FRRð%Þ AERð%Þ

GPDS-100/160/300 Surroundedness [31] 13.76 13.76 13.76

Curvelet transform [18] 19.40 12.50 15.95

Gradient direction [33] 14.21 10.48 12.34

Chain code histogram [5] 09.64 13.16 11.40

GLBP and LRF [44] 13.16 11.38 12.52

Geometric features [13] 15.50 16.39 15.94

High pressure points [48] 14.66 10.01 12.33

Local interest points [46] 14.20 16.40 15.30

MDF and the gradient [36] 16.54 13.51 15.03

DCNN [19] 05.99 19.81 12.9

Proposed 15.04 7.85 12.42

Fig. 14 Group-wise error rates FRR and FAR are plotted with respect

to our Set-1 test on GPDS-100 dataset

Neural Computing and Applications

123

Zois et al. reported the same behavior using the GPDS-300

dataset in their recent paper [50].

We notice three other works in the literature that have

been published very recently which employ pixel distri-

bution-based features and geometric features. Zois et al.

[51] presented a method based on lattice structure

arrangements and pixel distribution. They used random

training and testing sets and obtained the FAR ¼ 12:35%,

FRR ¼ 12:21%, AER ¼ 12:28% for the CEDAR dataset

and FAR ¼ 9:11%, FRR ¼ 5:05%, AER ¼ 7:08% for the

GPDS. In the work proposed by Sharif et al. [45], the

authors have used geometric features and features gener-

ated from the study of the local distribution of pixels. They

have used a genetic algorithm-based selection of features

and then finally SVM for classification work. The training

and testing sizes ratio is observed as 70:30 in their

experiments, and they obtained the FAR ¼ 4:17%, FRR

¼ 4:17%, AER ¼ 4:17% for the CEDAR dataset and FAR

¼ 6:67%, FRR ¼ 4:16%, AER ¼ 5:42% for the GPDS.

Batool et al. [3] presented a method that generates the

features by finding the distribution of pixels in regions of

the signatures. They have used SVM for classification. The

training and testing sizes ratio is noted as 70:30 in their

experiments, and they obtained the FAR ¼ 3:34%, FRR

¼ 3:75% for the CEDAR dataset and FAR ¼ 9:17%, FRR

¼ 10:0% for the GPDS.

The proposed method for extracting features is signifi-

cantly fast. For example, the CPU time required to generate

all features for the image shown in Fig. 1 (size =

582� 486, #-edge-pixels=3638) is 0.028 Sec (excluding

binarization). On average, the classification time for a

single image is less than 0.2 Sec (excluding cross-valida-

tion tests) which shows the fitness of the feature set to be

used in real-time applications.

3.3.1 Other datasets and skilled forgeries

In addition to the two datasets (CEDAR and GPDS-100),

we have tested our method in two other datasets. The first

of them is the dataset created at the Netherlands Forensic

Institute (NFI) [7]. The dataset consists of authentic sig-

natures from 100 newly introduced writers and faked sig-

natures from 33 writers (the writers are NFI employees). In

Fig. 17 Sample signature

images from MCSFC dataset

(top row); genuine CEDAR

samples (bottom row)

Fig. 18 Error rates FPR, FRR and EER by all classifiers with respect

to CEDAR (top) and GPDS (bottom) dataset

Fig. 19 Precision and Recall values by all classifiers related to the

GPDS dataset

Neural Computing and Applications

123

total, there are 1953 signatures. The dataset is referred to as

SigComp2009.

Another dataset, consisting of faked signatures imitating

the genuine signatures in the CEDAR dataset is created by

us. A genuine signature is selected for each person, and we

imitate the signature style. The copied signatures were

written on plain paper and captured by a mobile camera.

We refer to this dataset as mobile captured skilled forgeries

of CEDAR genuine signatures or MCSFC in short. For

preparing the MCSFC, special care has been taken to

ensure that our faked signatures look as good as genuine

signatures. Hence, these signatures are highly skilled

forgeries. Sample signature images from MCSFC are

shown in Fig. 17.

In addition to SVM, we have experimented with four

different classification schemes, namely Multi-Layer Per-

ceptron (MLP), Multi-class Classifier (MCC), Random

Forest (RF), and Simple Logistic (SL) Regression. Multi-

Layer Perceptrons (MLP) are used as a type of neural

network, and are employed to perform computational tasks,

such as predictive modeling tasks. The Multi-Class Clas-

sifier (MCC) is used for classification purposes, and nor-

mally consists of more than two classes or outputs. But

variants have been designed for binary classification

problems as well. The Random Forest (RF) classifier

consists of several decision trees on various subsets, and it

takes the prediction from each of the trees based on a

majority, voting scheme and finally predicts the final pre-

diction output. Simple Logistic (SL) or Logistic Regression

Fig. 20 ROC plots for all

classifiers related to the CEDAR

(left) and GPDS dataset (right)

Table 8 Results on scaled down

sample images with respect to

Person-12 in CEDAR

dataset

Classification method Scaled-down factor Training-testing size Accuracy

MLP 2 10-Fold CV 91.66

2 80:20 94.7

3 10-Fold CV 90.08

3 80:20 92.0

SL 2 10-Fold CV 88.0

2 80:20 84.0

3 10-Fold CV 85.08

3 80:20 82.0

SVM 2 10-Fold CV 93.75

2 80:20 90.0

3 10-Fold CV 88.0

3 80:20 92.2

MCC 2 10-Fold CV 85.42

2 80:20 90.0

3 10-Fold CV 75.0

3 80:20 78.5

RF 2 10-Fold CV 83.33

2 80:20 90.0

3 10-Fold CV 80.0

3 80:20 87.08

Neural Computing and Applications

123

is one of the most popular supervised machine learning

techniques. In application purposes, it predicts output as

probabilistic values in [0, 1] [49].

For MLP, we have the following parameter settings:

number of hidden layers ¼ 40, learning rate ¼ 0:3,
momentum ¼ 0:2, batch size ¼ 100, the number of epochs

to train through is 500, and the validation threshold is equal

to 20. For MCC, the batch size is set to 100, the classifier

model is logistic regression with a ridge estimator, and the

random width factor is set to 2.0. For RF, the bag sizes are

the same as the training set size; the batch size is set to 100,

the maximum depth of the trees are unlimited, the number

of iterations to be performed is set to 100. For SL, the

maximum boosting iterations are set to 500, and the batch

size is considered as 100.

To evaluate our proposed method on the SigComp2009

dataset, we have used the training and testing size ratio as

80:20. The detection accuracies are reported as 91:48%,

90:73%, 89:43%, 80:60% and 86:53% for SVM, Random

Forest (RF), Multi-Layer Perceptron (MLP), Multi-class

classifier (MCC) and Simple Logistic (SL), respectively.

The SVM shows the best result, and the proposed method

shows an EER ¼ 8:51% in comparison with 9:15% as

reported by the method given by Blankers et al. [7].

A separate test is conducted for testing on MCSFC using

the training size h16?16i, as mentioned earlier. Three

faked signatures from MCSFC are taken in relation to each

person for the test. Even if there are maximum similarities

with the genuine signatures, we observe notable accuracies

in rejecting them as faked. The FAR value with respect to

MCSFC is found to be 24:5%, i.e., 75:5% of skilled faked

signatures are rejected as faked.

The plots in Fig. 18 show the corresponding FPR, FRR,

EER values for CEDAR and GPDS dataset, respectively.

The ROC plots concerning all the classification methods

are shown in Fig. 20 for both CEDAR and GPDS datasets.

Also, the Precision and Recall values are shown in Fig. 19

with respect to GPDS dataset. We notice that the SVM

shows the best results and RF performs almost similarly.

3.3.2 Scale invariance

We tested our proposed feature set for the identification of

scaled-down signature images. We used scaling factors of 2

and 3 and created images from the CEDAR dataset. Scal-

ing factor k indicates that both height and width are

reduced by a factor k. As representative data, we present

the recognition accuracy when all the classification meth-

ods are used on Person-12 of the CEDAR dataset in

Table 8. Here, the results related to 10-fold cross-valida-

tion and training-testing size ratio 80:20 are shown in the

table. For the full dataset, we found that MLP and SVM

shows an accuracy percentage just above 90.0 for both 10-

fold cross-validation and the training-testing size ratio

80:20 when k ¼ 2, which is very promising because of the

extracted feature values’ normalized nature. Our observa-

tion is that when k increases to 3, the accuracy of the

detection decreases.

3.3.3 Impactful features

For the CEDAR dataset, we consider one test loop for each

of the 55 persons. In one loop there are 16 tests (as there

are 24 genuine and 24 faked signatures and we use h16þ

16i training). The WEKA-attribute-selection method

reports the impactful features at the end of each person’s

test-loop, i.e., after 16 tests. So, 55 times we report the 78

features in descending order of their impact ranks. We have

the following parameters settings for SVM: the number of

xval folds to be used when estimating subset accuracy ¼ 5,

the number of attributes to evaluate in parallel ¼ 1,

seed(Seed to use for randomly generating xval splits)¼ 1,

threshold ¼ 0:01. We observe that the WEKA-attribute

selection method picks more frequently the first 36 fea-

tures, i.e., hf1; f2; . . .; f36i, than the comparatively impactful

features from the set of 78 features. For example, on

CEDAR, one random test loop (for all 55 persons) shows

the features hf17; f18; f43; f26; f19; f4; f7; f20; f23; f1i as the most

impactful 10 features with maximum number of presence

in 55 tests.

4 Conclusion

In this paper, we have proposed a novel feature set for

verification of signatures based on the distribution of

boundary-edge pixels of the signature-image. Previously,

in some other works, directional features in terms of the

longest pixel run or chain code have been used in combi-

nation with additional features. In this work, newly pro-

posed classes of quasi-straight line segments have been

used to define the discriminating features. We conducted

experiments on standard datasets like CEDAR and GPDS-

100. Experimental results corroborate that the proposed

feature set shows significantly good results and may be of

use in real-time applications. Also, there are scopes to

combine with other geometric features like convex hull

shape, count and locations of endpoints, count of closed

loops, etc., to improve the accuracy level. We must men-

tion that the parameter, edge length threshold, plays a vital

role in the process of feature generation and classification.

Hence, the automatic selection of the edge length threshold

will be worth investigating. This threshold may be related

to the resolution of the signature images. Further, consid-

ering any two consecutive quasi-straight line segments

from the boundary, an investigation may be worth to check

Neural Computing and Applications

123

whether their non-singular code values, singular code

values, and non-singular run lengths together can perceive

the local curvature information when joining the two seg-

ments. The nature of curvature and its amount can be

important features in the recognition process. It is to be

noted that no extra computation is needed to extract the

curvature information. This curvature information may also

improve the accuracy level of the model.

List of symbols Symbol: Meaning; E: Set of boundary edge pixels;

Ci: The i-th (i ¼ 1. . .12) class of quasi-straight line segments; n: Non-

singular code; s: Singular code; l: The straight edge length threshold;

Q: The set of quasi-straight line segments; qi: The i-th segment in the

set Q; p: A pixel in E; dðp1; p2Þ: Chain code direction from pixel p1 to

pixel p2 where p2 is in 8-N of p1; fi: The i-th feature; Ri: The i-th

region in the signature area; i ¼ 1. . .6; pi: The number of edge

pixels in E belonging to i-th class; P: Total edge pixels in E; ni:

Number of edge segments in the i-th class; cp: Number of

common pixels in two neighboring classes Ci and Cj, j ¼

ðiþ 1Þ mod 12; rij: Number of pixels in the region Rj concerning

class Ci; mci : The region number (from 1 to 6) where the class Ci has

the maximum contribution; lRj
: The class number (from 1 to 12)

which has the maximum presence in region Rj

Funding Open Access funding provided by Fachhochschule Nord-

westschweiz FHNW..

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Ansari AQ, Hanmandlu M, Kour J, Singh AK (2014) Online

signature verification using segment-level fuzzy modelling. IET

Biom 3(3):113–127

2. Batista L, Granger E, Sabourin R (2012) Dynamic selection of

generative-discriminative ensembles for off-line signature veri-

fication. Pattern Recognit 45(4):1326–1340

3. Batool FE, Attique M, Sharif M, Javed K, Nazir M, Abbasi AA,

Iqbal Z, Riaz N (2020) Offline signature verification system: a

novel technique of fusion of GLCM and geometric features using

SVM. Multimed Tools Appl 1–20

4. Bertolini D, Oliveira LS, Justino E, Sabourin R (2010) Reducing

forgeries in writer-independent off-line signature verification

through ensemble of classifiers. Pattern Recognit 43(1):387–396

5. Bharathi RK, Shekar BH (2013) Off-line signature verification

based on chain code histogram and support vector machine. In:

International conference on advances in computing, communi-

cations and informatics (ICACCI), pp 2063–2068

6. Bhattacharya I, Ghosh P, Biswas S (2013) Offline signature

verification using pixel matching technique. Procedia Technol

10:970–977

7. Blankers VL, van den HCE, Franke KY, Vuurpijl LG (2009)

Icdar 2009 signature verification competition. In: International

conference on document analysis and recognition, pp 1403–1407

8. CEDAR (Center of Excellence for Document Analysis and

Recognition) Dataset. http://www.cedar.buffalo.edu/NIJ/publica

tions.html. Last accessed: 2017-06-12

9. Chen S, Srihari S (2005) Use of exterior contours and shape

features in off-line signature verification. In: International con-

ference on document analysis and recognition (ICDAR),

pp 1280–1284

10. Chen S, Srihari S (2006) A new off-line signature verification

method based on graph matching. In: International conference on

pattern recognition (ICPR), pp 869–872

11. Cpalka K, Zalasinski M (2014) On-line signature verification

using vertical signature partitioning. Expert Syst Appl

41(9):4170–4180

12. Cpalka K, Zalasinski M, Rutkowski L (2016) A new algorithm

for identity verification based on the analysis of a handwritten

dynamic signature. Appl Soft Comput 43:47–56

13. Ferrer MA, Alonso JB, Travieso CM (2005) Offline geometric

parameters for automatic signature verification using fixed-point

arithmetic. IEEE Trans Pattern Anal Mach Intell 27(6):993–997

14. Galbally J, Marcel S, Fiérrez J (2014) Image quality assessment

for fake biometric detection: application to iris, fingerprint, and

face recognition. IEEE Trans Image Process 23(2):710–724

15. Gonzalez RC, Woods RE (2006) Digital Image Processing (3rd

Edition). Prentice-Hall, Inc

16. GPDS-100 (Grupo de Procesado Digital de la Senal) Dataset.

http://www.gpds.ulpgc.es/download/. Last accessed: 2017-06-12

17. Griechisch E, Malik MI, Liwicki M (2014) Online signature

verification based on Kolmogorov–Smirnov distribution distance.

In: International conference on frontiers in handwriting recogni-

tion (ICFHR), pp 738–742

18. Guerbai Y, Chibani Y, Hadjadji B (2015) The effective use of the

one-class SVM classifier for handwritten signature verification

based on writer-independent parameters. Pattern Recognit

48(1):103–113

19. Hafemann LG, Sabourin R, Oliveira LS (2016) Writer-indepen-

dent feature learning for offline signature verification using deep

convolutional neural networks. In: International joint conference

on neural networks, pp 2576–2583

20. Hamadene A, Chibani Y, Nemmour H (2012) Off-line hand-

written signature verification using contourlet transform and co-

occurrence matrix. In: 2012 International conference on frontiers

in handwriting recognition (ICFHR), pp 343–347

21. Hanmandlu M, Yusof MHM, Madasu VK (2005) Off-line sig-

nature verification and forgery detection using fuzzy modeling.

Pattern Recognit 38(3):341–356

22. He Z, You X, Tang YY, Fang B, Du J (2006) Handwriting-based

personal identification. Int J Pattern Recognit Artif Intell

20(2):209–225

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cedar.buffalo.edu/NIJ/publications.html
http://www.cedar.buffalo.edu/NIJ/publications.html
http://www.gpds.ulpgc.es/download/

23. Jain A, Hong L, Bolle R (1997) On-line fingerprint verification.

IEEE Trans Pattern Anal Mach Intell 19(4):302–314

24. Jiang N, Xu J, Yu W, Goto S (2013) Gradient local binary pat-

terns for human detection. In: International symposium on cir-

cuits and systems, pp 978–981

25. Justino EJ, Bortolozzi F, Sabourin R (2005) A comparison of

SVM and HMM classifiers in the off-line signature verification.

Pattern Recognit Lett 26(9):1377–1385

26. Kalera MK, Srihari S, Xu A (2004) Offline signature verification

and identification using distance statistics. Int J Pattern Recognit

Artif Intell 18(07):1339–1360

27. Klette R, Rosenfeld A (2004) Digital straightness: a review.

Discrete Appl Math 139(1–3):197–230

28. Kovari B, Charaf H (2013) A study on the consistency and sig-

nificance of local features in off-line signature verification. Pat-

tern Recognit Lett 34(3):247–255

29. Kumar MM, Puhan NB (2014) Off-line signature verification:

upper and lower envelope shape analysis using chord moments.

IET Biom 3(4):347–354

30. Kumar R, Kundu L, Chanda B, Sharma J (2010) A writer-inde-

pendent off-line signature verification system based on signature

morphology. In: International conference on intelligent interac-

tive technologies and multimedia, pp 261–265

31. Kumar R, Sharma J, Chanda B (2012) Writer-independent off-

line signature verification using surroundedness feature. Pattern

Recognit Lett 33(3):301–308

32. Lajevardi SM, Arakala A, Davis SA, Horadam KJ (2013) Retina

verification system based on biometric graph matching. IEEE

Trans Image Process 22(9):3625–3635

33. Larkins R, Mayo M (2008) Adaptive feature thresholding for off-

line signature verification. In: International conference on image

and vision computing, pp 1–6

34. Loka H, Zois EN, Economou G (2017) Long range correlation of

preceded pixels relations and application to off-line signature

verification. IET Biom 6(2):70–78

35. Lv H, Wang W, Wang C, Zhuo Q (2005) Off-line chinese sig-

nature verification based on support vector machines. Pattern

Recognit Lett 26(15):2390–2399

36. Nguyen V, Kawazoe Y, Wakabayashi T, Pal U, Blumenstein M

(2010) Performance analysis of the gradient feature and the

modified direction feature for off-line signature verification. In:

International conference on frontiers in handwriting recognition

(ICFHR), pp 303–307

37. Ooi SY, Teoh ABJ, Pang YH, Hiew BY (2016) Image-based

handwritten signature verification using hybrid methods of dis-

crete radon transform, principal component analysis and proba-

bilistic neural network. Appl Soft Comput 40:274–282

38. Pal S, Alaei A, Pal U, Blumenstein M (2016) Performance of an

off-line signature verification method based on texture features on

a large indic-script signature dataset. In: Workshop on document

analysis systems (DAS), pp 72–77

39. Pham TA, Le H, Do N (2015) Offline handwritten signature

verification using local and global features. Ann Math Artif Intell

75(1–2):231–247

40. Rosenfeld A (1974) Digital straight line segments. IEEE Trans

Comput 23(12):1264–1269

41. Sae-Bae N, Memon ND (2014) Online signature verification on

mobile devices. IEEE Trans Inf Forens Secur 9(6):933–947

42. Said HES, Tan TN, Baker KD (2000) Personal identification

based on handwriting. Pattern Recognit 33(1):149–160

43. Sauvola JJ, Pietikäinen M (2000) Adaptive document image

binarization. Pattern Recognit 33(2):225–236

44. Serdouk Y, Nemmour H, Chibani Y (2016) New off-line hand-

written signature verification method based on artificial immune

recognition system. Expert Syst Appl 51:186–194

45. Muhammad SK, Muhammad AF, Muhammad Y, Mussarat F,

Steven L (2020) A framework for offline signature verification

system: best features selection approach. Pattern Recognit Lett

139:50–59

46. Ruiz-del Solar J, Devia C, Loncomilla P, Concha F (2008) Off-

line signature verification using local interest points and

descriptors. In: Iberoamerican congress on pattern recognition,

pp 22–29

47. Vargas JF, Ferrer MA, Travieso C, Alonso JB (2011) Off-line

signature verification based on grey level information using

texture features. Pattern Recognit 44(2):375–385

48. Vargas JF, Ferrer MA, Travieso CM, Alonso JB (2008) Off-line

signature verification based on high pressure polar distribution.

In: International conference on frontiers in handwriting recogni-

tion (ICFHR), pp 373–378

49. WEKA—The Workbench for Machine Learning. https://www.cs.

waikato.ac.nz/ml/weka/. Last accessed: 2021-01-18

50. Zois EN, Alewijnse L, Economou G (2016) Offline signature

verification and quality characterization using poset-oriented grid

features. Pattern Recognit 54:162–177

51. Zois Elias N, Alexandridis A, Economou G (2019) Writer inde-

pendent offline signature verification based on asymmetric pixel

relations and unrelated training-testing datasets. Expert Syst Appl

125:14–32

52. ZulNarnain Z, Rahim MSM, Ismail NAF, Arsad MAM (2016)

Triangular geometric feature for offline signature verification.

World Acad Sci Eng Technol Int J Comput Electr Autom Control

Inf Eng 10(3):485–488

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

	Off-line signature verification using elementary combinations of directional codes from boundary pixels
	Abstract
	Introduction
	Proposed method
	Quasi-straight line segment classes
	Features from the classes
	Sample feature vector

	Experiments
	Test datasets
	Support vector machine (SVM)
	Results and discussions
	Other datasets and skilled forgeries
	Scale invariance
	Impactful features

	Conclusion
	Open Access
	References

