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Off-resonant transient birefringence measurements are analyzed using a reduced equation of 
motion for the ground state density matrix, which is expanded using an effective Hamiltonian. 
Assuming that the pump field is weak, we express the polarization relevant for the birefringence 
signal in terms of a convolution of the tensorial polarizability response function with the external 
fields. The homodyne-detected birefringence signal is directly compared with the coherent 
Raman signal. The relationship between off-resonant birefringence and spontaneous Raman 
experiments is discussed. By expanding the polarizability in powers of the nuclear coordinates 
and applying the Brownian oscillator model to the coordinate response function, we separate the 
birefringence signal into intra- and intermolecular coordinate response functions. Off-resonant 
transient birefiingences of acetonitrile, chloroform, dimethylsulfoxide, and a series of alcohols 
were measured. The data are transformed to the frequency domain by using a model 
independent analysis method. The spectra are discussed in the context of various models for the 
distribution of intermolecular modes (spectral density) in liquids. 

I. INTRODUCTION 

Ultrafast nuclear motions in liquids have been probed 
using a number of time-domain spectroscopies, such as the 
optical Kerr effect (OKE) , l-5 impulsive stimulated Raman 
scattering (ISRS ) ,6,7 and time-dependent fluorescence 
Stokes shift (TDFSS) .*-14 Although each measurement 
contains different information on the response of the ma- 
terial system with respect to an electric perturbation, these 
dynamical responses of the liquid should be understand- 
able in terms of an underlying microscopic description of 
the liquid. 

For example, electronically off-resonant measurements 
such as transient birefringence (i.e., optical Kerr effect) 
and femtosecond coherent Raman scattering (i.e., impul- 
sive stimulated Raman scattering) are induced by an im- 
pulsive (&function-like) electric perturbation, which re- 
sults from a simple ultra-short pulse or two such pulses 
with different wave vectors, respectively. Thus the pulse- 

response function is relevant to the off-resonant transient 
birefringence and coherent Raman scattering signals. On 
the other hand, electronically resonant ‘measurements such 
as the time-dependent fluorescence Stokes shift (TDFSS) 
technique reveal the liquid responses with respect to a step- 
like perturbation generated by a sudden change in the elec- 
tronic charge distribution of the solute upon electronic ex- 
citation. Therefore, the TDFSS signal is related to the step- 

response function of the solvent. The pulse response and the 
step response functions are related to the imaginary [G(t)] 
and the real [C(t)] parts of the appropriate (one-sided) 
quantum mechanical correlation function, (Q( 0) Q(t) > .I5 
Techniques such as hole burning show the evolution of 
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both excited state particle and ground state hole and thus 
have two components which depend, respectively, on both 
types of response functions. It should be noted that, al- 
though the time-dependent properties of the perturbations 
induced by the field are different for off-resonant transient 
birefringence (and coherent Raman scattering) and the 
time-dependent fluorescence Stokes shift, the nature of the 
perturbation is very similar. 

In the present paper, we describe off-resonant transient 
birefiingence spectroscopy using the Liouville equation 
and discuss the molecular aspects of the observed liquid 
response in the time domain.16 Transient birefiingence 
spectroscopy is basically a pump-probe technique utilizing 
polarized fields. 17-22 By adding an arbitrarily controlled 
local oscillator field into the detector along with the non- 
linearly generated signal (heterodyne detection), we can 
measure the modulation of the local oscillator field by the 
macroscopic polarization of the optical medium.2,20’22 In 
particular, adjusting the phase shift of the local oscillator 
field to be rr/2 with respect to the probe field makes it 
possible to measure the change of the refractive index with 
respect to time. Since polarized fields in the laboratory 
frame are used, the rotational anisotropic contribution to 
the signal must be included. Cho et aL23 have recently pre- 
sented the tensorial response function representing the ro- 
tational contribution to four-wave mixing spectroscopy. 
For resonant excitation, a theoretical description of the 
dichroism and birefringence spectroscopies is given in Ref. 
23. 

Off-resonant transient birefringence (or the optical 
Kerr effect) of pure liquids and solutions induced by sub- 
picosecond pulses has been studied by several groups. Ul- 
trafast responses in liquids were observed with time scales 
as short as tens of femtoseconds. For example, Kenney- 
Wallace and co-workers2 measured femtosecond optical 
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Kerr effect responses in several simple liquids such as CS2 
and acetonitrile. Nelson and co-worker&’ carried out 
time-resolved femtosecond stimulated Raman scattering 
experiments to study coherent vibrational dynamics in so- 
lution. In coherent Raman spectroscopies [namely, impul- 
sive stimulated Raman scattering (ISRS) or off-resonant 
transient grating spectroscopy24*25], two pump pulses cre- 
ate a spatial grating in the sample. A delayed probe pulse is 
then diffracted by this spatial grating. The coherent Raman 
signal is thus proportional to the square of the induced 

nonlinear polarization.7~‘6 In contrast to coherent Raman 
techniques, the heterodyne-detected optical Kerr signal de- 
pends linearly on the induced nonlinear polariza- 
tion. 2-5*16*23 This provides enhanced sensitivity compared 
to coherent Raman techniques. A comparison between the 
two experimental techniques will be given in Sec. VIII. 

The signals observed in the various time-domain spec- 
troscopies mentioned above can be described in terms of 
the corresponding response functions. In general the total 
response function consists of both electronic and nuclear 
contributions.26 Within the Born-Oppenheimer abproxi- 
mation the electronic response may be considered instan- 
taneous.26 However, during the pump pulse it generally 
makes the dominant contribution to the signal and must be 
removed from the convoluted total signal for accurate 
analysis of the nuclear response (see Sec. V). In the het- 
erodyne detected optical Kerr technique we are not aware 
of any simple experimental method which allows direct 
measurement of the pure nuclear contribution. However, 
as the symmetries of the third-order electronic and nuclear 
response tensors differ26 it is possible by adjusting the po- 
larizations of the pump and probe pulses to select the nu- 
clear or electronic response in coherent Raman scattering 
or transient-grating spectroscopy.27328 

The molecular phenomena underlying the nuclear part 
of the response have been discussed by many au- 
thors. 2*46*2g*30 The long time portion of the signal is gen- 
erally regarded as arising from diffusive reorientational 
motion. The shorter time behavior contains contributions 
from the collective polarizability of the system. This latter 
quantity contains contributions from individual molecules 
and from interaction-induced effects.30-33 One possible de- 
scription of these collective motions of liquids is as a col- 
lection of intermolecular vibrational modes, for example, 
liquid normal modes.2P5P2g134 Such a description will only 
have validity on short time scales, however, the ultrafast 
responses observed in a variety of spectroscopic experi- 
ments (for example, fluorescence Stokes shift,13J’4 photon 
echo,354 optical Kerr,1”“4*2g impulsive stimulated Raman 
scattering,6*7*24*25 three pulse scattering36(c)‘41) suggest that 
a short time description may be adequate to understand 
these dynamical phenomena. 

In the present paper, we develop a theoretical descrip- 
tion for off-resonant birefiingence spectroscopy. A master 
equation for the propagated doorway state is derived start- 
ing with the Liouville equation (Sec. II). The birefringence 
signal is described by the response function of the tensorial 
molecular polarizability in Sec. III. In Sec. IV, we expand 
the polarizability up to first order in the relevant coordi- 

nate and subsequently apply the Brownian oscillator model 
for the coordinate response function. In order to describe 
the collective nature of the dynamics of total polarizability 
of the sample, we introduce a set of intermolecular vibra- 
tional coordinates. We further assume that the long-time 
decaying component of the signal can be described by a 
diffusive molecular reorientational motion and that the dy- 
namics of the intermolecular vibrational coordinates de- 
fined around a liquid configuration is described by under- 
damped oscillatory motions averaged over liquid 
configurations. Relationships between off-resonant tran- 
sient birefringence and spontaneous and coherent Raman 
spectroscopies are discussed in Sec. V. The relationships 
derived are general and independent of any dynamical 
models. Here the spontaneous Raman scattering includes 
both the depolarized light scattering and vibrational Ra- 
man scattering. Experimental methods for measuring tran- 
sient birefiingence are summarized in Sec. VI. We describe 
the numerical technique of deconvolution in Sec. VII. Ex- 
perimental transient birefringence data and simulations of 
both the spontaneous and coherent Raman signals are 
given in Sec. VIII. Finally, discussion and summary follow 
in Sets. IX and X. 

II. MASTER EQUATION FOR THE DOORWAY WAVE 
PACKETS IN TRANSIENT BIREFRINGENCE 

For a two electronic-level system with a ground state g 
and an excited state e located at position r, the molecular 
density matrix is in general written as 

drJ) = ,BIZ, I dp,&A MI 
, , 

(2.1) 

where pap(r,t) is an operator in the molecular nuclear 
space. The diagonal matrix elements represent nuclear dy- 
namics in the electronic ground and excited states, whereas 
the off-diagonal elements correspond to electronic coher- 
ence. 

Consider the following external field: 

Q-W) =El(r,t) +Mw) +Edr,t) 

with 

(2.2a) 

E,(r,t) =Ei(t)exp(zkir-z&t) +c.c., 

E,(r,t) =E,(t-td)exp(zk2r-iw2t) +c.c., 

E,(r,t)=ELo(t-td)exp(zkLorYiti~ot+i$) +c.c. 
(2.2b) 

Here E,(r,t), E2(r,t), and ELO(r,t) denote the pump, 
probe, and local oscillator fields, respectively. C.C. denotes 
the complex conjugate. The local oscillator field is optically 
phase shifted by $ with respect to the probe field. 

We assume that the pump and the probe fields are 
separated in time so that the optical process is sequential. 
The pump field creates a doorway wave packet of the den- 
sity matrix which then interacts with the probe. In this 
section we consider the description of the doorway prepa- 
ration and evolution. In the next section we. discuss the 
interaction with the probe and the signal. 

Cho et aL: Transient birefringence in liquids 2411 

J. Chem. Phys., Vol. 99, No. 4, 15 August 1993 

Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



2412 Cho ef a/.: Transient birefringence in liquids 

We first consider the preparation of the doorway state, 
which is created by the interaction of the optical medium 
with the pump field. The Liouville equation for the density 
matrix is 

f p(rA =-f [H--EIW) * V,pW> I, (2.3) 

where the Hamiltonian H and electronic transition dipole 
V in the electric dipole approximation are 

H= Ig)H,kl + Ie> (He+?,) (el, 

V=pcl(s)( Ig)(el + le)(gl>, (2.4) 

where p(q) is the coordinate-dependent dipole operator. 
We further define Liouville space operators as follows: 

La&= [HJ -AHp]/fi, 

T7 I aBalB’A~[[SPP’(l-Sacx,)~A-AIFL(l--Sp~r)G,,r]/~, 

Gap( t)A = exp ( - iH,t/fi)A exp ( iH#z) . (2.5) 

Here Ga,s( t) represents the Green function associated with 
the Liouville operator L, . Inserting the formal solution of 
the Liouville equation for the off-diagonal density matrix 
elements into the Liouville equation for pgg( r,t), we obtain 
the generalized master equation for the diagonal density 
matrix elements16 

$ p,(r,t> = -iLggpgg(rA 

J- 

* 
- dr &,gg(t9dpgg(r,~) 

--m 

s 

t 
- dr ~gg,,(t,dp,kd (2.6) 

--oo 

with the time-dependent relaxation kernels; 

K,,,,(t,r) =expC-iw,(t--)}El(r,t)El(r,r):~gg,,g 

o Geg( t- 7) :%g,gg +expCim,(t-r>) 

xEl(r,t)El(r,r):Vggge~Gge(t-r)Vg~,gg, 

(2.7a) 

Here the double vertical dots denote the usual contraction 
operator. CZI is the direct (tensor) product. The adiabatic 
motion of the system in the ground electronic state is de- 
scribed by the first term on the right-hand side of Eq. 
(2.6). Kgg,ag( t,r) represents the nuclear relaxation pro- 
cesses after the interactionwith the external pump field 
and also the loss of the ground state population to the 
excited electronic state. On the other hand, Kss,,( t,r) rep- 
resents population transfer from the excited electronic state 
to the ground electronic state. 

We consider a situation when there is a separation of 
time scale between populations and electronic coherences. 
This is usually the case in the presence of fast dephasing or 
when the light is off-resonant. In this case the field enve- 
lope E(r) and the populations p,(r), p,,(r) vary little 
during the coherence time. In the second and the third 
terms on the right-hand side of Eq. (2.6), the integrand 
includes fast varying quantities such as exp[i(wi =~GJ,) (t 
--7)]. Thus we may approximate the electric field and the 
diagonal density matrix element by 

ET(t)Ei(r)= I&(t) ]2e^,e^1 (2.8a) 

and 

p,(r,r) =p,(r,t) for a=g,e, (2.8b) 

where t?i represents the unit vector defining the polariza- 
tion direction of the pump field. Neglecting the nuclear 
dynamics during the electronic coherence Gap( t-r), we 
obtain 

s 

t 

drexpCi(wl~to,)(t--)}Geg(t-~) 
-co 

i 

=*I zttw,+iy ’ 
(2.9) 

where y is the electronic dephasing time. 
Using Eqs. (2.7)-(2.9), the generalized master equa- 

tion [Eq. (2.6)] simplifies to 

i p,(r,t> 

x e^*e^*: 
P 8 b&,t)~ 

fi 

with 

A(o) =‘o -+:-iy+o 
1 

.eg eg-w-iy’ 

A(w) 
Z(w) =- j+j P@P1 

(2.10) 

-where Im[A(w)] denotes the imaginary part of A(w). 
Z (w ) is the frequency-dependent second-rank poiarizability 
tensor. As can be seen in Eqs. (2.11), the polarizability 
tensor is a complex. 

We reiterate that the master equation (2.10) is valid 
either when the electronic dephasing processes are very fast 
or when the excitation is off-resonant. In either case the 
relevant time scale in the integration in Eq. (2.9) is very 
short, which justities the neglect of nuclear dynamics. 

III. MOLECULAR RESPONSE FUNCTION FOR 
OFF-RESONANT TRANSIENT BIREFRINGENCE 

For off-resonance excitation, the dephasing rate y is 
negligible compared with I w,$=c+ I. Furthermore, the 
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dephasing term is in general frequency dependent and rap- 
idly vanishes as the detuning is increased. Then A(w) de- 
fined by Bq. (2.1 la) becomes pure real 

1 
A(o) c-&+-. (3.1) 

a @g-W 

Since Im(A) vanishes, the excited state density matrix el- 
ement in Bq. (2.10) is effectively decoupled from the 
ground state density matrix element. Consequently, no 
population in the excited state is created by an off-resonant 
field. This is of course to be expected on physical grounds. 

The equation of motion for the ground state density 
matrix can then be recast using an effective Hamiltonian 

z p,,(w) = -f [H,dtLp,,(r,t) I, (3.2) 

with the effective Hamiltonian 

Hedt) =Hg+ Vnt(t>, (3.3) 

Vi,t(t)=- [E,(t) 12f?le^l:Z(Wl). (3.4) 

For sufficiently weak pump fields, to second order with 
respect to the pump field [or to the first order with respect 
t0 Vi,t(t)] we get 

&I&U--r,) 1244:G,,(t,) 

x md,p,,l. (3.5) 

where peq denotes the equilibrium density matrix. Note 
that pg’(t) does not depend on r since the spatial depen- 
dence of the fields cancels in I E, (t - tl ) I 2. As can be seen 
in Eq. (3.5), the second order ground state density matrix 
element is obtained by the convolution of the propagated 
polarizability in the ground electronic potential surface 
with the pump field intensity. 

In order to obtain the transient birefringence signal, we 
evaluate the k2 component of the polarization, which is 
defined as 

@3)&J) = dr exp( --ik,r+iw2t)P(3)(r,t). (3.6) 

Here we assumed that kLo= k, and wLo=02. The 
position- and time-dependent polarization is given by the 
expectation value of the dipole operator: 

p(3)(r,t) =Tr[iuCp~~‘(r,t)+p~‘(r,t))l, (3.7) 

where the off-diagonal density matrix elements are simi- 
larly given by Bq. (2.6) with replacing the pump field by 
the probe field and neglecting the excited state population 

s 

t 
p$(r,t) =i dr exp{-io,(t-r))E2(r,r) 

--co 

X Gg(t-r)Veg,ggp~’ (r,r). (3.8) 

Since the time scales of the probe (or local oscillator) field 
and nuclear dynamics are negligibly short compared with 
W&O~ ,,f Lo, we invoke approximations given in Eqs. 
(2.8) and (2.9). We then have 

PuC&‘(r,t) +pE’(r,t)) 

=exp(&r-iwzt)E2(t-td) m 
&’ (r,t)p 8 p 

wGg+wz) 
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(3.9) 

Therefore, the k2 component of the polarization can be 
written in the form 

P(W)=E2(t-td *TrIlG(wdp(t>l. (3.10) 

The polarization is determined by the expectation value of 
the molecular electronic polarizability with respect to the 
propagated doorway state. 

The heterodyne-detected birefringence signal, which is 
measured by controlling the phase shift @ of the local os- 
cillator field to be 7r/2, is given as22 

S(t,) =2 Re 
s 

m dtE&,(t-td) *P(k,,t). (3.11) 
--cc 

By substituting Eq. (3.10) into Eq. (3.11), the off- 
resonant birefringence tensorial signal is 

iT(tJ =2 
I 

* dt~o(t-td)E2(t-td) 
-co 

with 

m X 
I 

&IE,(t-t,) 12X”(td (3.12) 
0 

T(t)= f [ii(w,,t>,&q,O>]~ , 
i > 

(3.13) 

Here the commutator [.**I” in the above equation is de- 
fined as 

=z(G&tl) ~~(w~,o)-z(w~,o) sar(w2,t~>, (3.14) 

where 

cT(w,t)=Ggg(t>Z(co). 

The homodyne-detected transient birefringence signal 
is given by 

S hano = j-m dtP*(k,,t) *P&2,0. (3.15) 
--m 

Inserting Bq. (3.10) into (3.15), the homodyne-detected 
tensorial signal is written as 

‘%,m&j) = 
s 

m dtlE,(t-td) I2 
-cc 

ll 

2 

X “dtl IEl(t-tl) 12F(tl) . 
I 

(3.16) 
0 

Equations (3.12) and (3.13) are the main results in this 
section. The off-resonant birefringence signal is given by 
the response function of the frequency-dependent polariz- 
ability tensor. Thus the fourth-rank tensorial signal de- 

J. Chem. Phys., Vol. 99, No. 4, 15 August 1993 
Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



2414 Cho ef al.: Transient birefringence in liquids 

scribes all possible polarization directions. Equation (3.13) 
allows us to relate the birefringence signal to intramolecular 
and intermolecular nuclear motions which enter through 
their effects on the polarizability. 

IV. APPLICATION OF BROWNIAN OSCILLATOR AND 
ROTATIONAL DIFFUSION MODELS TO THE 
NUCLEAR RESPONSE FUNCTION 

First, we consider molecules with a general polarizabil- 
ity tensor, and briefly sketch the calculation of the response 
function by expanding the polarizability in terms of intra- 
and intermolecular vibrational coordinates in Sec. IV A. In 
Sec. IV B, we shall consider a symmetric top molecule, and 
calculate a single molecular contribution to the response 
function for various polarization configurations, which are 
relevant for off-resonant birefringence and coherent Ra- 
man scattering. In Sec. IV C, we introduce the Brownian 
oscillator model for the intra- and intermolecular vibra- 
tional modes. It should be noted that throughout this sec- 
tion we present a dynamical model to describe both the 
short-time vibrational and the long-time diffusive behav- 
iors of the liquid response. 

By including the dipole-induced-dipole interactions, 
the collective polarizability of the interacting sample is in 
general expressed as32P33 

ii(t) = x [i&(t) +A&(t)], 
i 

(4.1) 

where the interaction induced polarizability A~i( t) is 

Acr,(t)=cri* C Tij’Cli’~ji’~i~i+io ~ Fij*&?j 
i#i i#i 

(4.2) 

with 

~ij=T,+ C I;i,*cLm’Tmj+*** (i#j). (4.3) 
m 

Here Zi$ denotes an isolated molecular polarizability, and 
Tij(rij) is the dipole-dipole interaction tensor 

3~ij~ij-f 
Tij(rij> ~7 

ij 
(4.4) 

~ij is a unit vector in the direction ri- rj , where ri and rj 
are the positions of the centers of mass of the ith and jth 
molecules. The first term in the expression for the induced 
polarizability [Eq. (4.2)] is the reaction-field (self-) in- 
duced polarizability. The second term in Eq. (4.2) is the 
polarizability induced by the fields from all the other mol- 
ecules in the sample. The gas-phase polarizability tensor 
terms in the collective polarizability depends only on the 
molecular orientation of the ith molecule when the molec- 
ular polarizability is anisotropic. On the other hand, all the 
induced polarizabilities [the second term in Eq. (4.1)] are 

determined bv both the translational and rotational nu- 
clear degrees of freedom, since the dipole-induced-dipole 
interaction tensor is a function of rij( t) . 

A. Expansion of the polarizability in nuclear 
coordinates 

Our focus in this paper is on the short-time dynamics 
for which a natural description is in terms of intermolec- 
ular vibrational modes. However, the experimental signals 
contain, in general, a long-time contribution arising from 
diffusive orientational motion which must therefore be in- 
cluded in the theoretical description. Using the weak de- 
pendence of the polarizability on nuclear coordinates, we 
expand the collective polarizability with respect to the 
equilibrium configuration y” 

cr(y>=tP(yO)+ c * y.+... . 
i ) j aYj fl ’ 

(4.5) 

Here the nuclear coordinates yj stand for q, Q, and Y rep- 
resenting intramolecular vibrational coordinates, intermo- 
lecular vibrational coordinates, and the molecular rota- 
tional coordinates respectively. Since we are interested in 
short time dynamics, we shall expand the polarizability to 
first order with respect to the nuclear coordinates 

E(q,y,Q) =~(q”,~o,Qo) +-C%‘(t) +iizz(t) 

with 

(4.6) 

EZ(t’o =ig[v(t)] + c i (a”lz)l ],RiC’l9 (4.7a) 

ZZZ(t)= c * 
( ) j aQj yo 

Qj(Q. (4.7b) 

Here 5:’ and Z” are intramolecular and intermolecular con- 
tributions, respectively. $[v( t)] represents an orientation- 
dependent molecular polarizability of a rigid molecule. The 
intramolecular vibrational contributions are represented by 
the second term in Eq. (4.7a). The first term on the right- 
hand side of Eq. (4.6) is a constant independent of nuclear 
coordinates and therefore does not contribute to the re- 
sponse function F(t) . 

By treating rotational motions classically, the response 
function for the off-resonant birefringence signal then be- 
comes 

F(t) = F;(t) + F f [qi(t),qi(O)l Fii(t) 
(’ > 

+ z 
i 

with 

(4.8) 
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Yj ( t I= exp ( iH@3)yi exp ( - zX&/fi) 

where Fi(t) is the fourth-rank tensorial function describ- 
ing the rotational propagation of the molecular orientation 
in the laboratory frame.23 The approximation made in 
writing Eqs. (4.5) and (4.8) is equivalent to partitioning 
the intermolecular modes into two groups-a small subset 
that will eventually lead to the diffusive orientational mo- 
tion and the remainder whose short time behavior we are 
interested in. This division, which certainly an approxima- 
tion, seems reasonable in light of the simulation results of 
Ohmine and Tanaka.42 They found that the lowest fre- 
quency intermolecular vibrational modes are the ones that 
almost always lead to structural transitions. In a recent 
instantaneous normal mode calculation of liquid water43 
we have found that modes with low frequencies ( < 50 
cm-‘) have significantly larger amplitude motions than 
higher frequency modes and are therefore more likely to be 
found displaced from their local equilibrium position. Thus 
the aim of the separation of intermolecular coordinates and 
rotational coordinates is to have one set (the major group) 
whose short time behavior is handled correctly and a sec- 
ond group whose long time behavior is described appropri- 
ately. Since the intermolecular coordinates given in Eq. 
(4.7b) are defined around a liquid configuration, their dy- 
namical evolution does not contain any information on 
changes in the local liquid structure. Nor does it describe 
slowly varying diffusive motions, whose time scales are 
usually larger than a picosecond in liquids. 

Returning to the rotational contribution F;(t) is de- 
fined as23 

Fi( t) = 

aad 
X- 1 1 aqj pwO(vO), 

where v. and v represent the Euler angles defining the 
molecular orientation at t=O and t=t. W. ( vo) is the initial 

(4.9) 

distribution of vo. For an isotropic medium, Wo(vo) 
= l/8?. W(v,t;v,) is the conditional probability function 
of finding v=v at t= t, being v. at t=O. The second-rank 
tensor (X( v>/aq&o is delined by the molecular orienta- 
tion specified by the Euler angles v in the laboratory coor- 
dinate system. Since the f&t term in Eq. (4.8) is treated 
classically when the response function is calculated, the 
purely rotational contribution to the total response func- 
tion, T(t), should be replaced by the corresponding classi- 
cal response functionM6 

i 
f C&(t) Ii&v(O) I>) 

e(t) a w 
a -kz Yo(t)=Ff(t), 

B 

where 

e(t) a F;(t)‘-kTat s dv dvo Z;(v) 
B 

@ Jmt;vo>~~(vo> Wo(vo>. (4.10) 

The first equation can be obtained by expanding Eq. (Rl ) 
for classical limit (ti<.k,T) (see Ref. 44). Here 0(t) is a 
step function. This approximation would be valid for dif- 
fusive rotational motion, since the rotational time scale 
(i.e., rotational time constant) is usually much longer than 
WkBT ( 160 fs at room temperature). Equations (3.12) 
and (3.13) can be used to develop a complete quantum 
description of rotation. This is however usually not neces- 
sary in the condensed phase. Finally we note that expres- 
sion (4.10) correctly begins at zero at t=O, builds up, and 
then turns over and smoothly turns into diffusive motion at 
longer times. This is because the inertial term is included in 
the dynamical equation of motion, e.g., the Fokker-Planck 
equation. The initial rising component of Eq. (4.10) is 
governed by the damping rate of the angular velocity, 
which is faster than the rotational damping process. 

B. A single-molecular contribution to the polarizability 
response function 

If we ignore both the dipole+induced-dipole interaction 
contribution to a single molecular polarizability and cross 
response functions including two polarizabilities, the 
response function in Eq. (3.13) reduces to 
<i/fi[Z’( t)&‘(O)]), where Z(t) is an effective polarizabil- 
ity of a molecule. The first and the second terms in Eq. 
(4.8) correspond to the pure rotational and intramolecular 
rovibrational contributions of a single molecule. For a sym- 
metric top molecule, let u be a unit vector which lies along 
the symmetry axes. The molecular polarizability tensor Z 
can be divided into its scalar part a and its anisotropic part 
p so that4’ 

iT=aT+-P, (4.11) 

where a = (Tr Z)/3, Tr B=O, and I^ denotes a 3 X 3 unit 
tensor. Here Tr denotes a trace. We can divide the response 
function, (i/fi[~z(t),??z(0)]), into its isotropic and aniso- 
tropic parts (see Appendix A) 

X-fs,(t> = (f [a(t) ), (4.12a) 

J&is,(t) = 
i 

6 [B(t>?P(o> 1 
> 

(p2[u(o) l u(t) I>, 

(4.12b) 

where a(t) and /3(t) defined in Eq. (A2) are isotropic and 
anisotropic polarizabilities of a molecule in the Heisenberg 
picture. It should be noted that since we treated the rota- 
tional motion classically the single molecular response 
function is a product of the response function of the aniso- 
tropic part of the polarizability and the correlation func- 
tion of the molecular orientation, (P,[u(O) *u(t)]). For 

example, if the pump and probe beams are polarized along 
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j and I axes, respectively, the corresponding response func- 
tion for off-resonant birefringence is given as [see Eq. 

(-4811 

(4.13) 

Here nj denotes the unit vector along the laboratory j axis. 
The relevant response functions for coherent Raman spec- 
troscopies are in the form [see Eq. (B3 )] 

~jjU(t)=(4'nj)2~~~(f)+~ 1+: (nl'nj12 x’,&(t)* 
I I 

(4.14) 

1. Pure rotational contribution 

As discussed earlier, for a rigid molecule the rotational 
response function is calculated by inserting the classical 
reorientational correlation function into Eq. (4.10) 

Wt>D2 
Y&jj(t> = -m 

B 
P2(nj-nh & U%[u(O) .u(t)]), 

mM2 1 
y&jlj(r)z-15kBT 1+3 (Ul*nj>' 

I 1 
a 

xaf (Pz[u(O) -u(t)]). (4.15) 

Since we consider a rigid molecule, the isotropic part in Eq. 
(4.12a) does not contribute to the rotational response 
function, that is to say, the isotropic part is rotationally 
invariant. 

2. Intramolecular rovibrational contribution 

If we expand a and P in the intramolecular vibrational 
normal coordinates of a molecule and keep the linear terms 
only, the isotropic and anisotropic response functions in 
Eqs. (4.12a) and (4.12b) are written as 

J&Ct)= $ [$]I(: tqj(t)4j(0)l), (4.16a) 

&iso(t)=(P2[u(o) l u(t)]) I+ [$I:(; [4j(t)4jCo)l), 

(4.16b) 

where [6’a/aqjlo and [afi/aqj], are the first-order expansion 
coefficients at the equilibrium internuclear separation in a 
molecule. InsertingEqs. (4.15) and (4.16) into (4.13) and 
(4.14)) we can express various tensor elements of the single 
molecular contributions to response function. 

C. Brownian oscillator model for intra- and 
intermolecular vibrational contributions 

In Sec. IV A, we expanded the collective polarizability 
in terms of both the intra- and intermolecular vibrational 
coordinates. Although for polyatomic molecules the inter- 
pretation of the Raman spectrum via normal mode analysis 
is standard, the use of a normal mode description of liquids 
to understand their short time dynamical behavior is com- 
paratively recent. Based on the ultrafast nature (about 100 

fs) of the material response, we consider a collection of the 
intermolecular vibrational coordinates. Although it is pos- 
sible to apply the idea of separating a single molecular 
polarizability into isotropic and anisotropic components to 
the collective polarizability, we instead project the dynam- 
ical aspects of the collective polarizability onto a number of 
intermolecular vibrational modes. Thus the collective ori- 
entational effect is blended into the sum of the intermolec- 
ular vibrational dynamics. 

We shall model the nuclear motions yj( =qi,Qj) by 
harmonic Brownian oscillators. Then yj satisfies the gen- 
eralized Langevin equation 

s 

t 
MjjijC --Mjo;yj- d7 Yj(t-T)Jjj(T) +fj(t), 

--m 
(4.17) 

where yj( t) and f j (t) denote the time-dependent friction 
kernel and Gaussian random force. Mj and wi are the 
reduced mass and frequency of the jth mode, respectively. 
The response functions in the Markovian approximation 
are given asr6 

z.(t) 
=* 

3 J 
(4.18) 

with 

Zj(t) =exp( -yjt/2)sin ~jt, (4.19) 

where yjo(qj ,Qj> and 01s Jm. The response 
function is given by the Green function of the Langevin 
equation. Since not only intramolecular Raman-active 
modes but also intermolecular (collective) modes contribute 
to the birefiingence signal, the response function T(t) as- 
sumes the form 

zj(t> iz 
F(t) = %t> + 7 m. I’#> + j- do p=(o>Zb,t), 

I I 
(4.20) 

where the fourth rank tensorial spectral density for the 
intermolecular contribution [the second term on the right- 
hand side of Eq. (4.20)] can be defined as 

P”(w)= F [ (gjyo@ (g),,] ;;;;. (4.21) 

Z(w,t) are the mode frequency dependent response func- 
tions defined in Bq. (4.19). Since the intermolecular mo- 
tion contributing to the birefringence signal is collective in 
nature,. we can assume that the rotational tensor for the 
intermolecular modes does not affect to the time-dependent 
Green function T(t). Equation (4.20) provides the formal 
basis for the expressions used by Cho et aZ.29 in their anal- 
ysis of solvation and optical Kerr dynamics in acetonitrile. 

V. RELATIONSHIPS BETWEEN OFF-RESONANT 
TRANSIENT BIREFRINGENCE AND COHERENT AND 
SPONTANEOUS RAMAN SPECTROSCOPIES 

In the present section, we shall discuss how one exper- 
iment using a particular combination of off-resonant fields 
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can be related to other kinds of experiment. Since the nu- 
clear response function denoted as z(t) is independent of 
the dynamical model, the following relationships given be- 
low are general. 

In a grating configuration we add another field E,(t) 
whose wavevector is k2. We assume it has the same tem- 
poral profile as E,(t) but arbitrary polarization direction 

Wr,t) =Elkt) +Wr,t) +E&,t) 

with 

(5.1) 

Et(r,t) =Ei(t)exp(zkir--ioil) +c.c., 

Q(r,t) =E2(t)exp(zkzr-&t) +c.c., 

E3(r,t) =E3(t-td)exp(zk3r-iiwJt) +c.c., 

where 

E,(t)=E,(t)&, E,(t)=E,(t)&, 

and E3(t)=E3(t)S3. 

Equation (3.4) is now given byi 

(5.2) 

(5.3) 

In Bqs. (3.6) and (3111), we replace k2 by ks=kl-k2 
+k3. We then have the following cases 

(i) kl = k, : pump-probe, birefringence; 
(ii) kl#kz and k, =k3 : coherent Raman. 
One distinction between heterodyne-detected birefrin- 

gence technique and off-resonant coherent Raman spec- 
troscopy should be noted. In the coherent Raman spectros- 
copy the light scattered by the optically generated grating 
is measured, and the signal is thus proportional to 
P*(ks,t) *P(k,,t). This is also the case of the homodyne- 
detected birefringence signal. On the other hand, the 
heterodyne-detected birefringence signal is linear in the sig- 
nal field [see Eq. (3.11)]. Furthermore, making the ampli- 
tude of the local oscillator field large enhances sensitivity 
considerably (see Sec. VI). 

A. Comparison of conventional off-resonant 
birefringence with coherent Raman scattering 

We shall consider a specific pulse configuration that 
has been widely used for off-resonant birefringence mea- 
surement, wherein the pump fieldjs polarized along the 2 
axis in the laboratory frame (e^i =Z) and the relative pump 
and probe (also local oscillator) beam pola$zation is ad- 
justed to be 45” (i.e., S2=CLo= (Y+Z)NZ). The 
heterodyne-detected birefringence signal is then deter- 
mined by 

SW = c%d) lzzzz- L%d) 1 YYZZ, (5.4) 

where we assume that the pulses are propagating along the 
X axis in the laboratory coordinate system. Using Eqs. 
(3.12) and (3.16), the heterodyne- and homodyne- 
detected off-resonant birefringence signals in this case are 
given by 

S heterokf) = j-m 
--co 

dt J&,(t-tS2(t-b) Jrn df, 
0 

x IEl(t--td 12CXzzzz(~l)-x~~zz(tl)~r 

(5.5a) 

sh,,, ( td) = j-:m dtlE,(t-tci) 12( s,” d+,(t-t,) I2 

I 

2 

~~Xzzzz~~l~-XYYzz~~l~~ 9 (5.5b) 

where 

xzzzz(t) -XYYzz(t) = 
( 
; [aZz(~2tL~ZzbJl,o) 1) 

- 
( 

f [~YY(~zwZz(q,O) 1) * 

As can be seen above, the birefringence signal measures 
anisotropy created by the Z-polarized pump field. In par- 
ticular, for initially isotropic media the signal in this polar- 
ization configuration is related to the depola&zed component 
of the light scattering in frequency-domain via the 
fluctuation-dissipation theorem (see below). 

In particular, the depolarized ( VH) , forward (k, = k2) 
component of the coherent Raman scattering 
measurements,6(c) where e^il s2, I?~ = e^i , and gddetector= g2, is 
equal to the homodyne signal given above. For simplicity, 
considering an impulsive limit of the probe and local os- 
cillator fields give the following simplified relationships 
[see Eq. (BS)]: 

shetero(&f) a Jam dt, I El (k- 6 > I 2CxzzzzC tl) 

-XYYzz(tl)I9 (5.6Z$ 

shomo ( tf) a I Shetero (td) 1 2, (5.6b) 

S’$“%q=Wd ashomo(td), (5.6~) 

where S$Jc’( kl = k2,td) represents the depolarized forward 
coherent Raman scattering signal. 

B. Spontaneous Raman light scattering 

The conventional Raman spectroscopy (depolarized 
Rayleigh scattering) is a frequency domain technique in 
which the vibrational frequencies and dephasings are mea- 
sured as peaks and widths with respect to frequencies. In 
general, the possible number of pairs of polarization direc- 
tions in light scattering experiments is 3, such as the Ivy, 
IVH, and IHH components. Usually, I,, and IyH are called 
the polarized and depolarized components. IHH is often a 
linear combination of the polarized and depolarized com- 
ponents. The conventional Raman signal, which is the de- 
polarized component, is the Fourier transform of the au- 

45 tocorrelation function of cyYz 
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= 
s 

m dt exp(iot> (ayz(w2>exp( -iH&/fi) 
-co 

Xayz(wl>pcsexp(i~~/~)), (5.7) 

where w1 and o2 are the excitation and emission frequen- 
cies, respectively. This is then determined by the correla- 
tion function of the anisotropy of the polarizability of a 
group of interacting molecules.45 By the fluctuation- 
dissipation theorem,48 the imaginary part of the Fourier 
transform of the corresponding response function is equal 
to the conventional Raman spectrum as 

180-240 nJ. After compensation for group velocity disper- 
sion using a pair of SF-10 prisms in a near retroreflecting 
geometry, the pulse is focused into a 2 mm flowing Hz0 
cell to generate a continuum. A spatially and spectrally 
selected portion of continuum is amplified in a rhodamine 
6G and rhodamine 570 mixture in ethylene glycol jet to 
produce a broad and nearly Gaussian spectrum centered at 
570 nm. Selection and amplification of a 25 nm spectrum 
and appropriate prism compensation provides a pulse of 
- 30 fs duration (3-4 nJ energy) for the transient birefiin- 
gence measurements. 

(5.8) 

where 

a wl?YZYZ(@) I= J- 
dt xyzyz( t)sin wt. 

0 

The time-resolved off-resonant birefringence signal can be 
related to the spontaneous Raman signal via Eq. (5.6). 

The observed discrete quantum beats in the off- 
resonant transient birefringence signal result from intramo- 
lecular vibrational coherences in the ground electronic 
state. In frequency-domain spectra, these are observed as 
peaks at the corresponding frequencies broadened by the 
vibrational dephasing and rotational diffusion processes. 
Furthermore, the ultrafast decay within the first - 100 fs 
should be related to the collective vibrational Raman mode 
contributions. The distribution of the low frequency modes 
can also be observed in the Rayleigh-wing spectra of pure 
liquids. In the Green function defined in Eq. (4.8), the 
third term is associated with this intermolecular contribu- 
tion. Finally, the rotational motion of a molecule broadens 
the Rayleigh peak, which appears as a Lorentzian whose 
width is related to the rotational constant. Although the 
two techniques, time-domain birefringence and frequency- 
domain Raman spectroscopy, are directly related as dis- 
cussed above, direct time-domain measurements of the ma- 

terial response may have some advantages as we hope to 
show in the following sections. In particular, the time re- 
solved method may be superior in determining low- 
frequency Raman components because of its zero- 
background nature. 

The apparatus for transient birefringence measure- 
ments is similar to that in Ref. 17. Briefly, the amplified 
beam was split into two portions: 95% was used as the 

pump and 5% as the probe. The pump and probe beams 
passed through two Glan-Taylor polarizers oriented at 45” 
with respect to each other. The pump beam was reflected 
to travel nearly collinearly with the probe and both beams 
were focused into a 1 mm pathlength flowing sample cell. 
The pump beam was blocked after the sample and the 
probe beam was collimated and directed to an analyzer 
polarizer, the transmission of which was detected by a pho- 
tomultiplier tube (Amperex red-enhanced XP2020). The 
output of the photomultiplier is processed by a lock-in 

amplifier (SR530) that is referenced to the mechanical 
chopper frequency in the pump beam. The signal is re- 

corded for each position of the delay line and stored in a 
computer. Care is taken to preserve the polarization of the 
beams in pump and probe and the extinction ratio for the 
probe beam is better than 10m6. In this homodyne config- 
uration the signal is quadratic with respect to the response 
function of the sample. 

Vi. EXPERIMENT 

The transient birefringence measurements were carried 
out using linearly polarized -30 fs optical pulses centered 
at 570 nm. The optical pulse was derived from 100 kHz 
repetition rate laser system, which originates with a cavity- 
dumped antiresonant ring dye laser that typically produces 
pulses of 6@fs FWHM and - 3 nJ pulse energy at 610 nm. 
Amplification of a single dye laser pulse is achieved by 
using a two-stage single pass dye amplifier pumped by the 
frequency doubled output (3.5 PJ at 532 nm) of an 
Nd:YAG regenerative amplifier at a repetition rate of 100 
kHz.4g The amplified output pulse has an average energy of 

In order to avoid the inherent complexity of analyzing 
a quadratic signal and provide the enhanced sensitivity 
necessary for measurements of the weak transient birefrin- 
gence of alcohols, optical heterodyne detection was used in 
our experiments. A i1/4 wave plate was positioned between 
the two crossed polarizers, its “fast” axis is oriented to 
minimize total static birefringence in the probe beam. 
When performing heterodyne detection for transient bire- 
fringence, the /2/4 waveplate was rotated < 1” so that an 
in-quadrature local oscillator was transmitted to the detec- 
tor. The amplitude is -30-40X that of the homodyne 
signal intensity. The transient birefringence was obtained 
by taking the difference between two scans, lg each with the 
same amplitude of local oscillator field but the opposite 
signs. This Z- shift of the local oscillator field was obtained 
by rotating the a/4 wave plate equal amounts in opposite 
directions. The subtraction method has the advantage of 
removing the homodyne signal and any possible induced 
dichroism from the transient birefiingence measurements. 
A typical signal was constructed by averaging over three 
pairs- of scans. 

The pure liquids were purchased from Aldrich in 
A.C.S. reagent grade (99.9%). The sample was flowed 
through a 1 mm pathlength cell to avoid thermal heating 
and&n&g effects. All measurements were performed at 
room- temperature. 

J. Chem. Phys., Vol. 99, No. 4, 15 August 1993 

Downloaded 07 Mar 2001 to 128.151.176.185. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



Cho et al.: Transient birefringence in liquids 

VII. NUMERICAL METHODS 

Since the transient birefringence signal is a convolution 
of both the nuclear and electronic response functions with 
‘the pump intensity profile, it is necessary to deconvolute 
and separate electronic and nuclear responses. McMorrow 
and Lotshaw recently presented a numerical method of 
deconvolution and separation of the electronic and nuclear 
responses in Ref. 5. Here we describe a different method 
which is useful when the nuclear response is very fast and 
a single detection step (about 10 fs) is too large to com- 

pletely resolve the ultrafast response. Since the laser auto- 
correlation function is measured independently, a consis- 
tent zero delay time cannot be maintained when switching 
between measurements of birefringence signal and laser 
autocorrelation function. In case of a rather slow response 
liquid such as acetonitrile or carbon disulfide (CS,), the 
complications caused by a large detection time step and 
uncertainty in determining the absolute zero time are not 
severe. However, in ultrafast response liquids such as wa- 
ter, methanol, etc., the parameters extracted from Fourier 
transform analysis show a strong dependence on the zero 
time and detection time step. Here we present a numerical 
method to overcome this difficulty with a combination of 
the cubic-spline5’ and Fourier transform methods. 

Let “a represent the magnitude of the tensorial elec- 
tAonic response. Then the total tensorial response function 
G(t) can be written as 

&>=a(t) +7(t). (7.1) 

The nuclear response function F(t) was discussed in the 
previous sections. The electronic response is instantaneous 
(delta function) compared to the nuclear response within 
the Born-Oppenheimer approximation. In particular, the 
measured transient birefringence signal can be simply re- 
written as [see Eq. (5.5a)] 

I 

m 
S(t) sAaal(t) + dTl(t+)Ax(T) (7.2) 

--m 

with 

Aa==zzzz-QYYZZ 

and (7.3) 

Ax(t) =xzzzz(t> -xrrzz(t>. 

Here I(t) represents the laser autocorrelation function. 
From the causality condition on Ax(t), the integration in 
Eq. (5.6a) can be carried out over - CO to CO. Four& 
transforming of Eq. (7.2) and simple algebra give 

Im[&(w>l =Im[S(oW(o)l, 
(7.4) 

Re[Ax(w>] =Re[S(o)/l(w)] -Aa. 

Since the raw signal and laser autocorrelation function 
are measured around time zero, the true zero times of the 
raw signal and instrument function differ from the very 
first data point (t<O) by At, and At,, respectively (see 
Fig. 1). Because of uncertainties in At, and At,, we need to 
obtain Ats and At, from the measured signal and instru- 
ment response function. The time step of our data sets is 

: _ 

Time 

FIG. 1. Model laser autocorrelation function (top) and synthetic raw 
signal (bottom). The crosses represent individual data points. At1 and Ats 
denote the time gaps between the first and the maximum data points. 
Since the absolute zero time cannot be maintained for measurements of 
the laser autocorrelation function and the raw signal, At1 and Ab should 
be considered to be independent quantities. Taking Ats as an adjustable 
parameter (we could equally well take At,), the spectral density 
Im[X(o)] can be calculated (see the text for details). 

usually 11 fs. This is too large to determine At, and At, 
accurately. Therefore, we use a cubic-spline technique to 
interpolate between each pair of data points. From the 
interpolated data points, we assign the time between the 
maximum point in the instrument function and the first 
data point to be Atr. This is a reasonable assumption be- 
cause the instrument function is more symmetric in time 
than the raw signal. Using the fast Fourier transform tech- 
nique, we can calculate the Fourier spectra S( w ) and 1(o) 

S(w) =S’(w)exp(ioAt,) 

and (7.5) 

I(w) =I’(w)exp(iwAtl), 

where S’ (w > and I’ (w ) are the Fourier transforms of the 
interpolated raw signal and the laser intensity profile, re- 
spectively. Since a single time step is large, the uncertainty 
in choosing At, still exists. The first-order approximation is 
to choose the difference between the maximum point of the 
interpolated signal and the first data point as At,. Al- 
though the electronic response contribution dominates at 
t=O, the nuclear response contribution during the rising 
portion (t < 0) of the laser field induces an asymmetry in 
the peak at t=O. Therefore, we now consider At, as a 
parameter. A criterion for determining At, is to make the 
base line of Im[X(w)] flat and close to zero. Obtaining 
S(w) and I(w) and inserting these results into Eq. (7.4) 
gives the complex spectral density. 

Here it should be emphasized that the spectral density 
obtained by this method is independent of the dynamical 
models discussed in the previous section. Thus the numer- 
ical procedure described above should prove useful for ex- 
tracting nuclear responses from off-resonant transient bire- 
fringence measurements, and testing the validity of the 
theoretical model discussed above. 
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TABLE I. Values of the parameter o, obtained by fitting the experimen- 
tal spectral densities to the from obir(m) oc D exp( -o/wJ. 

Liquid 

CH,CN 
DMSO 

CHCls 
Methanol 

Ethanol 
Propanol 

Butanol 

Pentanol 
Hexanol 

Octanol 

0, (cm-‘) 

31 

36 
20 

39 

39 
37 

33 

35 
35 

33 

VIII. TRANSIENT BIREFRINGENCE MEASUREMENTS 
OF VARIOUS PURE LIQUIDS AND COMPARISONS 
WITH SPONTANEOUS AND COHERENT 
RAMAN SPECTROSCOPIES 

In this section, we present transient birefringence sig- 
nals for acetonitrile, dimethyl sulfoxide (DMSO), chloro- 
form, and a series of alcohols. McMorrow and Lotshaw 
have previously presented a detailed description of the 
transient birefringence of acetonitrile.5 The improved time 
resolution used here reveals a distinctive intramolecular 
vibrational contribution in addition to the intermolecular 
signal. 

In the figures presented below, we have fitted the signal 
with Eqs. (5.6a) and (5.6b) which assume an impulsive 
probe. Although the probe pulse profile is assumed to be 
impulsive, the deconvolution technique described in Sec. 
VII was used to eliminate the pump pulse profile and elec- 
tronic response from the raw signal to obtain the nuclear 
response function. In order to compare the low-frequency 
distributions of different liquids and also to provide repre- 
sentative data for future studies, we have made fits by in- 
troducing a functional form for the spectral density 

c0 X.zzzz(~) -Xrr.z.z(~) =Ht) 
s 

dm pbi,(w)sin tit 
0 

with the spectral density 

pgir(o) aw exp( ---w/w,). (8.1) 

Here w, denotes a characteristic constant representing the 
frequency at the maximum of Eq. (8.1) . This form of the 
spectral density is called as Ohmic spectrum in the paper of 
Legget et a15* Taking o, as a parameter, we fit the 
Im[y(w)]‘s with Eq. (8.1). The fitted parameters are listed 
in Table I. We hope this data set will be useful for further 
investigations and comparisons with independent studies of 
these liquids. 

The signal for pure acetonitrile is shown in Fig. 2(a). 
The initial peak is the electronic contribution, and follows 
the instrument function almost exactly. The oscillatory be- 
havior results from an intramolecular vibrational mode 
whose frequency is 380 cm-i. The dotted line in Fig. 2(a) 
is the signal calculated using the procedure obtained above 
[see Eq. (5.6b)]. In order to compare the two signals, we 
normalize the peaks at t=O for both the transient birefrin- 
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FIG. 2. (a) Experimental off-resonant transient birefringence (solid line) 
and simulated coherent Raman scattering (dotted line) signals for 
CHsCN. Here, the maxima of the two signals at t=O are matched. A 
semilogarithmic plot of the off-resonant transient birefringence signal of 
CHsCN is drawn in the inset. (b) Imaginary part of x(o) for CHsCN. 

gence and simulated stimulated-Raman scattering signals. 
The relative contribution of the nuclear response is much 
greater in the transient birefringence signal than in the 
coherent Raman scattering. A semilogarithmic plot of the 
acetonitrile signal shows strong nonexponential behavior 
for times less than 2 ps. Thus it is difficult to extract the 
reorientational time constant from our signal. The fre- 
quency distribution of both the inter- and intramolecular 
modes can be directly seen in Fig. 2 (b) . The sharp peak 
around 15 cm-’ results from the slowly decaying feature in 
the time-domain signal. The width of the low-frequency 
distribution from 0 to 170 cm-’ is estimated to be about 80 
cm-‘. The ratio between the areas of low-frequency modes 
(0 to 170 cm-‘) to the 380 cm-’ intramolecular mode is 
about 7:l. 

The transient birefringence signal of pure DMSO is 
shown in Fig. 3 (a). The dotted line is again the simulated 
stimulated-Raman scattering signal. The peaks of the two 
signals are matched. The nuclear contribution is suffi- 
ciently small compared to the electronic contribution, that 
it is difficult to discern the nuclear response in the coherent 
Raman signal. The coherent Raman signal is roughly the 
square of the transient birefringence signal [see Eq. 
(5.6c)]. The inset in Fig. 3(a) is coherent Raman signal 
enlarged 1000 times. This signal is always positive. In Fig. 
3 (b) the imaginary part of x(w) shows three groups of 
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FIG. 3. (a) Experimental off-resonant transient biiefringence (solid line) 
and simulated coherent Raman scattering (dotted line) signals for 
DMSO. The maxima of the two signals at t=O are matched. The inset 
shows the coherent Raman scattering signal enlarged by 1000 times. (b) 
Imaginary part of x(o) for DMSO. (c) Simulated spontaneous Raman 
spectrum of DMSO [see Rq. (5.8)]. 

vibrational modes. Within our resolution of 11 cm-‘, the 
frequencies of intramolecular modes are estimated as 310, 
330,380,665, and 700 cm-‘. The ratio of areas of the three 
groups of vibrational modes is 1.5 (30 cm- ’ ) : 1 (3 10, 330, 
380 cm-‘): 1.5 (665, 700 cm-‘). The same five intramo- 
lecular vibrational modes are also observed in the depolar- 
ized Raman spectrum measured by Horrocks and Cot- 
ton.52 The simulated depolarized Raman spectrum of pure 
DMSO liquid is shown in Fig. 3 (c). The relative magni- 
tudes of each intramolecular vibrational mode contribution 
match precisely with the measured Raman peaks. Thus 

OS 0.0 OS ,a I.5 2.0 21 3.0 

-0.5 0.0 cl.5 1.0 1.5 2.0 2.5 3.0 

Time (ps) 

2421 

L 

0 100 200 300 400 500 
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FIG. 4. (a) Experimental off-resonant transient birefringence (solid line) 
and simulated coherent Raman scattering (dotted line) signals of CHCls . 
The inset shows the coherent Raman scattering signal enlarged by 20 
times. The maxima of the two signals at t=O are matched. (b) Imaginary 
part of x( w) of CHCls . The dotted line is the fitted spectral density with 
Eq. (8.1). 

transient birefringence measurements should have value 
for quantitative analysis of the single and collective molec- 
ular polarizabilities. Because of the ‘correction factor, 
[ 1 -exp( --+i&kgT)]-’ in the depolarized Raman spec- 
trum, the low frequency region in depolarized Rayleigh 
wing spectroscopy is greatly suppressed compared to the 
imaginary part of x(o) shown in Fig. 3(b). Transient bi- 
refringence thus provides a clear spectrum of the low fre- 
quency features. The width of the low-frequency lobe run- 
ning from 0 to 180 cm-’ is about 90 cm-‘. The width and 
shape of low-frequency distribution in DMSO is almost 
identical to that of acetonitrile [compare with Fig. 2(b)]. 

In Fig. 4(a) we show the transient birefringence signal 
of pure chloroform. The simulated stimulated-Raman scat- 
tering signal is drawn as a dotted line in the same figure. 
The two distinctive vibrational modes with frequencies are 
260 and 370 cm-’ are identified in Fig. 4(b), which shows 
the imaginary part of x(o). The width of the low- 
frequency feature from 0 to 110 cm-’ is about 55 cm-‘. 
The ratio of areas of the three regions is roughly 9 ( < 100 
cm-‘): 3 (260 cm-‘): 1 (370 cm-‘), respectively. 

The imaginary parts of the response functions of vari- 
ous alcohols are shown in Figs. 5 (a) and 5 (b). Because 
our spectra are rather noisy in the high-frequency region 
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FIG. 5. (a) The imaginary parts of x(o)% of CH,(CH,),OH (n=O, 1, 
2, and 3) are shown. The dotted lines are the best fits with Eq. (8.1) . The 
circles are the experimental data points calculated from the depolarized 
Rayleigh scattering signal with the parameters obtained by Benassi et al. 
(Ref. 50). (b) The same as (a) but n=4, 5, and 7. 

( > 300 cm-‘), we focus on the low-frequency region. The 
shapes of these spectra are very similar to each other, al- 
though the methanol spectrum is slightly broader than the 
longer-chain alcohols. The maxima of the spectra are all 
around 40 cm- ’ . The methanol spectrum shows a shoulder 
around 100 cm-‘. The slowly decaying component in the 
optical Kerr signal is generally assigned to a single molec- 
ular reorientational motion. Our data extends to only 2.5 
ps making it difficult to extract the reorientational dynam- 
ics accurately. In general we would expect multiexponen- 
Gal behavior for such asymmetric molecules. 

The low-frequency ( < 300 cm-‘) distributions shown 
in Figs. 2(b), 3(b), 4(b), 5(a), and 5(b) are the spectral 
densities which are needed to specify the time scale of the 
molecular motions of the corresponding liquid. 

IX. Dl&XkSlON 

Despite the vast literature on vibrational (such as in- 
frared and Raman) spectroscopies,53 the molecular aspects 
of the low-frequency modes involving more than a few 
molecules observed in the far IR and Rayleigh-wing spec- 
troscopies are poorly understood. Most existing theoretical 
models are based on hydrodynamic or phenomenological 
descriptions of the dynamical motions. A lack of under- 
standing of the low frequency collective molecular motions 
partly originates from the difficulty of experimental mea- 
surement of these modes via frequency-domain spectro- 
scopies. Although, in Sec. V B, we showed the direct rela- 
tionship between off-resonant transient birefringence and 
spontaneous Raman spectroscopy, we should consider 
these two experimentai techniques as complimentary tools 
for studying molecular dynamics in condensed phases. We 
first discuss the vibrational excitation process in the off- 
resonant transient birefringence by considering the impul- 
sive force created by the off-resonant pump field. The in- 
termolecular vibrational contributions observed in the 
imaginary parts of x(w) of various liquids are then dis- 
cussed. Using Eqs. (5.6) and (5.8), we numerically calcu- 
late the depolarized forward coherent Raman scattering 
signal and spontaneous Raman spectra to demonstrate the 
relative relationships among different experimental tech- 
niques. 

From Eqs. (3.3) and (3.4)) the impulsive nature of the 
external perturbation onto the system can be understood 
by considering the associated force exerted on the jth de- 
gree of freedom Fi( t) = 1 El(t) 1 2Q?l &( a)/&~~. It 
should be emphasized that ZZ(oi) represents the collective 
polarizability of the sample, not just a sum of single mo- 
lecular polarizabilities. Thus vibrational excitations of both 
inter- and intramolecular modes may be obtained through 
this process. 

In the case of a spherical molecule, the time-dependent 
single molecular polarizability does not depend on the mo- 
lecular orientation, that is to say the molecular polarizabil- 
ity is isotropic. Thus the depolarized component of the 
Raman signal of a simple liquid, e.g., argon, is expected to 
vanish. However, a depolarized, collision-induced, compo- 
nent which is attributed to the dipoleinduced-dipole in- 
teraction, and which is forbidden for the isolated atom is 
observed in this liquid. Geiger and Ladanyi showed the 
importance of contributions from higher order interaction- 
induced effects in the Rayleigh scattering of CS2 liquid.30’a’ 
They also compared the calculated stimulated-Raman scat- 
tering and off-resonant transient birefringence30cb) with the 
corresponding signals measured by Ruhman et aL6 and 
Kalpouzos et al. ,’ respectively. The close agreement ob- 
served in both cases suggests a crucial contribution from 
higher-order interaction-induced effects in liquid CS2. In 
order to describe the dynamical aspects of the collective 
polarizability, it is usually separated into the collective ori- 
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entational and interaction induced terms. Then, by consid- 
ering these two terms separately the molecular aspects of 
the dynamical motions have been studied by means of com- 
puter simulations. By Fourier transforming x(t) [Eq. 
3.13)] we obtain a characteristic power spectrum of the 
liquid related to the response function associated with the 
polarizability a. Since the collective (intermolecular) po- 
la&ability generally involves many-body dynamics, it is 
difficult to calculate the transient birefringence rigorously 
without invoking simplifying assumptions. Eq. (4.20) sug- 
gests the interpretation of these power spectra in terms of 
the dynamics of intermolecular vibrational modes, which 
represent the collective motions of the liquid [see Eqs. 
(4.7)]. Further, these intermolecular vibrational modes are 
assumed to obey stochastic Brownian dynamics [Eq. 
(4.17)]. 5P2g The collective orientational contributions may 
be described by corresponding intermolecular vibrational 
modes. Obviously, nuclear motions in liquids have large 
amplitudes and we do not expect the normal mode picture 
to hold for long times. We found that the dynamical re- 
sponses of various liquids given in the previous section 
show very fast decay patterns, i.e., times less than 1 ps. 
Therefore, we might expect the short time behavior of liq- 
uids may be sufficient to describe the observed ultrafast 
responses. As discussed below Eq. (4.8), the diffusive re- 

orientational contribution was introduced to describe the 
long-time tail of the signal. In most of the off-resonant 
transient birefringence signals we shall present, this por- 
tion of the signal is very small in magnitude. We expect, 
therefore, comparatively little error to be introduced in the 
description of the short time dynamics by the approxima- 
tion made in Eq. (4.8). However, the dynamics of the 
single molecular reorientational motion will be found to be 
important in the description of the intramolecular vibra- 
tional dynamics, since the purely vibrational response 
function is multiplied by the single reorientational contri- 
bution. By measuring the isotropic part of the response 
function [see Eq. (4.12a)], the vibrational relaxation may 
be observed without a contribution from reorientational 
motion. Finally the, molecular reorientational dynamics 
can be extracted without ambiguity from the comparison 
of the isotropic and anisotropic measurements. 

In Figs. 2(b) and 3 (b), we observe that the low- 
frequency power spectra of acetonitrile and DMSO are 
very similar. On the other hand, the intermolecular vibra- 
tional frequency distribution of chloroform is peaked at 
lower frequency and is narrower than those of acetonitrile 
and DMSO. It should be noted that the spectra shown here 
are obtained by using the numerical deconvolution meth- 
ods discussed in Sec. VII. Thus each spectrum contains all 
nuclear responses regardless of any dynamical model. In 
the present experiment, the signals were measured only up 
to 2 or 2.5 ps and so not attempted to separate the contri- 
butions from the diffusive reorientational motion and in- 
termolecular vibrational motion. However, it would be rea- 
sonable to consider that the higher frequency ( > 10 cm-‘) 
portion of the spectra represents largely contributions from 
the intermolecular vibrational motions. At our present 
stage of understanding a detailed study of the intermolec- 

ular vibrational dynamics of these dipolar liquids via mo- 
lecular dynamics simulation appears necessary to interpret 
the molecular nature of the response. A careful study of 
the power spectrum of small clusters and its size conver- 
gence to the bulk may provide a useful means for deter- 
mining the nature of the collective modes.54,55 

From Fig. 5, we note that the spectral width of the 
imaginary parts of x(w) of the shorter chain alcohols is 
broader than that of the longer-chain alcohols. If the re- 
orientational motions are involved, the moment of inertia 
should play a role in determining the spectra. Although the 
moment of inertia increases as the chain length increases, 
we observe a limiting behavior in the widths and peaks of 
Imh(o)] of long-chain alcohols. Since it is certainly a 
crude assumption that the long-chain alcohols are linear 
sticklike molecules we expect that intramolecular dynam- 
ics, for example rotational isomerization about the dihedral 
axes, could be involved in the liquid responses. Even 
though the number of the intramolecular degrees of free- 

dom increases with respect to the chain length, we do not 
observe any significant changes in the spectra resulting 
from these additional dynamical motions. We also observe 
that the peak of Imk(w>] of methanol is around 40 cm-’ 
whereas that of octanol is around 35 cm-‘. The contribu- 
tions from rotational degrees of freedom are very similar, 
for example, in butanol and octanol. Overall, the difference 
in the Im[X(ti)]‘s for the various alcohols is very small in 
comparison to the differences of moments of inertia and 
total masses. Benassi et al. measured the depolarized and 
polarized Rayleigh scattering signals of alcohols, 
CH3 (CH,),OH with IZ =0-4,56 over the frequency range 
from 0 to 70 cm-‘. They found that the high frequency 
parts (from 10 to 70 cm-‘) of the depolarized-Rayleigh 
wing spectra of various alcohols are almost identical and 
decay as an exponential, SR(w) ccexp( -w/A) with A=29 
cm-‘. In Figs. 5 (a) and 5 (b), we show the calculated 
spectral density by using this expression multiplied by the 
correction factor [ 1 -exp( -%/kT)]. We find good 
agreement up to 70 cm-‘; after this our data and the ex- 
trapolated curves of Benassi et al. diverge. However, we 
are not sure whether extrapolation beyond 70 cm- ’ is war- 
ranted and it is clear that depolarized Rayleigh scattering 
measurements are very difficult in the intermediate fre- 
quency region (from 50 to 500 cm-‘) because of the small 
signal to noise ratio. On the other hand, time-resolved mea- 
surements such as off-resonant transient birefringence 
show great sensitivity in this freqency region. By measur- 
ing decays out to longer times-note our measurements are 
usually limited to 2.5 ps-we can increase the resolution of 
the low frequency region ( < 50 cm-‘). Finally we also 
observed that the long-time decays in the various liquid 
alcohols did not show exponential behavior in the time 
range accessed. 

Now, using the model-independent relationships be- 
tween various off-resonant spectroscopies discussed in Sec. 
V, we compare the off-resonant transient birefringence and 
coherent Raman scattering measurements. Coherent Ra- 
man scattering spectroscopy involves a second pump field 
propagating differently from the other pump field. Also, 
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since the polarization directions of both the three pulses 
(two pump and one probe pulses) and the detection can be 
arbitrarily controlled, the coherent Raman scattering tech- 
niques can measure various tensorial components of the 
total (both electronic and nuclear) response.6(c) If one 
wants to measure the pure nuclear response, it would be 
necessary to deconvolute the laser intensity profile from 
the raw signal [see Eqs. (5.5) and (5.6)]. Because the 
measured signal is linearly proportional to the response 
function in the case of the off-resonant transient birefrin- 
gence, it is always possible to separate the nuclear contri- 
butions from the total response function (see Sec. VII). In 
contrast, the coherent Raman scattering signal (for exam- 
ple, the depolarized forward coherent Raman scattering 
signal) is proportional to the square of the convolution 
integral [see Eqs. (5.6)], which makes it difficult to extract 
the nuclear response without making a fit to the whole 
signal with a suitable model. 

We now turn to the vibrational spectral density defined 
in Eq. (4.21)) and to its relationship with the spin-Boson 
mode1.51,57 The vibrational spectral density is equal to 
Imb(w)] obtained by using the Fourier transform tech- 
nique used in the present paper. The way we choose to 
parametrize it depends on the physical picture we adopt. 
One possibility is to think of the liquid as a collection of a 
large number of normal modes (which may be applicable 
for short times). We then use the expansion [Eq. (4.21)] 
and write 

(9.1) 

-[ ($@ (qJrz; ~~ (9.2) 

Here it should be noted that the above definition of the 
spectral density is obtained when rj=O in Eq. (4.19), that 
is to say, the renormalized frequency ~j=Wj. By param- 
etrizing p(w), we make assumptions about the density of 
modes, weighted by their coupling to the radiation field 
(through the polarizability ). In this picture, the modes are 
treated as harmonic oscillators with no damping. In case of 
the associating liquids, i.e., water, and the short-chain al- 
cohols, the short-time dynamics can be well approximated 
by a harmonic description with a corresponding frequency 
distribution. In this case the intermolecular vibrational co- 
ordinates are directly related to the liquid phonons. To get 
analytic expressions, one may model the spectral densitiy 
in various ways, e.g., Ohmic, Drude, super-Ohmic, and so 
on.51 For example, a Drude spectral density eventually 
gives an exponentially decaying function when trans- 
formed to the time domain. Alternatively, we may choose 
to look at a few collective coordinates and model them 
using a reduced equation, e.g., the generalized Langevin 
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equation,48’5862 with a time-dependent memory function. 
We then parametrize Im x(w) in terms of a frequency- 
dependent friction y(w). 

The two parametrization schemes are completely 
equivalent since by starting with a model of a few primary 
oscillators coupled to a harmonic bath we can either find 
the global normal modes of the coupled system, or derive a 
generalized Langevin equation. The choice, therefore, de- 
pends entirely on the physical picture we wish to adopt. 

y(w) can be calculated by computer simulations or by 
assuming some simplified models, such as exponential or 
Gaussian. However, the merit of such simple models is not 
clear, since the time-dependent memory functions calcu- 
lated from MD simulations are quite complex.63@ 

&r(m)’ c L6(OiOj) j Mjwj 

with 

cj= [ ($gyo@ (qJzzz 

The present analysis is for electronically off-resonant 
spectroscopies. For resonant conditions we need to con- 
sider the coupling of the electronic two level system to the 
bath. In this case we can adopt the spin-Boson Hamil- 
tonian which has been quite extensively used to understand 
the influence of the dissipative bath on a spin system,57’65 

electron transfer,6668 electronically excited molecules,6g 
and spectroscopic line broadenings7’ A rigorous connec- 
tion between reaction rates and the nonlinear optical re- 
sponse for this model has been established.55 Basically, the 
associated dynamical variables are linearly coupled to the 
harmonic undamped oscillator bath. Because of its simplic- 
ity in describing the complicated many-body aspect of a 
general bath, analytic expressions for interesting quantities 
can be obtained. The key quantity specifying the 
fluctuation-dissipation relationship between the bath and 
dynamical variable is the spectral density that is in general 
determined by both the frequency distribution and the cou- 
pling constants of each harmonic bath mode. For example, 
Pollak7i showed that the Grote-Hynes expression7’ of the 
transmission coefficient based on the generalized Langevin 
equation of an inverted harmonic potential surface can be 
derived by using a Hamiltonian of a unstable harmonic 
mode linearly coupled to the harmonic oscillator bath. Us- 
ing the path-integral technique, the multidimensional tun- 
neling problem has also been extensively studied.51v57773 
Many applications of the harmonic bath model have 
proved the usefulness of this simple model to understand 
the role of dissipative interaction and to provide a guide for 
further developments theoretically as well as experimen- 
tally. The optical nonlinear response function for the spin 
Boson model to arbitrary order in the radiation field and 
including an arbitrary (non-Condon) dependence of the 
transition dipole on nuclear coordinates has been calcu- 
lated by Tanimura and Mukamel using path integral tech- 
niques.70 The resulting expression applies to resonant as 
well as off resonant conditions, and in the off-resonant limit 
it agrees with our present results. 

Off-resonant measurements can always be parame- 
trized in terms of a multimode harmonic model and there- 
fore do not provide a critical test for its physical applica- 
bility. However, since the oscillator picture has a unique 
prediction with regard to the resonant behavior and re- 
garding the temperature dependence of the optical re- 
sponse, it is possible to use such measurements to test the 
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model. Such tests have not been made so far. The following 
example illustrates the importance of carrying out resonant 
measurements. Suppose we have an inhomogeneous distri- 
bution of oscillators 

p(o) = I GT po(w,r)P(r). (9.3) 

We assume that the liquid has domains with a slow inter- 
conversion rate between them. I’ can stand for Qe (a spe- 
cific liquid configuration) or any other parameter that de- 
fines the domain. One can envision an infmite number of 
choices of p,-,(w) and P(r) that will yield the same whole 
spectral density, p(o). Nevertheless, the off resonant re- 
sponse will depend solely on p. Resonant measurements 
such as photon echoes will however be very different for 
these various choices, which represent a completely differ- 
ent physical picture. Fried and Mukamel have developed 
the inhomogeneous cumulant expansion which addresses 
this problem.62 Bearing this problem in mind, we suggest 
that the spectral density obtained from the transient bire- 
fringence signal could serve as an experimental method to 
determine the spectral distribution (i.e., time scale distri- 
bution) of the harmonic bath [see Eq. (4.21)]. We recall 
that the coupling constants (c,) in the transient birefrin- 
gence depend on the nuclear cordinate-dependent Raman 
polarizability. In general, the coupling constants may have 
a strong dependence on the relevant dynamical variables 
such as polarizability in Raman spectroscopy, dipole mo- 
ment in IR spectroscopy, macroscopic solvent polariza- 
tion, and so on. The observation of Keyes and Seely,74 that 
the light scattering spectrum of a simple liquid is very 
similar to the instantaneous normal mode spectrum, sug- 
gests that the coupling constants which are ingredients in 
the spectral density are likely to be independent on the 
frequency of the harmonic mode. Thus, the frequency dis- 
tribution of the harmonic modes seems to be the major 
factor in the spectral density profile. The molecular system 
studied is very simple and contains no rotational degrees of 
freedom, Buchner et al.‘s work75 on the instantaneous nor- 
mal mode analysis of a diatomic molecular liquid again 
supports this conjecture. 

X. SUMMARY 

In the present paper, we derived a master equation for 
off-resonant pump-probe spectroscopies employing polar- 
ized fields. For far off-resonant excitation, the excited state 
density matrix element is effectively decoupled, since the 
imaginary part of the linear susceptibility is negligibly 
small. Thus, the effective Hamiltonian is simply obtained 
by adding a driving force 1 E,(t) 1 2e^le^1 Z(wi) to the adia- 
batic ground state Hamiltonian. When the pump field is 
weak, we solve the master equation perturbatively to ob- 
tain Eq. (3.10). The third-order macroscopic polarization 
created by the external pump field was determined by the 
expectation value of the molecular polarizability tensor. 
The off-resonant birefringence signal is finally given by the 
convolution of the response function of the molecular po- 
larizability tensors and the external fields [Eq. (3.12)]. 

A comparison of the heterodyne- and the homodyne- 
detected birefringence with the coherent Raman signal was 
presented. By expanding the polarizability with respect to 
the corresponding coordinates and assuming Brownian 
motion for the vibrational coordinate response functions, 
we obtained the signal as a sum of the correlation functions 
of the Brownian oscillators. 

The relationship between the off-resonant birefrin- 
gence signal and the spontaneous Raman signal was estab- 
lished by using the fluctuation-dissipation theorem which 
relates the response function of the polarizability to the 
correlation function of the polarizability by Eq. (5.7). 

Experimental measurements of off-resonant transient 
birefiingence of acetonitrile, chloroform, DMSO, and a se- 
ries of alcohols were presented and compared in the fre- 
quency domain. Except for a weak trend of redshift from 
short- to long-chain alcohols, the overall shapes of the 
spectral densities are remarkably similar. Also, we ob- 
served distinctive intramolecular vibrational beats in ace- 
tonitrile, chloroform, and DMSO. Low-frequency distribu- 
tions were adequately represented by the function 
w Xexp( -w/w,). When the coupling constants are inde- 
pendent on intermolecular vibrational frequencies, we sug- 
gest that the crucial input for spin-Boson model can be 
obtained by the off-resonant transient birefringence, and 
thus the results presented here may have some value for 
predicting various dynamical phenomena in the same liq- 
uids. 
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APPENDIX A 

In this Appendix, we consider a single molecular re- 
sponse function for off-resonant birefringence. Let u be a 
unit vector which lies along the symmetry axes of a sym- 
metric top molecule. In this appendix, we treat the rota- 
tional motion classically. The polarizability tensor can be 
in this case expressed as 

Crjj=ajl Zf!$f!j+al (Sjj-UiUj), (Al) 

where Ui is the ith component of the unit vector u. aI1 and 
al designate the polarizabilities along the symmetry axis 
and along any axis perpendicular to u. By defining 

a&all +2al ) and P=(all -al >, (A21 

Eq. (Al) can be rewritten as 

aij = aSij + fiij (A3) 

with 

flij=P(UiUj-$3S,)* (A4) 

Here we are using the Einstein convention stipulating that 
repeated indices be summed (i.e., aii=ai 1+ aZ2 + a33, 
6ii=Sii +&+&=3, 6ij6ji=3 and SO On). since CwS, iS 

not dependent of u, this does not change as the molecule 
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rotates. pij on the other hand, depends on the molecular 
reorientation. It should be noted that the polarizability ten- 
sor aij is symmetric in the indices i, j (i.e., aij=aji and 
Pij=pji). For isotropic media, the average of Pij over the 
initial orientational distribution is zero, and therefore (ail) 
= aa,. This is crucial in comparing the off-resonant bire- 
fringence with the coherent or spontaneous Raman scat- 
terings. If the media is initially isotropic, the depolarized 
(VII) component of the coherent and spontaneous light 
scatterings contains the same information with the aniso- 
tropic signal of off-resonant birefringence [compare Eq. 
(All) and (B4)]. 

A single molecular contribution to the polarizability 
response function for off-resonant birefringence is then 

XBPaJf) = 
(’ 

f [q3&t),a,,(O)l) 

=@/(i [a,(t),ado)l)~~ 

with 

(A5) 

#j’=(np)i(ng)j and %F= (dddz, (A61 

where subscripts a and p represent the polarization direc- 
tion of the pump and probe (also local oscillator) beams 
respectively, and ( Qi denotes an ith component of the 
unit vector which lies along the laboratory a axis. 

Inserting Eq. (A3) into Eq. (A5) and using the rota- 
tional invariant property of aSij and (Pii) = 0 give (refer to 
Appendix 7.B in Ref. 47) 

i 
i [%j(t),akz(O) 1) 

= 
i 

i [a(t>,a(O)] 6.2 ) rj kZ+ (f Wij(f)r~kl(o)l) 

= 
i 
f ta(tLa(O)l)6ij6k~+~ (i W(t),B(o)l) 

X (P~[u(o) *U(t)] > CSi~jl+Si~j~-~ss,S,,], (AT) 

where P2(x) =3x2/2- l/2. By substituting Eq. (A7) into 
Eq. (A5), the response function is then written as 

xmzn(t) = 
( 
f [a(tLaUNl) +&P2(q.n,) 

x 
i 
; mBw1) (Mu(O) l uWl). 

(A8) 

For example, if nor and np are parallel, 

xzzzz(t) = 
(’ 
i [dW4Nl) +$ (f [B(WUNl) 

x (Pz[u(O) *u(t) I). (A91 

On the other hand, if n, and np are perpendicular, we have 

XYYZZW = 

x (P2EW) -u(t) I>. (A 
As will be discussed later, the conventional off-resonant 
birefringence measurement is related to 

2 i 
iyzzzz(t> --XYYzz(t) =E ( 

jj w(wm 1 
> 

x(P2[u(O>*uWl). (All) 

Equation (Al 1) is proportional to the anisotropic part of 
the response function [see Eq. (4.12b)]. The isotropic part 
is measured by 

xzzzz(t) +2XyyzAt) =3 
i 

6 [a(t) I 
> 

(A12) 

which is corresponding to the isotropic part of the response 
function defined in Eq. (4.12a). 

APPENDIX B 

For coherent Raman scattering (or impulsive stimu- 
lated Raman scattering) with zero wave vector, the corre- 
sponding response functions are of the form xLlsas, 
whereas the response functions for off-resonant birefrin- 
gence are xppaa. The response function for forward (k=O) 

coherent Raman scattering is then 

x/3c&w = (6 [afla(tLqdO) 1) 

=A$? f [aij(t>,akz(O) 1) NE 
( 

with 

@y=(np)i(n,)j and @=(na)k(Q1. U32) 

The difference between Eqs. (A5) and (Bl ) is the projec- 
tions of the molecular polarizability onto the polarization 
directions of the external fields. Inserting. Eq. (A7) into 
Eq. (Bl) gives 

xp,p,W = 
i 
i [a(t) 1) bp*nJ2 

1 i 
+jj n W>hW 1 11 +S(q3*nJ21 

( > 

x (Pdu(O) *u(t) I>. (B3) 

For n,11 np, the corresponding response function for the 
impulsive stimulated Raman scattering is xzzzz( t) , which 
was given in Eq. (A9). For n,l ns, 

1 * 
xyzrz(t) =z 

( 
f. [P(wm 1 fi > 

(P,[u(O) *u(t) I>. 

(B4) 

Clearly, the depolarized (VH) component, i.e., 
x yzyz( t) of the forward impulsive light scattering is iden- 
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tica to the anisotropic measurement of the off-resonant 
birefringence [compare Eqs. (Al 1) and (B4)], 

xzzzz(t) -XrrzzW =2xrzrz(t)* (B5) 
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