
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Author(s): Marchal, Samuel & Armano, Giovanni & Grondahl, Tommi & Saari,

Kalle & Singh, Nidhi & Asokan, N.

Title: Off-the-Hook: An Efficient and Usable Client-Side Phishing

Prevention Application

Year: 2017

Version: Pre-print

Please cite the original version:

Marchal, Samuel & Armano, Giovanni & Grondahl, Tommi & Saari, Kalle & Singh, Nidhi

& Asokan, N. 2017. Off-the-Hook: An Efficient and Usable Client-Side Phishing

Prevention Application. IEEE Transactions on Computers. Volume 66, Issue 10. 15

pages.

Rights: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

users, including reprinting/ republishing this material for advertising or promotional purposes, creating new

collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this

work in other works.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and

duplication or sale of all or part of any of the repository collections is not permitted, except that material may

be duplicated by you for your research use or educational purposes in electronic or print form. You must

obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or

otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org

1

Off-the-Hook : An Efficient and Usable
Client-Side Phishing Prevention Application

Samuel Marchal, Member, IEEE , Giovanni Armano, Tommi Gröndahl, Kalle Saari, Nidhi Singh and

N. Asokan, Fellow, IEEE

Abstract—Phishing is a major problem on the Web. Despite the significant attention it has received over the years, there has been no

definitive solution. While the state-of-the-art solutions have reasonably good performance, they suffer from several drawbacks including

potential to compromise user privacy, difficulty of detecting phishing websites whose content change dynamically, and reliance on

features that are too dependent on the training data.

To address these limitations we present a new approach for detecting phishing webpages in real-time as they are visited by a browser.

It relies on modeling inherent phisher limitations stemming from the constraints they face while building a webpage. Consequently, the

implementation of our approach, Off-the-Hook , exhibits several notable properties including high accuracy, brand-independence and

good language-independence, speed of decision, resilience to dynamic phish and resilience to evolution in phishing techniques.

Off-the-Hook is implemented as a fully-client-side browser add-on, which preserves user privacy. In addition, Off-the-Hook identifies

the target website that a phishing webpage is attempting to mimic and includes this target in its warning. We evaluated Off-the-Hook in

two different user studies. Our results show that users prefer Off-the-Hook warnings to Firefox warnings.

Index Terms—Phishing webpage detection, phishing prevention, phishing target identification, machine learning, web security,

browser add-on.

✦

1 INTRODUCTION

Phishing webpages (“phishs”) lure unsuspecting web surfers into

revealing sensitive information. It is a major security concern

on the web, Many solutions have been proposed to detect and

avoid phishs. Nevertheless, phishing detection remains an arms

race with no definitive solution. Automated phish detection sys-

tems [1], [2] with acceptable accuracy (>99%) and achieving

very low rates of misclassifying legitimate webpages (<0.1%)

are computationally expensive and slow. Thus, they are typically

used in a centralized architecture (e.g. Google Safe Browsing [3],

PhishTank [4]) where a blacklist of phishing sites is constructed

based on offline analysis of websites. This raises major issues

including several days of delay in phish identification [5] and

vulnerability to dynamic phishing where a phishing website serves

different content depending on who the client is. In addition, users

must share their browsing history with these centralized services

thereby compromising their privacy. These concerns are partially

addressed by real-time client-side solutions, but existing client-

side solutions typically have low detection accuracy [6].

Most techniques [1], [2], [3] primarily use a bag-of-words

approach and are thus language and brand-dependent. While they

can be effective at detecting phishs against known target “brand”

(like “paypal”), they are not effective against phishs masquerading

as brands that were not known targets. Use of static words as

• S. Marchal, T. Gröndahl, K. Saari, N. Asokan are with the Secure Systems

Group of Aalto University, Finland.

E-mail: {samuel.marchal,tommi.grondahl}@aalto.fi, asokan@acm.org,

kalle.saari.9675@gmail.com

• G. Armano was with the Secure Systems Group of Aalto University,

Finland. He is now with Portaltech Reply, United Kingdom.

E-mail: giovanniarmano70713@gmail.com

• N. Singh is with McAfee Gmbh, Germany.

E-mail: nidhi.singh@McAfee.com

features in a phish detection model makes it more vulnerable to

circumvention by including specific words that can increase the

chance of a phish being misclassified as legitimate [7]. Finally,

phishing warnings in today’s web browsers (e.g. Chromium,

Firefox) have two drawbacks. First, users are only told that the

website they are trying to access is a phish. We argue that a

more useful guidance would be to point the user towards the

legitimate website that they intended to visit in the first place.

Second, warning messages typically use technical jargon which

make them difficult to understand [8].

In this paper, we introduce a new phish detection tool, Off-

the-Hook. It is implemented as a browser add-on that can decide

in real time if a visited webpage is a phish. On encountering a

phish, Off-the-Hook identifies the target brand mimicked by the

phish. Off-the-Hook implementation is fully-client-side and the

decision process relies solely on information extracted from the

web browser while loading a webpage. Thus it preserves users’

privacy, provides real-time protection and is resilient to dynamic

phish since the content actually loaded in the browser is analyzed

to render a decision.

The core of Off-the-Hook lies in modeling inherent phisher

limitations evident in the composition of phishing webpages. For

instance, external hyperlinks and external content sources on a

phish point to domains that are typically outside the control of

the phisher. Moreover, while phishers can freely change most

of the phishing page, the latter part of its domain name is

constrained as it is limited to those domains that are generally

controlled by phishers. By measuring differences in the composi-

tion and consistency of term usage in constrained/unconstrained

and controlled/uncontrolled sources, we improve the effectiveness

of phish detection. Modeling phishers’ limitations that typically

remain constant over time makes our detection model hard to

circumvent and resilient to evolution in phishing techniques. The

2

use of a small number of non-static features (210) allows fast

decision (<0.5 second), high accuracy (99.9%) and low rate of

mislabeling legitimate websites (<0.1%), with very little labeled

training data. By eschewing the bag-of-words approach Off-the-

Hook is not limited to specific languages or targeted brands.

In case of a phish, Off-the-Hook uses simple language to

formulate the warning to users and points them to the likely

target of the phish. We evaluated Off-the-Hook in two user studies

showing that it is likely to be acceptable to user.

We claim the following contributions :

• the design and implementation of a client-side-only phish

detection tool: Off-the-Hook (Sect. 3). It offers (a) better

privacy, (b) real-time protection, (c) resilience to dynamic

phish and (d) effective warnings.

• a new set of features to detect phishs (Sect. 4.3) and a

classifier, using these features. Unlike previous work, our

approach is brand-independent, provides good language-

independence and learns a generalized model for detecting

phishs making it resilient to evolution in phishing tech-

niques.

• a fast target identification technique (Sect. 5) with accu-

racy (90-97%) comparable to previously reported techniques.

Identified likely targets are included as redirection options

in phishing warnings.

• a comprehensive evaluation of the application, showing that

its accuracy (>99.9%) and misclassification rate (<0.1%) are

comparable to state-of-the-art while being client-side-only

(Sect. 6) .

• two usability studies of Off-the-Hook (Sect. 7) showing that

it is usable and its warnings are preferred to Firefox

warnings.

2 BACKGROUND

2.1 Phishing

Phishing refers to the class of attacks where a victim is lured

to a fake webpage masquerading as a target website and is

deceived into disclosing personal data or credentials. Phishing

campaigns are typically conducted using spam emails to drive

users to fake websites [9]. Impersonation techniques range from

technical subterfuges (email spoofing, DNS spoofing, etc.) to

social engineering. The former is used by technically skilled

phishers while unskilled phishers resort to the latter. Phishs mimic

the look and feel of their target websites [10]. In order to make

the phishs believable, phishers may embed some content (HTML

code, images, etc.) taken directly from the target website and

use relatively little content that they themselves host [11]. This

includes outgoing links pointing to the target website. They also

use keywords referring to the target in different elements of the

phishs (title, text, images, links) [9], [11], [12], [13].

2.2 URL Structure

A webpage is typically addressed by a uniform resource locator

(URL), which typically has the structure as shown in Fig. 1.

It begins with the protocol used to access the page. The fully

qualified domain name (FQDN) identifies the server hosting the

webpage. The FQDN in turn, consists of a registered domain name

(RDN) and prefix which we refer to as subdomains. A phisher has

full control over the subdomains portion and can set it to any

value. The RDN portion is constrained since it has to be registered

with a domain name registrar. RDN is composed of a public suffix

(ps) preceded by a main level domain (mld). The URL may also

have a path and query components which, too, can be changed

by the phisher at will. We use the term FreeURL to refer to those

parts of the URL that are fully controllable by the phisher.

protocol://[subdomains.]mld.ps[/path][?query]

FQDN

RDNFreeURL FreeURL

Fig. 1: Structure of a URL

Consider an example URL:

https://www.amazon.co.uk/ap/signin? encoding=UTF8

We can identify the following components:

• protocol = https

• FQDN = www.amazon.co.uk

• RDN = amazon.co.uk

• mld = amazon

• FreeURL = {www, /ap/signin? encoding=UTF8}

2.3 Data Sources

Our analysis of phishs (that are loaded in a web browser) yields

the following data sources that can be useful in detecting phishs:

• Starting URL: the URL provided to the user to access the

website. It can be distributed in emails, instant messages,

websites, documents, etc.

• Landing URL: the final URL pointing to the actual content

presented to the user in his web browser (this is the URL

shown in the browser address bar when the page is com-

pletely loaded).

• Redirection chain: the set of URLs requested to go from the

starting URL to the landing URL (including both).

• Logged links: the set of URLs logged by the browser while

loading the page. They generally point to sources from which

embedded content (code, images, etc.) in the webpage are

loaded.

• HTML: the HTML source code of the webpage and iFrames

included in the page. We consider four elements extracted

from this source code:

– Text: text contained between <body> HTML tags (actu-

ally rendered on user’s display).

– Title: text contained between <title> HTML tags (appears

in the browser tab title).

– HREF links: the set of URLs representing outgoing links

in the webpage.

– Copyright: the copyright notice, if any, in Text.

3 Off-the-Hook DESIGN

3.1 Design Goals

We designed Off-the-Hook to satisfy a number of requirements:

• Accuracy (R1): misidentification of legitimate webpages as

phishs (false positives) must be minimal to avoid harming

usability. Detection rate of phishs (recall) must be maximal

to provide good protection.

• Context-independent detection (R2): the detection model

must not rely on features specific to a particular target or

language.

3

• Temporal resilience (R3): detection accuracy must not de-

grade over time as phishers adapt their techniques.

• Resilience to dynamic phishs (R4): the phish or not-phish de-

cision must be based on the actual webpage content depicted

in the browser.

• User privacy (R5): phish detection must not require users

having to disclose their browsing history to any outside party.

• Effective protection (R6): to protect users before they dis-

close passwords or other sensitive information to a phisher,

detection must take place quickly (<1 second). Warning

messages must be clear and easily understandable. They

must provide both relevant information about the threat and

relevant continuation options.

3.2 Design Choices

To meet the aforementioned requirements we adopted the follow-

ing design choices:

• Client-side implementation: Off-the-Hook is fully imple-

mented on the client-side. It computes its decision based on

the webapge content actually displayed in the browser. It is

thus privacy preserving (R5) and is not vulnerable to dynamic

phishs (R4).

• Model phisher limitations: the detection model relies on

inherent phisher limitations (Sect. 4.1). Thus, we expect these

limitations to be present in any phish, which will make the

detection accurate (R1). Those limitations will also remain

over time and are difficult to circumvent, thus allowing the

detection technique to be temporally resilient (R3).

• Use few but non-static features: the features used for the

model are non-static: they represent phisher limitations rather

than static words found in training data. The detection is thus

context-independent (R2). Using a small number of features

allows the decision to be fast (R6).

3.3 Decision Flow

Off-the-Hook’s overall decision process, depicted in Fig. 2 in-

volves two main components: a phish detector and a target

identifier. The phish detector is a classifier that identifies phishs

based on a set of new features (Sect. 4). The target identifier finds

the likely target of a phish based on “keyterms” in a webpage

(Sect. 5). The system is complemented by a local whitelist that

can preempt any webpage from being analyzed. It is composed

from previous corrective decisions.

When the browser visits a URL, the data sources of the cor-

responding webpage are extracted. If the landing URL belongs to

the whitelist, the webpage is considered legitimate and no further

analysis is performed. Otherwise, the extracted data sources are

fed to the phish detector that classifies the page as “phish” or

“not-phish”. If the decision is “phish”, the target identifier infers

the list of likely targets. If one of the target matches the landing

URL, the tentative decision of the phish detector is overruled by

the target identifier and the page is deemed legitimate. If not, the

page is confirmed as phish and its target is identified. The results

are communicated to the user via color-coded icons and messages

as shown in Fig. 2.

3.4 Architecture and Implementation

Off-the-Hook is implemented as a web browser add-on for Google

Chrome and Mozilla Firefox, and distributed for Windows (≥ 8),

Phish detector Target identifier

Data sources

Whitelist (WL)

Landing URL

In

WL ?

Is

phish

?

Target

match ?

yes

yes yes

no

no

no

Legitimate

Green icon

Legitimate

Green icon
Legitimate

Green icon +

Safe toast notif

Loading

screen

start
Phishing

Red icon +

Warning

message

Fig. 2: Off-the-Hook decision process and warning messages

Ubuntu (≥ 12.04) and OS X (≥ 10.8). A beta version is publicly

available for download [14]. Its implementation architecture is

depicted in Fig. 3.

Add-on is developed in Javascript and interacts with the web

browser. It collects the required data sources (Section 2.3) and

displays the phishing decision indicator and any needed message

in the browser window. The add-on is composed of the content

script and the background script.

Background processes are developed in Python and executed in

separated processes to handle the analysis of data extracted from

the webpages. They consist of the phish detector (Sect. 4) and

the target identifier (Sect. 5). The dispatcher handles the data

exchanged between these processes and the add-on.

Fig. 3: Software implementation architecture

Background script runs concurrently with the browser to collect

the redirection chain and the logged links every time a new web-

page is loaded (1). It sends the collected data to the corresponding

instance of the content script (2). When all data sources are

extracted, the background script forwards them to the dispatcher

(4). It later sends the computed result of phish detection and target

identification back to the content script (6a)(6b).

Content script is executed at every page load to combine the data

collected by the background script with the information extracted

from the webpage (3). It gathers title, text, HREF links and HTML

source and combine them with redirection chain and logged links

to generate a json file containing all the data sources. It sends

this file to the background processes for analysis (4). When it

receives the result from the phish detector (6a), in case of a phish,

it blocks users’ interaction with the webpage (7a) until results from

the target identifier are returned (6b). Then, it either displays a

warning or a confirmation of the webpage legitimacy depending on

4

target identification results (7b). There is one instance of content

script running per opened browser tab.

Dispatcher waits for incoming json files from the content scripts

(4). It checks the landing URL against the whitelist to determinate

if the page has to be analyzed. If the URL is not found in the

whitelist, the data is forwarded to the phish detector (5a) and to

one instance of the target identifier (5b) for processing. Results of

phish detection are forwarded to the content script (6a). Received

target domains (6b) are checked against the landing URL. If the

RDN of any target corresponds to the RDN of the landing URL,

the webpage is considered as legitimate. The URL is added to the

local whitelist and the decision is transmitted to the content script.

Alternatively, the list of targets is sent (6b). The local whitelist

is supplied with landing URLs from which the target identifier

confirms the legitimacy of the webpage while the phish detector

predicted it as phish. A second source of whitelisted URLs is when

the user overrides the result of phish detection.

Phish detector extracts a feature vector (Sect. 4.3) from the data

sources received from the content script and performs the classi-

fication of the website (5a). It sends the result of the classification

to the content script through the dispatcher.

Target identifier infers the potential targets of the phish (5b)

based on the information contained in multiple data sources

(Sect. 5.2). Once the targets are identified, it sends them to the

dispatcher (6b). Since this task is relatively more time consuming

(cf. Sect. 6.5), two instances of target identifiers run concurrently.

We designed the software architecture of Off-the-Hook to be

independent from any system and hardware. We developed it in

high level programming languages, i.e. Python and Javascript, to

be portable with minimal changes to the largest class of devices

and operating systems. Nevertheless, browsers expose different

functions for extracting data sources and our add-on thus has

browser-specific Javascript artifacts. One way to eliminate such

browser-dependencies is to use cross-browser extension frame-

works such as KangoExtensions [15] or BestToolBars [16]. They

enable the use of a single code base for all browsers addressed by

the framework e.g. Firefox, Chrome, Safari, etc. However, popular

browser platforms like Google Chrome have recently started to

block non-self-contained add-ons (which make use of external

libraries) from being published in their market places.

We developed background processes in Python because they

rely on the availability of machine learning libraries that are not

yet available in Javascript. Since these background processes are

external programs running concurrently with the browser, they

require operating system specific packaging.

An optimal implementation of Off-the-Hook would be native

integration in a browser, similarly to existing phishing prevention

systems like Google Safe Browsing [3]. Such a solution would

permit a native implementation of the whole system in a single

language, e.g. C, increasing performance and reducing the com-

munication overhead between different programs.

3.5 User Interface

The user interface is designed to meet a trade-off between salience

and ease of understanding. Phishing warnings are implemented as

active warnings that interrupt users’ task and move their attention

to the message, which guarantees their efficiency [8], [17] We used

a cognitive walkthrough [18] during the development of Off-the-

Hook to refine the layout and content of various notifications and

Fig. 4: Off-the-Hook warning message (Google Chrome extension)

warnings. The resulting interface has minimal jargon and textual

content: the phishing warning shows a minimal message along

with options for continuation (Fig. 4). The user interface displays

the four following elements:

Navigation bar icon is composed of Off-the-Hook’s logo com-

bined with a colored badge. A green badge indicates a legitimate

webpage and a red badge indicates a phish (Fig. 4: top-right).

Loading screen is a layer that prevents users’ interaction with the

webpage. It is composed of a semi-transparent layer that covers

the webpage entirely. An animated Off-the-Hook icon occupies the

center of the loading screen. This loading screen appears when the

phish detector predicts a page as a phish, and remains until the

target identifier provides its result.

Warning message pops up in the center of the window and is

surrounded by a semi-transparent layer (Fig. 4). It contains infor-

mation understandable by ordinary, non-expert users. The warning

message provides continuation options that allow users to proceed

to the website, with an option to remember the decision having

the effect of adding the landing URL to the local whitelist. They

can close the browser’s tab. In contrast with existing warnings [8],

we leverage our target identifier to propose links redirecting to the

possible target of the phish.

Safe toast notification consists of a green logo placed on the top-

right of the browser window. It is displayed for five seconds after

the loading screen to indicate that a webpage is legitimate, when

the target identifier overrides the phish detector.

The navigation bar icon is is always present. The other

elements are displayed depending on phish detection and target

identification results for a certain webpage as observed in Fig. 2.

4 PHISH DETECTION

4.1 Modeling Phisher Limitations

We recall that even on systems they control, phishers are

constrained from freely constructing URLs to pages they host

(Sect. 2.2). Similarly, in order to maximize the believability of

their phishs, phishers include content from URLs outside their

control (Sect. 2.1). Thus, we divide the data sources from Sect. 2.3

into subcategories according to the level of control phishers may

have on them and the constraints on phishers.

Control: URLs from logged links and HREF links are subdivided

into internal and external according to their RDN. The set of RDNs

5

extracted from URLs involved in the redirection chain are assumed

to be under the control of the webpage owner. Any URLs that

include these RDNs are marked internal. Other RDNs are assumed

to be possibly outside the control of the webpage owner. URLs

containing such RDNs are marked external.

Constraints: Within a URL, we distinguish between RDN, which

cannot be freely defined by the webpage owner, and FreeURL,

which can be. RDN is thus constrained by DNS registration

policies and FreeURL is unconstrained.

4.2 Extracting Term Distributions

While facing the aforementionned limitations, the primary tech-

nique of a phisher is essentially social engineering: fooling a

victim into believing that the phish is the target [19]. Thus, it

is plausible that lexical analysis of the data sources will help in

identifying phishs: we conjecture that legitimate webpages and

phishs differ in the way terms are used in different locations in

those pages. To incorporate measurements of such term usage

consistency, we first define what “terms” are and how they are

extracted from a webpage. Let A be the set of the 26 lowercase

English letters: A = {a, b, c, ..., x, y, z}. We extract terms from a

data source as follows:

• canonicalize letter characters by mapping upper case charac-

ters, accented characters and special characters to a matching

letter in A; e.g., { B, β, b̀, b̂ } → b.

• split the input into substrings whenever a character c /∈ A is

encountered.

• throw away any substring whose length is less than 3.

Let T = An|n ≥ 3 be the set of all possible terms. Suppose

TS = {ti∈{1;m} ∈ T} was extracted from a data source S and

ti occurs with probability pi. The set of m pairs (ti, pi) ∈ T ×
]0, 1] , i ∈ {1;m} represents the term distribution DS of S.

TABLE 1: Term distributions with indicator showing if they are

controlled or uncontrolled / constrained or unconstrained

Distribution Data source Cont./Constr.

Dtext Text yes / no
Dtitle Title yes / no
Dcopyright Copyright notice yes / no
Dstart Starting URL – FreeURL yes / no
Dland Landing URL – FreeURL yes / no
Dintlog Internal logged links – FreeURL yes / no
Dintlink Internal HREF links – FreeURL yes / no
Dstartrdn Starting URL – RDN yes / yes
Dlandrdn Landing URL – RDN yes / yes
Dintrdn Internal links (HREF & logged) – RDN yes / yes
Dextrdn External logged links – RDN no / yes
Dextlog External logged links – FreeURL no / no
Dextlink External HREF links – FreeURL no / no

Tab. 1 defines the term distributions we consider. The external

sources extrdn, extlog, extlink are those assumed to be outside

the control of the webpage owner. RDN data sources startrdn,

landrdn, intrdn, extrdn are constrained by DNS registration.

The rest is controlled by the webpage owner without constraints.

4.3 Computing Features

We now introduce a set of 210 features and motivate their selec-

tion. We intend to capture the constraints and degree of control

discussed earlier (Sect. 4.1) as well as consistency checking of

term usage (Sect. 4.2). We group features into the following five

categories (Tab. 2).

TABLE 2: Feature sets used for phish detection

Name Count Type

f1 92 URL
f2 68 Term usage consistency
f3 32 Usage of starting and landing mld

f4 13 RDN usage
f5 5 Webpage content

fall 210 Entire feature set

URL: First we define eight statistical features related to the

lexical composition of URLs (Tab. 3). Feature 2 is meant to

identify strings in path and query that look like domain names.

Phishing URL and domain name obfuscation techniques [12] tend

to produce long URLs composed of many terms. This is the

rationale for features 3-8.

TABLE 3: URL features (f1)

Description

1 protocol used (http/https)
2 count of dots ‘.’ in FreeURL

3 count of level domains
4 length of the URL
5 length of the FQDN

6 length of the mld

7 count of terms in the URL
8 count of terms in the mld

All eight features are

extracted from the starting

URL (8) and landing URL

(8). The mean, median and

standard deviation values are

computed for features 3-8
on the following sets of

URLs: internal logged links,

external logged links, inter-

nal HREF links and external

HREF links (4∗6∗3). Feature

1 is computed on these sets as a ratio of URLs using https over the

total count of URLs for each set (4∗1). Feature 2 is computed only

for the starting and landing URLs. Thus, the complete URL-based

feature set (f1) consists of 92 features: 8+8+4∗(6∗3+1) = 92.

Term usage consistency: The second set of features (f2) captures

the consistency of term usage between different types (controlled

vs. uncontrolled; constrained vs. unconstrained) of data sources

in the page. Using 12 term distributions (we discard Dcopyright)

defined in Sect. 4.2, we create 68 features (12 ∗ 11/2 + 2) as

follows. 66 features depict the similarity of pairs of sources by

computing pairwise Hellinger Distance between their distributions

(12 ∗ 11/2). The Hellinger Distance [20] is a metric used to

quantify the dissimilarity between two probabilistic distributions

P and Q. It is an instance of f -divergence that is symmetric and

bounded in [0, 1]. The value 1 represents complete dissimilarity

(P ∩ Q = ∅) and the value 0 means that P and Q are the

same probabilistic distribution. We stress the importance of two

distributions by defining two additional binary features set to 1

if any word from Dintrdn, or Dextrdn respectively, is present in

Dtitle.

Usage of starting and landing mld: Legitimate websites are

likely to register a domain name reflecting the brand or the

service they represent. However, phishers often use domain names

having no relation with their target [10]. Hence, we expect the

starting mld and/or the landing mld to appear in several sources

extracted from a legitimate webpage while phishs should not

have this characteristic. We define 32 features (f3) inferring the

usage of the starting and landing mld in the text, the title and

FreeURL of the logged links and HREF links. 12 binary features

are set to 1 if the starting/landing mld appear in Dtext, Dtitle,

Dintlog , Dextlog , Dintlink or Dextlink (6*2). 20 features are

the sum of probability from terms of Dtitle, Dintlog , Dextlog ,

Dintlink and Dextlink that are substrings of starting/landing mld

(5*2) or that are substrings of starting/landing FreeURL, but not

substrings of starting/landing mld (5*2). The latter 10 features

6

outline obfuscation techniques that use keywords of the target in

FreeURL. Dtext is not considered since it is often composed of

many short irrelevant terms that match several parts of a mld.

RDN usage: We define 13 features (f4) related to RDN usage

consistency. We compute statistics related to the use of similar and

different RDNs in starting URL, landing URL, redirection chain,

loaded content (logged links) and HREF links. We expect legit-

imate webpages to use more internal RDNs and less redirection

than phishs [21].

Webpage content: Finally, five features (f5) count the number of

terms in the text and the title (2), and the number of input fields,

images and IFrames (3) in the page. Phishs tend to have minimal

text to circumvent text-based detection techniques [22] and use

more images and HTML content loaded from other sources. In

addition, since phishing attacks seek to steal user data, phishs

often contain several input fields [10].

Recalling the requirements formulated in Sect 3.1, it is worth

noting that while we use terms to compute our feature set, it is

not based on any observed language or term usage knowledge.

The computation relies solely on the information gathered through

a web browser (R4, R5). Hence, the feature set is context-

independent (R2) and the use of non-static features mitigates the

risk for adversarial attacks on the machine learning model (R3).

Furthermore, since the feature set is small (210 features), we

expect it to be fast to compute once the data sources are available

(R6).

4.4 Phish Detection Model

To use our feature set for discriminating phishs from legitimate

ones, we use a supervised machine learning approach. In super-

vised machine learning, a classification model is learned from

observations over a set of data labeled with several classes. The

learned model is used to predict the class of unlabeled instances.

We use Gradient Boosting [23] to build the classification model

because (a) of its strong ability to select and weight the most

relevant features and (b) boosting algorithms are known to be

fairly robust to overfitting, enabling the resulting model to have

good generalization capabilities [24].

Gradient Boosting predicts the class of an unknown instance

by computing values defined in [0, 1] that gives the confidence

of the instance to belong to a given class. In the case of pre-

dicting only two classes, the confidence value v1 for one class

is equal to 1 − v2, where v2 is the confidence value for the

other class. A discrimination threshold predicts, according to the

computed confidence values, the class of an instance. By tuning

this threshold, we can favor the prediction of one class over the

other. The variation of the discrimination threshold over [0, 1] is

used to evaluate the accuracy of a given model by examining how

false positive rate varies with true positive rate (ROC) or precision

varies with recall.

5 TARGET IDENTIFICATION

The identification of the target of a phish relies on a set of

“keyterms” in that webpage related to a brand or service. Rather

than leveraging any brand-specific knowledge or text corpus to

infer these keyterms [25], [26], we introduce a new technique that

uses only the information extracted from the webpage.

5.1 Keyterms Extraction

A keyterm is one that appears in several data sources (e.g., title,

text and landing URL) on a page. We use terms from five data

sources introduced in Sect. 2.3 that contain user-visible data

rendered by the browser:

• Starting and landing URLs:

Tstart ∪ Tstartrdn ∪ Tland ∪ Tlandrdn

• Title: Ttitle

• Text: Ttext

• Copyright: Tcopyright

• HREF links: Tintlink ∪ Textlink

We use two different techniques to identify keyterms. They are

used in sequence, depending on the information available in dif-

ferent data sources and the success of each technique (Sect. 5.2).

The first technique considers the result of pairwise intersection

between the five sets of terms as potential keyterms. Each term

appearing in at least two data sources is added to a list and ranked

in descending order according to a term’s overall frequency in the

visible parts of the website. The top-N terms in the ordered list are

selected as keyterms. (We use N=5 in our model as it was proved

to be a sufficient number to represent a webpage [27].) These

N keyterms are called boosted prominent terms. The second tech-

nique considers the same data sources but discards the intersection

between text and HREF links (Ttext ∩ (Tintlink ∪ Textlink)). In

certain scenarios, the text and links of a webpage contain the same

terms because the name of the links and the corresponding URL

can be the same. This is common practice in news websites. In

such cases, the intersection terms may be dominated by terms that

are irrelevant for target identification, which may introduce some

noise in the keyterms inference. The N extracted keyterms using

this technique are called prominent terms.

5.2 Identification Process

We now discuss how the extracted keyterms lists (boosted promi-

nent terms and prominent terms) are used to infer the target of a

phish.

Step 1: Extract boosted prominent terms, and try to “guess” the

target FQDN. The mlds from the starting and landing URLs, from

the logged links and HREF links are collected. Thereafter, every

collected mld is checked to figure out if it can be composed

based on the keyterms part of boosted prominent terms possibly

separated by a dash ‘-’ or a string of digits. For each guessed

FQDN (typically 2-3), a search engine query is performed and

the returned RDNs are stored. If the RDNs of the suspected

phish (starting and landing URL) appear in the results of the

search engine query, we declare this site legitimate and stop the

process. Otherwise we go to step 2. This decision is based on the

assumption that a search engine would not return a phishing site

as a top hit because (a) a new phishing site (only a few hours old)

would not have been indexed by a search engine yet and (b) an

old phishing site would have been already detected and ended up

in a blacklist.

Step 2: The set of N prominent terms is queried against a search

engine. If the suspected RDN appears in the set of RDNs returned

by the search engine, it is declared legitimate and we stop the

process. If some mlds resulting form the search engine query

appear in a controlled data source of the webpage, we record

them and go to step 4. These mlds represent the candidate targets.

Alternatively, we continue to step 3.

7

0

0.2

0.4

0.6

0.8

1

0 0.005 0.01 0.015 0.02

T
ru

e
 P

o
s
it
iv

e
 R

a
te

False Positive Rate

German
English
French

Portuguese
Italian

Spanish

(a) ROC evaluation results for six languages

0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9 0.95 1

R
e
c
a
ll

Precision

German
English
French

Portuguese
Italian
Spanish

(b) Precision vs recall evaluation for six languages

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Ja
n-
22

M
ar
-0
3

A
pr
-1
8

M
ay
-1
7

M
ay
-2
4

Ju
n-
10

R
ec
al
l

(c) Recall evolution over time

Fig. 5: Accuracy metrics evolution for the phish detection system

Step 3: Repeat Step 2 but instead of using prominent terms,

use boosted prominent terms. If the webpage is not confirmed

as legitimate, go to step 4.

Step 4 (target selection): For each mld candidate target, we count

how many times it appears in the data sources of the webpage and

rank it in a list according to this criteria. Off-the-Hook depicts the

three most frequent (i.e., top-3) potential targets in its warning

message. If a single target is required, we can return top-1.

6 PERFORMANCE EVALUATION

This section presents the performance evaluation of the phish

detection system and the target identification method presented in

Sect. 4 and 5 respectively. The accuracy evaluation was performed

offline with an instrumented version of Off-the-Hook on datasets

previously captured.

6.1 Evaluation Datasets

We obtained URLs from two sources in order to gather ground

truth data of phishs and legitimate webpages (Tab. 4). Neither

dataset contains personal data and both datasets are available on

request for research use.

The set of phishing URLs (Phish) was obtained through the

community website PhishTank [4]. We conducted three different

collection “campaigns”. The first campaign resulted in phishTrain

which was used for training the phish detection classifier. The

second campaign, perfromed at a later point in time (4-10 months),

resulted in phishTest which was used as the test set. PhishTest

consists of webpages in a variety of languages. PhishTest1K is

a random sample of phishTest used for testing the classification

model with a realistic phishing to legitimate webpage distribution

(≈ 1/100) [2], [27]. We manually determined the language of

each webpage in phishTest1K. It is composed of 84% English

webpages, 6% French, 4% Japanese, 2% German and 4% other

languages (including Spanish and Portuguese). The last campaign

resulted in phishBrand that was used for evaluating our target

identification scheme (Sect. 6.3). PhishBrand consists of 600

phishs for each of which we manually identified the target, re-

sulting in a total of 126 different targets. Each campaign consisted

of checking for new entries in PhishTank every hour and scraping

the webpages (in several languages) for those URLs. The datasets

were further manually sanitized to remove any legitimate or

unavailable websites and parked domain names. Tab. 4 provides

a detailed description of these datasets including the collection

period and the count of URLs before and after sanitization.

The legitimate URLs (Leg) were provided by Intel Security.

An English training set (legTrain) is composed of 8,500 legitimate

TABLE 4: Datasets description

Set Name Collection Period Initial Clean Alexa

Phish phishTrain 15-Jul-23/Sep-9 2,766 1,500 –
phishTest 16-Jan-22/Jun-10 21,531 13,309 –
phishTest1K 16-Jan-22/Jun-10 – 1,000 –
phishBrand 15-Sep-22/Sep-28 600 600 –

Leg legTrain 15-Jul-22/Aug-01 8,500 – 56%
English 15-Aug-17/Sep-23 100,000 – 61%
French 16-Jul-29/Aug-17 20,000 – 18%
German 16-Jul-6/Jul-29 20,000 – 5%
Italian 16-Jul-5/Jul-29 20,000 – 11%
Portuguese 16-Jul-15/Aug-18 20,000 – 12%
Spanish 16- Jul-29/Aug-26 20,000 – 22%

webpages. Six larger test sets of webpages in different languages

(English, French, German, Portuguese, Italian and Spanish) were

gathered. A detailed description of these sets is provided in Tab. 4

with the percentage of webpage in each set having a RDN listed in

Alexa top 1M, depicting the diversity and popularity of the URLs.

6.2 Phish Classification

6.2.1 Accuracy and Language-Independence

We now present detailed evaluation of our phish detection method

across six different languages so as to demonstrate its language-

independence characteristics. The model was trained using leg-

Train (8,500) and phishTrain (1,500). The testing was done using

phishTest1K (1,000) and each language specific dataset, e.g.,

English (100,000), French (20,000), German (20,000), etc.

To begin this evaluation, we first compute Receiver Operating

Characteristic (ROC) and corresponding Area Under the Curve

(AUC), which shows the change of false positive rate with respect

to true positive rate while varying the discrimination threshold

of the classifier. The evaluation results for legitimate dataset of

six languages are shown in Fig. 5a, wherein we see that, at a

significantly high true positive rate of 0.9, the false positive rate

for all languages is very low (<0.008). As the true positive rate

increases to around 0.95, the false positive rate does not increase

much. Even at true positive rate of 0.98, the false positive rate

stays substantially low at 0.02. In line with these results, the AUC

is around 0.999 for all languages, as shown in Tab. 5. Note that

these results are consistent across all languages, which is very

desirable in a multi-lingual phish detection scenario.

The detailed evaluation results for precision, recall and false

positive rate are shown in Tab. 5. These values were obtained

by setting the discrimination threshold of Gradient Boosting to

0.7, which favors the prediction of legitimate webpages ([0, 0.7[)
over phishs ([0.7, 1]). In this table, we see that our method

8

0

0.01

0.02

0.03

0.04

0.05
W

ei
g
h
t

Features

URL (f1)

Term usage consistency (f2)

Usage of starting/landing mld (f3)

RDN usage (f4)

Webpage content (f5)

Fig. 6: Weight of features in gradient boosting classification model according to the set fn they belong to.

achieves significantly high precision (0.92–0.98) and high recall

(around 0.95) for all languages. Hence, the F1-score, which is the

harmonic mean of precision and recall, is also significantly high

(0.93–0.97). The false positive rate is significantly low, i.e., in the

range of 0.0005–0.004, across all languages.

TABLE 5: Detailed accuracy evaluation of the phish detector alone

for six languages

Language Precision Recall F1-score FP Rate AUC

English 0.975 0.952 0.964 0.0002 0.999
French 0.937 0.952 0.944 0.0032 0.998
German 0.944 0.952 0.947 0.0028 0.997
Portuguese 0.949 0.952 0.950 0.0025 0.998
Italian 0.928 0.952 0.940 0.0037 0.998
Spanish 0.919 0.952 0.935 0.0042 0.998

In many large-scale, real-world scenarios (especially in web

security domain), a machine learning model is considered usable

only if it achieves high precision (e.g., 0.9 or 0.95) with significant

recall (e.g., 0.5 or 0.6) [28]. In order to test our method against

this criterion, we evaluated how recall of the proposed method

changes with precision by varying the discrimination threshold

from 0 to 1. The result is shown in Fig. 5b where we see that

when the precision is higher than 0.9, the recall for all languages

is significantly high and is always in the range of 0.60–0.96.

Obtaining high accuracy values in classification at a given

moment in time does not guarantee this accuracy will remain

high over time. Phishing techniques evolves and characteristics

captured by a classification model may not be valid forever. To

see how the detection capability (recall) of the model degrades

with time, we split phishTest in five subsets of equivalent size

(≈ 2, 500) according to the time they were captured. Fig. 5c

depicts the evolution of recall value computed on these subsets

(note that the latest entry in phishTrain was gathered on September

9, 2015). In this figure, we see that recall remains high (≈ 0.95)

across the time period of January 22 to June 10, 2016. This implies

that the model does not have to be retrained or updated fre-

quently, making Off-the-Hook suitable for real-life deployments.

The global recall on the 13,309 phishs of phishTest is 0.951 which

is consistent with the recall obtained with its subset phishTest1K

(0.952) in Tab. 5.

6.2.2 Feature Analysis

We now analyze the impact of each feature set and individual

features from Sect. 4.3 on phish classification. Fig. 6 shows the

weight of the 210 features. While we see that most features are

relevant, features related to the usage of starting and landing mld

(f3) have a small impact on classification with a weight always

lower than 0.01. The same observation holds for most term usage

consistency features (f2), apart from a few exceptions having

significant weight (> 0.01). This is also shown in Tab. 6 where we

see that features from f2 and f3 have the lowest average weight.

On the other hand, features form f4 and f5 have the highest impact

on classification with an average weight of 0.0084 and 0.0139
per feature respectively. One feature from each of these sets has a

strong weight (> 0.03) as can be observed in Tab. 7, which shows

the ten most important features of the classification model. URL

features from f1 predominantly impact the classification with a

global weight of 0.578 for this feature set and most features having

a significant weight as it can be seen in Fig. 6. Moreover, f1 has

six features in the ten most important of the model including the

two top features (Tab. 7).

TABLE 6: Feature set weight.

Set Weight
Avg weight
per feature

f1 0.578 0.0062
f2 0.185 0.0027
f3 0.058 0.0018
f4 0.109 0.0084
f5 0.070 0.0139

fall 1.0 0.0047

Looking at the most sig-

nificant features in Tab. 7, we

see that they come from differ-

ent sets (f1, f2, f4, f5) con-

firming the relevance of the

feature set definition process.

However, we also notice that

these most relevant features

rely predominantly on the data

source internal logged links

(features ranked 1, 5, 6, 8, 9 and 10). Internal logged links cor-

respond to loaded resources controlled by the page owner and

unconstrained. These are parts where phishers use obfuscation

techniques by embedding keywords in FreeURL to lure their

victims.

TABLE 7: Top ten features of the classification model.

Rank Set Feature Weight

1 f1 mean # of terms in internal logged links 0.053
2 f1 length of starting URL 0.040
3 f4 count of external HREF links 0.040
4 f5 count of input fields 0.035
5 f2 Hellinger(Dintlog , Dstart) 0.031
6 f1 median length of internal logged links 0.027
7 f1 length of landing URL 0.027
8 f1 SD length of internal logged links 0.025
9 f2 Hellinger(Dintlog , Dtext) 0.021

10 f1 SD # of terms in internal logged links 0.020

6.3 Target Identification

To assess the performance of target identification, we used phish-

Brand dataset. Since target identification can provide up to three

9

candidate targets for each phish, we evaluate the likelihood of

the correct target being in top-1, top-2 and top-3 results provided

by our method. Tab. 8 presents the count of correctly identified

targets, unknown targets and missed targets considering these three

sets. The last column gives the success rate of each method. The

17 pages with unknown target correspond to phishs that contained

only some input fields and no hint about the target. Hence, we

were not able to infer the target for these phishs with manual

analysis. Yet, we include these phishs with unknown targets for the

computation of the success rate. In Tab. 8, we see that the accuracy

of identifying the correct target (top-1) is 90.5%, and if the criteria

for identifying the correct target is expanded to top-3 then the

accuracy increases to 97.3%. These results are comparable to

the best state-of-the-art method for target identification [26] that

achieves a success rate of 92.1%. It is of note that 311 phishs

had only one identified potential target (top-1) and no alternative

targets. Hence, more than half of the phishing warnings raised

by Off-the-Hook would provide one redirection link to a unique

target.

TABLE 8: Target identification results

Targets Identified Unknown Missed Success rate

top-1 526 17 57 90.5%
top-2 558 17 25 95.8%
top-3 567 17 16 97.3%

6.4 Overall System Accuracy

To see how the target identification system complements the

phish detection system in Off-the-Hook, we fed the former with

misclassified legitimate webpages identified in Sect. 6.2.1. As

presented in Sect. 3.4, if an identified target RDN matches the

RDN of the landing URL, the website is considered as legitimate.

Off-the-Hook considers this criteria to avoid displaying warning

messages for legitimate webpages. Tab. 9 compares false positives

and precision of the standalone phish detector and of Off-the-

Hook. Accuracy, Recall and AUC are not compared since they

were not drastically improved (0.999/0.952/0.999). We can see

that overall the system combination reduces false positives by over

50%, missclassifying only 166 legitmate webpages as phish out of

200,000. This gives a final FP rate of 0.0008 and a precision of

0.975 to Off-the-Hook, which is comparable to the best state-of-

the-art phish detection system [2].

TABLE 9: Accuracy improvement using target identification.

Language
Phish Detector Off-the-Hook

FP FP Rate Pre. FP FP Rate Pre.

English 24 0.0002 0.975 19 0.0002 0.980
French 64 0.0032 0.937 30 0.0015 0.969
German 57 0.0028 0.944 33 0.0016 0.966
Portuguese 51 0.0025 0.949 35 0.0017 0.964
Italian 74 0.0037 0.928 25 0.0012 0.974
Spanish 84 0.0042 0.919 24 0.0012 0.975

Overall 354 0.0018 0.955 166 0.0008 0.975

6.5 Computational System Requirements

To assess the time required for the computation steps presented

in Sect. 3.4 we report them as column headers in Tab. 10. It

depicts the mean, median and standard deviation of the time for

the full process of phish detection (1-7a) and target identification

(1-7b). This table also includes the performances excluding the

time needed for the data collection (1-4): (5-7a) and (5-7b). The

statistics regarding 6099 legitimate websites were gathered over a

6 weeks period of normal web browsing while 154 phishs were

visited on purpose. The laptop on which Off-the-Hook Firefox

version was installed has a 2.7GHz Intel Core i5 processor and

16GB memory. We can see that the time needed to classify

websites is under 250 ms. In case the phish detector makes a

false positive decision, thanks to the target identifier, we are able

to remove the loading screen in around 1.5 seconds (1772 - 220 =

1552 ms).

TABLE 10: Processing time in milliseconds for legitimate wep-

bages and phishs (column headers refer to steps in Fig. 3).

(1-4) (5-7b) (5-7a) (1-7b) (1-7a)

Mean 164 2,334 328 2,498 492
Legitimate Median 56 1,655 154 1,772 220

Stdev 497 2,369 571 2,482 829

Mean 72 1,986 150 2,058 222
Phishing Median 36 1,848 90 1,877 127

Stdev 158 1,615 297 1,642 297

TABLE 11: Memory footprint of Off-the-Hook components.

Dispatcher
Phish
detector

Target
identifier

Overall

Average 21.93 MB 120.62 MB 152.50 MB 295,05 MB
Stdev 0.22 MB 2.42 MB 4.36 MB 4.76 MB

Tab. 11 presents the average memory usage of the three

main components of Off-the-Hook system. In this table it can be

seen that while the dispatcher has a low (and stable) memory

consumption of 22 MB, the modules required for classification

increase the memory consumption of the phish detector to 120

MB. The two instances of the target identifier required 76 MB

each, which leads to an overall memory consumption of 295 MB

for the proposed Off-the-Hook system.

7 USABILITY STUDY

To test first-time users’ perception of Off-the-Hook from a us-

ability perspective, we conducted two user studies. The lab test

investigated its intuitive understandability and users’ behavioral

responses in a lab setting. The field test involved installing it on

the participant’s own laptop to study potential interference with

general laptop use and produce genuine reactions in a naturalistic

setting. This section describes both tests and their main results.

All the questionnaires used in the tests are publicly available [29].

7.1 Test settings

7.1.1 Lab test

The purpose of this study was to display Off-the-Hook to a naive

user, inquiring whether they understand the warning and safe toast

notification’s contents, how they would continue after seeing the

warning banner, and whether they prefer Off-the-Hook to its well-

established alternative, Firefox’s warning of phishing (called “web

forgery” there). The lab test is a qualitative study that makes no

statistical claims.

Participants: Ten participants were recruited for the lab test, most

via emails sent to student mailing lists and some by contacting

them in person. Results from the background questionnaire are

provided in Tab. 12.

10

TABLE 12: Results from background questionnaire

Lab test Field test
Number of participants 10 18

Age

20–24 4 10
25–29 6 4
30–34 0 3
> 50 0 1

Gender
Female 3 11
Male 7 7

Education

High school 0 5
Bachelor’s degree 4 7
Master’s degree 6 4
Doctoral degree 0 2

Main purpose of
laptop use

Work 3 5
Study 5 7

Personal 2 6

Internet use
(hours per day)

1–3 3 7
3–5 4 6
5–7 2 4
> 7 1 1

Browser
Mozilla Firefox 4 7
Google Chrome 5 11

Safari 1 0
Knowledge about
phishing

Knowledgeable 10 15
Uninformed 0 3

Materials: The test involved the participant opening three links

provided in fake emails on a test laptop with Windows 10, Google

Chrome and Off-the-Hook installed. The links were verified before

each test session to trigger the appropriate banners. An image of

Firefox’s web forgery warning was additionally shown to the user.

Procedure: We advised the participant to open three email links

consecutively. The first link led to a safe website, indicated by the

green badge on the navigation bar. The second link brought up

the warning message. We asked the participant various questions

concerning the banner’s content and appearance. Next, we showed

the participant a picture of Firefox’s web forgery warning and

asked them to compare the two banners. Finally, a third link was

opened, first leading to the loading screen and then to the safe toast

notification. We gathered the participant’s assessments of it. At the

end of the test the participant filled out an additional questionnaire

containing similar questions as asked during the test, with pre-

provided answer options on a Likert scale.

Ethical considerations No personal information apart from the

explicit discussion and questionnaires was gathered.

7.1.2 Field test

The purpose of this test was twofold: (a) to see whether the pres-

ence of the application has a negative impact on user experience,

and (b) to test how users react to the banners during normal laptop

use.

Participants: 18 people took part in the test. Most were recruited

via emails sent to student mailing lists, and some by contacting

them in person. Results from the background questionnaire are

provided in Tab. 12. It is worth noting that our test subjects

were all university students or had graduated from a university.

Their educational backgrounds range across all levels of higher

education and their time usage of Internet is equally distributed

though, which provides a fair representativity.

Materials: The study was conducted on each participant’s own

laptop by installing Off-the-Hook on the user’s own laptop for

one week and a fake version for another week. The fake version

displays the same icon on the navigation bar as Off-the-Hook, but

without performing any other processes.

Procedure: The within-subjects approach was used in this study.

Each participant used both the real and fake version of Off-the-

Hook for one week, and the order of the real and fake application

was evenly distributed among the participants. The only prior

information given to the participants was that we are installing

a browser add-on. The same questionnaire was filled in after

both weeks, asking the user to choose between Strongly disagree

and Strongly agree on a five-point Likert scale as reactions to

the statements displayed in Tab. 13. There was further space in

the questionnaire for freely written qualitative answers. After the

two weeks, the participants were asked whether they remembered

having been exposed to any of the banners during the test period.

Those who did answered the same questionnaire as in the lab test,

inquiring about the understandability, appearance and usability of

each banner.

Ethical considerations: No personal information apart from the

explicit questionnaires was gathered. We did not record the partic-

ipants’ browsing history.

7.2 Results

7.2.1 Lab test

All users understood the purpose of the warning banner, although

this took more time for some. There were no major misunderstand-

ings of textual content. The continuation options were recognized

fast and evaluated as useful by the majority of participants.

The link to the target site was noticed and understood without

complications. When the banner appeared, every participant chose

to close the tab, the majority (6) from the browser and the rest

(4) from the banner. Seven out of ten users preferred Off-the-

Hook to Firefox’s web forgery warning. Firefox’s was deemed

more difficult to understand due to technical jargon. Further,

Firefox’s banner contains no link to the target website, and many

users preferred Off-the-Hook due to this. On the negative side,

Off-the-Hook was considered by some to be less “professional”

in appearance than Firefox’s banner. Participants were divided

on the safe toast notification, six out of ten finding it useful.

Some considered it redundant given that the navigation bar icon

already displays the relevant information of the website being safe.

Problematically, no user correctly guessed the reason why some

safe sites brought up the safe toast notification but others did not.

7.2.2 Field test

During the two-week test, 12 of the 18 participants had seen

the loading screen, nine had seen the warning banner, and nine

had seen the safe toast notification. One participant had seen

another phishing warning instead of Off-the-Hook. Results from

the questionnaire filled by all participants after having first the

fake and then the real Off-the-Hook installed, or vice versa, are

provided in Tab. 13.

A difference between the real and fake Off-the-Hook was

found in the reported slowing down of the browser. When the

fake app was installed, only one user agreed with the claim My

browsing has slowed down, whereas seven agreed after having

the real Off-the-Hook installed, giving a statistically significant

result with both The Wilcoxon signed ranks test and the sign test.

However, a similar slowing effect was not found in general laptop

functioning. Since the most likely reason why Off-the-Hook would

affect browsing speed would be that it slows down the whole

laptop, it is likely that many participants simply did not notice this

11

TABLE 13: Results of Wilcoxon signed ranks test (two-tailed) and sign test (two-tailed) between answers to fake and real Off-the-Hook.

Last column indicates whether the real software elicited more agreement (Agree) or disagreement (Disagree) than the fake one.

Claim
Wilcoxon signed ranks test Sign test

Direction
Ties Z p W / Crit. Signif. Z p Signif.

My browsing has slowed down 8 -2.80 0.005 0 / 8 Yes 3 0.003 Yes Agree
I have been annoyed by the presence of the program 6 -2.82 0.005 3 / 13 Yes 2.83 0.005 Yes Agree
My computer has slowed down in general 6 -1.37 0.170 21.5 / 13 No 1 0.317 No -
The program has interfered with my browsing 4 -2.82 0.005 7.5 / 21 Yes 2.89 0.004 Yes Agree
The program has interfered with my use of the laptop in general 9 -2.67 n/a 0 / 5 Yes 2.24 0.025 Yes Agree
Use of my laptop has been as enjoyable as before 5 -2.90 0.004 4 / 17 Yes 2.64 0.008 Yes Disagree
The program has prevented me from doing something I wanted 10 -1.40 n/a 8 / 3 No 1.41 0.157 No -
The browser has crashed more often than usual 11 -0.25 n/a 12.5 / 2 No 0 1 No -
Other programs have crashed more often than usual 12 -0.94 n/a 6 / 0 No 1 0.317 No -

for other aspects of their laptop use. Possibly, the loading screen

may also have been judged by some as slowing down browsing.

Off-the-Hook also seemed to have a negative impact on laptop

use experience, with ca. half of the users agreeing with the

statement I have been annoyed by the presence of the program for

the real but not the fake app. Most of these users had witnessed

the warning banner mistakenly appearing on safe sites, which is

likely a significant cause for this negative result. As demonstrated

in Sect. 6.4, the overall false positive rate of Off-the-Hook is low.

However, among safe sites that brought up the warning were a

university email site and an online bank, both of which were

popular among test participants. Even if the false positive rate

is low in principle, only one instance of it suffices to negatively

impact user experience. We discuss this issue further in Sect. 7.3.

There was no significant change between the real and the fake

app in how often the browser or other programs were reported

to have crashed. Results concerning the proposition “The program

has prevented me from doing something I wanted” further indicate

that Off-the-Hook did not stop the users from browsing as they

wished, in case they wanted to disregard it. There was one ex-

ception to this, where a user reported the loading screen blocking

access to a website. Presumably this was due to the slow speed of

the participant’s laptop, since the participant reported seeing the

loading screen but none of the banners. This raises the issue of

whether an exit link should be incorporated to the loading screen

to allow the user to close the tab during the loading. The majority

of participants understood the warning banner correctly, and it

received a generally positive rating on text content and visual

appearance. All the continuation links were considered useful on

average. Nine users had seen the safe toast notification, five of

whom it had made feel safer about the website. Some considered

it difficult to interpret, and most would have preferred more

information on it. Nevertheless, the majority found it unnecessary.

It is worth noting that the field test featured a moderate number

of 18 participants. The Wilcoxon signed ranks test considers the

number of data points in calculating the critical value of the W

statistic. Nevertheless, it rendered strongly significant results for

all statements in Table 13 except one: The program has interfered

with my use of the laptop in general.

7.3 Discussion

Both tests indicate that users generally interpreted the warning

banner correctly, and were thus able to make an informed deci-

sion on how to proceed. Its textual understandability and visual

appearance were also deemed appropriate on average. Most users

found all the continuation options useful, and no user advocated

the removal of any of them. The ease of understanding of the

textual content and the variety of continuation options were both

appreciated in comparison to Firefox’ phishing warning. The

negative impacts on user experience were largely due to false

positives, and can be remedied by establishing a global whitelist

containing popular websites that are falsely treated as phish by

Off-the-Hook.

The interpretation and appreciation of the safe toast notifica-

tion were somewhat less clear, as some considered it redundant but

others found it helpful. No user correctly guessed why it appears

on some sites and not others, which is potentially problematic.

Removing the safe toast notification would be a possible remedy

for this, given that the same information is also present at the

navigation bar. The main usability problem with this would be

that the loading screen may result in confusion or suspicion, since

it currently has no information. Adding a simple text, such as

“checking” along with a progress bar would remedy this issue.

In summary, the following modification suggestions emerged

from the usability studies:

• establishing a global whitelist to exclude common false

positives

• removing the safe toast notification

• adding a small explanatory text to the loading screen

• adding an exit link to the loading screen

8 RELATED WORK

Phish detection: Analysis of the content [10], [27] and code

execution (e.g. the use of javascript, pop-up windows, etc.) [38] of

a webpage provides relevant information to identify phishs. Some

detection methods rely on URL lexical obfuscation characteristics

[12], [33] and webpage hosting related features [30], [39] to decide

if a webpage is a phish. The visual similarity of a phish with

its target was also exploited to detect phishs [31], [40]. Visual

similarity analysis presupposes that a potential target is known a

priori though, limiting its applicability. In contrast, Off-the-Hook

identifies phishs and discovers their targets.

Multi-criteria methods [1], [2] have been proved the most

efficient to detect phishs. These techniques use a combination of

webpage features (HTML terms, links, frame, etc.), connection

features (HTML header, redirection, etc.) and host based features

(DNS, IP, ASN, geolocation, etc.) to infer webpage legitimacy.

The identification method uses machine learning techniques fed

with hundreds of thousands of these features, which are mostly

static and learned from training sets containing data such as

IP address, Autonomous System Number (ASN), bag-of-words

for different data sources (webpage, URL, etc.). This limits the

generalizability of the approach that is context-dependant and it

requires large training datasets, numbering hundreds of thousand

12

TABLE 14: Phish detection systems evaluation and accuracy comparison

Testing set Legitimate Train Leg
Technique Legitimate Phish set /Test /Phish Evaluation FPR Precision Recall Accuracy

Ma et al. [30] 15,000 20,500 DMOZ 1/1 3/4 cross-validation 0.001 0.998 0.924 0.955
Whittaker et al. [2] 1,499,109 16,967 several 6/1 90/1 old/new 0.0001 0.989 0.915 0.999
Thomas et al. [1] 500,000 500,000 several 4/1 1/1 cross-validation 0.003 0.961 0.734 0.866
Chen et al. [31] 404 1,945 top Alexa 9/1 1/5 cross-validation 0.007 0.992 1 0.994

Cantina [27] 2,100 19 English - 110/1 no learning 0.03 0.212 0.89 0.969
Cantina+ [32] 1,868 940 several 1/4 2/1 old/new 0.013 0.964 0.955 0.97
Xiang et al. [10] 7,906 3,543 several - 2/1 no learning 0.019 0.957 0.9 0.955
Ramesh et al. [25] 1,200 3,374 top Alexa - 1/3 no learning 0.005 0.998 0.996 0.996
PhishStorm [33] 48,009 48,009 DMOZ 9/1 1/1 cross-validation 0.014 0.984 0.913 0.949
Kausar et al. [34] 71 89 unknown 81/1 1/1 unknown 0.112 0.888 0.887 0.875
PhishShield [35] 250 1,600 PhishTank - 1/6 no learning 0.0004 0.999 0.971 0.966
Jain et al. [36] 405 1,120 top Alexa - 1/1 no learning 0.015 0.993 0.861 0.894
Varshney et al. [37] 2,500 500 top Alexa - 5/1 no learning 0.076 0.723 0.995 0.936

Off-the-Hook 100,000 1,000 English 1/10 100/1 old/new 0.0002 0.980 0.952 0.999
Off-the-Hook 200,000 2,000 several 1/20 100/1 old/new 0.0008 0.975 0.951 0.999

of webpages [2]. Finally, their computation is reportedly costly [1]

and use [2] some proprietary features preventing usage on end-user

devices, in contrast to our fully client-side approach.

Client-side techniques: Alternative light-weight and simpli-

fied implementations of multi-criteria methods [3] do not consider

that many features and are used on the client-side, but are less

efficient than implementing the same technique server-side [2]. In

a similar manner, detection techniques relying on fixed heuristics

(Alexa ranking, Google pagerank, etc.) are deployed as client-

side phishing protection systems [34], [35], [36] but also exhibit

high rate of missclassification [34], [36] or are not able to render

decisions for all webpages [35]. Furthermore, static heuristics in

client-side solutions can be easily discovered by an attacker and

circumvented. Obfuscating the detection model which uses static

features (e.g. bag-of-words) [3] does not prevent such attackers

to perform adversarial machine learning [7]. In contrast, our

detection model considers phishers’ limitations, which provides

better accuracy and resilience to this class of attack.

Other methods focused, as we do, on the study of terms that

compose the data sources of a webpage [12], [33] and admit

client-side implementation. Cantina [27], [32] was among the first

systems to propose a lexical analysis of terms that comprise a

webpage. In Cantina [27] key terms are selected using TF-IDF to

provide a unique signature of a webpage. Using this signature in

a search engine, Cantina infers the legitimacy of a webpage. A

similar method [10], based on TF-IDF and Google search, checks

for inconsistency between a webpage identity and the identity it

impersonates to identify phish. The main difference between these

methods and ours is language independence since these methods

rely on TF-IDF computation to infer their keyterms. An alternative

to TF-IDF computation is to use domain name and page title to

perform the search query and confirm a webpage as legitimate if

its domain name appear in the top-6 results of Google’s query [37].

Nevertheless, all these techniques [10], [27], [32], [33], [37] need

to perform search queries for each page to analyze which is

time and resource consuming. In contrast, Off-the-Hook resorts

to search queries in a few occasions when the phishing detector

first identifies a webpage as a phish and target identification is thus

required. The analysis of webpages identified as legitimate by the

phishing detector do not trigger any search query. Those represent

the vast majority (>99%) of visited webpages.

Accuracy comparison: Tab. 14 presents comparative accu-

racy results of Off-the-Hook to the most relevant state-of-the-art

systems. Techniques at the top only admit centralized deployment,

while others admit a client-side implementation as Off-the-Hook.

We present the size of the testing sets used to evaluate each system

and the provenance of the legitimate set, showing how represen-

tative the set is. For example, using popular websites (such as top

Alexa sites) [25], [31] as the legitimate set is not representative.

The ratio of training to testing instances (Train/Test) indicates the

scalability of the method and the ratio of legitimate to phishing

instances (Leg/Phish) shows the extent to which the experiments

represent a real world distribution (≈ 100/1) [2], [27]. We also

identify the evaluation method (e.g., cross-validation vs. training

with old data and testing with new data). Finally, we present

several metrics for assessing the classification performance. If

data for any of the columns were missing from the original

paper describing the system, we estimated them. For comparison

purposes, if several experimental setups were proposed in a paper,

we selected the most relevant to assess their practical efficacy

using the following ordered criteria:

1) learning and testing instances are different,

2) the ratio of legitimate webpage to phish in the testing set is

representative of real world observations (≈ 100/1),

3) the learning set is older than the testing set,

4) the false positive rate (FPR) is minimized.

A low false positive rate is paramount for a phish detection

technique, since this relates to the proportion of legitimate web-

pages to which a user will be incorrectly denied. We can see that

among the most relevant state-of-the-art techniques, only three [2],

[30], [35] have comparable false positive rates to ours (≤ 0.001).

Two of them [2], [30] do not admit client-side implementation,

thus raising concerns like user privacy and delay in phish identifi-

cation [5] that we previously identified.

The technique proposed by Ma et al. [30] has a lower accuracy

than in our system (0.955 < 0.999). In addition, they use a testing

set that does not represent real world distribution (legitimate to

phish ratio of 3:4). Further the parameters they used for cross-

validation (1:1 ratio for learning to testing instances) do not assess

the scalability of the approach. Whittaker et al. [2] report results

similar to us in several metrics. However, they use a huge training

set (>9M instances) and their test set is actually smaller than the

training set (a sixth, at 1.5M)! Scalability and language-/brand-

independence are likely to be poor since they use 100,000 mostly

static features (bag-of-words). PhishShield [35] is a client-side

solution that has high precision and low false positive rate. It

was evaluated on a very small testing dataset of 1,850 instances

containing only 250 legitimate webpages, which raises concerns

13

about how representative the results are. Nevertheless, this system

has lower accuracy (0.966) than Off-the-Hook and is not able to

render a decision for every analyzed webpage, i.e. more than 2%

of the pages evaluated did not get a decision.

In contrast to the state-of-the-art in phish detection, Off-the-

Hook is a client-side application that is context-independent,

resilient to phishing attacks evolution and does not rely on access

to external sources, while performing better than or as well as the

state-of-the-art.

Target identification: One proposal [25] was to use a similar

technique as Cantina with keywords retrieval and Google search to

discover a list of potential target as the top results of the search, but

the authors do not report accuracy figures for target identification.

Similarly, extracting the logo from a webpage screenshot and

using it in Google Image Search leads to identify the target of

87.0% of phishs in [41]. HREF links have been used to build

community graphs of webpages. By counting the mutual links

between two webpages and further performing visual similarity

analysis between suspicious webpages, Wenyin et al. [26] identify

the target of a given phish with an accuracy of 92.1%. However,

this technique is slow because of the need to crawl many additional

websites to build the community graph. Conditional Random

Fields and Latent Dirichlet Allocation (LDA) have been applied to

phishing email content to identify their target [22] with a success

rate of 88.1%. The technique we propose, in contrast to previous

techniques is language-independent for keyterms inference. It is as

efficient as any state-of-the-art solutions achieving a success rate

of 90.5-97.3%.

9 SUMMARY AND CONCLUSION

9.1 Meeting Design Goals

Accuracy (R1): Sect. 6.2 shows that our feature set yielded results

that outperform most previous work. The main reason is the new

separation scheme applied to data sources related to their level

of control and constraints (Sect. 4.1). This is evident from the

weight in classification model of features from the set f1 that

comprises URL features separated accordingly to constraint and

control considerations. Accuracy is improved by the target iden-

tifier, which helps reducing false positives by over 50% without

impacting negatively other accuracy measures (Sect. 6.4). This

makes Off-the-Hook comparable to the best existing technique [2]

in term of accuracy (FP Rate < 0.001 and recall > 0.95) while

relying on fewer features and less training data.

Context-independent detection (R2): As presented in Sect. 4.3,

none of our 210 features rely on static observations (e.g word, IP

address, ASN). It makes phish detection context-independent and

very accurate regardless of language or targeted brand.

Temporal resilience (R3): The separation of controlled and con-

strained data sources models inherent limitations in webpage

composition, that will remain over time. It explains why the

phish detection rate (recall) of Off-the-Hook remains high and

constant several months after the detection model was trained, as

highlighted in Sect. 6.2.1. The detection model is also more robust

to adversarial machine learning attacks since, while knowing fea-

tures used for classification, phishers cannot modify constrained

and uncontrolled part of their phishs. Hence, they cannot easily

circumvent detection.

Resilience to dynamic phishing (R4): It is guaranteed by design

since Off-the-Hook analyses the actual webpage content depicted

in the browser to render its decision.

User privacy (R5): With the fully-client-side implementation, all

information the phish detector needs is available locally and no

browsing information is shared with any third party. The target

identification process requires some requests to search engine,

which can leak some browsing information. However, this process

is triggered only when a page is first identified as phish, which

occurs rarely.

Effective protection (R6): The fast decision making of Off-the-

Hook, with a median time lower than 0.2 seconds to block

interaction and warning in less than 2 seconds, prevents users from

disclosing any sensitive information to a phisher (Sect. 6.5). The

several banners and their global design are deemed appropriate for

phishing protection as highlighted in the usability studies (Sect. 7).

Off-the-Hook warning is preferred over that of Firefox. Similarly,

the new continuation option to the target of the phish received

positive feedback from participants who would appreciate such a

feature in warnings from other protection software.

9.2 False Warnings

We now discuss possible causes for false warnings.

The term extraction technique that guarantees language in-

dependence raised some issues. We chose to split strings at any

non-alphabetic character and to only consider terms composed

of at least three characters to discard stop words and recurrent

short terms having no significance. This negatively impacted term

distribution comparisons. Long subdomains such as theinstantex-

change or insuranceservicenow were considered as single term.

In contrast, short domain name string corresponding to brand

and composed of separating characters (digit, hyphen, etc.) such

as dl4a, s2mr or e-go were split and the resulting terms were

discarded as too short. The inconsistent usage of abbreviations or

acronyms like intl for international also had a negative impact.

Most legitimate webpages misclassified by the phish detector had

one of these characteristics although they were largely confirmed

as legitimate by the target identifier, preventing to raise a warning.

Other misidentified webpages were hosting content not related

to their domain name and mostly very little and generic content.

One common example was login webpage for private webmail

service using popular webmail provider (e.g. Outlook, Gmail).

These webpages were identical to the regular login page of the

provider but hosted on a different domain name e.g. Outlook

login interface hosted on mail.aalto.fi. This misled the phish

detector and the target identifier, which identified the website of

the service provider as the target i.e. live.com for Outlook. From

a system and human perspectives these webpages are similar to

phishing webpages. The only means to assert the trustworthiness

of these websites is using prior knowledge about the private

webmail service being hosted on a given domain name, since

in most cases these websites did not use SSL/TLS certificate.

Having this knowledge, one can add an exception in the local

whitelist to prevent warnings from appearing again. Alternatively,

to avoid disturbance to first time users, a global whitelist could be

implemented. as pointed in Sect. 7.3. This can be fed with crowd-

sourced feedback from Off-the-Hook users related to their choice

to proceed and do not display the warning again for a website

raising a warning. Such a solution would need though further

verification and protection mechanism to prevent phishers from

manipulating this global whitelisting system in order to bypass

detection.

Some empty/unavailable webpages and parked domain names

were also identified as phishs. The former is explained by the

14

lack of information contained in empty/unavailable webpages.

Several parked domain names use similar composition schemes

and obfuscation techniques as phishing domains [42] and may

have been previously used in such a malicious activity [43]. From

the point of view of our classification system, some parked pages

have the same characteristics as phishs. This misclassification of

unavailable and parked domain names is not of major concern

though since, for the former no content access is prevented since

the link point empty resources. For the latter, domain parking is

considered as spam by major Internet actors (e.g. Google) and

some efficient state-of-the-art techniques [42] can be applied to

discard these webpages from phishing identification.

9.3 Evasion Techniques

One way to evade detection is to use IP-based URLs. A lower

detection rate was observed for such phishs. However, relying on

IP address rather than domain names deprives phishers from the

flexibility brought by the DNS to change the hosting location of

their phishing content while keeping the same link. Moreover, IP

blacklisting is widely used to prevent access to malicious hosting

infrastructure.

Another evasion technique is to limit the text content available

in a webpage: use few external links, do not load external content

and build short URLs. We observed some of these techniques

actually being used individually in webpages used for evaluation.

They did not impact classifier performance because even though

they prevent some features from being computed, others, such

as those based on title, starting/landing URL and logged links

could still lead to effective detection of phishs. Simultaneous use

of multiple evasion techniques may impact classifier performance.

However, using such subterfuges would degrade the quality of the

phish and reduce the number of victims.

Off-the-Hook is resilient to dynamic phishing in which phish-

ers serve different content depending on who the client is. How-

ever, delayed generation of DOM elements or dynamic Javascript

on a webpage may affect the feature extraction process. Dynami-

cally generated elements may not be present just after a webpage

is loaded and thus not captured in our data sources. However,

this would not have a severe impact on classification accuracy.

Some features related to HTML source code may not be computed

accurately but features related to starting URL, landing URL,

redirection chain and logged links will be accurately computed

anyway and have shown to be efficient at detecting phishs (Sec-

tion 6.2). Furthermore, dynamic generation of webpage elements

may tip-off potential victims noticing changes taking place on

the rendered webpage after long delays. Techniques to detect

modifications in webpages after loading have been proposed [44]

and could be used to trigger a new data source extraction for Off-

the-Hook to rerun the decision process.

We consider RDNs that are not in the redirection chain as being

outside the control of an attacker: external. However, knowing

our scheme a phisher can include links to domain names he

registered in a phish, while not using them for redirection. The

phisher can thus freely define URLs that our system assumes to be

uncontrolled. This can decrease the recall of our method and ease

circumvention. Retraining the model once this attack starts to be

used would cope with this issue. External links features would be

given lower weight in the classification model since they would

start to be less discriminative.

A final probable evasion technique is to use typosquatting

domains and misspelled terms in the different data sources we

analyze. When different but similar terms like paypal, paypaI or

paipal are used in different sources, our distributions comparison

metric would not infer any similarity. The classifier would thus

probably conclude that the webpage is legitimate. However, the

presence of reference links to the target would disclose the real

target. In addition, misspellings may tip-off potential victims.

ACKNOWLEDGMENTS

This work was supported in part by the Academy of Finland

(grant 274951) and Intel Collaborative Research Center for Secure

Computing (ICRI-SC).

REFERENCES

[1] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
evaluation of a real-time url spam filtering service,” in Proceedings of

the IEEE Symposium on Security and Privacy, 2011, pp. 447–462.

[2] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classi-
fication of phishing pages,” in Proceedings of the 2010 Network and

Distributed System Security (NDSS) Symposium, 2010.

[3] Google, “Safe browsing.” [Online]. Available: https://www.chromium.
org/developers/design-documents/safebrowsing

[4] Phishtank, “Out of the Net, into the Tank.” [Online]. Available:
https://www.phishtank.com/

[5] X. Han, N. Kheir, and D. Balzarotti, “Phisheye: Live monitoring of
sandboxed phishing kits,” in ACM CCS, 2016, pp. 1402–1413.

[6] M. Al-Daeef, N. Basir, and M. Saudi, “A review of client-side toolbars
as a user-oriented anti-phishing solution,” in Advanced Computer and

Communication Engineering Technology, 2016, pp. 427–437.

[7] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking classifiers
for evasion: A case study on the google’s phishing pages filter,” in
International Conference on World Wide Web, 2016, pp. 345–356.

[8] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field
study of browser security warning effectiveness,” in Proceedings of the

22nd USENIX Conference on Security, 2013, pp. 257–272.

[9] APWG, “Phishing Activity Trends Report,” APWG, Tech. Rep. 3Q2016,
2016.

[10] G. Xiang and J. I. Hong, “A hybrid phish detection approach by
identity discovery and keywords retrieval,” in Proceedings of the 18th

International Conference on World Wide Web, 2009, pp. 571–580.

[11] Y. Pan and X. Ding, “Anomaly based web phishing page detection,”
in Proceedings of the 22nd Annual Computer Security Applications

Conference (ACSAC), 2006, pp. 381–392.

[12] A. Le, A. Markopoulou, and M. Faloutsos, “PhishDef: URL names say
it all,” in Proceedings of IEEE INFOCOM, 2011, pp. 191–195.

[13] S. Marchal, J. François, R. State, and T. Engel, “Proactive discovery of
phishing related domain names,” in Research in Attacks, Intrusions, and

Defenses, 2012.

[14] SSG@Aalto, “Off-the-Hook - A phishing prevention system.” [Online].
Available: https://ssg.aalto.fi/projects/phishing/add-on.html

[15] KangoExtensions, “Cross-browser extension framework.” [Online].
Available: http://kangoextensions.com/

[16] BestToolBars, “Build addons and toolbars for all
browsers.” [Online]. Available: http://www.besttoolbars.net/products/
cross-browser-extensions-framework/

[17] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: An em-
pirical study of the effectiveness of web browser phishing warnings,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, 2008, pp. 1065–1074.

[18] C. Wharton, J. Rieman, C. Lewis, and P. Polson, “The cognitive walk-
through method: A practitioner’s guide,” in Usability Inspection Methods,
J. Nielsen and R. L. Mack, Eds. John Wiley & Sons, Inc., 1994, pp.
105–140.

[19] S. Hardy, M. Crete-Nishihata, K. Kleemola, A. Senft, B. Sonne, G. Wise-
man, P. Gill, and R. J. Deibert, “Targeted threat index: Characterizing
and quantifying politically-motivated targeted malware,” in 23rd USENIX

Security Symposium, 2014, pp. 527–541.

[20] L. Cam and G. Yang, Asymptotics in Statistics: Some Basic Concepts,
ser. Springer Series in Statistics. Springer, 2000.

[21] Z. Li, S. Alrwais, X. Wang, and E. Alowaisheq, “Hunting the red fox
online: Understanding and detection of mass redirect-script injections,”
in IEEE Symposium on Security and Privacy (SP), 2014, pp. 3–18.

https://www.chromium.org/developers/design-documents/safebrowsing
https://www.chromium.org/developers/design-documents/safebrowsing
https://www.phishtank.com/
https://ssg.aalto.fi/projects/phishing/add-on.html
http://kangoextensions.com/
http://www.besttoolbars.net/products/cross-browser-extensions-framework/
http://www.besttoolbars.net/products/cross-browser-extensions-framework/

15

[22] V. Ramanathan and H. Wechsler, “Phishing detection and impersonated
entity discovery using conditional random field and latent dirichlet
allocation,” Computers & Security, vol. 34, pp. 123–139, 2013.

[23] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics

& Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.
[24] P. Buhlmann and T. Hothorn, “Boosting algorithms: Regularization,

prediction and model fitting,” Statistical Science, vol. 22, no. 4, pp. 477–
505, 2007.

[25] G. Ramesh, I. Krishnamurthi, and K. S. S. Kumar, “An efficacious
method for detecting phishing webpages through target domain identi-
fication,” Decision Support Systems, vol. 61, pp. 12–22, 2014.

[26] L. Wenyin, G. Liu, B. Qiu, and X. Quan, “Antiphishing through phishing
target discovery,” IEEE Internet Computing, vol. 16, no. 2, 2012.

[27] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: A content-based
approach to detecting phishing web sites,” in Proceedings of the 16th

International Conference on World Wide Web, 2007, pp. 639–648.
[28] N. Singh, H. Sandhawalia, N. Monet, H. Poirier, and J. Coursimault,

“Large scale url-based classification using online incremental learning,”
in Proceedings of the 11th International Conference on Machine Learn-

ing and Applications (ICMLA), 2012, pp. 402–409.
[29] SSG@Aalto, “Off-the-Hook usability study questionnaires.” [Online].

Available: https://ssg.aalto.fi/projects/phishing/usability-study.html
[30] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:

Learning to detect malicious web sites from suspicious urls,” in Proceed-

ings of the 15th ACM SIGKDD, 2009, pp. 1245–1254.
[31] T.-C. Chen, T. Stepan, S. Dick, and J. Miller, “An anti-phishing system

employing diffused information,” ACM Transactions on Information and

System Security, vol. 16, no. 4, pp. 16:1–16:31, 2014.
[32] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: A feature-

rich machine learning framework for detecting phishing web sites,” ACM

Trans. Inf. Syst. Sec., vol. 14, no. 2, pp. 21:1–21:28, 2011.
[33] S. Marchal, J. Francois, R. State, and T. Engel, “Phishstorm: Detecting

phishing with streaming analytics,” IEEE Transactions on Network and

Service Management, vol. 11, no. 4, pp. 458–471, 2014.
[34] F. Kausar, B. Al-Otaibi, A. Al-Qadi, and N. Al-Dossari, “Hybrid client

side phishing websites detection approach,” International Journal of

Advanced Computer Science and Applications, vol. 5, no. 7, pp. 132–
140, 2014.

[35] R. S. Rao and S. T. Ali, “Phishshield: A desktop application to detect
phishing webpages through heuristic approach,” Procedia Computer

Science, vol. 54, pp. 147 – 156, 2015.
[36] A. K. Jain and B. B. Gupta, “A novel approach to protect against phishing

attacks at client side using auto-updated white-list,” EURASIP Journal on

Information Security, vol. 2016, no. 1, p. 9, 2016.
[37] G. Varshney, M. Misra, and P. K. Atrey, “A phish detector using

lightweight search features,” Computers & Security, vol. 62, pp. 213
– 228, 2016.

[38] R. M. Mohammad, F. A. Thabtah, and L. McCluskey, “Predicting
phishing websites based on self-structuring neural network,” Neural

Computing and Applications, vol. 25, no. 2, pp. 443–458, 2014.
[39] M. N. Feroz and S. Mengel, “Examination of data, rule generation and

detection of phishing url using online logistic regression,” in Proceedings

of the IEEE Conference on Big Data, 2014, pp. 241–250.
[40] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing

detection,” in Proceedings of the 4th International Conference on Secu-

rity and Privacy in Communication Networks, 2008, pp. 22:1–22:6.
[41] E. H. Chang, K. L. Chiew, S. N. Sze, and W. K. Tiong, “Phishing detec-

tion via identification of website identity,” in International Conference

on IT Convergence and Security, 2013, pp. 1–4.
[42] T. Vissers, W. Joosen, and N. Nikiforakis, “Parking sensors: Analyzing

and detecting parked domains,” in Proceedings of the 22nd Network and

Distributed System Security Symposium (NDSS), 2015, pp. 1–14.
[43] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang, “Finding the linchpins of

the dark web: A study on topologically dedicated hosts on malicious web
infrastructures,” in IEEE Symposium on Security and Privacy, 2013, pp.
112–126.

[44] P. De Ryck, N. Nikiforakis, L. Desmet, and W. Joosen, “TabShots: Client-
side detection of tabnabbing attacks,” in Proceedings of the 8th ACM

SIGSAC Symposium on Information, Computer and Communications

Security, ser. ASIA CCS ’13. ACM, 2013, pp. 447–456.

Samuel Marchal received the engineering de-
gree and M.Sc. degree in computer science in
2011 from TELECOM Nancy, France. He re-
ceived the Ph.D. degree jointly from the Univer-
sity of Luxembourg, Luxembourg and the Uni-
versity of Lorraine, France, in 2015. He con-
ducted his doctoral research at the Interdisci-
plinary Centre for Security, Reliability and Trust
(SnT) in Luxembourg. He is currently a Post-
Doctoral Researcher at Aalto University, Finland,
in the Secure Systems Research Group. His

interests lie in system security, network security and machine learning.

Giovanni Armano received the B.E. and the
M.Eng. degrees in computer engineering from
Polytechnic University of Turin, Italy, in 2014 and
2016, respectively. He spent the second year
of his M.Sc. studies at Aalto University during
which he wrote his M.Sc. Thesis ”Real-time Au-
tomated Phishing Detection” under the supervi-
sion of Prof. N. Asokan and Dr. Samuel Marchal.
In December 2016 he joined PortalTech Reply in
London as a back-end developer.

Tommi Gröndahl received his MA degree in
cognitive science from the University of Helsinki
in 2016. He is currently pursuing PhD studies
in computer science at Aalto University and in
cognitive science at the University of Helsinki.
Prior to this, he has worked in Adage Oy as a
junior user experience specialist.

Kalle Saari received the M.Sc. and Ph.D. de-
grees in mathematics and computer science
from University of Turku, Finland, in 2003 and
2008, respectively. He is currently a M.Sc. stu-
dent in machine learning at Aalto University,
Finland. He is working on his M.Sc. Thesis in
the Secure Systems Research Group under the
supervision of Prof. N. Asokan. His interests in-
clude machine learning, data mining and data
science.

Nidhi Singh received her Ph.D. in computer
science from the International Institute of Infor-
mation Technology - Bangalore, India. She is
presently research lead at McAfee Gmbh, Ger-
many, and before that she worked in Xerox Re-
search Center Europe and IBM Labs for several
years. Her research interests include application
of machine learning algorithms for large-scale
text classification, real-time anomaly detection,
and energy-aware computing (”green IT”).

N. Asokan is a Professor of Computer Science
at Aalto University where he co-leads the secure
systems research group and directs Helsinki-
Aalto Center for Information Security – HAIC.
Before joining academia, he spent 17 years in
industry research labs with IBM Research and
Nokia Research Center. Asokan received his
formal education from University of Waterloo,
Syracuse University, and Indian Institute of Tech-
nology, Kharagpur. More information on his re-
search at http://asokan.org/asokan/.

https://ssg.aalto.fi/projects/phishing/usability-study.html
http://asokan.org/asokan/

