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Abstract
We introduce the first algorithm for off-policy
temporal-difference learning that is stable with
linear function approximation. Off-policy learn-
ing is of interest because it forms the basis for
popular reinforcement learning methods such as
Q-learning, which has been known to diverge
with linear function approximation, and because
it is critical to the practical utility of multi-scale,
multi-goal, learning frameworks such as options,
HAMs, and MAXQ. Our new algorithm com-
bines TD(λ) over state–action pairs with impor-
tance sampling ideas from our previous work.
We prove that, given training under any ε-soft
policy, the algorithm converges w.p.1 to a close
approximation (as in Tsitsiklis and Van Roy,
1997; Tadic, 2001) to the action-value function
for an arbitrary target policy. Variations of the
algorithm designed to reduce variance introduce
additional bias but are also guaranteed conver-
gent. We also illustrate our method empirically
on a small policy evaluation problem. Our cur-
rent results are limited to episodic tasks with
episodes of bounded length.

1Although Q-learning remains the most popular of all re-
inforcement learning algorithms, it has been known since
about 1996 that it is unsound with linear function approxi-
mation (see Gordon, 1995; Bertsekas and Tsitsiklis, 1996).
The most telling counterexample, due to Baird (1995) is a
seven-state Markov decision process with linearly indepen-
dent feature vectors, for which an exact solution exists, yet

1This is a re-typeset version of an article published in the Pro-
ceedings of the 18th International Conference on Machine Learn-
ing (2001). It differs from the original in line and page breaks,
is crisper for electronic viewing, and has this funny footnote, but
otherwise it is identical to the published article.

for which the approximate values found by Q-learning di-
verge to infinity. This problem prompted the development
of residual gradient methods (Baird, 1995), which are sta-
ble but much slower than Q-learning, and fitted value iter-
ation (Gordon, 1995, 1999), which is also stable but lim-
ited to restricted, weaker-than-linear function approxima-
tors. Of course, Q-learning has been used with linear func-
tion approximation since its invention (Watkins, 1989), of-
ten with good results, but the soundness of this approach is
no longer an open question. There exist non-pathological
Markov decision processes for which it diverges; it is abso-
lutely unsound in this sense.

A sensible response is to turn to some of the other rein-
forcement learning methods, such as Sarsa, that are also
efficient and for which soundness remains a possibility. An
important distinction here is between methods that must
follow the policy they are learning about, called on-policy
methods, and those that can learn from behavior generated
by a different policy, called off-policy methods. Q-learning
is an off-policy method in that it learns the optimal pol-
icy even when actions are selected according to a more
exploratory or even random policy. Q-learning requires
only that all actions be tried in all states, whereas on-policy
methods like Sarsa require that they be selected with spe-
cific probabilities.

Although the off-policy capability of Q-learning is appeal-
ing, it is also the source of at least part of its instability
problems. For example, in one version of Baird’s coun-
terexample, the TD(λ) algorithm, which underlies both Q-
learning and Sarsa, is applied with linear function approx-
imation to learn the action-value function Qπ for a given
policy π. Operating in an on-policy mode, updating state–
action pairs according to the same distribution they would
be experienced under π, this method is stable and conver-
gent near the best possible solution (Tsitsiklis and Van Roy,
1997; Tadic, 2001). However, if state-action pairs are up-
dated according to a different distribution, say that gener-



ated by following the greedy policy, then the estimated val-
ues again diverge to infinity. This and related counterexam-
ples suggest that at least some of the reason for the instabil-
ity of Q-learning is that it is an off-policy method; they also
make it clear that this part of the problem can be studied in
a purely policy-evaluation context.

Despite these problems, there remains substantial reason
for interest in off-policy learning methods. Several re-
searchers have argued for an ambitious extension of re-
inforcement learning ideas into modular, multi-scale, and
hierarchical architectures (Sutton, Precup & Singh, 1999;
Parr, 1998; Parr & Russell, 1998; Dietterich, 2000). These
architectures rely on off-policy learning to learn about mul-
tiple subgoals and multiple ways of behaving from the sin-
gular stream of experience. For these approaches to be fea-
sible, some efficient way of combining off-policy learning
and function approximation must be found.

Because the problems with current off-policy methods be-
come apparent in a policy evaluation setting, it is there
that we focus in this paper. In previous work we consid-
ered multi-step off-policy policy evaluation in the tabular
case. In this paper we introduce the first off-policy pol-
icy evaluation method consistent with linear function ap-
proximation. Our mathematical development focuses on
the episodic case, and in fact on a single episode. Given
a starting state and action, we show that the expected off-
policy update under our algorithm is the same as the ex-
pected on-policy update under conventional TD(λ). This,
together with some variance conditions, allows us to prove
convergence and bounds on the error in the asymptotic ap-
proximation identical to those obtained by Tsitsiklis and
Van Roy (1997; Bertsekas and Tsitsiklis, 1996).

1. Notation and Main Result
We consider the standard episodic reinforcement learning
framework (see, e.g., Sutton & Barto, 1998) in which a
learning agent interacts with a Markov decision process
(MDP). Our notation focuses on a single episode of T time
steps, s0, a0, r1, s1, a1, r2, . . . , rT , sT , with states st ∈ S,
actions at ∈ A, and rewards rt ∈ ". We take the initial
state and action, s0 and a0, to be given arbitrarily. Given
a state and action, st and at, the next reward, rt+1, is a
random variable with mean rat

st
and the next state, st+1, is

chosen with probabilities pat
stst+1

. The final state is a spe-
cial terminal state that may not occur on any preceding time
step.

Given a state, st, 0 < t < T , the action at is selected
according to probability π(st, at) or b(st, at) depending on
whether policy π or policy b is in force. We always use π
to denote the target policy, the policy that we are learning
about. In the on-policy case, π is also used to generate the

actions of the episode. In the off-policy case, the actions are
instead generated by b, which we call the behavior policy.

In either case, we seek an approximation to the action-value
function Qπ : S ×A $→ " for the target policy π:

Qπ(s, a) = Eπ

{
rt+1 + · · · + γT−1rT | st = s, at = a

}
,

where 0 ≤ γ ≤ 1 is a discount-rate parameter. We consider
approximations that are linear in a set of feature vectors
{φsa}, s ∈ S, a ∈ A:

Qπ(s, a) ≈ θT φsa =
n∑

i=1

θ(i)φsa(i),

where θ ∈ "n is the learned parameter vector. The fea-
ture vector for the special terminal state is assumed to be
the zero vector so that the estimated value for this state is
(correctly) zero.

In this paper we restrict our attention to per-episode up-
dating, meaning that although an increment to θ is com-
puted on each step, θ is not actually updated until the end
of the episode (by a total increment, ∆θ, equal to the sum
of the increments on each step). The increments for con-
ventional TD(λ) under per-episode updating are given by
the forward-view equations:

∆θt = α
(
Rλ

t − θT φt

)
φt,

Rλ
t = (1− λ)

∞∑

n=1

λn−1R(n)
t ,

R(n)
t = rt+1 + γrt+2 + · · · + γn′−1rt+n′ + γn′θT φt+n′ .

where φt is a shorthand for φstat and n′ is the minimum of
n and T−t. R(n)

t is called the n-step return and Rλ
t is called

the λ-return. This forward view can also be implemented
incrementally using eligibility traces and a backward view
(Sutton & Barto, 1998).

In this paper we restrict our attention to per-episode up-
dating, meaning that although an increment to θ is com-
puted on each step, θ is not actually updated until the end
of the episode (by a total increment, ∆θ, equal to the sum
of the increments on each step). The increments for con-
ventional TD(λ) under per-episode updating are given by
the forward-view equations:

∆θt = α
(
Rλ

t − θT φt

)
φt,

Rλ
t = (1− λ)

∞∑

n=1

λn−1R(n)
t ,

R(n)
t = rt+1 + γrt+2 + · · · + γn−1rt+n + γnθT φt+n,

where φt is a shorthand for φstat , φt = 0 for t ≥ T , and
rt = 0 for t > T . R(n)

t is called the n-step return and Rλ
t is



called the λ-return. This forward view can also be imple-
mented incrementally using eligibility traces and a back-
ward view (Sutton & Barto, 1998).

The most straightforward way to introduce importance
sampling into linear TD(λ) is to multiply the increments for
each episode by the relative probability of that episode oc-
curing under the target and behavior policies. If we define
the importance sampling ratio for time t as ρt = π(st,at)

b(st,at)
,

then this relative probability is ρ1ρ2 · · · ρT−1. Let us call
this the naive importance sampling algorithm. Our algo-
rithm instead multiplies only by the first t importance sam-
pling ratios:

∆θt = α
(
R̄λ

t − θT φt

)
φtρ1ρ2 · · · ρt, (1)

where R̄λ
t is defined as Rλ

t above, except in terms of the
off-policy n-step return:

R̄(n)
t = rt+1 + γrt+2ρt+1 + · · · + γn−1rt+nρt+1 · · · ρt+n−1

+ γnρt+1 · · · ρt+nθT φt+n

The off-policy n-step return was introduced by Precup,
Sutton and Singh (2000) as part of their per-decision im-
portance sampling algorithm. They showed that the impor-
tance sampling ratios correct for off-policy training such
that

Eb

{
R̄λ

t | st, at

}
= Eπ

{
Rλ

t | st, at

}
,

where the subscripts on the expectations indicate the pol-
icy in force (i.e., they indicate either off-policy training, b,
or on-policy training, π). Here we extend this idea to the
case of linear function approximation by including the cor-
rection ratios in (1). We are now ready to state our main
result:

Theorem 1 Let ∆θ and ∆θ̄ be the sum of the parame-
ter increments over an episode under on-policy TD(λ) and
importance sampled TD(λ) respectively, assuming that the
starting weight vector is θ in both cases. Then

Eb

{
∆θ̄ | s0, a0

}
= Eπ{∆θ | s0, a0}, ∀s0 ∈ S, a0 ∈ A.

Proof: To simplify the notation, we henceforth take it as
implicit that expectations are conditioned on s0, a0. Then

Eb

{
∆θ̄

}
= Eb

{ ∞∑

t=0

α
(
R̄λ

t − θT φt

)
φtρ1ρ2 · · · ρt

}

= Eb

{ ∞∑

t=0

∞∑

n=1

α(1− λ)λn−1(R̄(n)
t − θT φt)φtρ1ρ2 · · · ρt

}
.

It suffices to show that this is the same as in on-policy
TD(λ), i.e., that, for any n,

Eb

{ ∞∑

t=0

(
R̄(n)

t − θT φt

)
φtρ1ρ2 · · · ρt

}

= Eπ

{ ∞∑

t=0

(
R(n)

t − θT φt

)
φt

}
.

Let Ωt denote the set of all possible trajectories of state-
action pairs starting with s0, a0 and going through time t.
Let ω denote one such trajectory and pb(ω) its probability
of occurring under policy b. Then

Eb

{ ∞∑

t=0

(
R̄(n)

t − θT φt

)
φtρ1ρ2 · · · ρt

}

=
∞∑

t=0

∑

ω∈Ωt

pb(ω)φt

t∏

k=1

ρkEb

{
R̄(n)

t − θT φt

∣∣∣ st, at

}

(given the Markov property)

=
∞∑

t=0

∑

ω∈Ωt

t∏

j=1

paj−1
sj−1,sj

b(sj , aj)φt

t∏

k=1

π(sk, ak)
b(sk, ak)

·
(
Eb

{
R̄(n)

t

∣∣∣ st, at

}
− θT φt

)

=
∞∑

t=0

∑

ω∈Ωt

t∏

j=1

paj−1
sj−1,sj

π(sj , aj)φt

·
(
Eb

{
R̄(n)

t

∣∣∣ st, at

}
− θT φt

)

=
∞∑

t=0

∑

ω∈Ωt

pπ(ω)φt

(
Eπ

{
R(n)

∣∣∣ st, at

}
− θT φt

)

(using our previous result)

= Eπ

{ ∞∑

t=0

(
R(n)

t − θT φt

)
φt

}
. +

2. Convergence and Error Bounds
Given Theorem 1, we can apply the analysis of Tsitskilis
and Van Roy to prove convergence and error bounds. Their
paper (Tsitsiklis & Van Roy, 1997) treated the discounted
continuing (ergodic) case, whereas here we consider the
episodic case. Their results for this case were published in
the textbook by Bertsekas and Tsitsiklis (1996). Gurvitz
also obtained similar results, and some of the ideas can be
traced back to his work (Gurvitz, Lin & Hanson, unpub-
lished).

Let d : S ×A $→ [0, 1],
∑

s,a d(s, a) = 1 be the (arbitrary)
distribution of starting state–action pairs. Let Pπ be the
state–action pair to state–action pair transition-probability
matrix for policy π. Let Dπ =

∑∞
t=0 P t

πd denote the vector
in which Dπ(s, a) is the expected number of visits to state–
action pair s, a in an episode started according to d. Define
the norm || · ||π over state–action-pair vectors by ||v||2π =∑

s,a v(s, a)Dπ(s, a)v(s, a).

We require a number of natural assumptions: (1) the state



and action sets are finite; (2) all state–action pairs are vis-
ited under the behavior policy from d; (3) both behav-
ior and target policies, π and b, are proper, meaning that
P∞π = P∞b = 0; (4) the rewards are bounded; and (5) the
step-size sequence {αk}∞k=0 satisfies the usual stochastic
approximation conditions:

αk ≥ 0,
∞∑

k=0

αk =∞, and
∞∑

k=0

α2
k <∞. (2)

In addition, we require (6) that the variance of the product
of correction factors be bounded for any initial state:

Eb

{
ρ2
1ρ

2
2ρ

2
3 · · · ρ2

T

}
< B ∀s1 ∈ S,

which can be assured, for example, by simply bounding the
possible episode lengths. Nevertheless, this remains a sig-
nificant limitation of our result, as discussed further below.
Finally, let Qθ denote the approximate action–value func-
tion (vector) for any parameter value θ: Qθ(s, a) = θT φsa.

Theorem 2 Under the assumptions 1–6 above, episodic
importance sampled TD(λ) converges with probability one
to some θ∞ such that

||Qθ∞ −Qπ||π ≤ min
θ

||Qθ −Qπ||π
1

1− β
,

where β < γλ is the contraction factor of the matrix

M = (1− λ)
∞∑

k=0

λk(γPπ)k+1.

Proof: This result is a restatement of Tsitsiklis and Van
Roy’s result on page 312 of Bertsekas and Tsitsiklis (1996).
The assumptions together with our main result immediately
satisfy the conditions of their proof. In particular, assump-
tion 6 implies that our importance sampling corrections do
not convert the usual estimator to one of unbounded vari-
ance.

The assumption of bounded variance of the correction-
factor product (6) is restrictive, but not as restrictive as it
might at first seem. In many cases we can assure its sat-
isfaction by considering only “artificial” epsiode termina-
tions superimposed on an original process. For example,
assumption 6 is trivially met if the trial length is bounded.
Even if our original MDP does not produce bounded length
trials, we can consider a modified MDP that is just like
the original except that all trials terminate after Tmax steps.
Sample trajectories from the original process can be used as
trajectories for the modified process just by truncating them
after Tmax steps. Our results assure stable convergence to a
close approximation to the true evaluation function for the
modified MDP and, if Tmax is chosen large enough com-
pared to γ or the mixing time of the original MDP, then the

solutions to the original and modified MDPs will be very
similar.

In fact, in our primary expected application area—learning
about temporally abstract macro-actions—this kind of ar-
tificial termination is the normal way of proceeding. A
macro-action consists of a target policy and a specified con-
dition for terminating the macro-action. In this applica-
tion it is not the actual process that terminates, but only the
macro-action. Nevertheless, the problem is formally iden-
tical to that which we have formulated in this paper; our
methods and results apply directly to learning about macro-
actions. And in that application we do in fact choose the
termination process as part of designing the macro-action.
Thus we can design the macro-action to have bounded vari-
ance of the correction term by terminating after Tmax steps,
for example, or whenever the correction factor becomes
very large.

Thus, in many applications, the spectre of divergence due
to unbounded variance can be eliminated. Nevertheless,
even when bounded, high variance (and thus slow con-
vergence) can be a major problem. In Section 6 we con-
sider how weighted importance sampling methods might
be adapted to reduce variance, or even remove the need for
assumption 6.

3. Restarting within an Episode
The importance sampling correction factor introduced to
adjust the probabilities of visiting different state-action
pairs will often decay very rapidly over time, especially if
the episodes are long or if the behavior and target policy
are very different. Although the episode may be contin-
uing, little more is learned once the correction factor be-
comes very small. In such cases one might like to pretend
a new episode has started from an intermediate state of the
episode. Of course, the effective starting distribution will
then be different from d, which might be considered to in-
troduce additional bias. Nevertheless, this may be desirable
because of reduced variance. In this section we prove con-
vergence of this generalized algorithm.

To formalize the idea of starting anywhere within an
episode, we introduce a non-negative random variable gt,
which is allowed to depend only on events up to (and in-
cluding) time t. The value gt represents the extent to which
an episode is considered to start at time t. The function
g : Ωt $→ "+ gives the expected value of gt for any tra-
jectory up through t. The forward view of the generalized
algorithm is

∆θt = α
(
R̄λ

t − θT φt

)
φt

t∑

k=0

gkρk+1 · · · ρt (3)

Note that this algorithm is identical to the original impor-



tance sampled TD(λ) if g0 = 1 and gt = 0,∀t ≥ 1.

Theorem 3 Let ∆θ and ∆θ̄ denote the sum of the param-
eter increments of the original importance-sampled TD(λ)
(1) and the generalized version (3) respectively, Then, for
any function, g, there exists an alternate starting distribu-
tion dg such that

Eb

{
∆θ̄ | s0, a0 ∼ d

}
= Eb{∆θ | s0, a0 ∼ dg}.

Proof: To simplify notation, we allow additional sub-
scripts on the expectations to indicate the distribution from
which the initial s0, a0 are selected. Then

Eb,d

{
∆θ̄

}

= Eb,d






∞∑

t=0

t∑

k=0

gk

t∏

j=k+1

ρjα
(
R̄λ

t − θT φt

)
φt






= Eb,d






∞∑

k=0

∞∑

t=k

gk

t∏

j=k+1

ρjα
(
R̄λ

t − θT φt

)
φt






=
∞∑

k=0

Eb,d




gk

∞∑

t=k

t∏

j=k+1

ρjα
(
R̄λ

t − θT φt

)
φt






=
∞∑

k=0

∑

ω∈Ωk

pd
b(ω)g(ω)Eb,s0=sk(ω),a0=ak(ω){∆θ},

where Ωk denotes the set of all trajectories ω of length k
and pd

b(ω) denotes the probability of each such trajectory
occurring under b when starting from d. The final expec-
tation above is conditional on starting in the indicated last
state and action, sk, ak of ω. It is convenient now to define
Ωk,s,a as the set of all trajectories of length k ending is s, a.
Then we can rewrite the above as

∞∑

k=0

∑

s,a

∑

ω∈Ωk,s,a

pd
b(ω)g(ω)Eb,s0=s,a0=a{∆θ}

=
∑

s,a

∞∑

k=0

∑

ω∈Ωk,s,a

pd
b(ω)g(ω)Eb,s0=s,a0=a{∆θ}

=
∑

s,a

Eb,s0=s,a0=a{∆θ}
∞∑

k=0

∑

ω∈Ωk,s,a

pd
b(ω)g(ω)

= Eb,dg{∆θ},

where

dg(s, a) =
∞∑

k=0

∑

ω∈Ωk,s,a

pd
b(ω)g(ω)

is clearly a valid alternative starting distribution.

We have just proved that restarting in a general way, at any
point during an episode, is equivalent to a conventional at-
the-beginning starting distribution. The latter case we have

On every episode:

1. Initialize c0 = g0, +e0 = c0φ0.

2. On every transition st, at → rt+1, st+1, at+1, for 0 ≤
t < T :

ρt+1 = π(st+1, at+1)/b(st+1, at+1)
δt = rt+1 + γ ρt+1 θT φt+1 − θT φt

∆θt = α δt +et

ct+1 = ρt+1 ct + gt+1

+et+1 = γ λ ρt+1 +et + ct+1 φt+1

3. At the end of the episode,

θ ← θ +
∑

t

∆θt

Figure 1. Backward view of importance-sampled TD(λ)

already proved to converge; thus so must the generalized
algorithm. The only difference is that the value converged
to will now depend on dg , and thus on b, rather than on d
and π alone.

4. Incremental implementation
The algorithm presented in the previous section can easily
be implemented in an incremental, backward-view fashion,
using an eligibility trace vector +et of the same dimension as
θ. This implementation, which we used in the experiments
that follow, is given below as Algorithm 1.

Theorem 4 The backward-view description given as Algo-
rithm 1 is equivalent to the forward-view definition (3).

Proof: From the algorithm definition,

ct =
t∑

k=0

gk

t∏

j=k+1

ρj

Therefore, in the forward view, we can re-write the sum of
the updates that occur during an episode as:

T−1∑

t=0

α
(
R̄λ

t − θT φt

)
φt

t∑

k=0

gkρk+1 · · · ρt

=
T−1∑

t=0

α
(
R̄λ

t − θT φt

)
φtct

In the backwards view, the eligibility trace at time t is:

+et =
t∑

k=0

ckφk(γλ)t−k
t∏

j=k+1

ρj
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Figure 2. Gridworld environment used as illustration

In the backward view, the sum of the updates that occur
during an episode is:

T−1∑

t=0

αδt+et =
T−1∑

t=0

αδt

t∑

k=0

ckφk(γλ)t−k
t∏

j=k+1

ρj

=
T−1∑

t=0

αctφt

T−1∑

k=t

(γλ)k−tδk

k∏

j=t+1

ρj

=
T−1∑

t=0

αctφt

(
R̄λ

t − θT φt

)

5. An Empirical Illustration
To illustrate our algorithm we use the 11 x 11 gridworld en-
vironment depicted in Figure 2. The MDP is deterministic
and has 4 actions, moving up, down, left or right. If
the agent bumps into a wall, it remains in the same state.
The four corner states are terminal. The agent receives a
reward of +1 for the actions entering the bottom-right and
upper-left corners, and −1 for entering the other two cor-
ners. All the other rewards are 0. The initial state is in
the center, and the initial action is chosen randomly to be
right or left. The target policy chooses down 40% of
the time and up 10% of the time, with right and left
chosen 25% of the time. The behavior policy is similar ex-
cept with reversed up/down probabilities; it chooses down
10% of the time and up 40% of the time. In order to en-
sure that all the conditions of our convergence theorem are
respected, trials are limited to 1000 time steps. However,
this upper limit was never reached during our experiments.

The features used by the function approximator are over-
lapping stripes of width 3, parallel to the vertical axis.
There are 13 such stripes. One consequence is that un-
der the target policy, all the actions in the leftmost column

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

Episodes x 100,000

θleftmost,down

θleftmost,down

θrightmost,down

*

θrightmost,down
*

Figure 3. Weight values for the down action, corresponding to the
leftmost and rightmost features respectively

appear to be bad, whereas all the actions in the rightmost
column appear to be good. The situation is reversed under
the behavior policy.

We implemented the incremental (backward view) version
of importance sampled TD(λ), with λ = 0 and λ = 0.9,
and updates taking place only at the end of an episode. Be-
cause the results are very similar, we only present the data
for λ = 0.9. The initial parameter of the function approxi-
mator was θ0 = +0.

Figure 3 shows the parameter values corresponding to the
leftmost and rightmost features, for the down action, for a
typical single learning run. We used a decaying schedule
for the learning rate parameter α, starting with a value of
α0 = 2−12 for T = 106 time steps, then using α0/2 for
2T time steps, α0/4 for 4T time steps, etc. As predicted
by the theory, the parameters converge to their correct val-
ues. Similar results occur for all the parameters and for all
actions.

We also compared our algorithm with the naive version of
importance sampling, which computes a single correction
factor for the entire return of the episode, rather than wiegh-
ing the individual returns separately. Intuitively, one would
expect the naive algorithm to have higher variance than
our approach, due to the higher variance of the importance
sampling correction factors. For each algorithm, we experi-
mented with fixed values of α between 2−12 and 2−17. For
each parameter value, we performed 50 independent runs
of 100000 episodes each, saving the parameter values af-
ter every 100 episodes. Figure 4 compares the root mean
squared error of the two algorithms compared to the cor-
rect parameter values, for each learning rate, averaged over
the 50 runs and over the last 10 data points. Our algorithm
shows significantly lower error than the naive version.

6. Possibility of Weighted Importance
Sampling Methods

We have introduced a new, off-policy version of linear
TD(λ) and shown that it converges near the best solution
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Figure 4. Root mean squared error for the two TD(λ) impoor-
tance sampling algorithms

consistent with its structure. However, excessive variance
remains an issue, and there may be algorithms that reach
the same asymptotic solution faster or under more general
conditions.

One salient possibility is to devise some sort of weighted
importance sampling version of our algorithm. Weighted
importance sampling is widely known to produce lower
variance estimates than conventional importance sampling,
at the cost of introducing transient bias (bias that decreases
to zero as the number of samples increases to infinity).

For example, in our earlier work with table-lookup approx-
imations (Precup, Sutton and Singh, 2000), we discussed a
conventional importance sampling estimate

QIS
N (s, a) =

∑N
i=1 Riwi

N
,

where each Ri is a return in an episode under the behavior
policy after an occurrence of state–action pair s, a, and the
weight wi is a product of importance sampling correction
ratios ρt+1ρt+2 · · · ρT (where t is the time of occurrence of
s, a, and T the last time, within the episode). As in the cur-
rent paper, this weight is chosen such that the product Riwi

has the proper expected value for the target policy, i.e., such
that Eb{Riwi} = Qπ(s, a). By the law of large numbers,
QIS

N obviously converges with probability one (w.p.1) to
Qπ(s, a), if the Ri are bounded. But the wi might have
infinite variance, and so QIS

N might also have unbounded
variance. However, the corresponding weighted version of
this tabular importance sampling estimator,

QISW
N (s, a) =

∑N
i=1 Riwi∑N

i=1 wi

,

which also converges to Qπ w.p.1, has variance which goes
to zero as N grows. To show this we need an additional
definition and some standard results:

Definition 1 A sequence of estimators eN converges in
probability to H iff, for any ε > 0,

lim
N→∞

Pr{|eN −H| > ε} = 0.

Theorem 5 Weak Law of Large Numbers. Let {Xi}∞i=1

be a sequence of i.i.d. random variables such that
E{|Xi|} < ∞, then the estimator eN = 1

N

∑N
i=1 Xi con-

verges in probability to E{Xi}.

Under these same hypotheses, the stronger law of large
numbers (convergence w.p. 1) also holds, but we will not
need it for our result.

Theorem 6 If |eN | is bounded, then convergence in prob-
ability of eN to H implies that limN→∞ var(eN ) = 0.

Proof: Say |eN | ≤ C, for some constant C. This also
implies that |H| ≤ C and that |eN −H| ≤ 2C.

Pick any ε > 0. Then:

var(eN ) ≤ E{(eN−H)2} ≤ ε2+4C2·Pr{|eN−H| > ε}.

Now take the limit as N → ∞. Since the eN con-
verge in probability, the rightmost term goes to zero and
so limN→∞ var(eN ) ≤ ε2.

But this is true for any ε > 0. The theorem follows.

Using these we can show:

Theorem 7 Under assumptions 1–5, and for γ < 1,
var(QISW

N ) goes to zero as N goes to infinity.

Proof: First we show convergence in probability. We can
write the estimator as a “top” over a “bottom” (dropping
the s, a everywhere):

QISW
N =

TN

BN

where

TN =
1
N

N∑

i=1

Riwi and BN =
1
N

N∑

i=1

wi.

Because E{wi} = 1 is finite, we can apply the weak law
of large numbers twice here to show that TN converges in
probability to Qπ and BN converges in probability to 1.
Thus we know that the top is very close to Qπ except for a
tiny probability and the bottom is very close to 1 except for
a tiny probability. Now we can ignore what happens with
tiny probability; that will correspond to the tiny probability
with which QISW

N is allowed to be significantly different
from Qπ . So consider the cases when top and bottom are
very near Qπ and 1 respectively. If we pick the “very near”
close enough, then we can also bound the difference of the
ratio TN

BN
from Qπ

1 . So we get that QISW
N is arbitrarily close

to Qπ except for an arbitrarily small probability, i.e., con-
vergence in probability of QISW

N to Qπ .

Now we seek to apply Theorem 6, for which we need
only show that |QISW

N | is bounded. From its definition,



|QISW
N | can clearly be no greater than the largest possi-

ble |Ri|. For bounded individual rewards and γ < 1,
we have |Ri| < rmax

1−γ . Thus, Theorem 6 applies and so
limN→∞ var(QISW

N ) = 0.

Thus, in the tabular case the weighted algorithm has vanish-
ing variance. The same cannot be said for the conventional
importance sampling algorithm. It seems plausible that a
similar pattern of results could hold for the case with linear
function approximation. To explore this possibility would
of course require some form of weighted importance sam-
pling that was consistent with function approximation.
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