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Abstract

We introduce a method to recover a continuous domain representation of a piecewise constant 

two-dimensional image from few low-pass Fourier samples. Assuming the edge set of the image is 

localized to the zero set of a trigonometric polynomial, we show the Fourier coefficients of the 

partial derivatives of the image satisfy a linear annihilation relation. We present necessary and 

sufficient conditions for unique recovery of the image from finite low-pass Fourier samples using 

the annihilation relation. We also propose a practical two-stage recovery algorithm which is robust 

to model-mismatch and noise. In the first stage we estimate a continuous domain representation of 

the edge set of the image. In the second stage we perform an extrapolation in Fourier domain by a 

least squares two-dimensional linear prediction, which recovers the exact Fourier coefficients of 

the underlying image. We demonstrate our algorithm on the super-resolution recovery of MRI 

phantoms and real MRI data from low-pass Fourier samples, which shows benefits over standard 

approaches for single-image super-resolution MRI.

1 Introduction

Many studies in image processing show that natural images can be represented efficiently as 

piecewise smooth functions [39, 54, 15]. For instance, the Mumford-Shah formulation poses 

the recovery of a piecewise smooth image as a variational optimization problem that jointly 

estimates a segmentation of the image and the smooth functions on the regions defined by 

the segmentation [42, 43]. This problem is typically solved using iterative algorithms that 

alternate between the evolution a level-set curve and the recovery of the full signal [8, 60, 

62]. These constrained level-set methods have been demonstrated to yield considerably 

improved reconstructions in challenging inverse problems [67, 32, 56, 3, 4, 17, 49]. 

Unfortunately, these algorithms are often slow and vulnerable to local minima problems, 

which restrict their utility in applications.

At the same time, the recovery of piecewise smooth one-dimensional signals using harmonic 

retrieval/linear prediction has been actively investigated in signal processing [37, 63, 40, 18, 

2]. This includes the so-called finite-rate-of-innovation (FRI) framework [2] which extends 

Prony’s method [55, 13] to the recovery of a much wider class of signals, including non-
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uniform 1-D splines with unknown knot locations. The FRI framework is also related to the 

earlier work [25, 27, 37, 26], where Haacke and Liang proposed a super-resolution 

reconstruction technique for MRI using piecewise 1-D polynomial modeling. However, all 

of these techniques are fundamentally tied to the recovery of 1-D signals. While some 

extensions of 1-D FRI schemes to multidimensional polygonal signals are available [41, 52, 

11], these specialized models do not provide good approximations of natural images. Recent 

work on atomic norm minimization can also be applied to the recovery of a weighted linear 

combination of 1-D Diracs at arbitrary locations from few Fourier samples [6, 59, 7]; these 

methods are off-the-grid continuous domain generalizations of compressed sensing theory 

[16, 1]. While the framework can account for piecewise constant 1-D signals by analyzing 

the derivative of the signal [6], and linear combination of Diracs in 2-D [66], its extension to 

piecewise constant signals in two or higher dimensions is not straightforward. For instance, 

the partial derivatives piecewise constant images have singularities supported on curves that 

bound the constant regions. We observe that this violates two of the main assumptions 

required for super-resolution recovery in [6]: (1) the number of singularities is finite, and (2) 

the singularities are well-separated. Moreover, the 2-D setting in [66, 34] fails to capture the 

extensive structure that is present in imaging applications. Namely, the image discontinuities 

are not often isolated, but are instead localized to smooth curves in 2-D.

Recently, Pan et al. [47] proposed an extension of FRI methods to recover piecewise 

complex analytic images in continuous domain. Specifically, they assume that the complex 

derivative of the image is supported on the zero level-set of a band-limited periodic function, 

called the annihilating polynomial. The authors rely on the annihilation of the Fourier 

transform of the derivatives by convolution with the Fourier coefficients of the annihilating 

polynomial to recover the edge set, and eventually the image. The work in this paper is 

mainly motivated by [47], and aims to overcome several of its limitations. For instance, the 

recovery of an arbitrary piecewise complex analytic signal from fintely many Fourier 

coefficients is ill-posed, since this class of functions has infinite degrees of freedom. Even in 

recovering the edge set, no sampling conditions that guarantee perfect recovery were 

available in [47]. Another problem is that the complex analytic signal model in [47] is not 

realistic for natural images.

The main focus of this paper is to develop a novel theoretical framework and efficient 

algorithms to recover piecewise constant images, whose discontinuities are localized to zero 

level-sets of band-limited functions, from few Fourier samples. We introduce a two step 

recovery scheme, which has similarities to Prony’s method and traditional FRI recovery. The 

first step involves the determination of the discontinuities of the image as the zero set of a 

band-limited function, which translates to a set of linear annihilation conditions in Fourier 

domain. Once the edge set is recovered, we recover the full image as the solution to an 

optimization problem. This work connects the classical Mumford-Shah algorithm, which 

alternates between level-set estimation and signal estimation, with FRI theory, which 

provides recovery guarantees from a finite number of Fourier samples.

Unlike the piecewise analytic model in [47], the number of degrees of freedom of our 

proposed piecewise constant representation is finite, which enables the successful recovery 

of the signal from finite number of Fourier coefficients. We introduce necessary and 
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sufficient conditions for the recovery of the edge set and the edge set aware recovery of the 

signal. The one-to-one correspondence between the degree of the annihilating polynomial 

and the number of singularities in the signal, which is used to establish guarantees in the 

traditional FRI settings [63], cannot be exploited in our setting since the number of 

singularities is no longer finite. Instead, we introduce novel proof techniques based on the 

algebraic geometry of zero sets of trigonometric polynomials to establish the uniqueness 

guarantees.

We also introduce several refinements to make the two-step algorithm robust to noise and 

model mismatch. Since the model order–the number of coefficients necessary to describe the 

edge set–is not typically known in advance, we rely on a singular value decomposition of the 

block Toeplitz matrix corresponding to the linear annihilation relation for model order 

determination. Once the null-space of the matrix is estimated, we pose the extrapolation of 

the Fourier coefficients of the signal from the known samples as an optimization problem. 

The algorithm determines the signal such that the energy of the convolution between its 

Fourier coefficients and the null-space filters is minimized. We show that this approach is 

approximately equivalent to estimating the edge set as a sum of squares polynomial built 

from a basis of null-space filters. This approach is similar to the projection step in the 

multiple signal classification algorithm (MUSIC) algorithm [48], used in direction-of-arrival 

estimation and other signal processing applications.

We demonstrate the proposed two-stage recovery scheme on the the super-resolution of 

magnetic resonance (MR) images from low-resolution Fourier samples. The experiments 

show our scheme has benefits over other standard discrete spatial domain approaches to 

single-image super-resolution in MRI. In particular, our scheme is better able to resolve fine 

image features, preserve strong edges, and suppress noise artifacts. Our work is also 

fundamentally different from several super-resolution approaches in image processing and 

MRI, where edge information from other sources (co-registered high resolution datasets, 

anatomical information, etc.) is used to constrain reconstructions from few measurements; 

see e.g. [30, 65, 20, 33, 35, 29, 61, 38, 23]. Specifically, we seek to estimate the edge 

locations using only the partial Fourier data itself rather than using additional prior 

information. This approach can be viewed as a fully 2-D version of the 1-D super-resolution 

approach investigated in [25, 27, 37, 26].

Our work also has conceptual similarities to recent low-rank structured matrix completion 

methods in MRI [51, 28, 34]. In particular, [28] and [34] exploit the low-rank structure of a 

multi-fold Hankel matrix obtained built from Fourier samples. The low-rank property of the 

structured matrix results from assuming signal sparsity and other constraints. For example, 

in [28] MR images are modeled as signals with limited spatial support and smoothly varying 

phase. We observe that these image models are far less constrained than the piecewise 

constant model considered in this work, which makes them less suitable for super-resolution 

recovery. The model in [34] assumes that the signal sparse in a transform domain, i.e. 

consists of isolated singularities, which allows them to adapt the theory in [12] for recovery. 

In contrast, we model the partial derivatives of the continuous signal to be localized to 

curves. The direct extension of the theory from [12] as well as the traditional FRI setting is 

not possible in our context. Since our model captures the smoothness of the edge contours 
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often found in images, it is more constrained than models like [34] that assume isolated 

discontinuities.

Preliminary versions of this work were presented in conference papers [45] and [44]. In 

particular, Theorems 1 and 2 were stated in [44] without proof. In addition to supplying the 

proofs of these results, we provide sampling guarantees for edge aware signal recovery that 

were absent in [44]. While the basic version of the two step algorithm presented here was 

introduced in [45], it is considerably generalized and validated using MRI data in this work.

1.1 Notation

We collect notation used throughout the paper here for easy reference. Bold lower-case 

letters x are used to indicate vector quantities, bold upper-case X to denote matrices, and 

calligraphic script � for general linear operators. We typically reserve lower-case greek 

letters μ, γ, etc. for trigonometric polynomials (9) and upper-case greek letters Λ, Γ, etc. for 

their coefficient index sets, i.e. finite subsets of the integer lattice ℤ2, with cardinality 

denoted by |Λ|. A set of complex coefficients indexed by Λ is denoted by (c[k] : k ∈ Λ), 

which we also treat as a vector in ℂ|Λ| when convenient. We write Λ + Γ for the dilation of 

the index set Γ by Λ, i.e. the Minkowski sum {k +ℓ : k ∈ Λ, ℓ ∈ Γ}, and write 2Λ to mean Λ 
+ Λ, 3Λ = + Λ, etc. We also denote the contraction of Γ by Λ by Γ : Λ = {ℓ ∈ Γ: ℓ − k ∈ Γ 
for all k ∈ Λ}. For two coefficient vectors c = (c[k] : k ∈ Λ) and d = (d[k] : k ∈ Λ), we 

denote their Hermitian inner product by c, d = ∑k ∈ Λc k d k . For any square-integrable 

functions f and g we use 〈f, g〉, to denote the usual Hermitian inner product 

f , g = ∫ f r g r dr. Finally, 〈D, φ〉 is also used to denote the dual pairing for a tempered 

distribution D acting on the Schwartz space � of (complex) test functions φ.

2 Overview

We introduce a two step method to recover a piecewise constant image from few low-pass 

Fourier samples, assuming the edge set of the image is well-approximated by the zero level-

set of a bandlimited function. In the first step, we estimate the edge set by solving for the 

level-set function. In the second step, we use the level-set function to perform an edge-aware 

recovery of the full signal. To make the presentation self-contained, and to motivate our 

proposed 2-D recovery scheme, we start with a brief review of FRI recovery of piecewise 

constant signals in 1-D.

2.1 Review of 1-D FRI theory

The FRI framework introduced in [63] can be viewed as an extension of Prony’s method to 

the recovery of a wide class of signals from sub-Nyquist sampling rates, including piecewise 

polynomial and non-uniform spline signals (similar extensions of Prony’s method for the 

recovery of 1-D piecewise polynomials was considered in Haacke and Liang’s earlier work 

[25, 27, 37, 26]). In order to draw parallels to our 2-D recovery scheme, we focus here on 

the FRI recovery of a continuous domain 1-D piecewise constant signal f : [0, 1] → ℂ, given 

as
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f x = ∑
i = 1

K − 1

ai1 x
i
, x

i + 1
x ; (1)

from its low-pass Fourier coefficients

f k = ∫
0

1
f x e

− j2πkx
dx; k ∈ ℤ, |k| ≤ N .

for some fixed N. In (1), 1U denotes the characteristic function of the set U, ai ∈ ℂ are the 

signal amplitudes, and 0 < x1 < x2 < ⋯ < xK < 1 are the edge locations. See Figure 1a for an 

illustration of this signal model and the two-step FRI recovery described below.

First, observe that the derivative ∂f (in the sense of distributions) is a stream of Diracs:

∂ f x = ∑
i = 1

K

biδ x − xi ; (2)

where bi = ai − ai−1, for i = 1, …, K with aK = a0 = 0. Therefore, the Fourier coefficients of 

∂f are a linear combination of exponentials

∂ f̂ k = ∑
i = 1

K

bie
− j2πkx

i, (3)

which can be computed from the known samples f k  by the Fourier domain relation 

∂ f̂ k = j2πk f k . Recovering f now reduces to estimating the 2K unknown parameters 

b
i
, x

i i = 1
K  from the known 2N + 1 samples. This can be achieved using Prony’s method, or 

one of its robust variants [13]. The solution relies on determining the so-called annihilating 

polynomial, i.e. the trigonometric polynomial defined as

μ x = ∏
i = 1

K

e
j2πx − e

j2πx
i = ∑

k = 0

K

c k e
j2πkx . (4)

which is zero at each of the edge locations x
i i = 1

K , and these are its only zeros. An easy 

computation shows that the Fourier coefficients ∂ f̂ k  are annihilated by convolution with the 

annihilating polynomial coefficients c[k]:
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∑
k = 0

K

c k ∂ f̂ � − k = 0, for all � ∈ ℤ . (5)

This can also be seen from fact that in spatial domain,

μ ∂ f = 0,

in the sense of distributions. Therefore, provided we have at least 2K contiguous samples of 

∂ f̂  (i.e. N ≥ K) we can form a linear Toeplitz system from (5), and solve for the K + 1 

unknown coefficients c[k]. This allows us to recover the edge locations x
i i = 1

K  as the roots 

of μ(x). Then we may solve for the coefficients bi, and hence the amplitudes ai, by 

substituting the x
i i = 1

K  into the model (3) and solving an overdetermined linear system.

The main tool enabling FRI recovery is the existence of a trigonometric polynomial whose 

zero set coincides with the edge locations of the piecewise constant signal, or equivalently, 

the singularities of its derivative. Similar to [47], we propose extending this scheme to 2-D 

by considering the infinite one-dimensional zero sets of two-variable trigonometric 

polynomials.

2.2 Image Model

We focus on a continuous domain representation of images, that is, as functions f : ℝ2 → ℂ 
with compact support. For simplicity we will assume the support is always contained within 

[0, 1]2. We are particularly interested in images that can be modeled as 2-D piecewise 

constant functions

f r = ∑
i = 1

n

ai1U
i

r , for all r = x, y ∈ 0, 1 2, (6)

where ai ∈ ℂ, and 1U is the characteristic function of the region U:

1U r =
1 if r ∈ U

0 else.
(7)

Here we assume each region Ui ⊆ [0, 1]2 has piecewise smooth boundary ∂Ui. We also 

assume the representation (6) is expressed with the fewest number of characteristic functions 

such that the regions Ui are pairwise disjoint. In this case the set of discontinuous points of f 

coincides with E = ∪
i = 1
n ∂U

i
, which we call the edge set of the image.

Our aim is to recover the piecewise constant image f(r) from few of its Fourier coefficients
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f k = ∫
0, 1 2

f r e
− j2πk ⋅ r

dr, k ∈ Γ ⊆ ℤ2 (8)

where Γ is some finite sampling set. Without any further assumptions on the edge set, 

unique recovery of images in the form (6) from finitely many Fourier samples is clearly ill-

posed since the class of piecewise smooth curves has infinite degrees of freedom. Hence, we 

restrict the edge set to belong to a parametric model described by finitely many parameters. 

Motivated by the FRI curves framework [47], we will constrain the edge set to be the zero 

set of a 2-D band-limited periodic function:

C = r ∈ 0, 1 2: μ r = 0 , where μ r = ∑
k ∈ Λ

c k e
j2πk ⋅ r, ∀r ∈ 0, 1 2, (9)

where the coefficients c[k] ∈ ℂ, and Λ is any finite subset of ℤ2. We call any function μ 

described by (9) a trigonometric polynomial, and the zero set C = {μ = 0} a trigonometric 

curve, provided C is infinite and has no isolated points. Note a piecewise constant image 

cannot have isolated points in its edge set, so this restriction on the zero set is fully 

compatible with our image model. We elaborate more on the properties of trigonometric 

curves in §2.4; see also Fig. 2.

2.3 Annihilation property for piecewise constant images

The annihilation relation (5) for 1-D piecewise constant signals uses the fact that the 

derivative of the signal can be represented as a sum of isolated Diracs. Similar annihilation 

relations extend to multidimensional signals when they can expressed as sum of isolated 

Diracs in a transform domain [52, 11, 34]. However, the derivative of a piecewise constant 

image cannot be represented as a sum of isolated Diracs, which prohibits the direct 

extension of these methods to our setting. However, [47] showed it is still possible to derive 

an annihilation relationship for 2-D complex analytic signals having singularities supported 

on trigonometric curves (9). Similarly, we now show that the Fourier coefficients of the 

partial derivatives of piecewise constant images (6) having edge set described by a 

trigonometric curve satisfy a 2-D annihilation relation in Fourier domain.

First consider the case of a single characteristic function 1U where U is a simply connected 

region with piecewise smooth boundary ∂U. We will show that the product of the gradient of 

1U by any smooth periodic function ψ vanishing on ∂U is identically zero:

ψ ∇1U = 0. (10)

However, since 1U is non-smooth, the above equality can only be understood in a weak 

sense. In particular, we will find it useful to interpret the partial derivatives of 1U as 

tempered distributions, i.e. as linear functionals acting on test functions of Schwartz class �

(see, e.g., [57] or [19]). Since the domain [0, 1]2 is compact, in this case � coincides with all 
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C∞ smooth complex-valued periodic functions on [0, 1]2. Letting φ ∈ � denote any such test 

function, we have:

∂x1U,φ = − 1U, ∂xφ = − ∫
U

∂xφdr = − ∮
∂U

φ dy (11)

where the last step follows by Green’s theorem. Likewise, one can show

∂x1U,φ = ∮
∂U

φ dx . (12)

We can generalize the above relation to the gradient ∇1U = (∂x1U, ∂y1U) by considering it to 

be a distribution acting on test fields φ = (φ1, φ2) where φ1, φ2 ∈ �. For all such φ we have

∇1U, φ = − 1U, ∇ ⋅ φ = − ∫
U

∇ ⋅φ dr = − ∮
∂U

φ ⋅ n ds (13)

where n is the unit outward normal to the curve ∂U.

Now suppose ψ is any smooth function that vanishes on ∂U, i.e. ψ(r) = 0 for all r ∈ ∂U. 

Since ψ is smooth the product ψ∇1U is well-defined as a tempered distribution, and for all 

test fields φ we have

ψ ∇1U, φ = ∇1U,ψφ = − ∮
∂U

ψ φ ⋅ n ds = 0. (14)

Therefore we have shown (10) holds in the distributional sense. The preceeding analysis 

easily generalizes to piecewise constant functions by linearity: if f is a piecewise constant 

function (6), and ϕ is any smooth function that vanishes on the edge set E = ∪
i = 1
n ∂U

i
, then

ϕ∇ f = ∑
i = 1

n

ai ϕ∇1U
i

0

= 0. (15)

Now assume that ϕ = μ is a trigonometric polynomial, and hence is described by a finite 

number of Fourier coefficients, which we denote by (c[k] : k ∈ Λ), where Λ ⊆ ℤ2 is its finite 

Fourier support set. Taking Fourier transforms of (15), and applying the convolution theorem 

for tempered distributions yields the following annihilation relation:
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Proposition 1—Let f = ∑i = 1
n

a
i
1

U
i
 be piecewise constant where edge set E = ∩

i
n ∂U

i
 is a 

subset of the trigonometric curve {μ = 0}. Then the Fourier coefficients of the gradient of f 

are annihilated by convolution with the Fourier coefficients (c[k] : k ∈ Λ) of μ, i.e.

∑
k ∈ Λ

c k ∇ f
^

� − k = 0, ∀� ∈ ℤ2, (16)

where ∇ f
^

k = ∂
x

f
^

k , ∂
y

f
^

k .

Due to the above property, we call μ an annihilating polynomial for f, and the coefficients 

(c[k] : k ∈ Λ) an annihilating filter. We show in §3 that the above Fourier domain 

annihilation relation can be used to recover an annihilating polynomial, and hence the edge 

set, from finitely many low-pass Fourier coefficients of the image.

We note that a similar annihilation relationship to (16) was derived for piecewise complex 

analytic signals in [47]. Specifically, in [47] it is shown that functions f(z) = f(x + jy) 

complex analytic on a region U with boundary ∂Ω given by a trigonometric curve {μ = 0} 

satisfy the annihilation relation

μ ∂z f = 0, (17)

where ∂
z
: = ∂

x
+ j∂

y
 is the complex Wirtinger derivative. While the proofs in [47] rely on a 

representation of f as a complex curve integral, (17) can also be understood in terms of 

distributions. Also note that if f is piecewise constant, then it satisfies (17). The main 

difference with our approach is that we assume that both partial derivatives of f are jointly 

annihilated by μ. This rules out functions f that are non-constant inside the regions defined 

by the curve {μ = 0}.

2.4 Properties of the edge set model: Trigonometric curves

Our image model, which assumes the edge set coincides with a trigonometric curve (9), may 

seem overly restrictive at first. However, trigonometric curves can represent a wide variety 

of curve topologies, even with relatively few coefficients. For instance, trigonometric curves 

can have multiple connected components, non-smooth cusps, and can self-intersect in 

complicated ways. Moreover, any compactly supported plane curve can be approximated to 

an arbitrary degree of accuracy by a trigonometric curve, provided the number of 

coefficients is large enough; see Fig. 2.

Trigonometric curves can be characterized in terms similar to algebraic plane curves, i.e. the 

zero sets of polynomials in two complex variables. In particular, one can associate with 

every algebraic plane curve a unique minimal degree polynomial whose zero set generates 

the curve. Similarly, we prove there is a unique minimal degree trigonometric polynomial 

associated with any trigonometric curve C, which we call the minimal polynomial for C. 

Here we define the degree of a trigonometric polynomial μ to be the dimensions of the 
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smallest rectangle that contains the frequency support set Λ, which we denote as deg(μ) = 

(K, L). In Appendix A we prove the following:

Proposition 2—For every trigonometric curve C there is a unique (up to scaling) real-

valued trigonometric polynomial μ0 with C = {μ0 = 0} such that for any other trigonometric 

polynomial μ with C = {μ = 0} we have deg(μ0) ≤ deg(μ) componentwise.

This proposition shows trigonometric curves can always be described as the zero set of a 

real-valued trigonometric polynomial, a property we will use implicitly from now on. 

Moreover, it allows us to uniquely define the degree of a trigonometric curve as the degree 

of its associated minimal polynomial. Intuitively, the degree also gives some measure of 

inherent complexity of a trigonometric curve. For example, the degree puts bounds on how 

many non-smooth points the curve may have and the number of connected curve 

components. One particularly important bound for this work is the following:

Proposition 3—If C is a trigonometric curve of degree (K, L), then the number of 

connected components of the complement set [0, 1]2/C is at most 2KL.

Consequently, a piecewise constant image with edge set given by a trigonometric curve of 

degree (K, L) cannot consist of more than 2KL distinct regions, i.e. the number of terms in 

the sum (6) is bounded by 2KL. This means the total degrees of freedom of such an image is 

at most roughly 3KL, since we need at most (K + 1)(L + 1) parameters to describe the edge 

set, and at most 2KL parameters for the region amplitudes.

Some further topological and algebraic properties of trigonometric curves and minimal 

polynomials can be found in Appendix B, which are used in proofs of the sampling 

theorems in §3 and §4.

3 Recovery of edge set from finite Fourier samples

In this section, we focus on sampling guarantees for the first step of our recovery scheme. 

We give necessary and sufficient conditions on the number of samples required for unique 

recovery of the edge set of the signal from the annihilation relation. Similar sampling 

guarantees for edge-aware recovery of the full signal are provided in the next section.

Let f be any piecewise constant image (6) whose edge set is described by a trigonometric 

curve {μ = 0} where μ is a trigonometric polynomial with coefficients (c[k] : k ∈ Λ). If we 

have access to all Fourier samples f k  for all k ∈ Γ, then from the annihilation relation (16) 

we can form the finite linear system of equations:

∑
k ∈ Λ

c k ∇ f
^

� − k = 0, ∀� ∈ Γ:Λ (18)

where the index set Γ : Λ ⊆ ℤ2 is the set ℓ ∈ ℤ2 such that ℓ−k ∈ Γ for all k ∈ Λ. Assuming Λ 
is symmetric i.e. for all k ∈ Λ we have −k ∈ Λ, then Γ : Λ is the simply the set of all integer 

shifts ℓ such that the translated support Λ + ℓ is contained in Γ. Here the expression 
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∇ f
^

k = ∂
x

f
^

k , ∂
y

f
^

k  is computed from the known samples using the Fourier domain 

relations ∂
x

f
^

k = j2πk
x

f k , and ∂
y

f
^

k = j2πk
y

f k , for any k = (kx, ky) ∈ ℤ2. Provided we 

have enough samples of f  to construct a determined linear system of equations (18), we can 

potentially solve for the unknown coefficients (c[k] : k ∈ Λ). We now derive conditions for 

the necessary and sufficient number of samples needed for unique recovery via the linear 

system (18).

3.1 Necessary condition for recovery of edge set

Suppose we know the exact Fourier support Λ ⊆ ℤ2 of the minimal polynomial μ describing 

the edge set of the image, and let Γ ⊆ ℤ2 be an arbitrary sampling set. To allow for the 

unique recovery of the coefficients (c[k] : k ∈ Λ) of μ by solving (18), we need enough 

equations so that the nullspace of the system is at most one-dimensional. This means we 

need the number of equations to match |Λ| − 1. For every shift of the filter support Λ 
contained in the sampling set Γ, i.e. every ℓ ∈ Γ : Λ, we obtain two equations corresponding 

to each partial derivative. Therefore, a necessary condition for the recovery of the (c[k] : k ∈ 
Λ) is

2|Γ:Λ| ≥ |Λ| − 1. (19)

However, in general we will not know in advance the exact Fourier support of the minimal 

polynomial. To gain some intuition on the number of samples required to recover the signal, 

we focus on the case of rectangular Fourier supports. In particular, we assume the degree of 

the minimal polynomial is known, i.e. the dimensions of the smallest rectangle containing 

the true Fourier support. Recall that the degree also gives some measure of the complexity of 

the edge-set (see Prop. 2 & Prop. 3). To recover the minimal polynomial coefficients, we can 

instead solve (18) for all coefficients within the minimal rectangular support ΛR. When the 

sampling set Γ is also rectangular, by counting shifts of ΛR in Γ, the expression in (19) 

reduces to the following necessary condition:

Proposition 4—Let f be piecewise constant with edge set described by a trigonometric 

curve of degree (K, L). A necessary condition to recover the edge set from the annihilation 

equations (18) is to collect samples f  on a (K′ + 1) × (L′ + 1) rectangular grid in ℤ2 with K

′ ≥ K and L′ ≥ L such that

2 K′ − K + 1 L′ − L + 1 ≥ K + 1 L + 1 − 1.

To illustrate this bound, suppose μ has degree (K, L), and we take Fourier samples from a 

rectangular grid of size (1 + α)K × (1 + α)L, α > 0. Then it is necessary that α ≥ 1
2
, or that 

we collect roughly 3KL Fourier samples to recover the edge set.

Our numerical experiments on simulated data (see Fig. 3) indicate the above necessary 

conditions might also be sufficient for unique recovery; that is, we hypothesize the 
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coefficients of the minimal polynomial are the only non-trivial solution to the system of 

equations (18) whenever it is fully determined.

3.2 Sufficient conditions for recovery of edge set

We now focus on sufficient conditions for the recovery of the edge set of a piecewise 

constant image, or equivalently, the coefficients of its minimal polynomial, from (18). For 

simplicity, we first state our result in the case of a single characteristic function. We give the 

proof of this result, and all the remaining proofs in §3–5, in Appendix B.

Theorem 1—Let f = 1U be the characteristic function of a simply connected region U with 

boundary ∂U = {μ = 0}, where μ is the minimal polynomial. Then the coefficients c = (c[k] : 

k ∈ Λ) of μ can be uniquely recovered (up to scaling) from samples of f  in 3Λ as the only 

non-trivial solution to the equations

∑
k ∈ Λ

c k ∇ f
^

� − k = 0, for all � ∈ 2Λ . (20)

The proof of Theorem 1 entails showing any other trigonometric polynomial η having 

coefficients (d[k] : k ∈ Λ) satisfying (20) must vanish on ∂U. From this it follows that η is a 

scalar multiple of μ by properties of minimal polynomials. We now extend the above result 

to piecewise constant signals, provided the boundaries of the regions do not intersect:

Theorem 2—Let f = ∑i = 1
n

a
i
1

U
i
 be piecewise constant such that the boundary curves 

∂Ui, i = 1, …, n, are connected, pairwise disjoint, and given by trigonometric curves: ∂Ui = 

{μi = 0}, where μi is the minimal polynomial. Then, the coefficients c = (c[k] : k ∈ Λ) of μ = 

μ1 ⋯ μn, and equivalently the edge set E = ∪
i = 1
n ∂U

i
, can be uniquely recovered (up to 

scaling) from samples of f  in 3Λ as the only non-trivial solution of

∑
k ∈ Λ

c k ∇ f
^

� − k = 0, for all � ∈ 2Λ . (21)

We remark that the proof of Theorem 2 can be adapted to many instances where the 

boundary curves are allowed to intersect, provided we take slightly more samples than 3Λ. 

The number of additional samples required depends on the precise intersection geometry, 

and is difficult to characterize for arbitrary curves, and so we do not state a general result 

here.

Note the sampling requirement of 3Λ in Theorems 1 and 2 is greater than the necessary 

number of samples given in Prop. 4. For example, if the edge set has degree (K, L), the 

necessary number of samples is roughly 3KL whereas the sufficient number is roughly 9KL. 

In other words, there is a gap in our results between the necessary and sufficient number of 

samples needed for unique recovery of the edge set. We conjecture that Theorems 1 and 2 
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can in fact be sharpened to the necessary number of samples, and extended to edge sets with 

arbitrary intersection.

Finally, we provide a generalization of Theorem 2 that will be useful in practical 

applications when the degree of the edge set is unknown. Specifically, assume that the 

system (18) is built with a larger coefficient support set Λ′ than the minimal support Λ. In 

this case the solution to (18) is not necessarily unique: any multiple of the minimal 

polynomial η = μγ such that γ has coefficients in Λ′ : Λ is also a solution. This is because 

η satisfies {μ = 0} ⊆ {η = 0}, hence is also an annihilating polynomial. We now show that 

every solution to (18) must be the coefficients of a multiple of the minimal polynomial, 

under the same restriction as Theorem 2:

Theorem 3—Let f be as in Theorem 2. Suppose μ = μ1 ⋯ μn has coefficients in Λ, and let 

Λ′ be another index set with Λ ⊆ Λ′. If the coefficients (d[k] : k ∈ Λ′) of a trigonometric 

polynomial η are a non-trivial solution of

∑
k ∈ Λ′

d k ∇ f
^

� − k = 0, for all � ∈ Λ′ + Λ, (22)

then μ divides η, that is η = μγ where γ is another trigonometric polynomial with 

coefficients supported in Λ′ : Λ.

4 Edge set aware recovery of the image

In this section we establish conditions for the unique recovery of a piecewise constant image 

from few of its low-pass Fourier samples with knowledge of the minimal polynomial 

describing its edge set. We will study the problem of identifiability of the signal in 

continuous domain: given ideal Fourier samples f k , k ∈ Γ, and the minimal polynomial μ, 

when is f is the unique function satisfying the annihilation relation, μ∇f = 0? Here we will 

restrict solutions f to belong to L1([0, 1]2), and interpret ∇f in a a distributional sense. First, 

we show any function g ∈ L1([0, 1]2) satisfying the annihilation relation can be compactly 

parametrized as a piecewise constant function:

Proposition 5

Let μ be any trigonometric polynomial. Suppose g ∈ L1([0, 1]2) satisfies the annihilation 

relation

μ∇g = 0 (23)

where equality holds in the distributional sense. Then, g can be parameterized as the 

piecewise constant function
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g = ∑
i = 1

n

bi1U
i

(24)

almost everywhere, where bi ∈ ℂ and Ui are the connected components of {μ = 0}C.

The above proposition implies that the full recovery of the piecewise constant image now 

simplifies to the estimation of the unknown amplitudes bi, provided the regions Ui are 

known. One approach of recovering the signal then would be to substitute the parametric 

model (24) back into the annihilation system (18), and solve for the unknown amplitudes, 

analogous to the amplitude recovery step in Prony’s method. However, this direct approach 

is not feasible in practice, since to identify the regions Ui would require us to factor a high 

degree multivariate polynomial having arbitrary complex coefficients. For this reason, 

obtaining an exact off-the-grid parametric representation of the full signal in spatial domain 

is especially challenging in our setting.

We avoid this direct approach and instead pose recovery as the solution to the following 

optimization problem in spatial domain:

min
g ∈ L

1 0, 1 2
‖μ∇g‖ such that g k = f k , for all k ∈ Γ, (25)

where ‖·‖ is any suitable norm. Alternatively, we can solve for the solution entirely in 

Fourier domain:

min
g k , k ∈ ℤ2

‖c ∗ ∇g
^ ‖ such that g k = f k , for all k ∈ Γ . (26)

where c = (c[k] : k ∈ Λ) are the finitely supported coefficients of the minimal polynomial μ, 

∗ denotes discrete 2-D convolution, and again ‖·‖ is some suitable norm. In the formulation 

(26), the solution is an extrapolation in Fourier domain from the known samples in Γ to the 

unknown coefficients, which can be viewed as a linear prediction in 2-D. Note that (25) and 

(26) are still infinite-dimensional optimization problems, and not solvable in practice. 

However, (25) and (26) will motivate the practical algorithms we introduce in §5. We now 

derive necessary and sufficient conditions for the unique recovery of the signal from (25) or 

equivalently (26).

4.1 Necessary conditions

A piecewise constant function g in the form (24) with known regions U
i i = 1

n  has n 

remaining degrees of freedoms corresponding to the unknown region amplitudes b
i i = 1

n . 

Hence the necessary minimum number of samples for unique recovery of the full signal—

using any algorithm—is n. However, typically this quantity will be much smaller than the 
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number of available samples required to estimate the edge set. For instance, if the edge set of 

the image is a trigonometric curve of degree (K, L), then by Proposition 3, then the number 

of distinct regions of the image is at most 2KL. However, by Proposition 4 the necessary 

minimum number of samples required to uniquely reconstruct the edge set from the 

annihilation equations is roughly 3KL, which is more than the maximum bound on the 

number of regions.

Here we note the parallels with Prony’s method and 1-D FRI theory: To recover a signal 

with K singularities it is necessary (and sufficient) to collect 2K + 1 uniform Fourier samples 

[63]. In the first stage, the full 2K + 1 samples are used to identify the locations of the 

singularities. However, in the second stage only K of the 2K +1 samples are necessary (and 

sufficient) to recover the signal amplitudes. Likewise, in our setting, once the necessary 

number of samples is obtained to reconstruct the edge set, no further samples should be 

needed to recover the amplitudes.

4.2 Sufficient conditions

Under the same non-intersecting assumption on the edge set of the piecewise constant 

function f as in the Theorems of §3, we can show the low-pass samples of f  are sufficient to 

uniquely identify f from the annihilation relation with knowledge of minimal polynomial. 

Specifically, we show that f is identifiable from samples of f  in Λ, the coefficient support set 

of the minimal polynomial:

Theorem 4—Let f be as in Theorem 2, with known minimal polynomial μ having 

coefficients in Λ, and let the Fourier sampling set Γ ⊇ Λ. If g ∈ L1 ([0, 1]2) satisfies

μ∇g = 0 and g k = f k , k ∈ Γ (27)

then g = f almost everywhere.

Again, we conjecture that this result also holds for piecewise constant functions having an 

edge set described by an arbitrary trigonometric curve C, not just those consisting of non-

intersecting curves.

This result shows one benefit of our piecewise constant image model versus the piecewise 

complex analytic signal model considered in [47]: in the piecewise constant case, recovery 

from the annihilation relation given finitely many Fourier samples is well-posed. However, 

this is not the case for piecewise analytic signals using the annihilation relation (17), as 

considered in [47]. This is because, in analogy with Proposition 5, one can show

μ ∂zg = 0 (28)

if and only if g is complex analytic on each connected component Ui of {μ = 0}C. Or, 

equivalently:
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g z = ∑
i = 1

n

hi z 1U
i

z , (29)

where hi is any function complex analytic on Ui. Signals in this class have infinite degrees of 

freedom since each hi(z) is described by infinitely many complex parameters, namely its 

power series coefficients. Therefore, recovery of the signal g from the annihilation relation 

(28) given finitely many Fourier samples is ill-posed. In particular, for any finite Fourier 

sampling set Γ, there are infinitely many signals g in the form (29) satisfying f k = g k , for 

all k ∈ Γ.

4.3 Recovery from finitely many annihilation equations

The conditions derived in §4.1 and §4.2 settle the problem of unique recovery from using the 

infinite dimensional annihilation relation (27). A more subtle question, relevant to practical 

applications, is whether the Fourier extrapolation solution is uniquely determined from 

finitely many annihilation equations, i.e. for some large extrapolation set Δ ⊆ ℤ2, and some 

small sampling set Γ ⊆ ℤ2 do the conditions

∑
k ∈ Λ

c k ∇g � − k = 0 for all � ∈ Δ:Λ and g k = f k for all k ∈ Γ . (30)

imply g k = f k  for all k ∈ Δ? In other words, given few samples of imply of f  and 

knowledge of the minimal polynomial coefficients (c[k] : k ∈ Λ), can we uniquely 

extrapolate f  to a larger grid Δ ⊆ ℤ2 using the Fourier domain annihilation relation (30)? 

Note that (27) may be thought of as the limiting case of (30), where the extrapolation set Δ 

expands to all of ℤ2. Our numerical experiments (see Fig. 4) indicate that, given the minimal 

polynomial, unique recovery is in fact possible from (30) with the necessary minimum 

number of samples given in §4.1. We hypothesize that a sufficient condition analogous to 

Theorem 4 also holds in this case. However, establishing this condition is less 

straightforward than in the infinite dimensional setting (27) since in this context we lack the 

parameterization result (24). We plan to pursue this question in a future work.

5 Algorithms

We rely on a two step algorithm similar to Prony’s method, which involves (1) the 

estimation of the edge set of an image (2) the edge set aware recovery of the image. 

Theorems 2 and 3 together guarantee the unique recovery of the edge set from the linear 

annihilation relation (18), while Theorem 4 guarantees the unique recovery of the full 

piecewise constant image given its edge set. However, these guarantees only hold under 

ideal conditions, making direct estimation of the signal from (18) infeasible in practice. Here 

we introduce robust refinements of this procedure to enable recovery of the image in the 

presence of noise or model-mismatch.
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5.1 Step 1: Estimation of an annihilating subspace

Directly estimating the edge set via the linear system (18) in practical applications is 

challenging due to the following problems:

1. Model-order selection: Theorems 2 and 3 assume the knowledge of the degree of 

the minimal polynomial describing the edge set of the image. However, this is 

often unknown in practical applications.

2. Noise and model-mismatch: The available Fourier samples are often corrupted 

by noise in practical settings. In addition, the assumption that the underlying 

image is piecewise constant with edge set described by a trigonometric curve 

will only be approximately true in practice.

We now introduce efficient approaches to overcome the above problems. The key idea is that 

rather than estimating a single annihilating filter, we estimate an entire annihilating subspace

—a collection of linearly independent annihilating filters which jointly encode the edge set. 

This can be thought of as an extension of subspace methods in spectral estimation to the 2-D 

setting. Specifically, we draw parallels between our algorithm and the well-known MUSIC 

algorithm [48]. This gives us an efficient means to address the model-order selection 

problem. We also introduce an efficient algorithm for the robust estimation of the 

annihilating subspace in §5.1.2, which address the problem of model-mismatch and noisy 

measurements. This scheme is related to Cadzow denoising methods [5, 14] used for robust 

spectral estimation, and recent low-rank structured matrix completion approaches in MRI 

[28, 34]. Finally, once the annihilating subspace is estimated, in §5.2 we propose recovering 

the piecewise constant signal in Fourier domain by constraining its extrapolated Fourier 

coefficients to be orthogonal to the annihilating subspace.

For convenience, we rewrite the annihilation system (18) in matrix notation. First, we fix 

rectangular index sets Γ, Λ ⊆ ℤ2, which represent the sampling set, and annihilating filter 

support, respectively, and set N = |Γ : Λ|, M = |Λ|. Define �
x
 and �

y
 to be the linear 

operators mapping samples ( f̂ [k]: k ∈ Γ) to matrices �
x
( f̂ ) ∈ ℂN × M and �

y
( f̂ ) ∈ ℂN × M

which represent the discrete convolution of ∂
x

f
^  and ∂

y
f

^  with filters (c[k] : k ∈ Λ), whose 

output is restricted to the index set Γ : Λ. In particular, �
x
( f̂ ) and �

y
( f̂ ) are block Toeplitz 

matricies with Toeplitz blocks, where the rows of �
x
( f̂ ) indexed by ℓ ∈ Γ:Λ are given by 

(∂
x

f
^ [� − k]: k ∈ Λ) in vectorized form, and similarly for �

y
( f̂ ); see Fig. 5. Finally, we define 

the linear operator � as the vertical concatenation of �
x
 and �

y
, i.e.

�( f̂ ) =
�x( f̂ )

�y( f̂ )
∈ ℂ2N × M . (31)

Treating c = (c[k] : k ∈ Λ) as vector in ℂM we may reproduce the annihilation system (18) 

by writing
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�( f̂ )c = 0

Therefore, recovering an annihilating polynomial for f is equivalent to finding a vector in the 

nullspace of the structured matrix �( f̂ ), which we call the annihilation matrix.

We note that our annihilation matrix is structurally similar to the to the multi-fold Hankel 

matrix construction in the matrix enhancement pencil matrix (MEMP) method, used for 2-D 

harmonic retrieval [31, 12]. The main difference in our construction is that we apply weights 

j2πk to the Fourier data before creating the structured matrix. Also, similar multi-fold 

Toeplitz/Hankel liftings of Fourier data have been considered in MRI reconstruction 

problems to model spatially limited and phase constrained images [51, 28], and to model 

transform sparse images [34]. Similar to us, [34] also applies weights to Fourier data before 

constructing the structured matrix. However, our construction (31) is unique in that we 

consider joint annihilation of both partial derivatives with respect to a common filter.

5.1.1 Annihilating subspace estimation—When the degree of the minimal polynomial 

associated with the edge set is unknown in advance—which will typically be the case—we 

cannot build the annihilation matrix �( f̂ ) with the correct filter support to ensure its null 

space is one-dimensional. For instance, if the assumed filter support Λ′ is strictly larger than 

support Λ of the minimal filter (c[k] : k ∈ Λ), the annihilation matrix will have a larger null 

space. This is because any filter of the form c * d having Fourier support contained in Λ′ is 

also an annihilating filter by the associativity of convolution. In fact, Theorem 3 says that 

under certain conditions on f, every null space vector of �( f̂ ) is of this form. Hence, under 

these conditions, �( f̂ ) is rank deficient with the following bound:

Proposition 6: Let f be a piecewise constant image with edge set C = {μ = 0}, where μ is the 

minimal polynomial with coefficients in Λ. If the assumed annihilating filter support Λ′ 
strictly contains Λ, then

rank �( f̂ ) ≤ |Λ′ | − |Λ′:Λ | . (32)

Furthermore, equality holds if f satisfies the conditions of Thm. 2 and if the sampling set Γ 
⊆ 2Λ + Λ′.

We call the null space of �( f̂ ) the annihilating subspace. Since identifying the minimal 

annihilating filter within the annihilating subspace when it has large dimension is 

challenging, we propose to leverage the entire annihilating subspace for both edge set 

estimation and image reconstruction.

Observe that the edge set is still uniquely recoverable from the annihilating subspace under 

ideal conditions. To see this, let D = [d1, …, dR] be any orthonormal basis for the 

annihilating subspace. Define μi to be the trigonometric polynomial having coefficients 

given by di. By the preceding discussion μi must always have the form μi = γi μ for μ the 
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minimal polynomial and γi another trigonometric polynomial. We define a function μ as the 

following sum-of-squares average

μ(r) = ∑
i = 1

R

|μi(r)|2 = ∑
i = 1

R

|γi(r)μ(r)|2 . (33)

Note we always have μ(r) = 0 when μ(r) = 0. We can also prove the following:

Proposition 7: The function μ has at most finitely many zeros on [0, 1]2/{μ = 0}.

Therefore, we can identify the edge set by finding the zeros of μ(r), and removing any 

isolated points. This method of estimating the edge set can also be interpreted as a higher 

dimensional analogue of the technique used in spectral MUSIC to estimate the locations of 

isolated spectral peaks [48]. Recall that with spectral MUSIC one performs this estimate by 

computing the distance of pure exponential signals from a particular eigenspace of the signal 

covariance matrix. The following result shows we may also interpret μ(r) in an analogous 

way:

Proposition 8: Let D ∈ ℂM×R be an orthonormal basis of the nullspace of �( f̂ ), and for all r 

[0, 1]2, define the filter er ∈ ℂM by er[k] = ej2πk·r for all k ∈ Λ. Then we have

μ(r) = ‖DD
H

e
r
‖2

that is, μ(r) is the ℓ2-norm of the projection of er onto the annihilating subspace.

While we do not directly estimate the edge set in this fashion, the function μ will play an 

important role in the second step of our proposed algorithm in §5.2.

5.1.2 Annihilation subspace estimation in the presence of noise—When the 

measurements are corrupted by noise or there is model mismatch, we propose performing a 

denoising step to better identify the annihilating subspace. This denoising step is similar to 

Cadzow methods used in FRI algorithms [2, 47], as well as recently proposed algorithms for 

structured low-rank matrix completion problems [28, 12, 46, 34]. Given noisy Fourier 

samples b[k] = f̂ [k] + n[k], k ∈ Γ, where we assume n[k] is a vector of i.i.d. mean-zero 

Gaussian noise, we attempt find the f
∗̂ closest in Euclidean norm that satisfies the rank 

bound in Proposition 6:

f
∗̂ = arg min

ĝ[k], k ∈ Γ
∑

k ∈ Γ
|ĝ[k] − b[k]|2 such that rank[�(ĝ)] ≤ r . (34)

Here the parameter r is estimated according to (32). This can be viewed as a maximum 

likelihood estimation, where the rank constraint on �(ĝ) enforces our modeling assumption; 
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see [14] for a similar approach in 1-D. Note the rank constraint in (34) is non-convex, which 

means in general we are only able to compute an local minimizer of (34). One common 

heuristic for solving problems of the type (34) is to perform a Cadzow denoising on a lifted 

matrix. However, as observed in [47], this procedure is slow to converge in this context. 

Instead, we attempt to solve (34) more directly with a variable splitting approach adopted 

from [28]:

min
ĝ[k], k ∈ Γ

T : rankT ≤ r

∑
k ∈ Γ

|ĝ[k] − b[k] |2 + λ‖�(ĝ) − T‖F
2 (35)

where λ is a regularization parameter balancing data fidelity and the low-rank penalty term. 

This suggests the following alternating minimization scheme: set f̂
(0)

= b and for n ≥ 1, 

solve

T(n + 1) = arg min
T : rankT ≤ r

‖�( f̂
(n)

) − T‖F
2 (36)

f̂
(n + 1)

= arg min
ĝ[k], k ∈ Γ

∑
k ∈ Λ

|ĝ[k] − b[k]|2 + λ‖�(ĝ) − T(n + 1)‖F
2 (37)

The exact solution to subproblem (36) is easily computed by taking the singular value 

decomposition of �( f̂
(n)

) = U∑V
∗, and setting Tn+1 = UΣrV*, where Σr is the diagonal 

matrix of singular values σi with σi = 0 for all i > r. Also, subproblem (37) is quadratic in ĝ, 

and has an exact solution given by ĝ = (b + �
∗(T))/(1 + λ diag(�∗

�)), where the operations 

above are understood element-wise. Here �∗ denotes the adjoint of �, which computes a 

weighted sum of entries of T ∈ ℂ2N×M. In particular, one can show �∗
� is a diagonal 

matrix. Due to the alternating scheme, the cost in (35) is guaranteed to monotonically 

decrease with updates (37). A detailed convergence analysis of the algorithm is beyond the 

scope of this work; further analysis can be found in [28]. However, we observe the algorithm 

converges well in practice. In all our experiments conducted in §6 a suitable solution was 

reached in 5–10 iterations.

5.2 Step 2: Edge set aware image recovery

We now focus on the edge-aware recovery of the image using (26), which amounts to the 

Fourier domain extrapolation of the measured samples. This recovery can still be considered 

as “off-the-grid”, in the sense that we reconstruct the exact Fourier series coefficients of the 

underlying continuous domain image. We will also briefly consider the case where we solve 

for the image “on-the-grid” in spatial domain similar to [47].
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5.2.1 Fourier domain recovery: Extrapolation by linear prediction—Suppose that 

we have an estimate of a basis for the annihilating subspace D = [d1, …, dR]. Motivated by 

the Fourier domain recovery formulations (26) and (30), we pose the recovery of the Fourier 

domain of the signal within an arbitrary rectangular domain Δ ⊆ ℤ2 as

min
ĝ[k], k ∈ Δ

∑
i = 1

R

‖∇g
^ ∗ di‖

2 subj .  to ĝ[k] = f̂ [k], k ∈ Γ, (38)

i.e. we extrapolate the signal by enforcing its Fourier derivatives to be annihilated by filters 

in the annihilating subspace. Here we restrict the convolution to the valid region Δ: Λ ⊂ ℤ2. 

When the measurements are corrupted by noise (i.e. b[k] = f̂ [k] + n[k], k ∈ Γ, where n is a 

vector i.i.d. complex white Gaussian noise), we relax the equality constraint in (38) and 

instead solve

min
ĝ[k], k ∈ Δ

∑
i = 1

R

‖∇g
^ ∗ di‖

2 + λ‖PΓĝ − b‖2 . (39)

Here, λ is a tunable parameter balancing annihilation and data fidelity, and PΓ is projection 

onto the sampling set Γ. Note that (39) is a linear least-squares problem, and can be solved 

efficiently with a conjugate gradient iterative solver, provided we have an fast method of 

computing matrix-vector products with the gradient of the objective in (39). Towards this 

end, we rewrite (39) in terms of a linear operator � acting on ĝ:

min
ĝ[k], k ∈ Δ

‖�ĝ‖F
2 + λ‖PΓĝ − b‖2 . (40)

where ‖ · ‖F denotes the Frobenius norm. We can express � as

� = [�x, 1, �y, 1, …, �x, R, �y, R]; �x, i = PCiMx, �y, i = PCiMy for all i = 1, …, R, (41)

with Mx and My representing elementwise multiplication by j2πkx and j2πky, respectively, 

Ci discrete convolution with the annihilating filter di, and P projection onto the index set Δ : 

Λ. Note that since ĝ is restricted to Δ, we may take Ci to be a 2-D circular convolution, 

provided we zero-pad the filter di and the input ĝ sufficiently. Thus, we can write Ci = F 

SiFH where F is the 2-D DFT on any rectangular grid containing the set Δ + Λ, and Si is 

elementwise multiplication by the inverse DFT of di, which is given by a spatial gridding of 

the annihilating polynomial μi(r) having coefficients di.

Taking the gradient of the objective in (40) and setting it to zero yields

(�∗
� + λPΓ

∗
PΓ)ĝ = PΓ

∗
b .
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From (41), the operator �∗
� can be expanded as

�
∗
� = ∑

i = 1

R

(Mx
∗Ci

∗P∗PCiMx + My
∗Ci

∗P∗PCiMy) (42)

Unfortunately, when the number of annihilating filters is large (i.e. R is large), applying this 

operator directly will be computationally costly, requiring 8R two-dimensional FFT 

operations per application. However, if the resolution of the reconstruction grid Δ is large 

enough, the projection operator P*P will be close to the identity matrix I. Making the 

approximation P*P ≈ I in (42), we obtain

�
∗
� ≈ Mx

∗F∗RFMx + My
∗F∗RFMy . (43)

where R = ∑
i = 1
R

S
i
∗
S

i
 is diagonal and represents pointwise multiplication by spatially 

gridded samples of the sum-of-squares polynomial μ2 = ∑
i = 1
R |μ

i
|2, as defined in (33). Note 

that after computing the entries of R, computing matrix-vector products with (43) requires 

only four 2-D FFTs per iteration to evaluate, as opposed to 8R. Working backwards, we can 

show approximating �∗
� in this manner is equivalent to minimizing

min
g[k], k ∈ Δ

‖μ∇ℬ(g)‖
L

2
2 + λ‖PΓg − b‖2 (44)

where here ℬ(g) is the function obtained by bandlimiting g to the Fourier extrapolation set 

Δ, and ‖ ⋅ ‖
L

2
2  is the spatial domain L2-norm of vector-valued functions on [0, 1]2. This 

shows that linear prediction using the entire annihilating subspace is roughly equivalent to 

(25). The main difference is that the minimal polynomial μ is replaced by the sum-of-

squares average polynomial μ defined in (33). We propose solving (44) as a surrogate for 

(39) when the dimension of the annihilating subspace is large, and call (44) the least-squares 

linear prediction (LSLP) approach.

5.2.2 Spatial domain recovery: Weighted total variation—We also consider solving 

for the discrete samples of a function g: [0, 1]2 ℂ2 on a rectangular grid r
i, j

⊂ [0, 1]2 in 

spatial domain:

min
g

∑
i, j

μ(ri, j)|∇g(ri, j)| + λ‖PΓg − b‖2, (45)

This approach of solving for the image on discrete spatial grid is similar to the approach in 

[47], and can be thought of as a discrete approximation of (25). To obtain a fast algorithm, 

we use finite differences to approximate the gradient ∇g in (45), and replace the Fourier 
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projection PΓg with its DFT counterpart. In this case, (45) can be cast as a weighted total 

variation minimization which can be solved efficiently with a primal-dual algorithm, such as 

[69]. We call (45) the weighted total variation approach (WTV).

We note that several edge-aware recovery formulations similar to our WTV (45) and LSLP 

approach (44) have been proposed previously in the literature; see e.g. [65, 33, 29, 61, 38, 

23]. The difference of the proposed approach lies in the estimation of the edge weights, 

which are obtained from the low-resolution data itself, rather than from a priori known high 

resolution edge information, as is assumed in the above cited works.

6 Experiments

In this section we demonstrate the utility of our proposed algorithms for super-resolution in 

magnetic resonance (MR) imaging. A single-coil MR acquisition restricted to a single plane 

with sampling locations on a uniform Cartesian grid can be accurately modeled as the 

Fourier coefficients of the underlying 2-D image [21]. This suggests we can apply our 

proposed two-stage recovery scheme to recover MR data from low-pass Fourier samples at 

high resolution, provided the underlying image is well-approximated as piecewise constant.

First, to test the validity of the proposed scheme, we experiment on simulated data generated 

from piecewise constant phantoms. To ensure resolution-independence, we compute ideal 

Fourier samples from analytical Fourier domain expressions of the MR phantoms, as done in 

[24]. Taking low-pass samples located within a centered rectangular window, we solve for an 

annihilating filter of the maximum possible size allowable using the procedure outlined in 

Section 5. We then recover the image using the proposed algorithms in §5, and compare 

against a standard total variation (TV) regularized recovery, and a non-convex version of TV 

(ncvx-TV). For ncvx-TV, we adopt the approach in [10, 9] using a non-convex ℓp, p < 1, 

penalty in place of the ℓ1 penalty, and fix p = 1/2 in our experiments. For all recovery 

schemes, we tune regularization parameters to optimize the signal-to-noise ratio (SNR), 

defined as SNR = 20log10 ‖x0‖
2

/‖x − x0‖
2

 where x is the reconstructed image, and x0 is the 

ground truth image.

The results of this first experiment are shown in Fig. 6. Our proposed scheme is able to 

recover the Shepp-Logan phantom with high accuracy from as few as 65 × 49 low-pass 

Fourier samples, corresponding to a 20-fold undersampling. A TV-regularized recovery from 

the same samples shows significant edge blurring, broadening of image features, and 

ringing-like artifacts in piecewise constant regions. We observe the non-convex TV approach 

is better able to reduce artifacts in the constant regions of the image, but still distorts the 

boundaries of the piecewise constant regions. We see similar benefits in the case of a brain 

phantom having a more complicated edge set geometry. Visually, the WTV reconstruction 

appears to show some advantages over LSLP in this case, in that it is better able to recovery 

some of the finer image features and suppress ringing artifacts. However, the LSLP recovery 

more faithfully recovers the true Fourier coefficients, as measured by the SNR.

We also performed another experiment validating the method on real MR data; see Figure 7. 

The dataset was obtained from a fully sampled 4-coil acquisition, which we compressed into 
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a single virtual coil using an SVD-based technique [68]. We then retrospectively collected 

low-pass Fourier samples from the single virtual coil. To simulate a noisy acquisition, we 

also added i.i.d. complex white Gaussian noise to the low-pass Fourier samples, such that 

the resulting SNR of the samples was approximately 30 dB.

We observed that the data from the single virtual coil was complex-valued in image domain 

with smoothly varying phase over its support, as is typical with MR data. Applying our 

edge-set estimation procedure directly on the unprocessed low-pass samples gave poor 

results, since our approach assumes the underlying image is piecewise constant. Therefore, 

prior to estimating the edge-set, we performed a phase correction step. This was done by 

taking the inverse DFT of the zero-padded low-pass Fourier samples, canceling out the 

phase in image domain, and passing back to Fourier domain. We note this pre-processing 

step only requires access to the low-pass samples. To ensure fair comparisons, when 

computing image metrics we compared the magnitude images of the reconstructions against 

the magnitude image obtained from the fully sampled virtual coil.

Additional noise and model-mismatch in real MR data makes estimating the true model 

order of the edge-set challenging. As a rule of thumb, we chose the annihilating filter 

dimensions to be half the size of the low-resolution input. We then performed the 

annihilating subspace denoising step (35) with the rank threshold r set to half the number of 

the coefficients in the filter. Empirically, we find this procedure is still able to accurately 

recover the significant edges in the image, as shown in Fig. 7(b). We then pass the 

“denoised” Fourier samples that result from (35) as the input to the second stage of our 

recovery scheme.

For the real MR data we find our proposed LSLP approach to be superior to our WTV 

approach, hence we restrict our comparison to this case. In Fig. 7 we compare the proposed 

approach with ncvx-TV, which was found to outperform standard TV (not shown). In 

addition to SNR, we also use the structural similarity index (SSIM) as a measure of the 

perceptual-quality [64]. We observe that on this dataset our proposed LSLP scheme shows 

some advantages over ncvx-TV in terms of SNR and SSIM. Visually, the LSLP recovery 

shows fewer noise artifacts in the constant regions of the image, and better preservation of 

edge features. Additionally, the Fourier domain images in Fig. 7 indicates the LSLP 

approach better extrapolates the low-pass Fourier data beyond the sampling region.

Finally, we remark that the computation time of the proposed scheme is primarily dominated 

by the cost in computing the SVD of the annihilation matrix in the edge-recovery stage. The 

dimensions of the annihilation matrix grow with the size of the annihilation filter and the 

number of low-resolution samples. For example, given an 128 × 128 array of low-resolution 

samples and a filter size of 64 × 64, the annihilation matrix has dimensions 8450 × 4096. 

The second stage of the recovery using the LSLP and WTV approaches were similar in run 

time to a standard TV regularized recovery, and a MATLAB implementation running on 

CPU took under a minute for the datasets considered here.

Ongie and Jacob Page 24

SIAM J Imaging Sci. Author manuscript; available in PMC 2018 July 02.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



7 Discussion

In this work, we developed sampling guarantees for the unique recovery of a continuous 

domain piecewise constant image from few of its low-pass Fourier samples, assuming the 

edge set of the image is described by the zero set of a trigonometric polynomial. This is 

achieved by showing the distributional derivatives of such an image satisfy a linear 

annihilation relation in Fourier domain. One of our main contributions is to prove that, under 

ideal conditions, unique recovery of the image is possible from the annihilation relation.

We also proposed a two step algorithm for the recovery of images, which extrapolates the 

known Fourier samples of the image in Fourier domain. We argue such a recovery scheme 

deserves to be called “off-the-grid”, since we recover the exact Fourier coefficients of the 

underlying continuous domain image, and at no point do we need to discretize in spatial 

domain. In the first step of the algorithm, we estimate a collection of annihilating filters 

from the low-pass samples, which jointly encode the edge set of the image. In the second 

step, we perform a least squares linear prediction using these filters to extrapolate the signal 

Fourier domain. We show the proposed scheme has advantages over traditional single-image 

super-resolution schemes in MRI in its ability to suppress noise artifacts and preserve strong 

image edges.

While our experiments focused on the problem of super-resolution MRI, we note that this 

work has potentially wide-ranging applications beyond those presented here. For instance, 

the first stage our algorithm estimates a continuous domain representation of the edge set of 

an image, which can be useful for image segmentation. Additionally, the super-resolution 

problem we considered is not limited to MRI, and will work in any setting where one has a 

good estimate of the low-pass Fourier samples of image, such as in the image zoom problem 

studied in [47].

In future work, we plan to resolve the conjectures put forth in §2.4, which would extend our 

sampling theorems to piecewise constant images with edge set given by an arbitrary 

trigonometric curve, not just those that are non-intersecting. We also hope to give further 

insight into the robustness of this scheme with respect to noise and model mismatch, 

especially with regard to the rank properties of the annihilation matrix.

Finally, we observe that most of the theory presented here extends directly to higher 

dimensions. For example, in three dimensions we could consider piecewise constant signals 

whose gradient is supported on a two-dimensional surface given as the zero set of a 

trigonometric polynomial in three variables. However, the computational burden in this case 

will be much more significant. For instance, the edge set estimation step would require the 

singular value decomposition of an extremely large matrix, which we may not even be able 

to hold in memory. Therefore a goal of future research is to come up with efficient 

algorithms to further enable the recovery of higher dimensional signals.
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A Algebraic Properties of Trigonometric Polynomials and Curves

Here we develop the algebraic properties of trigonometric polynomials and trigonometric 

curves in some detail. We will slightly expand our definition of a trigonometric polynomial 

(9) to include those with frequencies k on a shifted lattice ℤ2 + σ for some fixed σ = (σ1, σ2) 

with σ
i

∈ 0, 1
2 . This is to ensure the results below extend to trigonometric polynomials 

having an even number coefficients in one or both dimensions.

We define the degree of μ, denoted as deg (μ) = (K, L), to be the linear dimensions of the 

smallest rectangle R whose closure contains the frequency support set, and we say μ is 

centered if the frequency support rectangle R is symmetric about origin (k, l) = (0, 0). For 

example,

μ1(x, y) = 4sin(2πx)cos(4πy) = je
j2π( − x − 2y) + je

j2π(x − 2y) − je
j2π( − x + 2y) − je

j2π(x + 2y)

has frequency support contained in the rectangle [−1, 1] × [−2, 2], hence is centered with 

degree (2, 4). As another example,

μ2(x, y) = 2e
− j2πx + 1 + e

j2πx − e
j2π(x + y)

has frequency support contained in [−1, 1] × [0, 1], hence degree (2, 1), but is not centered. 

However, we can make μ2 centered by multiplying by a phase factor μ∼2(x, y) = e
− jπy

μ2(x, y), 

which shifts the frequency support to [ − 1, 1] × [ − 1
2 , 1

2 ]. Note μ2 and μ∼2 have the same 

degree and the same zero set, since these properties are invariant under multiplication by a 

phase factor.

For any trigonometric polynomial μ with deg(μ) = (K, L) we can associate a unique complex 

polynomial À[μ] in ℂ[z, w] by making the substitutions e j2πx ↦ z, e
j2πy ↦ w, and multiplying 

by powers of z and w such that À[μ] has degree K as a polynomial in z, and degree L as a 

polynomial in w. Similarly, we may define an inverse mapping acting on polynomials as 

À
−1[q](x, y): = e

− j2πSx
e
− j2πTy

q e
j2πx, e

j2πy , where S, T are chosen so that the resulting 

trigonometric polynomial is centered. For example, using the same μ1 and μ2 as above, we 

have

À[μ1](z, w) = zw
2( jz

−1
w

−2 + jzw
−2 − jz

−1
w

2 − zw
2) = j(1 + z

2 − w
4 − z

2
w

4),

À[μ2](z, w) = z(2z
−1 + 1 + z − zw) = 2 + z + z

2 − z
2
w
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and À−1[À[μ1]](x, y) = μ1(x, y) whereas .

We also define E(x, y) = (ej2πx, ej2πy) for all (x, y) ∈ [0, 1]2, which is a continuous bijective 

mapping of [0, 1)2 onto the complex unit torus ℂÌ
2 = (z, w) ∈ ℂ2: |z| = |w| = 1 . Observe that 

μ(x, y) = 0 if and only if À[μ](z, w) = 0 for (z, w) = E(x, y), so that μ = 0 on C ⊆ [0, 1)2 if and 

only if À[μ] = 0 on E(C). This shows we may study the algebraic properties of trigonometric 

polynomials and their zero sets by studying their corresponding complex polynomials under 

the mapping À. Accordingly, for trigonometric polynomials μ and ν we will say μ divides ν, 

denoted μ | ν, when À[μ] divides À[ν] as polynomials in ℂ[z, w], or equivalently, if ν = μ γ 
for some trigonometric polynomial γ; μ and ν are said to have a common factor if there is a 

γ with positive degree such that γ | μ and γ | ν; and we say μ is irreducible when À[μ] is 

irreducible as a polynomial in ℂ[z, w].

We will need the following well-known result regarding the maximum number of 

intersections of algebraic curves (see e.g. [50]):

Theorem 5

(Bézout’s Theorem). Let p1 and p2 be non-constant polynomials in ℂ[z, w] with deg(p1) = d1 

and deg(p2) = d2. If p1 and p2 have no common factor then the system of equations p1(z, w) 

= p2(z, w) = 0 has at most d1 d2 solutions.

One important consequence of Bézout’s theorem is that if p(z, w) is irreducible and q(z, w) 

is any other polynomial such that p(z, w) = q(z, w) = 0 has infinitely many solutions, then p 

must divide q.

We can readily translate these results to trigonometric polynomials μ and ν by mapping to 

the polynomials p = À[μ] and q = À[ν], and mapping back again. If deg(μ) = (K, L), then 

p = À[μ] has total degree at most K + L as a polynomial in ℂ[z, w], and so we have the 

following corollary that we will also call “Bézout’s theorem”:

Corollary 1

Let μ1 and μ2 be trigonometric polynomials with deg(μ1) = (K1, L1) and deg(μ2) = (K2, L2). 

If μ1 and μ2 have no common factor then the system of equations μ1(x, y) = μ2(x, y) = 0 has 

at most (K1 + L1)(K2 + L2) solutions in [0, 1)2.

Consequently, if the zero sets of trigonometric polynomials μ and ν have infinite 

intersection, and μ is irreducible, this implies μ | ν.

A.1 Existence of a minimal polynomial (Proof of Proposition 2)

Here we prove a slightly stronger version of Proposition 2, which shows the minimal 

polynomial satisfies an additional unique divisibility property. Recall that we say the zero set 

of a trigonometric polynomial C = {μ = 0} is a trigonometric curve if C infinite and has no 

isolated points, i.e. if every connected component of C is one-dimensional.
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Proposition 9

For every trigonometric curve C there is unique (up to scaling) real-valued trigonometric 

polynomial μ0 such that C = {μ0 = 0} and for any other trigonometric polynomial μ with μ = 

0 on C we have deg(μ0) ≤ deg(μ) componentwise, and μ0 | μ.

Proof—Let μ be any trigonometric polynomial with C = {μ = 0}. Set p = À[μ] ∈ ℂ[z, w]. 

Then p has a unique factorization (up to scaling) into irreducible factors: p = p1

n1⋯p
r

n
r. 

Create a polynomial p0 = p
i1

⋯p
i
k
, k ≤ r, omitting any factors pi whose zero sets do not 

intersect ℂÌ
2, or intersect at only finitely many points. Define μ0 = À

−1[p0], which by 

construction satisfies μ0 = 0 on C/A where A is possibly some finite set. In fact, it must be 

the case that μ0 = 0 on all of C, since μ0 is continuous and C contains no isolated points by 

assumption. We will show μ0 is the desired minimal polynomial.

Note the algebraic curve X = {p0 = 0} is the union of irreducible curves X
j

= p
i
j

= 0 ⊆ ℂ2. 

Define C
j

= E
−1(X

j
∩ ℂÌ

2), then likewise we have a decomposition of C as the union of the 

curves Cj. If ν is any other trigonometric polynomial with C = {ν = 0}, then ν = 0 on each 

Cj, and for q = P [ν] we have q = 0 on each infinite set E(C
j
) = X

j
∩ ℂÌ

2. Therefore by 

Bézout’s theorem, q = À[v] must factor as q = p
i1

m1⋯p
i
k

m
kr for some r ∈ ℂ[z, w], hence deg(p0) 

≤ deg(q) and p0 | q, which implies deg(μ0) ≤ deg(ν) and μ0 | ν.

We now show μ0 is real-valued under an appropriate choice of scaling. Without loss of 

generality assume Re[μ0]≠0. Since Re[μ0] = 1
2 (μ0 + μ0

∗) and μ0 is centered, we have 

deg(Re[μ0]) ≤ deg(μ0). Also, since {μ0 = 0} ⊆ {Re[μ0] = 0} we have μ0|Re[μ0] and so Re[μ0] 

= c·μ0 for some c ∈ ℂ by the uniqueness of μ0. Therefore 1
c

μ0 is real-valued.

Finally, to show uniqueness suppose ν0 is another centered trigonometric polynomial 

satisfying C = {ν0 = 0} and deg(ν0) = deg(μ0). Then μ0 | ν0, and so by degree constraints, 

ν0 = c·μ0 for some c ∈ ℂ. □

A.2 Additional properties of minimal polynomials

Our uniqueness theorems also make use of the following result, which shows the zero set of 

the minimal polynomial and the zero set of its gradient have at most a finite intersection:

Proposition 10

Let C be a trigonometric curve with minimal polynomial μ. Then ∇μ = 0 for at most finitely 

many points on C.

Proof—Note the partial derivatives ∂xμ and ∂yμ are trigonometric polynomials with 

deg(∂xμ) ≤ deg(μ) and deg(∂yμ) ≤ deg(μ). First consider the case where μ is irreducible. If 
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{∇μ = 0} and C have an infinite intersection, then by Bézout’s theorem, μ must divide ∂xμ 

and ∂yμ, and so by degree considerations, ∂xμ = Aμ and ∂yμ = Bμ for some non-zero 

constants A, B. By comparing coefficients, we see this is only possible if μ is the zero 

polynomial.

The general case follows by induction on the number of irreducible factors in μ: Suppose μ = 

μ1 ·⋯ μn−1μn where each μi is a distinct irreducible factor (that μ must have this form follows 

from the proof of Prop. 2). Let ν = μ1·⋯ μn−1, then we may write C = C1 ∪ C2 where C1 = 

{ν = 0} and C2 = {μn = 0}. By the product rule ∇μ = μn∇v+v∇μn. Therefore, ∇μ = 0 on C1 if 

only if μn = 0 or ∇ν = 0 on C1. However, {μn = 0} ∩ C1 is finite by Bézout’s theorem, and 

{∇ν = 0} ∩ C1 is finite by inductive hypothesis, hence {∇μ = 0} ∩ C1 is finite. A similar 

argument shows {∇μ = 0} ∩ C2 is finite, which proves induction. □

The following proposition shows that minimal polynomials must always change sign across 

an infinite segment of its zero set.

Proposition 11

Let C be a trigonometric curve with minimal polynomial μ. If U1 and U2 are distinct 

connected components of [0, 1]2/C whose boundaries share an infinite segment of C, then 

the sign of μ must be different on U1 and U2.

Proof—Let U1 and U2 be any two connected components of [0, 1]2/C whose boundaries 

share an infinite segment S ⊆ C, and suppose, without loss of generality, μ is positive on 

both U1 and U2. Then for all points in S, μ has a local minimum, and since μ is smooth this 

implies ∇μ = 0 on all of S, which violates Proposition 10. Therefore μ must have different 

signs on U1 and U2.

Note that this result puts certain topological constraints on the geometry of trigonometric 

curves. For instance, if C is any trigonometric curve, and r0 ∈ C, then in any sufficiently 

small neighborhood of r0, the set C/{r0} must consist of an even number of branches, since 

otherwise the minimal polynomial would violate the parity rule in Prop. 11. This implies, for 

example, that within the region [0, 1]2 trigonometric curves must always be closed. It also 

rules out such features such as triple junctions, where locally three curve segments terminate 

at a common intersection point.

A.3 Bound on Connected Components (Proof of Proposition 3)

To bound the number of connected components in the complement of a trigonometric curve, 

we make use of Bernstein’s theorem, also known as the BKK bound, which is a well-known 

refinement of Bézout’s theorem (see, e.g., [58, 22]). Bernstein’s theorem relates the 

maximum number of isolated zeros of a Laurent polynomial system to the geometry of the 

coefficient supports. Here we use the notation conv(Λ) to denote the convex hull of an index 

set Λ ⊂ ℤ2 treated as a subset of ℝ2. For any two sets P1, P2 ⊂ ℝ2 we also use ℳ(P1, P2) to 

denote their mixed area:
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ℳ(P1, P2): = area(P1 + P2) − area(P1) − area(P2)

where area(·) is the usual Euclidean area and P1 + P2 is the Minkowski sum, {p1 + p2 : p1 ∈ 
P1, p2 ∈ P2}.

Theorem 6 (Bernstein’s Theorem)

Let p1(z, w) and p2(z, w) be Laurent polynomials with coefficient supports Λ1 and Λ2, and 

let P1 = conv(Λ1) and P2 = conv(Λ1). The number of isolated solutions of system p1(z, w) = 

p2(z, w) = 0 in (ℂ/ 0 )2 is at most ℳ(P1, P2).

Since a trigonometric polynomial is simply the restriction of a Laurent polynomial to the 

unit complex torus, we can use this result to bound the number of isolated zeros of a system 

of trigonometric polynomials. In particular, using that fact that the mixed area satisfies 

ℳ(P1, P2) ≤ ℳ(R1, R2) if Pi ⊆ Ri, i = 1, 2 ([22], pg. 117), we have the following direct 

corollary:

Corollary 2

Let μ1 and μ2 be trigonometric polynomials with deg(μ1) ≤ (K1, L1) and deg(μ2) ≤ (K2, L2). 

The number of isolated solutions of μ1(x, y) = μ2(x, y) = 0 in [0, 1)2 is at most K1L2 + K2L1.

Now we prove Proposition 3:

Let C be a trigonometric curve of degree (K, L), i.e. the minimal polynomial μ for C has 

degree (K, L), and let U1, …, Un be the connected components of [0, 1]2/C. For each i = 1, 

…, n, μ is continuous with μ ≠ 0 on Ui, μ = 0 on ∂U, and U = U ∪ ∂U is compact, therefore μ 

must attain its maximum or minimum at some point ri in the interior U, where ∇μ(ri) = 0. 

Hence, the number of components n is bounded by the cardinality of {∇μ = 0} = {∂xμ = 0} 

∩ {∂yμ = 0}. When {∇μ = 0} is finite, the result n ≤ 2KL follows from Corollary 2 since 

deg(∂xμ), deg(∂yμ) ≤ (K, L).

If {∇μ = 0} is not finite, i.e. {∂xμ = 0} and {∂yμ = 0} share a common component, we may 

obtain the same bound by a standard perturbation argument, which we summarize here (see, 

e.g., the appendix [53] for further details). Let v ∈ ℝ2 be a sufficiently small vector. By 

continuity, the function μ∼(r) = μ(r) − r, v  also attains a maximum or minimum in each Ui, 

and ∇μ∼ = ∇μ − v vanishes at these points, which shows n is also bounded by the cardinality 

of {∇μ = v}. Finally, note that since ∇μ is a smooth map whose domain and range have the 

same dimension, for a generic vector v the set {∇μ = v} is finite by the regular level set 

theorem (Cor. 8.10, [36]), and the result again follows by Corollary 2. □

We note that the bound in Proposition 3 appears to be an overestimate. Empirically, we find 

that the maximum number of connected components of the complement to a trigonometric 

curve of degree (K, L) never exceeds KL (in the topology of the torus Ì2 = (ℝ/ℤ)2). 

Moreover, this bound is only obtained in artificial cases, such as when the minimal 
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polynomial is μ(x, y) = sin(πKx) sin(πLy), whose zero set is the union of K vertical lines 

and L horizontal lines.

B Proofs of Theorems

B.1 Proof of Theorem 1

Suppose f = 1U, with U simply connected and ∂U = {μ = 0}. where μ is the minimal 

polynomial having coefficients (c[k] : k ∈ Λ). Let (d[k] : k ∈ Λ) be any non-trivial set of 

coefficients satisfying

∑
k ∈ Λ

d[k]∇ f
^ [� − k] = 0, for all � ∈ 2Λ . (46)

We will show the coefficients d[k] must be a scalar multiple of c[k].

Let η denote the trigonometric polynomial having coefficients (d[k] : k ∈ Λ). Observe that 

the sums in (46) represent the Fourier coefficients of η∇f evaluated at ℓ ∈ 2Λ. Therefore, 

(46) can be expressed in spatial domain as

À2Λ(η∇ f ) = 0

where À2Λ is Fourier projection onto the index set 2Λ. If we let φ be any smooth test field, 

then by duality

À2Λ(η∇ f ), φ = η∇ f , À2Λφ = 0,

or, equivalently,

η∇ f , ψ = 0, for all ψ ∈ B2Λ
2 ,

where B2Λ
2  denotes the space all smooth vector fields φ = (φ1, φ2) whose components φ1, φ2 

are bandlimited to 2Λ. Since f = 1U, using the distributional characterization of ∇f in (14) 

we have

∮ η(ψ ⋅ n)ds = 0, for all ψ ∈ B2Λ
2 , (47)

Because ∂U is a level set of μ, the outward normal n is given pointwise by n(r) = ±∇μ(r) / |

∇μ(r)| for all r ∈ ∂U, provided ∇μ(r) ≠ 0. However, by Prop. 10, the set of points for which 

∇μ = 0 on ∂U is at most finite, hence of measure zero, so the formula n(r) = ±∇μ(r)/|∇μ(r)| 

holds almost everywhere on ∂U. Now, without loss of generality, assume μ < 0 on U. Since μ 

is a minimal polynomial, by Prop. 11 it must change sign across the any infinite segment of 
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∂U, hence μ > 0 on UC, so that n(r) = ∇μ(r)/|∇μ(r)| for all r ∈ ∂U. Setting ψ = η ∗ ∇μ ∈ B2Λ
2 , 

from (47) we have

∮
∂U

|η |2 | ∇μ |ds = 0,

which is possible if and only if η = 0 on ∂U since |∇μ(r)| = 0 for at most finitely many r ∈ 
∂U. Therefore η must be a scalar multiple of μ by the uniqueness of minimal polynomials.

B.2 Proof of Theorems 2 and 3

Assume (d[k] : k ∈ Λ) is another solution of the system, and let η denote the associated 

trigonometric polynomial. Following the same steps as in the proof of Theorem 1, we may 

show

η∇ f , ψ = 0, for all ψ ∈ B2Λ
2 ,

Since f = ∑i = 1
n

a
i
1

U
i
, from (14) this gives

∑
i = 1

n

ai∮
∂U

i

η(ψ ⋅ n)ds = 0, for all ψ ∈ B2Λ
2 . (48)

Recall we assume ∂Ui = {μi = 0} for all i = 1, …, n, with μi minimal, and μ = μ1 ⋯ μn. Note 

that ∪i∂Ui = {μ = 0}, and since we assumed the boundaries to be pairwise disjoint, μ is·also 

the minimal polynomial. Define μ∼
i

= μ/μ
i
. Then by the product rule

∇μ = ∑
i = 1

n

μ∼i∇μi . (49)

Define the vector field

ψ j = η
∗
μ∼ j ∇μ j for all j = 1, …, n . (50)

Note the components of ψj are trigonometric polynomials in B2Λ, hence ψ
j

∈ B2Λ
2  for all j = 

1, …, n. Since μ∼
j

= 0 on ∂Ui for all i ≠ j, substituting ψj into (48) gives

0 = ∑
i = 1

n

a
i∮∂U

i

|η |2 μ∼
j
(∇μ

j
⋅ n)ds = a

j∮∂U
j

|η |2 μ∼
j
(∇μ

j
⋅ n)ds = a

j∮∂U
j

|η |2 (∇μ ⋅ n)ds .
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where in the last step we used that μ∼
j
∇μ

j
= ∇μ on ∂Uj by (49). Since we also assume each 

Ui is connected, the curves ∂Ui do not intersect, we know μ has fixed sign on Ui. Therefore 

the outward normal on each ∂Uj is given by n = ±∇μ/|∇μ|, where the choice of sign is fixed 

for each i. Hence we have

a
j∮∂U

i

|η |2 | ∇μ | = 0, for all j = 1, …, n,

which implies η vanishes on each ∂Uj. Since μ is the minimal polynomial, this is only 

possible if η is a scalar multiple of μ, which proves the claim in Theorem 2.

The proof of Theorem 3 is identical to the above, except we exchange the index set 2Λ with 

Λ + Λ′. This allows us to make the same choice of ψj as in (50), which again implies η 
vanishes on each ∂Uj. Hence by Prop. 2 we have η = μγ, where γ ∈ BΛ′:Λ.

B.3 Proof of Proposition 5

Suppose g ∈ L1([0, 1]2) satisfies μ∇g = 0 and let U be any connected component of {μ = 

0}C. Let φ be any arbitrary smooth test field with support K strictly contained within U. 

Since μ = 0 only on ∂U, and μ is smooth, the field ψ = φ/μ is smooth, and we have

μ∇g, ψ = ∇g, φ = 0.

which shows the distribution ∇g restricted to U is identically zero. We now show this implies 

g restricted to U is a constant function almost everywhere.

Let φε be any smooth approximation of the identity, i.e. for all ε > 0 define ϕε(r) := ε2ϕ(εr) 

where ϕ is any smooth function satisfying ϕ ≥ 0, ∫ϕ(r)dr = 1, supp(ϕ) ⊆ {|r| ≤ 1}. Let U′ be 

any closed connected set inside U. Then there exists an ε′ > 0 such that dist(U′, U) < ε′. Fix 

ε < ε′. Since ∇g ∗ ϕε is a smooth function, ∇g|U = 0, and supp(ϕε) ⊆ U we have

∇(g ∗ ϕ
ε
)(r) = (∇g ∗ ϕ

ε
)(r) = 0 for all r ∈ U′

which implies g ∗ ϕε is constant on U′. By properties of approximations of identity, g ∗ ϕε 
→ g pointwise almost everywhere as ε → 0, which shows g is the limit of constant 

functions on U′, and therefore itself constant on U′. Since U′ ⊆ U was arbitrary, we may 

conclude g restricted to U is a constant function almost everywhere, proving the claim.

B.4 Proof of Theorem 4

Suppose g is another solution, and set h = g − f. We have

μ∇h = 0, and ĥ[k] = 0 for all k ∈ Γ ⊇ Λ . (51)
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The proof amounts to showing that the only feasible solution to (51) is h = 0. By the first 

constraint and Prop. 5, we see that h is almost everywhere a piecewise constant function:

h = ∑
i = 1

N

bi1U
i
, (52)

where the constants bi are unknown, and Ui are the connected components of {μ = 0}C. 

From ĥ[k] = 0, k ∈ Γ, we also have ∇ĥ[k] = 0, k ∈ Γ, and so

∇ĥ[k] = ∑
i

b
i
∇1

U
i

^ [k] = ∑
i

b
i∮∂U

i

e
− j2πk · r

n ds = 0, for all k ∈ Γ .

By linearity, this implies

∑
i = 1

N

b
i∮∂U

i

φ · n ds = 0,

for all vector fields φ ∈ BΓ
2. The proof now follows from the same argument in the proof to 

Theorem 2 (with η = 1): Using the same notation as in (49), we may choose 

φ = μ∼
j
∇μ

j
∈ BΛ

2 ⊆ BΓ
2, which implies

b
j∮∂U

j

|∇μ | = 0, for all j = 1, …, n,

and so bi = 0 for all i = 1, …, N, and hence h = 0 proving the claim.

B.5 Proof of Proposition 6

Let μ be the minimal polynomial with coefficients c = (c[k] : k ∈ Λ), and for every ℓ ∈ Λ′: Λ 
define the filter cℓ supported in Λ′ by

c
�

[k] =
c[k − �] if k − � ∈ Λ

0 elsewhere,

that is, cℓ is a shift of the minimal polynomial coefficients within the larger index set Λ. By 

the Fourier shift theorem, cℓ are the Fourier coefficients of ej2πℓ·rμ(r). Therefore, cℓ is also an 

annihilating filter since the zero sets of μ(r) and ej2πℓ·rμ(r) coincide. This implies �( f̂ )c
�

= 0

for all ℓ ∈ Λ′: Λ. Also, note that the vectors cℓ are linearly independent because the location 

of their non-zero entries are distinct. Hence the nullspace of �( f̂ ) has dimension at least |Λ
′ : Λ|, which gives the desired rank bound.
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Finally, supposing f satisfies the conditions of Theorem 2, and Γ ⊇ 2Λ′ + Λ so that Γ : Λ′ 
⊇ Λ′ + Λ. Theorem 3 shows that if d is any null space vector, then d are the Fourier 

coefficients of μ γ, for some trigonometric polynomial γ having coefficients in Λ′ : Λ, 

which shows that d belongs to the span of the cℓ, proving the claim.

B.6 Proof of Proposition 7

Let r ∈ {μ = 0}C. Then μ(r) = 0 if and only if γi(r) = 0 for all i = 1, …, R, where R = |Λ′ : 

Λ|. We will show the set P = ∩
i = 1
R

γ
i

= 0  is at most finite. Note that if P is infinite, by 

Bézout’s theorem, each γi must have a common non-constant factor ϕ, and so γi = ρi ϕ, 

where each ρi is a trigonometric polynomial with degree strictly smaller than γi. This means 

each ρ
i

∈ BΛ′ has coefficients supported within some index set Λ1 ⊆ Λ′ : Λ with Λ ≠ Λ′ : 

Λ. Since the coefficient vectors di are orthonormal, so are the μi as functions in L2([0, 1]2):

μ
i
, μ

j
= ∫

[0, 1]2
ρ

i
(r)ρ

j
(r) |ϕ(r)μ(r) |2dr = δ

i, j
.

where δi,j = 0 if i ≠ j and δi,j = 1 if i = j. However, the above weighted integral also defines 

an inner product in which the ρ
i i = 1

R  are mutually orthogonal, and hence linearly 

independent. But this is impossible, since the ρi are contained in a space of dimension less 

than R. Therefore the γi have no common factors, which by Bèzout’s theorem implies the 

intersection of their zero sets is at most finite.

B.7 Proof of Proposition 8

Proof

Note that er = PΛℱ{δr}, where δr is a Dirac delta centered at r ∈ [0 1]2, and ℱ is the 

(distributional) Fourier transform, PΛ is projection onto the index set Λ. Since each column 

di in D, is a filter supported in Λ, we trivially have PΛ(di) = di. Therefore, by Parseval’s 

theorem,

‖DD
H

e(r)‖2 = ∑
i = 1

n

| e
r
, d

i
|2 = ∑

i = 1

n

| PΛℱ δ
r

, d
i

|2 = ∑
i = 1

n

| ℱ δ
r

, d
i

|2 = ∑
i = 1

n

| δ
r
, μ

i
|2 = ∑

i = 1

n

|μ
i
(r)|2 .

□
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Figure 1. Overview of proposed extension of FRI to 2-D piecewise constant images
In (a) we illustrate the FRI recovery of a 1-D continuous domain piecewise constant signal 

f(x), as described in §2.1. The distributional derivative ∂f(x) is a stream of Diracs supported 

on the edge set of the signal. Hence, multiplication by a trigonometric polynomial μ(x) 

which is zero on the edge set will annihilate ∂f(x) in spatial domain. This descends to a 

linear convolution relation in Fourier domain. Therefore, given sufficiently many uniform 

low-pass Fourier samples f k  we may compute ∂ f k , and form a linear system to solve for 

the finite Fourier coefficients c[k] of μ(x). In (b) we illustrate the proposed extension of this 

scheme to 2-D presented in §2.3. Here f(r), r = (x, y), is now the characteristic function for a 

region U in the plane. We show the distributional gradient of f is supported on the one-

dimensional edge set ∂U. Multiplication by a trigonometric polynomial μ(r) which vanishes 

on ∂U will annihilate ∇f in spatial domain, and this likewise translates to a linear 

convolution annihilation relation in Fourier domain, which we may use to solve for 

coefficients c[k] of μ(r).
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Figure 2. Examples of trigonometric curves
The one-dimensional zero sets of two-variable trigonometric polynomials are a topologically 

diverse class of plane curves, which can (a) have many distinct curve components, (b) non-

smooth cusps and self-intersections (indicated by arrows), and (c) approximate arbitrary 

plane curves using few coefficients. Shown inset is a surface plot of the trigonometric 

polynomial whose zero set gives the corresponding trigonometric curve.
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Figure 3. Exact recovery of edge set from the minimum necessary number of Fourier samples
The piecewise constant images shown in (a)&(d) were generated to have edge set given by 

the trigonometric curve {μ = 0} of degree (6, 6), i.e. the known minimal polynomial μ is 

described by 7 × 7 coefficients. We recover μ by solving the linear system (18) built from 11 

× 11 Fourier samples of the original image, which were approximated numerically to high 

precision. This is the necessary minimum number of samples specified by Prop. 4, and is 

less than the sufficient number of samples specified by Thm. 2 (19×19 samples). The 

recovered minimal polynomial μ is shown in (b)&(e) with {μ = 0} plotted in black; we 

observe the recovered coefficients match the known minimal polynomial coefficients to 

within machine precision. In (c)&(f) we show a solution obtained from fewer than the 

necessary minimum number of samples. Note that in this case the true edge set does not 

coincide with the zero set of the recovered trigonometric polynomial.
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Figure 4. Edge set aware recovery of synthetic data
Piecewise constant images with n = 4 and n = 8 distinct connected regions (including the 

background region) were generated with edge set given by a known minimal annihilating 

polynomial having 7×7 coefficients (as shown in Fig. 3). Choosing N samples uniformly at 

random from the 7×7 center Fourier coefficients of the image, we extrapolate the image in 

Fourier domain to 65×65 coefficients by solving (30) in a least-squares fashion. We plot the 

normalized root mean square error (NRMSE) of the recovery averaged over ten trials. 

Pictured above the plots is the inverse DFT of a reconstruction obtained from the indicated 

number of samples N. Note that in both cases we are able to recover the image nearly 

exactly from the necessary minimum number of samples, N = 4 and N = 8 respectively, 

corresponding to the number of regions. Below this number, we still recover the Fourier 

coefficients of a piecewise constant image, however one with the incorrect region 

amplitudes.
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Figure 5. Construction of the annihilation matrix

Shown in (a) are the index sets in ℤ2 used to construct the annihilation matrix �( f̂ ) defined 

in (31). Here Γ in is the set of Fourier sampling locations, Λ (in black) is the assumed 

annihilating filter support, and Γ : Λ (interior of dashed line) is the set of all integer shifts ℓ 
such that Λ shifted by ℓ is contained in Γ. The construction of �( f̂ ) is shown schematically 

in (b). From known samples f̂ [k
x
, k

y
] for (kx, ky) ∈ Γ we compute ∂

x
f

^ [k
x
, k

y
] = j2πk

x
f [k

x
, k

y
]

and ∂
y

f
^ [k

x
, k

y
] = j2πk

y
f [k

x
, k

y
] by a Fourier domain multiplication. Then each row of �( f̂ ) is 

obtained by vectorizing a rectangular Fourier domain patch of size Λ from the computed 

samples of ∂
x

f
^  and ∂

y
f

^
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Figure 6. Super-resolution of piecewise constant phantoms from ideal Fourier samples
Recovery of Shepp-Logan phantom from 65 × 49 ideal low-pass Fourier samples, and a 

brain phantom reconstructed onto 256 × 256 spatial grid reconstructed from 97 × 97 

samples. In (a)–(l), spatial domain is shown above, and Fourier domain below (in log scale). 

Shown in (a)&(g) are the fully sampled images, (b)&(h) is the IFFT of the zero-padded 

samples, (c)&(i) is a standard TV regularized recovery, (d)&(j) is the non-convex TV used in 

[10], (e)&(k) is the recovery using the proposed least squares linear prediction (LSLP) 

method, and (f)&(l) the recovery using the proposed weighted-TV (WTV) formulation. Note 

the the LSLP more accurately extrapolates the true Fourier coefficients of the image. The 

sum-of-squares polynomial used as the edge set estimate for the proposed schemes in shown 

(m) and (n).
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Figure 7. 
Super-resolution of a single-coil MR brain image from retrospectively undersampled data. 

Reconstruction from 100 × 100 center Fourier samples taken from a 200 × 200 acquisition 

reconstructed onto a 200 × 200 spatial grid. The original fully sampled data is shown in (a), 

and zoomed in (c). A nonconvex TV regularized recovery is shown in (d), and the proposed 

LSLP recovery is shown in (e) which uses the sum-of-squares polynomial shown in (b) as an 

edge set estimate. Error images are shown in middle row of (d) and (e), and the Fourier 

domain recovery in log scale is shown in the bottom row. Note the proposed scheme more 

faithfully extrapolates the true Fourier data.
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