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1 Introduction

In this paper we extend the techniques and tools developed in the context of algebraic

renormalization of gauge theories [1–7] in order to study the ultraviolet (UV) behavior

of a particular class of Higgs Effective Field Theories (HEFTs) whose higher dimensional

operators are constructed out of arbitrary powers of the gauge-invariant combination Φ†Φ−
v2

2 , i.e., for which the Beyond the Standard Model (BSM) Higgs potential is written as

V ∼
∞∑

j=3

g2j

(
Φ†Φ− v2

2

)j

, (1.1)

with Φ the standard Higgs SU(2) doublet (see eq. (2.1) below) and v its vacuum expectation

value (vev).

There are several physical motivations to study such a class of potentials. In fact, the

shape and structure of the spontaneous symmetry breaking potential are key ingredients in

the program of experimental study of the Higgs boson properties; yet, the scalar couplings
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are poorly known at the moment. Indeed, a huge effort is currently under way in order to

provide the best experimental constraints at the LHC on the Higgs self-couplings, as well

as in order to assess their phenomenological impact in terms of possible deviations from

the SM values (for a recent review see, e.g., [8]).

More generally, different choices of the analytical potential V lead to very different

scenarios for electroweak symmetry breaking than the simple SM mechanism [9]. As a

consequence, exploration of the global structure of the Higgs potential is an important

question that has to be addressed, beyond the small, quadratic oscillations around the

vev to be probed by LHC. For instance, it is well-known that a dimension 6 operator

(corresponding to j = 3 in the above equation) can lead to a first order electroweak phase

transition [10–12]. Neverthless, no reliable statement can be made even at the one-loop

order by truncating the series in eq. (1.1) to a polynomial: quantum corrections induce

operators of higher dimension, and, therefore, knowledge of the full renormalization of the

analytic potential is required [13].

Moreover the UV properties and operator mixing of BSM theories of this type, and

in particular the ones involving dimension 6 operators, have in fact received substan-

tial attention in recent years, both for phenomenological reasons [8, 14–17], and as a

consequence of the discovery of surprising cancellation patterns in the one-loop on-shell

anomalous dimensions [18–20] which have been traced back to holomorphy [21] and to the

remnant of embedding supersymmetry transformations approximately constraining these

(non-supersymmetric) HEFTs [22].

The novel approach introduced here will allow for the first time, to the best of our

knowledge, to achieve the complete off-shell renormalization of the Higgs sector of these

BSM theories at the one-loop level. This is different form the standard approach to HEFTs,

where one is usually interested in physical S-matrix quantities, so that the equations of

motion are freely used in order to simplify the basis of operators involved [23–32]. As a

consequence one is limited to the classification of on-shell UV divergences only. This means

in turn that while one can compute the anomalous dimensions γ of physical operators, the

β functions of the corresponding couplings are out of reach, since in order to evaluate the

latter one needs to take into account the contribution of wave function renormalizations. On

the other hand, evaluation of the latter requires to take properly into account (Higgs) field

redefinitions which in a generic HEFT, due to the loss of power counting renormalizability,

can be polynomial and derivative dependent, being subjected only to the requirement

of being induced by a canonical transformations with respect to the Batalin-Vilkovisky

bracket associated with the classical Becchi-Rouet-Stora-Tyutin (BRST) differential [33].

In this respect we will establish the somewhat surprising result that for HEFTs char-

acterized by the potential (1.1) the Higgs wave-function renormalization is purely SM-like,

so that the Higgs field redefinition is the familiar linear one known from the SM power

counting renormalizability. This is not obvious, since, in an effective field theory, wave-

function renormalizations are in general superseded by a canonical transformation [33].

This implies in turn that for the Higgs field one could have a polynomial field redefinition,

e.g., σ → Z
1/2
σ σ + a1σ

2 + a2σ
3 + · · · , so that, under such a transformation, the quadratic

part of the action would also affect Green’s functions with a higher number of external legs,
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at variance with the power-counting renormalizable case. This indeed does not happen in

the case at hand.

In addition we will be able to write in a closed form the renormalization of the g2j
couplings considering the complete tower of operators in (1.1). This paves the way to

the computation of the β functions of the g2j BSM couplings without resorting to any

polynomial approximation of V in the tree-level Lagrangian, that will necessarily give

rise to instabilities at one loop order due to the generation of additional divergences not

contained in the tree-level action and thus new operators absent in the truncated classical

potential, see, e.g., [13].

The paper is organized as follows. In section 2 we will introduce our formalism and in

particular show how to reformulate the electroweak SSB mechanism using as a dynamical

variable the gauge invariant combination Φ†Φ− v2

2 . This is achieved by introducing a new

field X2 together with a Lagrange multiplier X1 enforcing on-shell the condition X2 =
1
v

(
Φ†Φ− v2

2

)
.

Specializing then to the particular case of a cubic potential in X2, in section 3 we show

how in this new formulation the BSM operators admit an interpretation in terms of certain

external sources coupled to a tower of X2-dependent operators with a better UV behaviour

than those of the quantized fields X1 and X2 themselves. In addition, we derive a set of

functional identities that fully constrain the dependence of the vertex functional on those

fields, to all orders in the loop expansion. As a result, we show that it is much easier to ana-

lyze the 1-PI amplitudes in the so-calledX-theory (being constrained by the hidden symme-

tries described by the aforementioned functional identities) and then read-off the needed in-

formation in the original (target) theory via a suitable mapping, that we explicitly identify.

We also discuss how power-counting is realized in this formulation, and identify accord-

ingly all divergent amplitudes, from which one can generate all the multi-Higgs divergent

amplitudes in the target theory in a purely algebraic fashion through the mapping previ-

ously constructed. Finally we show the rather remarkable property that, at the one-loop

level, the derivative dependent operators ∂µ(Φ
†Φ)∂µ(Φ†Φ) and (Φ†DµΦ)(Φ

†DµΦ) are not

radiatively generated, despite being compatible with both the functional identities and the

associated power counting. This can be seen as a consequence of some seemingly acci-

dental cancellations that are transparent once expressed in terms of the external sources

amplitudes of the X theory. This fact has phenomenological relevance, since if such oper-

ators were radiatively generated, their mixing with
(
Φ†Φ− v2

2

)3
would occur, ultimately

invalidating analyses where they are excluded in the evaluation of physical observables (as

done, e.g., in [17]).

Next, in section 4 we show that the cubic case is actually much more than an in-

formative warm-up exercise, and proceed to describe how we can generalize the procedure

developed in that case to a potential involving arbitrary powers of the operator
(
Φ†Φ− v2

2

)
.

Since the power counting does not change in the X-theory, the divergent amplitudes are

the same as the ones identified in the cubic case, and all divergent multi-Higgs amplitudes

in the target theory can be again generated in an exclusively algebraic way through a

generalized mapping that we explicitly work out.
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Section 5 describes finally how one can carry out the full off-shell one-loop renormal-

ization of the model. We first renormalize the X-theory, then show that the vev and

Higgs wavefunction renormalizationn are the SM ones, therefore excluding non-linear field

redefinitions in the Higgs sector, and, finally, renormalize the target theory determining

in particular the renormalization of the BSM couplings g2j . Our conclusions are then

presented in section 6. The paper ends with two appendices. In appendix A we report

the Higgs one, two and three-point function in the target theory for the cubic case. In

appendix B we provide instead the UV divergent parts of the divergent 1-PI amplitudes

in the X-theory for a cubic potential, and construct explicitly the multi-Higgs divergent

amplitudes in the target theory.

2 X fields

As has been recently shown in [34], it is possible to reformulate the electroweak SSB

mechanism using as a dynamical variable the gauge invariant combination Φ†Φ− v2

2 , where

Φ is the standard scalar field SU(2) doublet, i.e.,

Φ =
1√
2

(
iφ1 + φ2

φ0 + iφ3

)
, (2.1)

with φi the Goldstone’s bosons, φ0 the would be Higgs field and v its expectation value,

〈φ0〉 = v. It is the purpose of this paper to illustrate why it is advantageous to do so; in

what follows we rather recall how this reformulation can be technically accomplished.

To this end, let us split the tree-level action of our theory in three parts, writing

Γ = ΓSM + ΓSSB + ΓSRC. (2.2)

Above, ΓSM represents the usual SM action comprising the Yang-Mills, fermion, Yukawa,

(linear) gauge fixing and ghost terms; ΓSSB replaces instead the SSB Higgs term and reads

(omitting, here and in the following, space-time arguments from all fields whenever no

confusion can arise)

ΓSSB =

∫ [
DµΦ

†DµΦ− M2 −m2

2
X2

2 − m2

2v2

(
Φ†Φ− v2

2

)2

− c
(
�+m2

)
c

+
1

v
(X1 +X2) (�+m2)

(
Φ†Φ− v2

2
− vX2

)
+ V (X2)

]
, (2.3)

with D the usual covariant derivative and V (X2) a generic potential in the X2 field.1 The

equation above makes it clear that only X2 is a genuine field; X1 is instead a Lagrange

multiplier, whose equation of motion ΓX1
= 0 enforce the condition

X2 =
1

v

(
Φ†Φ− v2

2

)
. (2.4)

1With respect to the conventions of [34] we have reinstated the dependence on m2 (which is allowed in the

most general power-counting renormalizable theory in the X-formalism [35]) and replaced M2 → M2 −m2

in such a way that M is here the mass of the physical scalar resonance.
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The advantage of this reformulation is that the scalar Higgs field can be seen as a

quantum fluctuation around the SU(2) constraint Φ†Φ − v2

2 = 0, i.e., the sphere in the

field space configuration spanned by the field coordinates (σ, φa). If such a fluctuation is

frozen out, one recovers the Stückelberg model [35]; on the other hand, if the non-linear

constraint is relaxed by a non-vanishing quantum fluctuation X2, one gets back a model

that has the same physical particle content as the usual Higgs theory.

In fact, the field X2 describes the physical scalar excitation, whereas σ = φ0−v can be

traded in favour of the unphysical mass eigenstate combination σ′ = σ−X1−X2. Both σ′

and X1 have mass m2 and their propagator differ by a sign. They cancel against each other

in all physical amplitudes.2 Accordingly the mass parameter m is an unphysical parameter

that must drop out of all physical amplitudes, leaving only the dependence on the physical

Higgs mass M . At tree-level this is easily understood, since by going on-shell with X1 and

replacing X2 with Φ†Φ− v2

2 the m2-dependent terms in the first line of eq. (2.3) cancels out,

and one is left with the conventional quartic Higgs potential VSM = M2

2v2

(
Φ†Φ− v2

2

)2
. At

higher orders, the m2-independence of the results gives a powerful way to check calculations

performed in the X-theory.

In this framework the SM corresponds to the simplest approximation, namely the

quadratic action for the scalar (SU(2) singlet) X2. One can then add either self-interactions

in X2 (giving rise to a BSM potential, which we will study in detail in the present paper) or

more general gauge-invariant higher dimensional couplings with the SM fermions and gauge

bosons. One might even think of a more complicated dynamics, e.g., in the relaxion mod-

els [36–38] where the Higgs mass squared is promoted to a function of a slowly rolling field ϕ

(the axion being the simplest possibility) that scans the Higgs mass and stabilizes the latter

since the potential barrier increases as a consequence of the increase of the Higgs vacuum

expectation value, ultimately preventing ϕ from rolling down further. When addressing

the quantum stability for this class of models, a series of operators involving the singlet

fluctuation X2 and the field ϕ naturally arise, and the formalism developed here is expected

to provide a useful tool in order to assess the renormalization properties of such models. In

particular, anticipating some technical aspects that will be clarified soon, we expect to be

possible to study the UV properties of composite operators of this type by generalizing the

results presented in this paper to ϕ-dependent external sources coupled to powers of X2.

Finally, one has

ΓSRC =

∫
c∗

(
Φ†Φ− v2

2
− vX2

)
+ ΓV . (2.5)

Here c̄∗ is a source (usually referred to as an antifield) coupled to the on-shell null operator

Φ†Φ − v2

2 − vX2 which is needed to implement the X1 equation of motion; ΓV collects

instead all the additional sources needed for implementing the X2 equation of motion,

whose number depends on the actual form of the X2 potential, as we shall soon see.

The action Γ is invariant under the extended Becchi-Rouet-Stora-Tyutin (BRST) op-

erator s+ s where s is the standard BRST operator associated to the SU(2)×U(1) gauge

2A rigorous all-orders proof of this result has been given in [34, 35].
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invariance, while s implements algebraically the (SU(2)-invariant) constraint, namely

sX1 = vc; sΦ = sX2 = sc = sc∗ = 0; sc = Φ†Φ− v2

2
− vX2. (2.6)

Notice that the two BRST operators anticommute, {s, s} = 0, and they are both nilpotent,

s2 = s
2 = 0.

When going on-shell with both X1 and X2 (that is imposing the equations of motion

ΓXi
= 0, i = 1, 2) the 1-PI amplitudes generated will coincide with the ones obtained

in the standard formalism. We call the resulting theory the target theory; in particu-

lar for V (X2) = 0 one recovers that the target theory coincides with the SM. Clearly,

then, the potential V (X2) contains all the BSM operators expressed as polynomials in

the X2 field itself. For example, looking at dimension 6 operators, V (X2) might con-

tain terms like X3
2 , and/or ordinary derivatives, e.g., the canonically normalized X2 ki-

netic term 1
2∂µX2∂

µX2; on-shell these terms would map onto the corresponding operators
1
v3

(
Φ†Φ− v

2

)3
and 1

v2
∂µ(Φ

†Φ)∂µ(Φ†Φ) respectively.

However, in the X formulation some BSM operators admit a reformulation in terms

of a suitable set of external sources coupled to a tower of X2-dependent operators with a

better UV behaviour than those of the quantized fields X1 and X2. In addition, a set of

functional identities exists fully constraining the dependence of the vertex functional on

those fields, to all orders in the loop expansion. As a result, it is much easier to analyze the

1-PI amplitudes in the X theory (being constrained by the hidden symmetries described

by the aforementioned functional identities) and then read-off the needed information in

the target theory via a suitable mapping onto it (that we need to identify).

3 The cubic potential case X3

2

As a simple yet illustrative warm-up exercise, we will now study in detail the BSM theory

obtained when choosing the potential

V (X2) = g6ΛX
3
2 , (3.1)

where Λ is a mass parameter introduced in order to make the coupling constant g6 dimen-

sionless. This is the lowest dimension BSM operator with no derivative that can be built

in the X theory; yet, in the target theory, it plays an important role in the phenomeno-

logical study of the Higgs potential at the LHC [8]. Thus, after constructing explicitly the

mapping between the X and the target theory, we will then:

i) Reconstruct the set of one-loop counterterms required to renormalize the theory at

one loop level in the sector involving only the Higgs field σ, starting from the (few)

UV divergent amplitudes involving the external sources of the X-theory;

ii) Show that at the one-loop level the operator ∂µ(Φ
†Φ)∂µ(Φ†Φ) is not radiatively gener-

ated (despite being compatible with both the functional identities and the associated

power counting), as a consequence of some accidental cancellations that are trans-

parent once expressed in terms of the external sources amplitudes of the X theory.
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This is of phenomenological relevance since if such an operator were radiatively gen-

erated, the mixing between (Φ†Φ)3 and ∂µ(Φ
†Φ)∂µ(Φ†Φ) would occur and one could

not exclude the latter operator in the evaluation of physical observables at this order

of approximation, as has been done, e.g., in [17].

The results obtained will go beyond a mere illustrative purpose, and, in fact, pave the way

to the complete one-loop analysis and (algebraic) renromalization of a generic potential

containing arbitrary powers in the X2 field (but no derivative terms) that will be carried

out in section 5.

3.1 X functional identities and mapping to the target theory

In the presence of the potential (3.1), one then needs to introduce in the action (2.3) a

single additional source R coupled to the field X2
2 :

ΓV =

∫
RX2

2 (3.2)

The reason is simple: the derivative of the action with respect to X2 in the presence of

the trilinear interaction vertex (3.1) gives rise to the composite operator X2
2 , which, being

non-linear in the quantized fields, needs to be defined through the coupling to a suitable

external source [1]. Then the equation of motion of the X1 and X2 fields read respectively3

ΓX1
=

1

v

(
�+m2

)
Γc̄∗ , (3.3)

ΓX2
=

1

v

(
�+m2

)
Γc̄∗ + 3g6ΛΓR −

(
�+m2

)
X1

−
(
�+M2

)
X2 + 2RX2 − vc̄∗. (3.4)

These equations, which are valid to all orders in the perturbative expansion, imply that

(starting at the one-loop level) the whole dependence of the vertex functional Γ on X1, X2

enters only through the combinations

R = R+ 3g6ΛX2; c̄
∗ = c̄∗ +

1

v

(
�+m2

)
(X1 +X2) . (3.5)

In fact, due to the differentiation chain rule, if we write Γ = Γ[R, c̄∗] one has (omitting

the spacetime integration symbol)

ΓX2
⊃ ΓR

δR

δR

δR

δX2
= 3g6ΛΓR; ΓX1

⊃ Γc̄∗
δc̄∗

δc̄∗

δc̄∗

δX1
=

1

v

(
�+m2

)
Γc̄∗ . (3.6)

3We will denote by a subscript the functional derivatives with respect to the corresponding field; thus

for a generic field ϕ we have

Γϕx
=

δΓ

δϕ(x)
; Γϕxϕy

=
δ2Γ

δϕ(x)δϕ(y)
,

and so on. As before, whenever no confusion can arise, space-time arguments will be omitted and we will

simply write Γϕ, Γϕϕ, etc. Finally, when considering 1-PI functions, evaluation at zero external sources

and fields after the functional differentiation is assumed.
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Hence one can trade amplitudes involving external X1 and/or X2 legs for amplitudes with

insertions of the external sources c̄∗ and/or R.

From these Green’s functions we can recover the corresponding ones in the target

theory by going on-shell with the X1 and X2 fields. If one is interested only in a lowest

order perturbative analysis, it is sufficient to consider the tree-level equations of motion of

those fields and substitute them back into the right-hand side of eq. (3.5). The X1-equation

yields then the constraint

X2 =
1

v

(
Φ†Φ− v2

2

)
= σ +

1

2

σ2

v
+

1

2

φ2
a

v
, (3.7)

whereas the X2 field equation of motion reduces to (at zero external sources R = 0, c̄∗ = 0)

(
�+m2

)
(X1 +X2) = −

(
M2 −m2

)
X2 + 3g6ΛX

2
2 . (3.8)

Substituting then eqs. (3.7) and (3.8) into eq. (3.5) one obtains the new sources4

R → 3g6
Λ

v

(
Φ†Φ− v2

2

)
,

c̄
∗ → − 1

v2
(
M2 −m2

)(
Φ†Φ− v2

2

)
+

3g6Λ

v3

(
Φ†Φ− v2

2

)2

, (3.9)

which constitute the sought for scalar sector X-theory mapping onto the target theory at

the one-loop level.

Notice finally that the replacement rules in the X-theory in eq. (3.5) above are valid to

all orders in the loop expansion. Yet at orders higher than one the mapping to the target

theory changes since loop corrections to the X-equations of motion have to be considered

when substituting the on-shell solution for X, which in general will not be any more given

by their tree-level approximation of eqs. (3.7) and (3.8).

3.2 One-loop Higgs one- and two-point functions in the target theory

To see how the mapping works in practice, we show how to reconstruct the Higgs one- and

two-point function to lowest order in the target theory from the X 1-PI functions.

In the one-point sector one has two functions to consider: Γ
(1)
R and Γ

(1)
c̄∗ . Then, eqs. (3.7)

and (3.9) show that their contribution to the Higgs one-point function in the target theory is

∫
Γ
(1)
Rx

Rx →
∫

Γ
(1)
Rx

Rx →
σ term

3g6Λ

∫
Γ
(1)
Rx

σx,
∫
Γ
(1)
c̄∗x

c̄∗x →
∫

Γ
(1)
c̄∗x

c̄
∗
x →

σ term
−1

v

(
M2 −m2

) ∫
Γ
(1)
c̄∗x

σx, (3.10)

and, consequently,

Γ̃(1)
σ = 3g6ΛΓ

(1)
R − 1

v

(
M2 −m2

)
Γ
(1)
c̄∗ . (3.11)

4Notice that despite the non-local nature of the solution to the X2-equation of motion (due to the

presence of the Klein-Gordon operator) no poles arise in the vertex functional of the target theory after

going on-shell with X1 and X2, as a consequence of eq. (3.4).
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The two-point sector is slightly more involved, as one needs to consider theX 1-PI func-

tions with up to two external σ, c̄∗ or R legs. To begin with observe that tadpoles in the X

theory will contribute to the target-theory two-point functions as eqs. (3.7) and (3.9) imply

∫
Γ
(1)
Rx

Rx →
σ2 term

3Λ

2v
g6

∫
Γ
(1)
Rx

σxσx, (3.12)
∫

Γ
(1)
c̄∗x

c̄∗x →
σ2 term

− 1

2v2
(M2 −m2 − 6g6Λv)

∫
Γ
(1)
c̄∗x

σxσx.

Similarly, the X two-point sector yield the contributions
∫∫

1

2
Γ
(1)
RxRy

RxRy →
σ2 term

9

2
g26Λ

2

∫∫
Γ
(1)
RxRy

σxσy,
∫∫

Γ
(1)
Rxσy

Rxσy →
σ2 term

3g6Λ

∫∫
Γ
(1)
Rxσy

σxσy,
∫∫

1

2
Γ
(1)
c̄∗xc̄

∗
y
c̄∗xc̄

∗
y →

σ2 term

1

2v2
(M2 −m2)2

∫∫
Γ
(1)
c̄∗xc̄

∗
y
σxσy,

∫∫
Γ
(1)
c̄∗xσy

c̄∗xσy →
σ2 term

−1

v
(M2 −m2)

∫∫
Γ
(1)
c̄∗xσy

σxσy,
∫∫

Γ
(1)
Rxc̄∗y

Rxc̄
∗
y →

σ2 term
−3g6

Λ

v
(M2 −m2)

∫∫
Γ
(1)
Rxc̄∗y

σxσy. (3.13)

Summing up all the above BSM contributions to the SM one Γ
(1)
σσ yields then the final

target-theory function

Γ̃(1)
σσ = Γ(1)

σσ + 3g6

(
Λ

v
Γ
(1)
R + 2

Λ

v
Γ
(1)
c̄∗ + 2ΛΓ

(1)
Rσ + 3g6Λ

2Γ
(1)
RR

)

− 1

v2
(
M2 −m2

) [
Γ
(1)
c̄∗ + 2vΓ

(1)
c̄∗σ + 6g6ΛvΓ

(1)
Rc̄∗ −

(
M2 −m2

)
Γ
(1)
c̄∗c̄∗

]
. (3.14)

Notice that at one loop level there is no dependence on g6 arising from the X-theory

amplitudes, since at this level the interaction vertex ∼ g6X
3
2 can only contribute to 1-

PI Green’s functions with at least one external X2-leg. Therefore there is no further

g6-dependence in Γ̃
(1)
σσ in addition to the one displayed in eq. (3.14).

Explicit results for the above Green’s functions as well as the three-point function Γ̃
(1)
σσσ

are collected in appendix A. In particular, we notice here that the UV divergent parts of all

terms appearing on the right-hand side of eq. (3.14) (except the first one) are momentum-

independent; we then conclude that the wave function renormalization of the σ field is the

same as the SM one.

This result shows that the linear field redefinition associated with the wave-function

renormalization does not receive contributions depending on the BSM coupling g6. In

particular, such a field redefinition does not contain differential operators (which might

in principle appear in an effective field theory). Furthermore, we will prove shortly that

the SM wave-function renormalization is enough to remove all the one-loop divergences

of the model, together with the redefinition of the external sources R and c̄∗ solving

the X-equations of motion. Plainly, this implies that there are no polynomial contri-

butions to the Higgs field redefinition. This is a non-trivial property since in an effective
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gauge field theory one would in general expect the appearance of polynomial, possibly

derivative-dependent field redefinitions induced by canonical transformations w.r.t. the

Batalin-Vilkovisky bracket enconding at the quantum level the BRST invariance of the

classical action [33].

3.3 Power-counting

Let us now consider if and how power counting is realized in the X-theory. Let us define

X = X1 +X2, and consider first the case in which g6 = 0. Then, contractions inside loops

involving the derivative interaction vertices generated in eq. (2.3) by the term X�Φ†Φ will

always involve either the propagator ∆XX or ∆Xσ. Both propagators however behave like

1/p4 for large momenta [34], thus ensuring power-counting renormalizability. On the other

hand, when g6 is switched on, contractions involving the propagators ∆X2X and ∆X2σ

also arise inside loops; as these propagators behave as 1/p2 for large momenta, they cannot

anymore compensate the additional momentum dependence from the derivative interaction

vertices, and thus power-counting renormalizability is violated, as expected.

Nevertheless at one-loop level power-counting rules are very simple also when g6 6= 0.

In fact, recall that we do not need to consider amplitudes involving external X1 and X2 legs

as the latter are uniquely fixed by eqs. (3.3) and (3.4) once amplitudes involving the external

sources c̄∗ and R are known. Whence, to lowest order in the perturbative expansion the

trilinear interaction vertex g6ΛX
3
2 does not play any role, and the unique source of non-

power-counting renormalizability is represented by the interaction vertex RX2
2 .

We can limit ourselves to the sector where X1 = X2 = 0, since the whole dependence

on X will be given by the replacement in eq. (3.5). Then, at one-loop level:

1. In the R-independent sector the model is power-counting renormalizable, and the

source c̄∗ has UV dimension 2, whereas σ has UV dimension 1. Thus if we limit

ourselves to UV-divergent amplitudes only involving σ and c̄∗, we find by power-

counting the following eight UV-divergent Green’s functions: Γ
(1)
σ , Γ

(1)
σσ , Γ

(1)
σσσ, Γ

(1)
σ4

and Γ
(1)
c̄∗ , Γ

(1)
c̄∗σ, Γ

(1)
c̄∗σσ, Γ

(1)
c̄∗c̄∗ .

2. For one-loop amplitudes involving R and/or c̄∗ only, R behaves as a source with

UV dimension 2; thus by power-counting there are three UV-divergent amplitudes:

Γ
(1)
R , Γ

(1)
Rc̄∗ , Γ

(1)
RR.

3. When amplitudes also involving external σ legs are considered, one cannot assign UV

degree 2 to R and 1 to σ, since in this case one would expect to find UV-divergent

amplitudes with one R and up to two σ-insertions. However, this is not the case,

since amplitudes with the insertion of one R and up to four σ-legs are also divergent,

as a consequence of the contractions involving the legs of the derivative interaction

vertex with the X2-propagator (as explained in detail below). Classification of UV

divergent amplitudes is then carried out as follows:

(a) The highest UV degree of a diagram involving one or more R sources and a given

number of external σ-legs is obtained by maximizing the number of internal
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propagators ∆σσ (which drop off as 1/p2 for large momenta) and the number of

derivative interaction vertices. Consequently we find that Γ
(1)
Rσ and Γ

(1)
Rσσ have

UV degree 2 and Γ
(1)
Rσσσ and Γ

(1)
Rσ4 UV degree zero; all remaining amplitudes

with one R-insertion and a number of σ-legs higher than 4 are UV convergent.

(b) Similarly, in the sector with two R-external sources there are four logarithmically

divergent amplitudes, namely Γ
(1)
RRσ, Γ

(1)
RRσσ, Γ

(1)
RRσσσ and Γ

(1)
RRσ4 .

(c) Finally, in the mixed R-c̄∗-σ sector, there are two further logarithmically diver-

gent amplitudes: Γ
(1)
Rc̄∗σ and Γ

(1)
Rc̄∗σσ.

We stress once again that no such one-loop amplitude will contain a g6-dependent contri-

bution; the whole dependence on g6 arises from the replacement rule in eq. (3.9). However,

this property will not generalize to higher orders, since in that case the trilinear interaction

vertex in X2 can appear inside loops. The UV divergent parts of the above amplitudes are

reported in B.

We notice that by power-counting the Green’s function Γ
(1)
Rσ has UV degree of diver-

gence 2, however its UV behaviour is actually milder. In fact, by power-counting the

divergent part of Γ
(1)
Rσ can be parameterized as

∫

x

∫

y
Γ
(1)
Rxσy

Rxσy =
UV div

∫

x
Rx(c

(1)
0 + c

(1)
1 �)σx. (3.15)

Nevertheless the coefficient c
(1)
1 turns out to be zero at one-loop order. This is due to the

fact that such a contribution can only be generated by diagrams involving the trilinear

derivative interaction �Xσ2. But the differential operator does not act on the external

σ-leg, so that its action will be that of removing one of the internal propagators, thus

leaving a derivative-independent UV divergence.

This is ultimately the reason why there is no BSM contribution to the p2-term in

eq. (3.14) and hence the wave-function renormalization of the field σ is purely SM.

3.4 One-loop dimension 6 operator mixing

Recently the question of which dimension 6 operators might possibly affect the anoma-

lous trilinear Higgs self-coupling has been debated in the literature [14]. In addition to

the cubic potential term
(
Φ†Φ − v2

2

)3
there are two possibilities: ∂µ(Φ

†Φ)∂µ(Φ†Φ) and

(Φ†DµΦ)(Φ
†DµΦ). Both operators would affect the p2-term in the two point function

eq. (3.14), which we have already established to be purely SM one.

To begin with observe that, in principle, the operator ∂µ(Φ
†Φ)∂µ(Φ†Φ) can be gen-

erated either from amplitudes involving only external σ-legs directly mapped into their

counterparts in the target theory, or from amplitudes involving external sources R and c̄
∗

through the mapping (3.9). The first type of amplitudes does not contribute: in fact, at

g6 = 0 they are amplitudes of a power-counting renormalizable theory and thus cannot give

rise to UV divergences of dimension 6, as the one possibly associated with ∂µ(Φ
†Φ)∂µ(Φ†Φ).

On the other hand, if one looks at g6-dependent contributions (giving rise to non-power-

counting renormalizable Green’s functions), one immediately see that no such terms can
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appear at the one-loop level, as a consequence of the fact that the single BSM interaction

vertex is the trilinear g6ΛX
3
2 and the latter only contributes to 1-PI amplitudes with one

external X2-leg, which we do not need to consider.

As far as the second type of amplitudes are concerned, since the mapping (3.9) does

not contain derivatives, from the set of 1-PI Green’s functions involving external sources

we need to consider only those possessing a UV degree 2, namely Γ
(1)
Rσ. However, the UV

divergence of the latter is momentum-independent, since the coefficient c
(1)
1 is zero. Hence

∫

x

∫

y
Γ
(1)
Rxσy

Rxσy =
UV div

∫

x
Rx(c

(1)
0 + c

(1)
1 �)σx

→ 3g6
Λ

v

∫

x

[
c
(1)
0

(
Φ†Φ− v2

2

)2

− c
(1)
1 ∂µ

(
Φ†Φ

)
∂µ

(
Φ†Φ

)]

= 3g6
Λ

v

∫

x
c
(1)
0

(
Φ†Φ− v2

2

)2

, (3.16)

and indeed the operator ∂µ(Φ
†Φ)∂µ(Φ†Φ) does not arise. Finally, since the BSM con-

tribution to the p2-term in the two point σ function must vanish, we conclude that also

(Φ†DµΦ)(Φ
†DµΦ) is not generated.

The vanishing of the coefficient c
(1)
1 is an intriguing feature of the X-theory, whose

amplitudes, as already noticed, possess, in general, a milder UV behaviour than one would

have expected on the basis of power-counting arguments. Notice in particular that, if

c
(1)
1 were different from zero, one would get a BSM contribution to the σ wavefunction

renormalization via the 6g6ΛΓ
(1)
Rσ term appearing in the first line of eq. (3.14). This would

in turn require a polynomial field redefinition in the target theory; indeed the momentum-

squared dependence generated in the two-point σ-function by c
(1)
1 would contribute, under

the mapping (3.9) to Green’s functions in the target theory with more than two external

σ-legs. Such contributions are indeed what one would generally expect in a gauge effective

field theory, where, as previously remarked, field redefinitions are generic (not necessarily

linear) canonical transformations, compatible with the Batalin-Vilkovisky bracket of the

model [33]. Thus, it comes as a (pleasant) surprise that they are not present at the one-loop

level, though it remains to be seen what happens at higher orders.

4 Potentials with an arbitrary power XN

2

Besides being illustrative of the advantages of the proposed method, the construction pre-

sented in the cubic case lends itself to a generalization for potentials displaying arbitrary

powers in the field X2 but no derivatives, namely

V (X2) =
N∑

j=3

g2jΛ
4−jXj

2 , (4.1)

where the couplings g2j are dimensionless. Obviously the X1-equation is left unaltered; on

the other hand, in order to implement the X2-equation we need additional external sources,
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namely we set

ΓV =

∫ N−1∑

j=2

RjX
j
2 , (4.2)

with R2 ≡ R. Then the X2-equation generalizes to

ΓX2
=

1

v

(
�+m2

)
Γc̄∗ −

(
�+m2

)
X1 −

(
�+M2

)
X2

+
N∑

j=3

[
jg2jΛ

4−jΓRj−1
+ (j − 1)Rj−1ΓRj−2

]
− vc̄∗, (4.3)

where we have defined ΓR1
≡ X2.

Now, the one-loop decomposition of the 1-PI amplitudes introduced in the cubic case

stays essentially unchanged also in this more general case. As before, in fact, amplitudes

with X-external legs are completely fixed by the X-equations of motion, and again can be

traded off for amplitudes involving insertions of the external sources c̄
∗ and/or Rj with

j ≥ 2 (we set R ≡ R2, and will identify the sources Rj with j ≥ 3 shortly). In addition,

the BSM interaction vertices in the X2 potential are at least trilinear, and therefore at

the one-loop level the presence of V (X2) can affect only amplitudes with X2 external legs.

The same is evidently true also for any of the Rj sources with j ≥ 3 whose insertion

will generate again diagrams with (at least) an external X2 leg. On the other hand, any

X2 dependence can be fully restored by solving the X2-equation of motion and hence

amplitudes involving external X2 fields can be discarded. In particular, for UV divergent

amplitudes it is sufficient to apply the substitution rule R2 → R2, since there are no

one-loop UV divergent amplitudes involving Rj , j ≥ 3 at zero X2-fields; moreover even in

this general case amplitudes with σ-legs insertions are precisely the same as those of the

renormalizable model when the potential V (X2) is switched off.

This line of reasoning then implies that the only change with respect to our previous

analysis resides in the replacement rule for R2. One can give a general formula for such a

replacement. The source of highest index N is eliminated via the substitution

RN = RN + (N + 1)Λ4−(N+1)g2(N+1)X2. (4.4)

Then one proceeds iteratively with the replacement rule being given by

Rj = Rj −
N−j∑

k=1

(−1)k
(j + 1)(j + 2) . . . (j + k)

k!

×
[
Λ4−(j+k)g2(j+k) + (1− δj+k,N )Rj+k

]
Xk

2 ; j = 2, . . . , N − 1. (4.5)

For instance, if operators up to X4
2 are introduced, the X2-equation is solved by the re-

placements

R3 = R3 + 4g8X2, R2 = R2 + 3(Λg6 +R3)X2 − 6g8X
2
2 , (4.6)

– 13 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
0

with c̄
∗ as in eq. (3.5). Indeed, if Γ = Γ[R3,R2], we find

ΓX2
⊃

(
ΓR3

δR3

δR3
+ ΓR2

δR2

δR3

)
δR3

δX2
+

(
ΓR3

δR3

δR2
+ ΓR2

δR2

δR2

)
δR2

δX2

= 4g8ΓR3
+ 3Λg6ΓR2

+ 3R3ΓR2
, (4.7)

which coincides with the part of right-hand side of eq. (4.3) proportional to the derivatives

of Γ with respect to the external sources.

Notice the appearance of non-linear terms in the X2 field implying that amplitudes

with a fixed number of external sources Rj contributes to amplitudes in the target theory

with a higher number of σ external legs. For example ΓR2R2
contributes to amplitudes up

to four σ legs when only a cubic X2 potential is considered, but to amplitudes up to eight

σ legs when a quartic X2 potential is added.

In fact, it is possible to write down the replacement for R2 in closed form; it reads

R2 = R2 +

N−3∑

k=1

ckX
k
2Rk+2 +

N−2∑

k=1

ck
g2(k+2)

Λk−2
Xk

2 , (4.8)

where the coefficients ck are given by

ck =

(
1 +

[
k

2

])[
1 + 2

([
k

2

]
+ (k mod 2)

)]
, (4.9)

with [x] the greatest integer less or equal than x and x mod 2 the remainder on division of

x by 2. Surprisingly enough, these coefficients ck do not depend on N and thus increasing

the degree of the polynomial does not affect lower order terms. Therefore, we can obtain

the formula for an arbitrary potential by letting N → ∞ into eq. (4.8).

As far as the replacement rule for c̄∗ is concerned, it is the same as in eq. (3.5), since

the X1-equation is left unchanged, and the classical solution (3.7) still holds. On the other

hand, the classical X2-equation of motion is modified and reduces to

(�+m2)(X1 +X2) = −(M2 −m2)X2 + V ′(X2). (4.10)

where the prime indicates differentiation with respect to X2, we have set to zero all external

sources and we made use of eq. (3.7). This gives the final formula for the mapping

c̄
∗ = c̄∗ − M2 −m2

v
X2 +

1

v
V ′(X2)

= c̄∗ +
1

v

N∑

j=2

jg2jΛ
4−jXj−1

2 , (4.11)

where we have set 2Λ2g4 = m2 −M2. Notice that again we can let N → ∞.

Thus let us recap. Consider a generic potential of the type (4.1), possibly with N → ∞.

At one-loop, the divergent amplitudes in the X-theory are the same eleven ones identified

in the cubic case N = 3, and explicitly evaluated in appendix B. Then, by applying to these

latter amplitudes the mappings (4.8) (at zero sources Rj = 0, j ≥ 3) and (4.11) and using

the classicalX1-equation of motion, i.e., by substitutingX2 with eq. (3.7), one can generate,

in a purely algebraic way, all the divergent amplitudes in the σ-sector of the target theory.
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5 One-loop off-shell algebraic renormalization

The results obtained in the previous section allows us to carry out the off-shell one-loop

renormalization of the Higgs sector for an arbitrary potential V of the type (4.1), within

the framework of algebraic renormalization.

Let us remind the reader that algebraic renormalization [1, 39, 40] is a regularization

scheme-independent technique that allows one to study the renormalization of gauge theo-

ries in a mathematically rigorous way by exploiting the locality properties of quantum field

theory (encoded in the so-called Quantum Action Principle [41–43]) together with powerful

cohomological tools rooted into the nilpotency of the BRST differential (for a review see

e.g., [44]). It allows to classify the action-like counterterms as well as the anomalies (or lack

thereof) of the model, and has been used in a variety of phenomenological applications,

e.g., in order to establish the gauge-independence to all orders in the loop expansion of the

pole mass of physical fields in the SM [45], and to study the gauge invariance for fermion

mixing renormalization [46]. Use of non-invariant regularization schemes and the deriva-

tion of the associated finite counterterms, restoring the relevant symmetries of the theory,

have been discussed in [6] for the QCD corrections to the Higgs decay into two photons and

to two-loop electroweak corrections to B → Xsγ, and in [47] for the non-invariant two-loop

counterterms for the SM three-gauge-boson vertices. Other results include: the study of

the background field method applied to the process b → sγ [7], the constraints imposed on

the IR behaviour of Yang-Mills Green’s functions in the Landau gauge [48], the derivation

of a general scheme-independent technique for describing the action-like sector of a gauge

theory fulfilling the defining Slavnov-Taylor identities of the model [2–5], and, the one-loop

renormalization of a general chiral gauge in the presence of a non-anticommuting γ5 [49].

The renormalization of the SM to all orders has been presented in [50, 51], the Minimal

Supersymmetric Standard Model has been studied in [52], and, finally, models based on

non-linearly realized symmetries have been discussed in [53–60].

5.1 Summary of results

Before dwelling into the details, let us, for reference purposes, collect below the relevant

equations of the model derived so far.

• Action. The classical action is given by

Γ = ΓSM + ΓSSB + ΓSRC, (5.1)

where ΓSM is the usual SM action including the Yang-Mills, fermion, Yukawa, (linear)

gauge fixing and ghost terms; the spontaneous symmetry-breaking part ΓSSB reads

ΓSSB =

∫ [
DµΦ

†DµΦ− M2 −m2

2
X2

2 − m2

2v2

(
Φ†Φ− v2

2

)2

− c
(
�+m2

)
c

+
1

v
(X1 +X2) (�+m2)

(
Φ†Φ− v2

2
− vX2

)
+

∞∑

j=3

g2jΛ
4−jXj

2


 , (5.2)
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and contains the arbitrary analytic potential in the last term. Finally the external

source sector, including the source c̄∗ needed to formulate the X1-equation of motion

and the sources Rj necessary to derive theX2-equation of motion when the full towers

of higher order operators Xj
2 is switched on is

ΓSRC =

∫
c∗

(
Φ†Φ− v2

2
− vX2

)
+

∫ ∞∑

j=2

RjX
j
2 . (5.3)

• X-equations. The X1-equation of motion is the same as in the cubic case, namely

ΓX1
=

1

v

(
�+m2

)
Γc̄∗ . (5.4)

The X2-equation of motion becomes instead

ΓX2
=

1

v

(
�+m2

)
Γc̄∗ −

(
�+m2

)
X1 −

(
�+M2

)
X2

+
∞∑

j=3

[
jg2jΛ

4−jΓRj−1
+ (j − 1)Rj−1ΓRj−2

]
− vc̄∗. (5.5)

• Mappings. Eq. (5.4) is solved to all order in the loop expansion by the replacement

c̄
∗ = c̄∗ +

1

v

(
�+m2

)
(X1 +X2) . (5.6)

In the one-loop approximation the tree-level equation of motion for X2 can be used

in order to substitute the r.h.s. of the above equation in order to eliminate the Klein-

Gordon operator, as follows:

c̄
∗ = c̄∗ +

1

v

N∑

j=2

jg2jΛ
4−jXj−1

2 . (5.7)

On the other end the all-order solution to eq. (5.5) can be iteratively reconstructed via

eq. (4.5). In particular the explicit solution for the R2 source (the only relevant one

if one is interested in the UV divergent amplitudes of the target theory) is given by

R2 = R2 +
N−3∑

k=1

ckX
k
2Rk+2 +

N−2∑

k=1

ck
g2(k+2)

Λk−2
Xk

2 , (5.8)

with

ck =

(
1 +

[
k

2

])[
1 + 2

([
k

2

]
+ (k mod 2)

)]
, (5.9)

[x] being the greatest integer less or equal than x and x mod 2 the remainder on

division of x by 2.
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5.2 X-theory

Let us consider first how one-loop renormalization works in the X-theory. To begin with

observe that the renormalization program needs to be carried out only in theX-independent

sector, since amplitudes involving X1 and/or X2 insertions are generated, at this level, in

a purely algebraic way through the replacements (4.8) and (4.11) at zero external sources

Rj (recall that one-loop 1-PI amplitudes involving at least one such source with j ≥ 3 will

have at least an external X2 leg). Finally, without loss of generality, we can consider the

cubic case only, as at one-loop the X-independent sector is not sensitive to the presence of

terms of dimension > 4 in the potential V ; for this case, all the divergent 1-PI amplitudes

have been calculated in appendix B.

Following standard Algebraic Renormalization techniques, one can perform the expan-

sion of the UV divergences of the theory at one loop order on a basis of BRST invariants,

which in the X-independent sector can be constructed from R, c̄∗ and Φ only. There are

eleven such invariants:
∫
ξ1c̄

∗;

∫
1

2
ξ2c̄

∗2;

∫
ξ3R,

∫
1

2
ξ4R

2;

∫
ξ5c̄

∗R;

∫
ξ6R

(
ΦΦ† − v2

2

)
,

∫
ξ7R

(
ΦΦ† − v2

2

)2

;

∫
1

2
ξ8R

2

(
ΦΦ† − v2

2

)
;

∫
1

2
ξ9R

2

(
ΦΦ† − v2

2

)2

,

∫
ξ10c̄

∗

(
ΦΦ† − v2

2

)
;

∫
ξ11Rc̄∗

(
ΦΦ† − v2

2

)
. (5.10)

Start then from the σ-independent sector. There are five independent divergent am-

plitudes in this sector, see eq. (B.1), which can be trivially reabsorbed through the first

five invariants above when

ξ1 =
1

16π2

1

ǫ

(
2M2

W
+M2

Z
+M2

)
; ξ2 = − 1

4π2

1

ǫ
; ξ3 =

M2

8π2

1

ǫ
,

ξ4 = − 1

4π2

1

ǫ
; ξ5 = − 1

8π2

1

ǫ
. (5.11)

Next consider the Rσ-sector, with its four divergent amplitudes, given by the left terms

in eq. (B.3). The sixth and seventh invariants in eq. (5.10) lead to the Higgs monomials

∫ [
ξ6Rσ +

(
1

2v
ξ6 + ξ7

)
Rσ2 +

1

v
ξ7Rσ3 +

1

4v2
ξ7Rσ4

]
. (5.12)

Taking into account the appropriate combinatorial factors it is easily seen that the coun-

terterms for the four divergent amplitudes are given by

ξ6 =
m2 + 4M2

8π2v2
1

ǫ
; ξ7 =

m2 + 2M2

4π2v4
1

ǫ
. (5.13)

A similar pattern persists in the R2σ sector, whose divergences are presented in the

right terms of eq. (B.3). In this case one has to look at the eighth and ninth invariant
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in (5.10) which give rise to the Higgs monomials

∫ [
1

2
ξ8R

2σ +
1

2

(
1

2v
ξ8 +

1

2
ξ9

)
R2σ2 +

1

2v
ξ9R

2σ3 +
1

8v2
ξ9R

2σ4

]
. (5.14)

Again after taking into account the appropriate combinatorial factors, the choice

ξ8 = − 1

π2v2
1

ǫ
; ξ9 = − 1

π2v4
1

ǫ
, (5.15)

reabsorbs all divergent terms.

Next consider the c̄∗σ-sector, whose two divergent amplitudes are given in eq. (B.2).

The tenth invariant in (5.10) is the one needed in this case; however, there is also a tree-

level coupling between c̄∗ and σ to take into account, so that field redefinitions play a role

in this sector.

Yet, recall that eq. (3.14) tells us that the wave function renormalization of the σ field

is the same as the SM one; this implies in turn that the renormalization of the Higgs field

will happen only through the SM-like σ-field redefinition σ′ = Zσσ, and that the possibility

of having a non-linear field redefinition of σ does not materialize.

Thus the relevant contributions in this sector are (as usual we neglect terms depending

on the Goldstone bosons)

∫ [
ξ10c̄

∗

(
ΦΦ† − v2

2

)
+ c̄∗

(
1

2
Z2
σσ

2 + (v + δv)Zσσ

)]
. (5.16)

Setting Zσ = 1 + δσ, we get in the one-loop approximation

∫ [
(δv + vξ10 + vδσ) c̄∗σ +

1

2
(ξ10 + 2δσ) c̄∗σ2

]
. (5.17)

This yields the result

ξ10 = −Γ
(1)
c̄∗σσ − 2δσ, (5.18)

together with the following consistency condition prescribing the renormalization of the vev:

δv − vδσ = −Γ
(1)
c̄∗σ + vΓ

(1)
c̄∗σσ. (5.19)

Notice that the above equation predicts the renormalization of the vev in terms of two

contributions: the first one in the l.h.s. is related to the wave-function renormalization of

the scalar field, the second one is an extra term governed by the external source c̄∗. This

provides an alternative representation of the gauge-invariant vev renormalization decom-

position given in [61].

Now, the renormalization of the σ field in the conventions of [62] is

δσ = 2∂q2Γ
(1)
σσ (q

2), (5.20)

with an explicit evaluation yielding (we set α = e2/4π)

δσ =
α

8πs2
W
c2
W

1

ǫ
(1 + 2c2

W
)− α

8πs2
W
M2

W

1

ǫ

(
∑

ℓ

m2
ℓ + 3

∑

q

m2
q

)
. (5.21)
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Next, using eq. (5.19), we obtain

δv =
αMW

2πesW c2
W

1

ǫ
(1 + 2c2

W
)− α

4πesWMW

1

ǫ

(
∑

ℓ

m2
ℓ + 3

∑

q

m2
q

)
. (5.22)

Notice that this result coincides to the renormalization of the tree-level expression for

v2 =
4M2

W
s2
W

e2
, namely

δv = v

(
δsW

sW

+
δM2

W

2M2
W

− δZe

)
(5.23)

when one takes into account the relevant SM renormalization constants given in [62]:

δM2
W

= −Γ
(1)
WW (q2)

∣∣∣
q2=M2

W

,

δZe = −1

2
∂q2Γ

(1)
γγ

(q2)
∣∣∣
q2=0

+
sW

cWM2
Z

Γ
(1)
γZ (q

2)
∣∣∣
q2=0

,

δsW =
1

2

c2
W

sW

(
1

M2
W

Γ
(1)
WW (q2)

∣∣∣
q2=M2

W

− 1

M2
Z

Γ
(1)
ZZ(q

2)
∣∣∣
q2=M2

Z

)
, (5.24)

where for gauge bosons only the transverse part of the self-energy enters in the relations

above.

Putting all together we then have the result

ξ10 = − α

8πs2
W
c2
W

1

ǫ

[
3(1 + 2c2

W
)− c2

W

2m2 +M2

M2
W

]
+

α

4πs2
W
M2

W

1

ǫ

(
∑

ℓ

m2
ℓ + 3

∑

q

m2
q

)
.

(5.25)

The final sector to be considered is the mixed one Rc̄∗σ, in which the two divergent

amplitudes (B.4) ought to be reabsorbed by the last of the invariants (5.10)
∫ [

ξ11vRc̄∗σ +
1

2
ξ11Rc̄∗σ2

]
. (5.26)

Indeed this happens when choosing

ξ11 = − 1

4π2v2
1

ǫ
. (5.27)

Thus, the eleven BRST-invariant counterterms ξi together with the usual linear SM

σ-field redefinition σ′ = Zσσ and the vev renormalization v → v+ δv allows to reabsorb all

the one-loop divergences of the X-theory in the cubic potential case N = 3, a result that,

as explained above, generalizes to any N .

5.3 Target theory

Renormalization of the target theory can be successfully achieved in a rather straightfor-

ward way: one imposes in the replacement rules (4.8) and (4.11) (at zero external sources)

the classical X1-equation of motion, i.e., by substitutes X2 → 1
v

(
Φ†Φ− v2

2

)
. Thus, in the

target theory the BSM potential is introduced directly at tree-level as

V =
∞∑

j=3

g2j
Λ4−j

vj

(
Φ†Φ− v2

2

)j

, (5.28)
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and renormalization requires to find out the appropriate field, vev and coupling constant

renormalizations absorbing all one-loop divergences. Notice that all the coupling constants

g2j will be renormalized, i.e., one needs to determine an infinite number of counterterms

already at the one-loop order.

The results achieved in the X-theory case tells us however that only a handful of these

counterterms are independent; more specifically, in order to control the infinite number of

divergences arising in the target theory one needs to consider only the eleven coefficients ξi
of the BRST invariants determined previously, supplemented with the Higgs wave function

and vev renormalizations.

Let’s first consider the σ and v renormalization applied on the tree-level c̄∗-dependent

terms in the X-theory; they yield under the mapping (4.11) for c̄∗

∫
c̄∗
[
(δv+vδσ)σ+δσσ2

]
→

∫
1

v2

∞∑

j=2

jg2jΛ
4−jXj−1

2

∣∣∣∣∣∣
X2=

1

v

(

Φ†Φ− v2

2

)

[
(δv+vδσ)σ+δσσ2

]
.

(5.29)

Notice that the m2-contribution contained in the g4 term exactly cancels against the σ and

v renormalization of the Higgs potential in the X-theory eq. (2.3).

Now, in the target theory the wave-function and vev renormalization of the Higgs and

the BSM potential (5.28) give two contributions: the first is induced by the wave-function

and vev renormalization of the invariant Φ†Φ − v2

2 and matches exactly eq. (5.29) above

at m = 0; the second is generated by the vev renormalization of the v-dependence of the

coefficients of the monomials in Φ†Φ− v2

2 , and gives

∫ 
2M

2

v3

(
Φ†Φ− v2

2

)2

−
∞∑

j=3

jg2j
Λ4−j

vj+1

(
Φ†Φ− v2

2

)j

 δv. (5.30)

The crucial point is that the above contribution is gauge-invariant and thus can be reab-

sorbed by the redefinition of the coefficients M and g2j . We can thus conclude that the

non-gauge-invariant operators arising from the vev and field redefinitions are automatically

taken into account through the mapping of the external source c̄
∗.

Finally, it is possible to give a closed analytical form for the renormalization of the

BSM coupling constants g2j by considering what happens to the UV divergent BRST-

invariants of the X-theory under the mappings (4.8) and (4.11) and projecting the result

onto the monomial Λ4−jXj
2 = Λ4−j

vj

(
Φ†Φ− v2

2

)j
.

For example, considering the first two invariants in eq. (5.10), one finds

ξ1c̄
∗ → ξ1

1

v

∞∑

k=2

kg2kΛ
4−kXk−1

2 →
k=j+1

ξ1
j + 1

Λv
g2(j+1)Λ

4−jXj
2 ⇒ δg2j ⊃ ξ1

j + 1

Λv
g2(j+1),

(5.31)
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and

1

2
ξ2c̄

∗2 → ξ2
1

2v2

∞∑

k=2

∞∑

ℓ=2

kℓg2kg2ℓΛ
8−k−ℓXk+ℓ−2

2

→
k+ℓ−2=j

ξ2
Λ2

2v2

j+2−k≥2∑

k=2

k(j + 2− k)g2kg2(j+2−k)Λ
4−jXj

2

⇒ δg2j ⊃ ξ2
Λ2

2v2

j∑

k=2

k(j + 2− k)g2kg2(j+2−k). (5.32)

Proceeding in this way for all the remaining invariants one then finds the final expression

δg2j = ξ1
j + 1

Λv
g2(j+1) + ξ2

Λ2

2v2

j∑

k=2

k(j + 2− k)g2kg2(j+2−k) + ξ3
cj
Λ2

g2(j+2)

+ ξ4
1

2

j−1∑

k=1

ckcj−kg2(k+2)g2(j−k+2) + ξ5
Λ

v

j∑

k=2

kcj+1−kg2kg2(j+3−k)

+ ξ6
v

Λ
cj−1g2(j+1) + ξ7v

2cj−2g2j

+ ξ8
Λv

2

j−2∑

k=1

ckcj−k−1g2(k+2)g2(j−k+1) + ξ9
Λ2v2

2

j−3∑

k=1

ckcj−k−2g2(k+2)g2(j−k)

+ ξ10jg2j + ξ11Λ
2
j−2∑

k=1

(j − k)ckg2(k+2)g2(j−k) −
j

v
δv, (5.33)

where the last term comes from subtracting the contribution from the vev renormalization

in eq. (5.30), and the combinatorial factors ck are given in eq. (4.8).

Notice that the renormalized g2j receives contributions from higher order coupling

constants g2ℓ, ℓ ≥ j. This is a well-known fact in the literature (see for example [13]),

and it constitutes in fact the reason why in the target theory we have considered the

complete potential, containing the full tower of Φ†Φ operators. On the other hand eq. (5.33)

gives one full control on the renormalization of the full tower of operators entering in

the analytical potential V , so that the one-loop stability problem can be addressed via

a complete evaluation of the β-functions for the coupling constants g2j . This is however

beyond the scope of the present paper and will be discussed elsewhere.

We conclude observing that the renormalized couplings in the target theory must not

depend on the mass parameter m2, since the latter is an unphysical quantity. Indeed one

can explcitly verify that the dependence on m2, arising from the coefficients ξi, does indeed

cancel out for every j, a result that provides a strong consistency check of the above formula.

6 Conclusions

We have extended the algebraic renormalization program to the case of the one-loop renor-

malization of HEFTs possessing an arbitrary analytic derivative-independent BSM poten-

tial depending only on the gauge singlet Φ†Φ− v2

2 . Has as been emphasized in the paper,
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this is a highly non-trivial task, since in a conventional approach an infinite number of

divergent counterterms arise already at one-loop, and, in addition, the issue of controlling

the field redefinitions is cumbersome, to say the least, since one cannot anymore use power-

counting arguments in order to constrain the field redefinitions allowed by the symmetries

of the theory.

Contrary to naive expectations, we have shown that in a particular reformulation of

the SSB mechanism by means of suitable X-auxiliary fields controlled by an extended

BRST symmetry, some further functional identities hold, strongly constraining the UV

divergences of the theory. Indeed, in the scalar sector of the X-theory there are only

eleven UV divergent independent invariants. The latter involve the external sources c̄∗

and R and the gauge singlet Φ†Φ − v2

2 . On the other hand, Green’s functions involving

the X2-fields are recovered by a purely algebraic technique via the substitution rules for

the external sources, solving the X1,2-equations of motion. These substitution rules are

valid to all orders in the loop expansion. Then, in order to recover the divergences of the

scalar sector of the target theory one simply needs to go on-shell with the X-fields. At one

loop-order the prescription is particularly straightforward and amounts to replace X2 with

the gauge singlet in both the c̄
∗ and R substitution rules.

Let us then summarize the main results. One finds that the wave-function renormaliza-

tion of the σ field is the purely SM one; in addition, the wave-function renormalization con-

tributions in the target theory are automatically taken into account by the c̄∗-substitution

rule. Then one can disentangle the genuine contribution to the gauge-invariant operators(
Φ†Φ− v2

2

)j
, obtaining in closed form the one-loop renormalization of the BSM coupling

constants g2j . These results hold for any analytic potential V depending on arbitrary

powers of Φ†Φ− v2

2 .

One can envisage several applications. Beisde the aforementioned computation of the

β-functions of the BSM coupling constants which is currently under way, one has the

opportunity to study the higher order renormalization of the theory. While one expects

more and more new independent divergences to appear, in the spirit of the HEFTs, the

higher order constraints arising from the functional identities in the X-theory are in fact an

interesting subject that awaits to be studied. Finally, the X-theory is potentially applicable

to cosmological relaxation theories [36], in which the Higgs mass is stabilized through

classical dynamics. In this context, the sources R seems to be the right tool through which

one can describe a quantized field in the presence of external sources and a (derivative-

independent) arbitrary potential.

We hope to come back to these issues in the near future.
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A Explicit results for the one-, two- and three-point σ amplitudes

From eqs. (3.11) and (3.14) we get for the one- and two-point Higgs functions in the target

theory

Γ̃(1)
σ =

g6 terms

3Λ

16π2
g6A0(M

2), (A.1)

Γ̃(1)
σσ =

g6 terms

9Λ2

8π2
g26B0(p

2,M2,M2) +
3Λ

16π2v
g6

[
6A0(M

2)

+A0(M
2
Z
) + 2A0(M

2
W
) + 6M2B0(p

2,M2,M2)
]
, (A.2)

where A0 and B0 denote the one- and two- point Passarino-Veltman (PaVe) scalar func-

tions.5

For the three-point amplitude Γ̃
(1)
σσσ one can proceed as described in section 3.1, ob-

taining the result

Γ̃(1)
σσσ =

g6 terms
−27Λ3

2π2
g36C0(p

2
1, p

2
2, p

2
3)

+
27Λ2

4π2v
g26

[
M2C0(p

2
1, p

2
2, p

2
3) +B0(p

2
1,M

2,M2) + cyclic
]

− 3M2Λ

16π2v2
g6

[
18M2C0(p

2
1, p

2
2, p

2
3) + 21B0(p

2
1,M

2,M2)

+B0(p
2
1,M

2
Z
,M2

Z
) + 2B0(p

2
1,M

2
W
,M2

W
) + cyclic

]

− 9Λ

16π2v2
g6

[
2A0(M

2
W
) +A0(M

2
Z
) + 5A0(M

2)
]
, (A.3)

where C0(p
2
1, p

3
2, p

2
3) ≡ C0(p

2
1, p

3
2, p

2
3;M

2,M2,M2) is the three-point PaVe scalar function

of equal mass M2, and, where indicated, we cyclically sum over the three momenta p1, p2
and p3.

Notice finally that, as expected, in all the results no dependence on the unphysical

mass parameter m is present.

B g6-dependent one-loop counterterms

In this appendix we derive all the counterterms needed to renormalize the Higgs sector of a

BSM target theory with a sextic Higgs potential, using the power counting rules introduced

in section 3.3.

To begin with, observe that amplitudes involving only external σ-legs can be neglected

since in the X theory they never contribute to g6-dependent terms. Next, there are five

divergent amplitudes with external sources insertions and no σ-external legs (ǫ = 4 − D

5We use the notation of [62].
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where D is the space-time dimension):

−Γ
(1)
c̄∗ =

UV div.

1

16π2

1

ǫ

(
2M2

W
+M2

Z
+M2

)
,

−Γ
(1)
c̄∗c̄∗ =

UV div.
− 1

4π2

1

ǫ
; −Γ

(1)
R =

UV div.

M2

8π2

1

ǫ
,

−Γ
(1)
Rc̄∗ =

UV div.
− 1

8π2

1

ǫ
; −Γ

(1)
RR =

UV div.
− 1

4π2

1

ǫ
. (B.1)

Finally, we need to consider amplitudes involving the external sources and σ-insertions,

which are of three types:

1. Two amplitudes involving c̄∗-insertions and no R-legs:

−Γ
(1)
c̄∗σ =

UV div.

1

8π2v

1

ǫ

(
2m2 +M2

)
,

−Γ
(1)
c̄∗σσ =

UV div.
− 1

8π2c2
W
v2

1

ǫ

[(
1 + 2c2

W

)
M2

W
− c2

W

(
2m2 +M2

)]
. (B.2)

2. Eight amplitudes with R-insertions and no c̄∗-legs:

−Γ
(1)
Rσ =

UV div.

1

8π2v

1

ǫ

(
m2 + 4M2

)
; −Γ

(1)
RRσ =

UV div.
− 1

π2v

1

ǫ
,

−Γ
(1)
Rσσ =

UV div.

1

8π2v2
1

ǫ

(
5m2 + 12M2

)
; −Γ

(1)
RRσσ =

UV div.
− 3

π2v2
1

ǫ
,

−Γ
(1)
Rσσσ =

UV div.

3

2π2v3
1

ǫ

(
m2 + 2M2

)
; −Γ

(1)
RRσσσ =

UV div.
− 6

π2v3
1

ǫ
,

−Γ
(1)
Rσ4 =

UV div.

3

2π2v4
1

ǫ

(
m2 + 2M2

)
; −Γ

(1)
RRσ4 =

UV div.
− 6

π2v4
1

ǫ
. (B.3)

3. Two mixed R-c̄∗-amplitudes:

− Γ
(1)
Rc̄∗σ =

UV div.
− 1

4π2v

1

ǫ
; − Γ

(1)
Rc̄∗σσ =

UV div.
− 1

4π2v2
1

ǫ
. (B.4)

Then, from the mapping in eq. (3.9) we see that each R (respectively, c̄∗) can con-

tribute up to two (respectively, four) σ-insertions; thus from the above list we conclude

that the one-loop UV-divergent amplitudes in the target theory, involving σ-legs only, have

at most eight σ-insertions. The required BSM counterterms needed to renormalize them
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are then the following:

−Γ̃(1)
σ =

g6 UV div.

3M2Λ

8π2
g6

1

ǫ
,

−Γ̃(1)
σσ =

g6 UV div.
−9Λ2

4π2
g26

1

ǫ
+

3Λ

8π2v
g6

(
2M2

W
+M2

Z
+ 12M2

) 1
ǫ
,

−Γ̃(1)
σσσ =

g6 UV div.
−81Λ2

2π2v
g26

1

ǫ
+

9Λ

8π2v2
g6

(
2M2

W
+M2

Z
+ 29M2

) 1
ǫ
,

−Γ̃
(1)
σ4 =

g6 UV div.
−1593Λ2

4π2v2
g26

1

ǫ
− 9Λ

8π2v3
g6

(
6M2

W
+ 3M2

Z
− 119M2

) 1
ǫ
,

−Γ̃
(1)
σ5 =

g6 UV div.
−9585Λ2

4π2v3
g26

1

ǫ
− 45Λ

4π2v4
g6

(
4M2

W
+ 2M2

Z
− 27M2

) 1
ǫ
,

−Γ̃
(1)
σ6 =

g6 UV div.
−36045Λ2

4π2v4
g26

1

ǫ
− 135Λ

4π2v5
g6

(
2M2

W
+M2

Z
− 9M2

) 1
ǫ
,

−Γ̃
(1)
σ7 =

g6 UV div.
−19845Λ2

π2v5
g26

1

ǫ
,

−Γ̃
(1)
σ8 =

g6 UV div.
−19845Λ2

π2v6
g26

1

ǫ
. (B.5)
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