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Chapter 1

Introduction

The International Energy Agency (IAE) and the United Nations Environment

Programmes Sustainable Building and Climate Initiative (UNEP-SBCI) reported

that buildings are responsible for about 50-60% of the global electricity consump-

tion [2, 3]. To respond to the finding, several efforts of reducing buildings’ energy

use have been made, for example, by improving buildings’ thermal isolation and

utilizing energy saving technologies and techniques. These attempts, however, can-

not alone compensate for the increasing energy use due to population and floor area

growth, the two dominant factors that rise total energy consumption both in residen-

tial and non-residential buildings. As shown in Figure 1.1, the influencing factors in

residential and non-residential sectors differ in the building use that happens due to

services, such as change in the temperature or ambient light settings. This tendency

can be ascribed to the fact that non-residential building occupants are less aware of

the energy consumption as they are not affected by energy bills [59]. Consequently,

building consumptions and waste in non-residential buildings are higher than in

households [12].

Figure 1.1: Factors that influence the building energy use, adopted from [4]

An example of occupants’ inefficient behavior is the activation of power-consuming

devices (e.g., lights) starting from early working time until the end of the working

day (e.g., 7.00 AM until 7.00 PM), regardless of the actual occupancy. To save en-



2 1. Introduction

ergy, building’s energy-efficient lighting systems need to gather building context.

Context may be defined as the situation of an area, information of nearby people, or

properties of nearby resources [114, 5]. Let us consider a scenario as follows.

Suppose four employees share a room in a smart building. Ordered from the

window to the innermost of the building is the space belonging to Aldo, Boy,

Cecilia, and Diana. The office has central lights consisting of fluorescent lamp

tubes on the ceiling. One double-tube is close to the window side (near Aldo

and Boy’s desks), and the other double-tube is assigned to the other side (close

to Cecilia and Diana’s desks). The employees have individual preferences. Aldo

prefers not to use the lamps given the outdoor is clear, as sunlight provides

enough illuminance to his space. Boy needs additional light, but dim light is

fine with him. Thus, the utmost 75% brightness of the designated lamp block

close to his space is his preference regardless of the outdoor weather. Cecilia

works with a computer. Therefore, she does not need maximum brightness.

However, as she is afraid of the dark, she prefers to turn all the lights in the

office ON with 60% brightness when she stays in the office alone. As Diana

works with documents and natural light barely reaches her space, she prefers

more lights than the others. Partial lighting in the office is fine with her, given

she has sufficient illuminance. Thus her preference is 90% of brightness from

the nearest lamp block. The preferences are saved in a database.

Depending on the context availability and various control mechanisms, poten-

tial energy-saving can be realized at various levels. When a building is aware of the

present state of occupants in the office (e.g., obtained from PIR sensors), the building

may control the lighting system. As soon as the PIR sensor detects value changes

of infrared readings (i.e., due to any movements of employees), it sets the presence

and triggers the lighting systems accordingly. This control is reactive and will re-

main active until no motion is detected for a specific time period (so-called feedback

loop). Energy use will be lower when it turns the lighting system off when the of-

fice is vacant. However, the control is binary and does not accommodate individual

preferences as the sensor cannot distinguish people present.

Finer-granularity contexts contribute to better-tuned control and energy savings

with user satisfaction for the majority of occupants. For instance, Bakker, et al. re-

port a user satisfaction of 84% for 35 participants in their experiment [35] . The

context knowledge allows dimming lighting levels in a particular area, depending

on occupancy. Let us say Aldo comes to the office when it is sunny. The building

may delay the lighting activation until the next employee appears (e.g., as it knows

Aldo does not need additional lights due to sufficient luminaries). The following

person coming to the office, say, Diana, is then identified. Immediately, the building
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activates the partial lamp tubes near Diana’s desk and adjust the luminance accord-

ing to her preference. When all the occupants have arrived, the lighting systems are

further adjusted based on the current condition. The control may be based on a set

of predefined rules, and it will act depending on the rules and acquired contexts,

such as user ID and luminance. Wozniak et al. propose predefined rules and fuzzy

sets to adjust controllers according to the needs of recognized users [131]. They re-

port up to 11.7% of energy saving on heating and lighting systems and dryers can

be achieved with the proposed control.

A more complex control mechanism is automatic searching and composing the

best sequence of actions based on Artificial Intelligence (AI) planning. AI planning

is defined as an intelligent behavior in constructing strategies or action sequences

to achieve some goals. In order to solve a planning problem, planners need to

gather user contexts (e.g., occupant counts, identification, and activities) and the

knowledge of available entities (e.g., the location of heaters and dimmable lights in

a building). When it comes to a situation, such as, Aldo and Cecilia doing some

activities with computers and Diana working on paper-based tasks; a planner could

come to a solution of only turning ON the lamp tubes close to Diana with 90% of

brightness. This decision is reasonable as Aldo does not need additional light and

Cecilia does not require to turn on all the lights since she is not alone, while Diana

requires more light due to paperwork. An example of planner-based indoor con-

trol can be found in [47]. The authors consider a public university restaurant with

natural light coming from large windows and light fixtures that can be controlled

manually or directly by the planner. They compare the manual light control to the

feedback loop control based on movement sensors and a planner-based control and

report an average energy saving of 71% and 89%, respectively, during a two-week

observation.

From the provided scenarios, one can see how contexts are the basis for energy

saving and fulfill users’ expectation and needs. Numerous sensors and computa-

tional devices have been proposed to capture the context of how people live in build-

ings. Some of them are explicitly deployed for monitoring occupants, while others

make use of the existing building infrastructure. In acquiring data, unobtrusive, off-

the-shelf sensors are preferred. Sensors and devices need to work seamlessly with-

out requiring to be worn or placed intrusively in the environment (e.g., in a way that

causes a user to feel annoyed). Smartphones are a good candidate due to the prolif-

eration of their usage. The smartphones, along with reference anchors (e.g., Wireless

Fidelity (WiFi) access points and Bluetooth beacons), can support localization sys-

tems and inherently show occupancy information of building spaces. Additionally,

the broad adoption of power meter technology presents a vast opportunity to reveal

the context from power consumption readings. While the official numbers of actual
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deployment is not known, it is expected that power meter will cover at least 80%

of consumers in sixteen EU member countries and will be reaching 95% on average

by end of this year (2020) [42]. In the U.S., more than 50% of households have in-

stalled smart meters by the end of 2015, and it is expected that the number of smart

meters will be reaching 90 million by 2020 [32]. Even further, there are independent

service providers that offer power meter products to measure more granular power

consumption in real-time with low-cost and quick installations. These meters also

allow measuring power consumption per circuit by putting current clamps (CTs) in

electrical lines.

1.1 Challenges

The acquired data from power meters and smartphones are raw power consump-

tion and signal strength from reference anchors. Some processing activities are

needed to leverage the data usefulness, such as extracting useful information and

solving sensor conflicts in order to infer contextual information.

1.1.1 Need for Information Extraction

To use available data for occupancy detection in non-residential buildings, one faces

the challenge of accurate high-level information extraction from the raw data. In

particular, we consider two sources, power metering system and beaconing system.

The former is based on power meters that measure the mixed energy consumption

of several people or electrical loads, while the latter is based on Received Signal

Strength (RSS) that can be exploited to infer a location or occupancy state.

Power Metering System. As a power meter is generally installed at the root

of electrical distribution circuits, the recorded data is power consumption in aggre-

gate form. It represents the total power consumption of devices being used by the

occupants. To detect occupancy from power consumption, we need to detect the

activation of presence-related appliances, or to mine occupancy pattern from the

consumption traces. The extraction process of such information is known as load

disaggregation or appliance recognition [136], that is, the process of breaking the total

power readings (i.e., composite loads) into smaller components. The problem rises

when in offices, homogeneous, low power consumption appliances are present. The

disaggregation process is complex due to similar characteristics among appliances

and oscillation or masked low-power consumptions [130]. While there is signifi-

cant research in the field of load disaggregation in residential buildings, there is

a dearth of research work in the office environment. To address this problem, we
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adopt two electrical signature forms, namely, state-transition based signatures and

snapshots [77].

Beaconing System. A mobile phone can indicate indoor locations by exploiting

electromagnetic signals transmitted by, for example, WiFi access points or Bluetooth

beacons. The sensing is based on the observation of a user. The extracted informa-

tion is thus not about occupancy (e.g., how many people present, or who is present

in a space), but whether a particular occupant is in the space or where the occupant

is located. Once location has been extracted, the occupancy state of the room loca-

tion may be centrally inferred. Namely, if a person is located in a certain room, the

occupancy state of the corresponding room is set as occupied at least by that person.

The location may be derived, for instance, from the unique combination of RSS

from anchors (so-called fingerprinting technique), the nearest beacon reference [78],

and the nearest neighbor classification [30]. However, the signal strength from ref-

erence nodes can vary. Different types of receivers (e.g., phones) may also deliver

different measurement values, even when the mobile phones are associated with the

same transmitting node (e.g., a BLE beacon) at the same distances [102]. Addition-

ally, due to multipath propagation, the signals can be faded [25], presenting another

challenge to extract location accurately in adjacent workspaces.

1.1.2 Conflicts

Several available sources may observe one common entity, but the inferences are

not always correct and often present inconsistencies. The reason is that different

views perceived by sensory sources may influence the observation. Additionally,

the low-intrusive sensors are generally not specifically deployed for observing con-

texts, making the observations error-prone. Thus, the context extractions from indi-

vidual sources might be inaccurate or biased. Recalling the example of occupancy

context to control a lighting system, Aldo may be inferred in his workspace accord-

ing to power meter readings. In contrast, BLE readings of his mobile phone may

indicate that he is in the neighboring office. An option to deal with this problem is

to combine the sensory readings from different modalities to generate more detailed

and comprehensive measures. Alternatively, one can choose the most convincing

inference between the two sensors when there are different inferred decisions.

1.2 Objectives

The objective of this thesis is to investigate simple sensing systems (i.e., power me-

tering and beaconing systems) for occupancy detection in offices. Several research

questions are addressed.
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• How is power consumption data acquired and analyzed while maintain-

ing low-intrusiveness? How do low-intrusive power metering systems con-

tribute to context awareness?

• Assuming that a power meter installed in a dedicated electric circuit of com-

puter equipment is available, how can occupancy information be extracted?

How accurate is the occupancy observation in offices based on the computer

equipment activation?

• Assuming that a power meter with more electrical features are deployed in

shared office rooms, how are active appliances recognized, and how are the

present occupants distinguished? To what extent can we make use of this

information for presence detection?

• How is beaconing localization carried out while maintaining low-intrusiveness?

How precise is the occupancy inference in adjacent shared office rooms us-

ing beaconing localization?

• How can sensor fusion improve occupancy inference given individual sen-

sors’ benefits and faults?

To answer these research questions, we carry out investigations empirically. The

sensory sources and their corresponding programs (e.g., sensor gateways and mo-

bile applications) should be deployed and implemented in real offices. Based on this

deployment, we collect electric consumption as well as RSS data.

The data collection process is designed to be low-intrusive. We use existing mo-

bile phones associated with users to receive beacon signals. While the phones vary

and may measure inaccurate signals, we favor less calibration or training super-

vision. We also limit the power meter deployment. Two power meter types with

different specifications are used. The power meter with only Watt measurement

capability is simple to use in electric load identification. The other meter supports

the measurement of more electrical variables. Using such an extra information, we

identify user presence based on moving windows.

As previously mentioned, the collected data is not directly providing occupancy

information, but rather information has to be extracted despite the inconsistencies

and erroneous data measurements. We try several possible techniques to find out

the best solution, including supervised machine learning techniques for classifica-

tion, such as nearest neighbors and neural networks, and Markov models. We fur-

ther fuse the sensors to improve occupancy detection in feature-level fusion and

decision-level fusion schemes.

We assess the success rate of revealing occupancy detection based on several

metrics, such as accuracy, F-measure, and Kappa measures.
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1.3 Contributions

The research has resulted in the following, novel contributions:

1. The identification of solution of low-intrusive power metering systems for

context-aware purposes. There is an opportunity to extend the usefulness

of power meters for occupancy detection. Two reasons for this are the dis-

tributed deployment in buildings (i.e., sub-metering or circuit-level sensing)

that are low-intrusive and the relationship between user presence and power

consumption.

2. A procedure for occupancy detection based on activation of low-power com-

puter equipment (i.e., monitors). In the office environment, the activation of

user-related appliances may indicate occupancy. Our proposal is to use power

consumption changes to recognize office-related devices (in our case, com-

puter screens). The activation/deactivation events may indicate employee oc-

cupancy. We validate the experiment in two offices.

3. Office-related appliance recognition and fine-grain occupancy detection mod-

els based on feature rich power meters. Office-related appliances that have

small power consumption are difficult to distinguish. Meanwhile, power me-

ters with several electrical features (e.g., measurement of reactive power and

cos phi) may provide additional clues for the recognition process. We ex-

plore the sequential and non-sequential approach based on sliding windows

upon power consumption readings to recognize office-related appliances and

to identify user presence.

4. A non-intrusive room-level localization system based on cosine similarity

in adjacent offices. Distinguishing a position between adjacent rooms is dif-

ficult, particularly with a non-intrusive approach (e.g., without dense finger-

printing surveys or thorough calibration processes). We propose to only sam-

ple signals in some parts of the area, followed by signal validation and classi-

fication based on cosine similarity.

5. Decision- and feature-level fusion models to combine power metering sys-

tem and beaconing system for occupancy detection. The considered sensory

systems are not perfect in detecting occupancy. We investigate sensor fusion

in different levels to see how the fusion can improve the inferred occupancy.
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1.4 Outline of the Thesis

Chapter 2 introduces contexts and provides a brief review of common technologies

in occupancy context sensing. In particular, we look at the main goal for sensor

deployment concerning the level of intrusiveness and information granularity. We

then review the state-of-the-art, mainly on the localization system and power con-

sumption monitoring, which we will focus on the rest of this thesis.

In Chapter 3, we identify the use of power metering systems for context deter-

mination. The identification includes common power meter installations and appli-

cations in buildings. We discuss the methods of information extraction from power

consumption readings. This chapter serves as a background material before moving

to the experimental chapters.

Chapter 4 discusses a procedure of occupancy inference experiments based on

the switching state detection of computer equipment (e.g., monitors) on power con-

sumption readings. This procedure assumes that the monitors are assigned to em-

ployees and used to support performing tasks in offices; thus, the monitor activation

may reflect user presence in the workspace. We provide the experimental results for

two different offices.

In Chapter 5, we analyze power consumption readings with more electrical vari-

ables. We provide an instance or a sequence of sensor readings to classifiers. Using

this approach, we aim to recognize office-related appliances (e.g., LCD monitors,

a CPU, laptop, and portable heater) from the aggregate power consumption and

identify users in a shared office.

Chapter 6 goes further in the investigation of a beaconing-based system for oc-

cupancy detection. Specifically, we utilize mobile phones and BLE beacons to reveal

occupancy in adjacent shared office rooms. As we look for low-intrusive solutions,

we configure low power signal transmission on the beacons (e.g., to reduce the fre-

quency of changing batteries) and limit training data collection (e.g., to reduce ef-

forts to use the system). The collected training data are validated to make sure that

they can represent the room location. Once completed, a classification process may

be done to determine the room location of occupants. We thus compare the classifi-

cation results with other low-intrusive approaches proposed in the field.

In Chapter 7, we investigate sensor fusion approaches for power metering and

beaconing systems based on the level of data processing. We experiment with

decision-level fusion and feature-level fusion. In decision-level fusion, the system

makes temporary decisions based on sensor readings. The decisions are then com-

bined to conclude a final inference. In feature-level fusion, feature vectors are firstly

extracted from sensor readings. The combined feature vectors are then provided to

classifiers.
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Figure 1.2: Thesis organization

Finally, we conclude our work with Chapter 8. This chapter also covers discus-

sion on energy saving, privacy, and system portability. The schematic diagram of

the thesis organization is shown in Figure 1.2. Blocks in dashed lines in this figure

divide chapters based on sensing modalities, namely, Plugwise and Smappee power

meters and BLE beacons. Gray-shaded boxes represent the aims of sections, partic-

ularly for recognizing appliances and detecting occupancy. The work presented in

this thesis has been published in several peer-reviewed publications as shown in

Table 1.1.
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Table 1.1: Corresponding publications and articles produced during the study

Chapters Venues Citations

4 ICSOC 2017 [98]

5
APPIS 2018 [96]

manuscript to be submitted [94]

6 IDRBT 2017 [97]

7
Sensors, 2018 [99]

UEMCON, 2019 [95]

CCWC, 2017 [100]

SMARTGREENS, 2018 [63]



Chapter 2

A Review on Ocupancy Context Sensing

R
emarkable efforts have been performed to provide reliable contexts for energy-

efficient buildings, including user contexts (e.g., users’ location, activity), room

occupancy, and energy usage (e.g., electricity consumption). This chapter presents

the state-of-art in context acquisition with a particular focus on occupancy detection.

Occupancy detection is defined as a process of discovering the state of living in a

space.

We review scientific papers of the past decade and several less recent works

which are milestones in the field. We present definitions of context in general and

occupancy in particular in Section 2.1. We review sensing technologies from the

way how it can extract occupancy information in Section 2.2. The intrusiveness of

the sensory devices is described in Section 2.3. Finally, we provide the state of the

art of the related systems from the occupancy detection perspective in Section 2.4.

2.1 Context and Occupancy

Schilit et al. were most likely the first to use the term ”context” for user location,

identities of nearby people, and properties of nearby resources [114]. They also

introduced ”context-aware” to address the ability of discovering and reacting to en-

vironment changes. A more general definition of context is given by Abowd et al.,

who describe context as any information that characterizes the situation of a person,

place, or object [5]. Context is then useful as a foundation to provide services to a

user. For example, user location contexts are needed to navigate users and show

nearby shops; the activity context of the elderly is required to provide automatic

assistance to improve life quality; and occupancy context is crucial to create a con-

venient environment by automatically adjusting lighting and air-conditioning sys-

tems, and at the same time, to reduce power consumption. In this thesis, we focus

on the latter, where the context of occupancy can be improved using low-intrusive,

potentially available sensory sources.

The term of occupancy has overlapping meanings. In its simplest meaning, it
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refers to a binary state of a space or so-called presence (i.e., being vacant or occu-

pied) [8]. Other researchers mean occupancy not only as the binary present state

but also as the number of people in the monitored space, e.g., [39]. These terms are

defined as occupancy detection and occupancy estimation in [64, 27]. Occupancy also

refers to a room location of people when the inference output is the room-level loca-

tion [79, 49, 30]. Throughout this thesis, the term occupancy will refer to individual’s

present state in a particular office room. Occupancy and presence, therefore, may be

used interchangeably.

2.2 Sensing Technologies

An energy-efficient building needs equipment to sense occupancy signs. Numer-

ous sensing technologies have been proposed to do such a particular task. In this

chapter, we differentiate technologies based on the purpose of their deployment,

namely, conventional technologies (or explicit sensing), implicit sensing, and user-

perspective sensing.

2.2.1 Explicit Sensing

A conventional way to sense occupancy in a space is by deploying a specific sensor

to detect signs of occupancy, such as indoor movement. This way, the sensor (or a

set of sensors) is explicitly deployed with a specific occupancy detection purpose.

Passive InfraRed sensor (PIR) is the most common sensor type in detecting move-

ment due to its simplicity and affordable cost. PIR sensor detects occupancy by sens-

ing infrared energy changes due to the movement of any heat radiating objects, in-

cluding humans. To detect vacancy, PIR relies on a time-out period of non-detected

motion. However, choosing the optimal time-out period is difficult. A small value

(e.g., 15 ´ 20min, or less) results in false unoccupied detection that brings disap-

pointment to users, for example, when occupants do not significantly move during

the period. On the contrary, longer time-out results in higher energy waste due to

the activation of electricity devices when the space is vacant (i.e., false presences).

Furthermore, this type of sensors requires a direct line of sight, which often cannot

cover the whole part of the room.

Labeodan et al. evaluate occupancy detection using pressure chair sensors in

an office building [71]. They modify existing chair cushions in a meeting room by

embedding eight micro switches to detect state changes (i.e., closing or opening the

switches based on sitting activity). Also, they use existing building space occupancy

sensors, such as Carbon dioxide (CO2) concentration, airflow rate, temperature, and

humidity. The authors then compare the occupancy detection from those modalities.
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Zhao et al. indicate occupancy detection based on PIRs and chair sensors in a

shared office room before finally fusing them [140]. From two weeks of observation,

both explicit sensing modalities detect vacant states very well, up to 99% of the

times. While for the occupied event, PIR sensors installed on the ceiling can show

up to 81% accuracy, while the performance degrades to 62% if they are installed on

the walls. Chair sensor provides much higher performance, reaching 93.5% of the

occupied states. Undoubtedly, the system cannot detect occupancy, if participants

do not sit in the designated chairs.

Explicit sensing, however, requires considerable investment cost [118]. It is also

limited in providing occupancy information, such as people counting, identity, and

activity. The advancement of the Internet of Things with a myriad of data available

encourages researchers to discover alternative approaches. Some notable strategies

are discussed in the next section.

2.2.2 Implicit Sensing

Implicit occupancy sensing refers to the occupancy information extraction from ex-

isting systems (e.g., the traffic of computer networks, security card access systems,

mobile and wireless communication systems) or potentially available systems for

other purposes (e.g., indoor localization [30, 141], air quality controller [129], light

intensity controller [59], PC’s keyboard activities, webcams, or microphones [57]).

A review of implicit sensing technologies is discussed in [118]. As this sensing type

uses systems that are already available, the cost is relatively cheaper than the explicit

sensing. However, as the sensor is not dedicated to infer occupancy, it generally

requires more processing. For example, occupancy can be extracted from indoor

localization systems [30, 141], speech detection [134] or speaker recognition on the

recorded audio [57], or extra calibration processes with specialized equipment (i.e.,

Optical Particle Counters (OPCs)) [129].

Room occupancy based on location inference has been investigated using Radio-

frequency Identification (RFID). Zhen et al. exploit active RFID to detect an occu-

pant location in one of four office rooms [141]. The authors deploy seven RFID

readers and split each room into three regions (in total, twelve regions are classified).

They utilize Support Vector Machine (SVM) binary classifiers and use round-robin

comparison to fit with the 12-class classification problem. The reported average ac-

curacy is 93% in the classification of up to 240 RFID’s signal strength vector samples

per region. The occupancy information extraction from the localization system has

also been investigated using Bluetooth Low Energy (BLE) beacons. For example,

Conte et al. propose space occupancy classification by Bluetooth beacon received

signals using machine learning approaches, namely k-Nearest Neighbor (k-NN) and
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decision trees [30]. The authors infer whether or not the occupant is present in a par-

ticular room based on a beaconing system.

Huang et al. propose occupancy detection using microphones and audio pro-

cessing techniques [57]. Two schemes based on the number of speakers are inves-

tigated. Namely, meeting mode that involves only one speaker and party mode

that includes multiple people speaking at the same time. To estimate the occupancy

level, the authors propose a speaker recognition followed by summing up the num-

ber of speakers. This is possible in the meeting mode, where the speaker’s voice

is distinguishable, as the participants do not talk at the same time. For the party

mode, the authors propose to extract the background audio energy acquired from

the recorded audio. They report the accuracy of 90% for classifying up to 200 speak-

ers in the meeting mode. For the party mode, the accuracy becomes higher when

the speech measurement time is longer, up to 95% for the 25s measurement of up to

80 speakers.

Weekly et al. examine the correlation of particulate matter sensors, that com-

monly found in consumer devices (e.g., air purifiers), with human occupancy in a

building observed by surveillance cameras [129]. The sensors are originally used to

monitor small particles (i.e., with the size of more than 0.5, 1, or 2.5µm) for indoor air

quality monitoring. The authors propose several pre-processes to extract features.

It consists of filtering, variable selection, and calibration with OPCs. The authors

point out that the phenomena of particles being lift off of a surface and becoming

airborne when a person walks can indicate occupancy (so-called resuspension). A

coarse sensor that only detects particles of size ě 2.5µm is sufficient. However, an

accountable validation experiment is required to attest if the inferred occupancy can

represent the entire room rather than only close to the camera, as in the referenced

paper.

Jazizadeh and Becerik-Gerber investigate light intensity sensors for monitoring

lighting systems in six rooms of a university building [59]. The aim is to estimate the

energy consumption based on room light intensity. The authors detect the events of

turning on/off or dimming the lights, from the lighting intensity changes. They

thus correlate the events with the energy consumption of the lighting systems. This

step generates useful features in supervising machine learning models. However,

this work is not concerned with the prediction of occupancy states, even though the

triggered events are directly related to occupant presence.

2.2.3 User-perspective Sensing

The work so far reviews context observation from the building perspective. Con-

versely, one can observe situations from occupant perspectives using smart devices



2.3. Sensing Intrusiveness 15

associated with (or worn by) him (i.e., so-called wearables). From the occupant per-

spective, the acquired measurement is perceived in a specific, local view without

necessarily knowing the context of the other participants. The sensory modalities

sense only the surrounding environment and have no knowledge of the nearby in-

stances (unless there is a communication among them).

Mashuk et al. investigate occupancy detection based on an indoor positioning

system using a smart phone [81]. The idea is to estimate the location of a person as

an indication of room level occupancy. The built-in mobile phone sensors include a

gyroscope to detect walking orientation and an accelerometer to detect motions and

count the step numbers. Furthermore, the authors utilize Bluetooth and WiFi mod-

ules for fingerprinting localization based on BLE beacons and WiFi access points

installed in the environment. Given the measurements (e.g., estimated coordinates,

step detection, and heading information), they perform a particle filter process to

refine the estimated position. The beacons are also used as a trigger in floor-level

changes. The results show that the occupancy detection cannot classify an occupied

room precisely (i.e., especially between adjacent rooms) due to estimated position

drifts.

Microphones in smartphones have also been explored to estimate the number of

speakers involved in a conversation in room spaces under various conditions [134].

The authors propose a speech detection approach based on a lightweight clustering

technique (i.e., forward clustering) to distinguish a new speaker from the previously

recognized speakers. This step is then followed by counting the number of speakers.

They perform experiments in various scenarios. The reported average error distance

is 1.5 speakers with higher error counts when the phones are placed in the pocket of

the owners.

A major advantage of user-perspective sensing is that it provides an identity

connected to the phone. To preserve user privacy, however, the system is usually

designed not to reveal the actual identity but to provide anonymous label instead.

This method is particularly useful in personalized service automation, as there will

be a signature from which phone the data is acquired. Another advantage is the

ability to sense environment conditions without deployed infrastructures.

However, there are certain shortcomings associated with the use of wearables,

such as the intrusiveness (in terms of user comfort), including battery drains that

limit user mobility due to having to recharge, privacy threats, etc. Moreover, tests

are also needed to assess reliability in terms of, for example, localization accuracy.
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Figure 2.1: Context sensing technologies evaluated from intrusiveness and granular-

ity dimensions, adapted from [36]

2.3 Sensing Intrusiveness

Figure 2.1 presents sensing technologies from the intrusiveness level and occupancy

granularity dimensions. The term of intrusive has been used to refer to noticeable

situations that lead to discomfort or disturbing feelings. It can be attributed to the

intrusiveness of deployed devices and the discomfort perceived by the user [36].

Occupancy granularity is defined as the degree of details that can be exposed by

sensory sources. It is also referred to as occupant resolution [82].

In the first dimension, the most notable separation of intrusiveness level is the

requirement of carrying specific hardware to be sensing-enabled. We define an ab-

stract partition that divides sensing systems with the requirement of taking a par-

ticular device. The half-left is the area for technologies that require a user to carry a

device, while the other half is device-free sensing. The closer the position is to the

origin, the more intrusive the system is. For example, RFID (e.g., [85]) is more intru-

sive than Bluetooth based approaches (e.g., [90]). The reason is that RFID requires

a special tag or receiver, while Bluetooth requires only Bluetooth modules embed-

ded on personal mobile devices. The energy monitoring system (i.e., power meters)

has a low level of intrusiveness when it is placed out of occupants’ visibility, such

as in the root of the electrical energy distribution network. It, however, provides

coarse-grain occupancy detection, since, it can only reveal occupancy or vacancy

state of a residential building when placed in an incoming electrical line, such as
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Non-intrusive Occupancy Monitoring (NIOM) [26].

In the second dimension, we divide sensor granularity into binary presence, user

counting, and user identification. Environmental monitoring systems, including

CO2 concentration, temperature, and humidity, can identify the human presence

and approximate the number of occupants in the space. This capability is due to

their strong correlation with the number of occupants [72]. The number of occupants

in an area can also be known by counting the number of connected devices [82],

speakers [57], or chairs being used [71]. These are situations that can be monitored

with medium-level intrusiveness. Medium intrusiveness is due to the higher num-

ber of sensor instances needed (e.g., attached on each chair). Compared to the envi-

ronmental monitoring system, these are deemed to be more intrusive as they require

more sensors deployed in the environment; hence, more invasive to occupants and

more difficult in installation and maintenance. Finally, finer grain occupancy can

be acquired through a personal localization system. RFID and Bluetooth offer per-

sonalized tracking features due to the association of RFID tags or Bluetooth signal

receivers (e.g., phones) with particular occupants. While these systems depend on

hardware to be carried, the adoption of Bluetooth technology in daily-used smart-

phones reduces the burden of carrying additional devices. The comparison of dif-

ferent sensor types for occupancy detection is discussed in the review by Chen et

al. [27].

An ideal sensing source should be minimally obtrusive, by being able to sense

environmental from afar and cover an entire environment (i.e., one sensor per room

or less) [73]. Additionally, to acquire additional information (e.g., user identification

(ID)), we may adopt localization systems. As will be discussed in the rest of this

thesis, we will focus on the localization system and energy monitoring systems that

contribute to the occupancy detection.

2.4 State of the Art

The information extraction from sensory sources covers numerous experiments with

various sensory modalities. Our main concern is on localization and power meter-

ing systems, for their potentials in acquiring fine-grain occupancy with low intru-

siveness.

2.4.1 Location

One advantage of the localization system is that it brings user ID, in particular, based

on identifiers carried by occupants. The ID is particularly useful, for example, to
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control lighting or thermal systems based on occupant data, so-called occupancy-

based control [91]. Previous works have shown that occupancy detection based

on the localization systems with identification leads to users’ comfort and energy

saving, both lighting and Heating, Ventilation, and Air Conditioning (HVAC) sys-

tems [84, 144, 90, 14].

Moreno et al. propose to use very fine-grain location information (i.e., user lo-

cation coordinates) for occupancy detection in a university laboratory to achieve

efficiency in a heating system [84]. They deploy numerous Infrared-enabled RFID

reference tags densely and require people to carry a monitor tag to be localized. The

coordinate position is then estimated using neural networks, and the particle filter

method is used to predict upcoming positions [85]. User comfort preferences are ac-

quired based on user interaction through an interface. HVAC appliances are finally

controlled based on occupants’ identification and localization and unique adjustable

comfort profiles. It is reported that the mean error localization could be lower than

1.5m, and the energy reduction of 20% compared to a scenario without the energy

management approach can be achieved.

Existing IT equipment, such as WiFi access points, may also be exploited for the

same purpose. Zhou et al. achieve 1.385m accuracy of fine-grain localization using

RSS fingerprinting (i.e., developing a database of signal strength distribution in an

area) [144]. They design a mobile application to collect occupants’ preferences for

lamps. User preferences are accommodated when the corresponding occupant en-

ters the zone where the lamps are located. An experiment in the eight weeks of a

total of 24 weeks on the user preference-based control demonstrates up to 93% and

80% energy saving, compared to static scheduling control and PIR-based control,

respectively, in the living space and four chambers. Balaji et al. investigate more

coarse location information using the same sensory modality [14]. The authors

propose to estimate users’ locations based on the zone area of the connected access

point to keep the system simple even in a large scale implementation. When a de-

vice is connected to an access point that covers the device owner’s personal space,

the owner is considered to be present. There is a mapping between occupants and

corresponding office numbers and MAC addresses, handled by the system. About

83% accuracy is reported on the personal space occupancy detection over a ten-day

experiment. HVAC system is then controlled based on the occupancy data on one

experiment day. It is reported that saving 17.8% of electrical energy is achievable by

controlling 55 HVAC zones (23% of total zones) in the building.

Research on the subject has been shifting to use available devices that support

occupant daily activities, such as a mobile phone, not only to collect preferences but

also to get location information. Coarse-grain location, such as the system based

on WiFi authentication request, is non-intrusive, yet not sufficient for saving en-
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ergy. At the same time, fine-grain occupancy demands significant efforts such as

building a WiFi fingerprint database. Bluetooth is a potential solution to indicate

room-level locations and show user preferences, as suggested by Park et al. [90],

especially in places where WiFi does not cover all spaces very well. Park et al. pro-

pose LightLearn, a framework aiming at learning individual occupant preferences

and environmental conditions in lighting control based on reinforcement learning.

While Bluetooth makes use of existing mobile devices, the discovery of classic Blue-

tooth makes a nuisance on pairing new device requirements. Moreover, the authors

address an individual occupancy instead of multi-user occupancy.

Distinguishing people present in a shared office is of interest because it can sug-

gest personalized services to improve energy saving while maintaining satisfaction.

Recent research has suggested that BLE advancement supports occupancy detec-

tion. However, the focus is only on a single occupant (e.g., [17, 45, 81, 30]). In this

thesis, we address multi-occupant occupancy detection in shared offices. With mul-

tiple occupants, this work faces challenges such as various signals due to various

handsets used by the employees as well as fast fading and multi-path propagation.

These may influence the inference of multi-occupant presence, especially in adja-

cent rooms. More specific techniques and proposed solutions to the problems are

discussed as relevant literature in Chapter 6.

2.4.2 Power Monitoring

A power monitoring system in a building may have more purposes than solely as

a power measurement. As illustrated in Figure 2.2, various power meter types (i.e.,

centralized metering, sub-metering, and plug-based metering) have been explored

to extract occupancy-related information. The farther from the origin the meter-

ing types are plotted, the finer-grained information may be collected, but the PMs

become more intrusive. In the vertical axis, we see various purposes of the me-

ters. The higher the meter position, the more generic power meter purposes. Power

readings from single-point metering have been used in residential areas to reveal

home occupancy status [66, 26], as shown in the top left of the figure. The de-

tection process is non-intrusive, leveraging the existing power meter in a central

panel. Yet, it only involves coarse granular detection (i.e., occupancy of a house

or flat as a whole). Additionally, some efforts have been performed based on cen-

tralized metering to monitor appliances at home, without revealing additional user

contexts (e.g.,[18, 19, 130]). While they extract information from coarse-grain power

readings (i.e., per home), these efforts may only extract high-power electrical loads

from aggregate power consumption, such as fridge and freezer, washing machines,

and electric cookers.
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Figure 2.2: Various power meter utilization in buildings

On a larger scale, such as in large offices or other commercial buildings where

many occupants live, the centralized power meter may not useful to show any infor-

mation. It is unable to monitor occupancy only in a part of the buildings (e.g., on a

particular floor or room) unless a specific meter is installed. The meter is defined as

sub-metering or circuit-level sensing [106]. Fortunately, these meters are commer-

cially available and relatively easy to install by clipping the meters to an incoming

line of the electric board (e.g., Efergy Engage Sub-metering kit1). In this way, the

power readings are still in aggregate forms, but with a smaller number of electric

loads in a particular area.

Given the aggregate power readings, the purpose of power meters can be ex-

tended as a source of context. Some researchers have used sub-metering system

for electric load identification purposes. With more granular power readings (e.g.,

at desk or room-level), they can extract activation of smaller power-consuming ap-

pliances, like those commonly used in the office. For example, Zoha et al. have

investigated appliance recognition using plug meter per desk [142]. The authors

propose Factorial Hidden Markov Models (HMM) and Generalized Likelihood Ra-

tio to classify a combination of activated electrical loads on a desk (e.g., a PC, LCD,

laptop, desk lamp, and fan). They use some combination of electrical features, in-

cluding the average of real power and reactive power, power factor, and a standard

deviation of real power and active power. The recognition of several combination

appliances results in F-measure, ranging between 76-98% for binary state appliances

1https://efergy.us/engage-sub-metering-kit/
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and 61-95% for multi-state appliances. Similarly, Rogriguez et al. study the identi-

fication of individual loads and the combination of them [111]. Kitchen appliances

(e.g., kettle, microwave) and workstation appliances (e.g., heater fan, PC, lamp, and

charger) are involved in the experiment. The authors use a high sampling power

meter (i.e., 1kHz) with two electric measures, namely, electric current and phase

shifting. They generate more features derived when appliances are in transitional-

and steady-state. Based on the features, active-appliance labels are then classified

based on Decision Tree (DT). The identification of individual loads results in 90%

accuracy for most appliances, while the recognition of the aggregate loads results in

vary, ranging between 50-80%.

The recognition of appliances may indicate occupancy when the recognized ap-

pliances are those that require direct interaction (so-called user-interactive appli-

ances [75], or usage dependent appliances [137]), for example, a computer, printer,

and microwave. Lee et al. attempt to distinguish the user-interactive appliances

from the others (i.e., background appliances and occupancy-reactive appliances) [75].

Their motivation is to use the recognized user-interactive appliances and the infor-

mation of user presence (i.e., acquired from the other modalities) to deactivate un-

used power outlets for saving energy. In [31], Conti et al. have identified laptop

power consumption and associated with some users. Their approach is based on

plug metering per user, which provides some measurements (i.e., active and reactive

power, RMS current, and phase angle). Apart from these works, other researchers

generally concern with finding the activated appliances without linking this infor-

mation to the occupancy, as shown in the lower part of Figure 2.2 (e.g., [110, 19, 111]).

More experiments in appliance recognition with various setups and subjects, how-

ever, are needed as a proof-of-concept of benefit appliance recognition in occupancy

detection.

Researchers have studied the occupancy detection in offices by mining power

consumption. Yet, they mostly utilize intrusive power meter, either per appliance

or per work desk, as clustered in the top right of Figure 2.2. Shetty et al. involve

four participants in the experiment of individual presence states (absent/present).

They employ a clustering approach of PIR sensor data and the power consump-

tion of a PC and monitor during one-week observation [119]. Similarly, Zhao et al.

deploy power meter per appliance in more varied appliances, including fans, charg-

ers, lights, and printers [139]. The authors categorize the appliances to one of three

classes (i.e., PC, lighting, and others) to infer an occupancy state (i.e., occupied with

computer work, occupied with non-computer work, remote computer work, or un-

occupied). They use DT, SVM, and naive Bayes classifiers to classify power readings

per data point. The occupancy detection accuracies vary among the occupants and

classification techniques. The best approach is DT, reaching an average accuracy of
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90% and a kappa value of 69%. In addition to the present state classification, the

authors also predict the number of room occupancy using regression approaches.

They report a strong correlation between the prediction and ground truth, reaching

95%.

To reduce the number of deployed power meters, some researchers propose to

use only one-meter per desk, representing the total power consumption per occu-

pant. Akbar et al. utilize a power meter that measures active and reactive power,

RMS voltage and current, and phase angle [10]. Several combinations of feature sets

are applied using k-NN and SVM with various kernels to investigate occupancy

state per desk (i.e., present, absent, and standby). It is reported that the more train-

ing data used, the more accurate the performance for all techniques. The overall

accuracy reaches 93.67% based on two weeks experiment. Jin et al. utilize plug

based power meter sensors at each work desk measured at a resolution of 1s [61].

The authors propose a Bayesian-based algorithm that does not require training la-

bels [62]. The algorithm is based on rough estimation on working schedules fol-

lowed by refining the prediction based on individual power readings. The authors

compare the results with inferences from ultrasonic, acceleration, and WiFi connec-

tion. Also, they compare to threshold-based power consumption readings, the basic

yet intrusive approach due to the involvement of a large number of power meters.

The results show that the proposed approach is superior among threshold-based

ones, and it is better than the acceleration and WiFi based inferences. It is also better

compared to ultrasonic-based occupancy detection for most people.

Our work improves on the state of the art by considering sub-metering systems

in an office. That is, the system measures the total consumption of occupants at

room office level. In this scheme, our approach requires fewer power meters but

still allows us to monitor low-power consumption devices. This work contributes

to how the sub-metering benefits to occupancy detection while maintaining low

intrusiveness.

Different markers in Figure 2.2 indicates some extraction techniques from power

readings. Square markers ( ) annotate occupancy extraction from power consump-

tion data mining that generally uses moving windows. Circle markers (˝) annotate

event detection approaches for appliance recognition or electric load identification,

while black-shaded circles (‚) indicate recognition based on moving windows. The

overview of the techniques is discussed in the next chapter.



Chapter 3

Power Metering for Context Determination

3.1 Overview

A vast number of power meters have been installed in recent years, as shown in

Figure 3.1. That is, up to 20 million units are deployed annually in recent years in

European countries, reaching about 165 million units in 2020 [113]. In the U.S., the

number of installation by this year approaches 98 million units, and it continues to

grow about 10 million units per year [7]. Smart meters have covered more than half

of the U.S. households since 2017 [40].

The existence of power meters brings opportunity to improve building context

Figure 3.1: Smart meter installations in European countries (top) and the U.S. (bot-

tom), adapted from [113, 7]
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awareness. Power meters typically exist in a building and are accessible by building

control systems, thus giving minimum intrusiveness level while minimizing bud-

get allocation for adding additional sensors. Furthermore, power meters, which are

based on electric wires, are considered to be robust toward signal interference, as

suffered by radio signal-based sensing such as UWB, WiFi, and Bluetooth. However,

this opportunity has not been fully explored by communities, mainly due to broad

use cases (e.g., different office setup and appliances) and limited data availability

due to restricted building access. This chapter contributes to the investigation of

power metering systems for context-aware purposes. In Section 3.2, we investigate

the availability of power meter and its utilization, including power meter as a mea-

surement and monitoring device, and as a context source. In Section 3.3 and 3.4,

we discuss techniques in electric load identification and data mining from power

consumption readings. Finally, we summarize power metering systems as an oc-

cupancy detection source in Section 3.5, which also provides suggestions for our

research. Following this chapter, we discuss experiments on power consumption

readings based on event detection (Chapter 4) and sliding windows (Chapter 5).

3.2 Installation and Application

Power meters are commonly available in buildings, and they may be deployed at

some locations in a building. The installation points and density influence informa-

tion granularity, and thus, the power meter purposes.

3.2.1 Power meter Installations in Buildings

Power meter refers to a device that measures power consumption on the consumer

side, such as in residential or commercial buildings. There are mainly two sensor

installation locations. First, a centralized power meter is commonly placed at a sin-

gle point sensing, usually at the incoming electrical line of a customer’s building.

The type of meter is usually a panel and may be equipped with a display, as shown

in Figure 3.2 a). The panel power meter is relatively expensive as it has full features

such as power quality analysis, high sampling rate (i.e., up to ą40kHz), and com-

plete measurement variables (e.g., current, voltage, power factor, harmonics, etc.).

Such centralized sensing is seen in residential or public buildings, for example, in-

stalled by electric system operators. Using the readings, however, it is rather hard to

have the consumption breakdown due to the complexity of power readings. Prior

knowledge of appliances is required to break the component of consumption [130].

Second, it is also common for power meters to be deployed across the build-

ing. This is called distributed metering [106, 107] or hardware-based sub-metering
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Figure 3.2: Commercial power meters: a) A panel meter from Schneider electric;

b) A current clamp meter from Smappee; c) A plug-in power meter from Plugwise

[89, 22]. In this scheme, more than one meter is installed; each is responsible for a

separate circuit representing a different area or different type of device. The meters

in Figure 3.2 b) and c) are commonly used in the distributed metering. The former

is a clamp meter, a jaw-shaped meter that works by measuring the magnetic field

generated by current as it flows through a conductor. It works by clamping the jaw

on a cable. The read features are not as complete as the panel power meter, and the

price is relatively more affordable. The latter is a plug meter, a meter with wireless

network module (e.g., based on Zigbee protocol) to communicate with other nearby

plugs and to send data. Plug meter generally measures a single appliance, but it can

be extended to measure a group of devices using an electric socket extension (e.g.,

in [61, 10]).

The more density of power meter in a building, the easier to breakdown the

consumption readings as there are fewer electrical appliances involved in the mea-

surement per meter. Thus it may be more sensitive in detecting lower power appli-

ances [106]. Power meters spread out in a building usually have a lower sampling

rate and fewer features at a more affordable price than the centralized meter. Ridi

et al. propose to classify the sub-metering scheme into three sub-domains: one me-

ter per zone, one meter per plug (i.e., each meter covers several appliances), and

the most granular, one power meter per appliance [109]. The different schemes of

power meter installation affect the information details and, thus, the utilization of

the power readings.

3.2.2 Power meter applications

Beyond its basic function as a measurement device, a power meter may have some

other purposes, such as monitoring electric loads and providing contexts of a build-

ing.

As a measurement and monitoring device. The advancement of power meters,

that is, having a communication interface or protocol, has enabled information ex-

change between the meters and utility companies or energy suppliers. This feature
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allows direct and automatic billing purposes without having to survey power con-

sumption home-by-home visually. The advanced power meter, called a smart meter,

also has several sensors and control devices. These capabilities allow us to collect

diagnostic information about distribution grids and home devices and to send com-

mand signals accordingly.

Another common application of power metering system is to monitor appli-

ances or loads. The aim is to investigate power consumption behavior and usage

patterns. The appliance monitoring can be done by massively deploying plug me-

ters across a building, such as in [60]. In this way, the information is specific with

much detail (i.e., per device). However, this approach is not scalable to large build-

ings due to high initial investments. A solution to this problem is to disaggregate

composite power consumption loads. This is called Non-intrusive Load Monitoring

(NILM) [55]. The idea is to decompose the total load into several component loads

based on their contributions.

Other researchers focus on the recognition of activated electric loads, so-called

electric load identification [38]. The motivation is to have insights into which ap-

pliance is activated so that it can be wisely controlled for remote actuation. The

goal can be minimizing inefficient uses, satisfying users’ preferences, or preparing

certain appliances or electricity utilities to quickly react to changes in renewable

energy source availability. Furthermore, it is possible to recognize possible mal-

functions (e.g., [63]), so that we can mitigate problems before the appliance deterio-

rates. A typical approach is to deploy power meters throughout a building (i.e., sub-

metering), and apply a supervised machine learning algorithm to classify the type

of devices. Appliance recognition using centralized sensing is also possible, such

as by detecting switching events on the aggregated power readings to detect appli-

ance state changes. In this case, Weiss et al. propose to use a mobile phone to record

appliance signatures for labeling the measurements in the training phase [130].

As a context source. Power consumption readings may reveal occupant informa-

tion in a building, such as room occupancy, user location and activity, and identity.

Lee et al. have reported that the power consumption readings may indicate room

occupancy and user activity if occupants interact with user-interactive appliances,

such as a coffee machine, television, and PC [75]. Any interaction with those ap-

pliances results in changes in power consumption footprints, such as higher power

consumption and the presence of ripples when devices are ON. Even further, Conti

et al. have identified that laptop power consumption may identify working users

when power usage is acquired per individual [31].

Researchers have extracted occupants’ appliance-related activities both in houses

and offices. In [20], Belley et al. propose to recognize the activity of Alzheimer pa-
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tients through ON/OFF event detection and activated appliances recognition from

power readings. Four activity scenarios are experimented by including up to six

devices operated at the same time. In [76], recognizing activated appliances is also a

key to identify occupants’ activity. The appliance recognition is done by exploiting

the order of appliance activation using a dynamic Bayesian network. Once activated

appliances are predicted, the system associates the appliances to activities based on

the most frequent appliance use gathered from a social game. The authors focus

on seven activities associated with appliances, such as using a computer, preparing

a meal, watching TV, etc. Finally, the system shut unattended appliances down to

conserve energy based on the recognized activities.

The extraction of temporal relations between consecutive activities has been proven

to improve the activity detection accuracy. Alhamoud et al. investigate activity se-

quence patterns using the Apriori algorithm [11]. The algorithm scans the whole

dataset to find all frequent activities and high dependency of two consecutive ac-

tivities. It is found that eating activities frequently happen after cooking or making

coffee. Furthermore, user location is also predicted by mining individual appliances’

power consumption, such as in the kitchen, living room, work area, or outside.

3.3 Electric Load Identification

So far this thesis has focused on the power meter installation and application. The

following section will describe electric load identification terminology. Electric load

identification is the assignment of appliance labels to the electric loads based on

unique characteristics in power meter readings. The identification includes the type

or model of a load and its operational status. The meaning of this term has been

broadened in recent years. Appliance recognition is defined as the process of recogniz-

ing the operating states of appliances from raw sensing data of electric power [76].

Likewise, load monitoring is defined as the process of acquiring and identifying load

measurements to determine the energy consumption and status of individual loads

in a system [6]. While these terms are similar in the detection of appliance states,

load monitoring is generally an extension to determine the energy consumption of

the known individual states. Similarly, Load disaggregation is defined as a separa-

tion process of single appliance power consumption from the total power readings

[108, 13]. This process is usually needed to obtain appliance signatures in NILM.

In general, two approaches are common in identifying the electric loads. First,

optimization is often done with an objective function, such as minimizing the resid-

ual value between real power readings and the known power consumption (e.g.,

as stated in an appliance manual book). An example of such method is the Least
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Square Estimation [69]. Another approach is based on the recognition of electrical

signatures. There are two signature forms as defined by Liang et al. [77], snapshot

form and delta form. Snapshot form is defined as an instantaneous capture of read-

ings at any fixed time intervals, while delta form is the difference of two consecutive

snapshots form signatures. The former is related to a sliding window approach,

while the latter is related to switching state detection. The techniques are discussed

in the following.

3.3.1 Switching state Detection

Based on the premise that appliance state changes lead to energy consumption fluc-

tuation, the switching state detection technique finds ON/OFF transition events in

the power readings. The study was first carried out by George W. Hart [55]. The

author initially observes the behavior of appliances, consisting of appliance active

and reactive power changes when they are switching ON/OFF. He then performs

cluster analysis and build appliance models. Alternatively, a user may record an ap-

pliance behavior manually to introduce the appliance to the system. Based on this

knowledge, the system detects switching events, and assigns appliance labels with

the best matching cluster or appliance model to the events. The changes may also

be observed from electric current (e.g., [111]) or other electric variables. Figure 3.3

illustrates switching state detection on a series of power readings.

While the idea is straightforward, there are some challenges in the implemen-

tation. First, detecting events, especially low-power devices, is not easy. It is be-

cause fluctuations in the aggregate power readings can shade the power consump-

tion per device. Furthermore, multiple consecutive events with shorter period than

the sampling interval will be detected as a single event. Second, it is challenging to

match ON/OFF combinations in a sequence. An ON/OFF activation state of a de-

vice might be incorrectly predicted when other events (e.g., the activation of other

devices) present in between. Such an error could lead to a more complicated prob-

lem when further processes are applied on top of switching state detection. Finally,

electric load identification based on switching state detection has high complexity

in terms of cost and time in recording an appliances database, as the assumption

of this scheme is that all possible appliance changes are introduced, and load sig-

nature database has been formed [77]. A comprehensive review of appliance load

monitoring systems based on power changes is presented in [138].
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Figure 3.3: Switching state detection, adapted from [18]

3.3.2 Sliding window Approach

Another approach is to detect whether an appliance is activated during a sample

duration. The implementation of this approach is generally based on sliding win-

dows on power readings to capture appliance features [142]. The similar approach

has also been done by Basu et al. [18]. The authors investigate electric load identifi-

cation on centralized power meter readings in a hundred houses to identify individ-

ual loads directly from the total load readings. After clustering the houses into four

categories, they employ a 10-minute overlapping sliding window and apply HMM

models and nearest neighbors with various distances. It is reported that appliances

with a significant amount of energy consumption could be detected. The best-

recognized appliance is a water heater with 91% F-measure in three house-clusters,

followed by a dish-washer, electric cooker, and an electric oven with about 60% F-

measure, depending on the house-cluster. Nearest neighbor based approaches with

dynamic time warping and euclidean distance seem outperform the HMM.

As this scheme does not depend on the switching state detection, the approach

seems more suitable for low sampling rate power meters. However, several draw-

backs appear. First, multiple appliances run simultaneously form an aggregate

power consumption that is difficult to interpret. It requires classification model up-

dates whenever a new device is introduced. Second, the size of the window width

is difficult to determine. The wider window size leads to more device transitions

involved in the process, while narrower sizes limit the information gathered. The

best window width is often discovered from trials.
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Figure 3.4: Sliding window approach, adapted from [18]

3.4 Power Consumption Data Mining

Mining on power consumption data has been done generally to detect occupancy

in homes or workspaces. The existing occupancy detection in the residential sector

focuses particularly on recognizing higher mean and standard deviation of power

loads when the household is occupied [67, 26]. In [26], the occupancy state is de-

tected based on thresholds, while in [67], several machine learning approaches (e.g.,

SVM, k-NN and HMM) are applied to classify the state of occupancy. Similar work

is also done with lower resolution data (i.e., 30-minute interval and 100Wh incre-

ments) by firstly estimating the power consumption before applying machine learn-

ing classifiers [56].

In a cubicle office environment, binary occupancy detection has been approached

by deploying power meters for each computer-related device (e.g., PCs and moni-

tors) and a PIR sensor in each workspace [119]. Unsupervised k-means clustering

is applied to interpret the absent and present state for each of four users. In [10],

the setup is simpler by considering a power meter installation for each desk and let-

ting users connect any devices to the measured power outlet. k-NN and SVM based

techniques are then used to classify three occupancy states (i.e., away, present, or

standby). In addition to the occupancy state classification, the prediction of room

occupancy level is also done using a regression approach [139]. The authors deploy

power meters to measure individual office appliances, including computers, lights,

and others. Petrovic et al. infer occupancy of households and offices by mining the

power consumption of WiFi routers and office appliances [93]. While it is found that

the router’s power consumption may indicate occupancy in a room, the detection
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performance is improved when additional appliance consumption data is involved

in the inference. There is a relationship between the number of occupants and the

increasing amount of power consumption.

3.5 Summary

Thus far, we provide an introduction to power meters in buildings and their contri-

bution to electric load identification and occupancy detection through power con-

sumption data mining. The chapter also discusses two forms of signatures in ana-

lyzing power consumption. The lesson learned from this chapter are summarized

as follows:

1. The farther power meter deployment is from users, the less intrusive it is, but

the information detail is consequently lower.

2. Power meters are commonly found in buildings. Power consumption is po-

tentially used for appliance monitoring, and it has a relationship with contexts

of users (e.g., occupancy and activity), especially the consumption of those de-

vices that need an interaction to be activated. While approaches to recognize

activated appliances have been proposed, they only identify appliances, and

not many of them use this information to reveal occupancy. We aim to fill

this gap by recognizing office-related appliances to indicate user presence in

Chapter 4.

3. Two common schemes for analyzing power consumption exist, namely, switch-

ing state detection and sliding window approaches. Each has its drawbacks

and advantages. Our aim is to ascertain which one is better for occupancy

detection by experimental means. We report our findings in Chapters 4 and 5.

4. Occupancy may be gathered by mining the energy consumption of a house,

workspace, device, or even a WiFi router. However, published studies on the

occupancy detection based on power consumption data mining mostly rely

on power meter installed either per appliance or per desk. The studies would

have been less intrusive if they use fewer power meters, such as one meter per

circuit or per room. We aim to fill this gap by mining power readings on the

sub-metering system in Chapter 5.





Chapter 4

Event based Power Meter Classification

4.1 Overview

Power meters offer an opportunity to acquire contexts related to occupants in a non-

intrusive way at a relatively low cost. To gain such benefits, power meters need to

be installed sparsely and far from occupants. For example, it needs to be installed at

the root of the electrical line or at the circuit-level in an electric circuit breaker rather

than attached to each appliance. This way, the measured consumption comes in the

aggregate forms, and the readings are affected by many devices’ consumption.

The contexts may be acquired by recognizing individual appliances from the

power readings. Recalling the smart building example, if the building can iden-

tify Boy’s computer monitor activation from the sub-metering measurements, it be-

comes aware that Boy starts to work. Eventually, it may assign only 75% brightness

to a specific lamp close to his workspace as he preferred. Unfortunately, the study of

appliance recognition from sub-metering in the office environment is scarce as stud-

ies are mostly concerned with high-power electric appliances in residential build-

ings. In this chapter, we focus on typical offices, with employees working at desks

mostly on their computers. In particular, we consider the electric load identification

of computer monitors. The study is based on switching state detection, a method

that explores appliance state-changing events by recognizing significant changes on

its power consumption waveform. We propose a procedure to recognize appliances

from aggregate power consumption readings inspired by Weiss et al. [130]. The dif-

ferences lie in the appliances to be detected (i.e., we aim to identify low-power mon-

itors) and the generated appliance features based only on active power. We show

that the appliance activation may indicate the occupancy of employees. However,

the recognition of the activated monitors from measured aggregate power consump-

tion is not easy, especially in a large office with more identical devices.

This chapter firstly presents relevant literature on appliance recognition based

on switching states in Section 4.2. It then describes the off-the-shelf power meter

sensing technology and discusses the proposed procedure in Section 4.3. The exper-

iment details and results are discussed in Section 4.4 and 4.5, respectively. Finally,
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Section 4.6 summarizes and concludes the experiments.

4.2 Relevant Literature

A number of studies have investigated electric load identification based on event

detection. Inspired by Hart’s seminal work [55], Belley et al. identify electric loads

based on active power (P ) and reactive power (Q) [20]. The authors experiment on

three-phase power meter readings installed in a laboratory. Appliance signatures

are initially extracted by detecting switching states of each appliance, followed by

computing ∆P and ∆Q. They also note to which electric phase line the appliance

is connected to. In the appliance identification phase, they use the collected signa-

ture database with predetermined decision rules to classify detected switching ON

appliances. The rules firstly examine in which phase the event was detected. It then

compares ∆P and ∆Q and, if still in an acceptable range, compares other Boolean

features (e.g., whether reactive power consumption occurs continuously). The in-

vestigation on 16 appliances shows that most switching events are identified using

the proposed approach, except for the fan, stereo, and refrigerator due to consider-

ably small ∆P (each with 153, 200, and 1100W, respectively). The rest of the appli-

ances are high power consumption such as stoves, kettles, oven, etc. Following the

appliance identification, the authors investigate human activities. It is reported that

four activity combination scenarios are detected with at least 97% accuracy. These

scenarios include a combination of up to twelve events of six different appliances.

Weiss et al. show that home appliances may be recognized on aggregate power

readings without deploying a large number of sensors [130]. They propose a sin-

gle meter system to measure aggregate power consumption and recognize appli-

ances based on events. First, the time points of switching events are detected. The

event detection relies on the threshold of the absolute differences of two consecu-

tive smoothed apparent power measurements (i.e., threshold fth “ 2V A). Several

filtering methods are compared to avoid false events (i.e., due to transient behav-

ior, not appliance switching states) as many as possible without missing the real

switching events. Second, electrical parameter differences before and after the event

are then computed to acquire power change information due to an activation of an

appliance. Also, power levels between two consecutive events are also extracted.

Finally, the differences are compared to an appliance signature database, and the

event is mapped to a switching state of a device accordingly. The signature database

is populated using a smartphone application that acquires occupants’ feedback. The

matching process relies on the nearest neighbor search in a two-dimensional space

(i.e., active power and reactive power). The authors consider up to eight home ap-
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pliances. Most of them consume more than 30W , except for a console game, fluo-

rescent lamp, and CD player that consume 15, 25, and 3W , respectively. The testing

runs over several hours with multiple devices running in random order. 125 of 128

switching events are identified correctly. They do not further test the detection sys-

tem in real-world data, such as in daily life where occupants do some activities.

Beckel et al. and Cicchetti implement Weiss’s approach with some changes (i.e.,

in the creation of the appliance signature database) [19, 28]. They validate the ap-

proach in their dataset, the one of six households consumption data. As a solution

to missing Weiss’s signature collection procedure which uses a smartphone appli-

cation, Beckel et al. install up to ten plug meters per each household. They use a

threshold on active power (i.e., fth “ 5W ) to detect appliance activation on the plug

data and extract appliance signatures from the smart meter in training sessions. The

authors then test 90 days of household consumption data with an additional 15 days

for training. There are nine appliances to be recognized in the chosen household,

categorized as cooling appliances (a fridge and freezer), high consumption devices

(a dishwasher, kettle, and stove), and others (a lamp, TV, stereo, and laptops). The

results report that cooling appliances detection has nearly perfect detection with

.92 F-measure. The detection of high consumption devices also results in almost no

False Positives, but the algorithm misses many events for these appliances, resulting

in low F-measure of up to .56 and .25 for dishwasher and stove, respectively. For the

rest of the appliances, the F-measure are low, mostly due to low power consump-

tion (i.e., laptop and stereo consumes 23W and 55.6W ), and easily be confused with

switching events or variations caused by other appliances.

Event-based detection has been used in the identification of electric loads. The

well-recognized appliances are usually high power consumption devices, such as

kettle and stove. While the activation of these appliances may indicate contexts (e.g.,

presence in a kitchen), the researchers barely make use of this information. Also, dif-

ficulties arise when the involved appliances are similar, such as monitors in office

environments. This similarity challenges the implementation of event-detection on

small office appliances. Furthermore, while the aforementioned works use active,

reactive, and apparent power measurements, most of the off-the-shelf meters mea-

sure active power only [126]; thus, the proposed approaches may not work properly.

4.3 Design

We utilize plug power meters with a basic measurement capability (i.e., active power

in Watt). The meters are installed on each monitor to discover the relation of moni-

tor usage and user presence in two offices. We investigate low-intrusive occupancy
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detection on the aggregation of monitors’ power consumption. We propose an ap-

proach based on switching event detection and apply several machine learning tech-

niques to recognize which monitor is activated given the aggregate consumption.

4.3.1 Sensing Technology

Plugwise Circle is a plug power meter and has a wireless communication module

based on the Zigbee protocol for flexible and portable deployment. The plugs can

be easily deployed on a power outlet and measure any electric appliances. Nearby

connected plug meters (i.e., up to 10 meters range) will form a meshed network

and communicate with each other. It measures active power (i.e., the amount of

power that flows through the power meter) at 10s interval. Measurements from

each plug meter are sent to a USB stick connected to a thin client (i.e., Raspberry

Pi). The Raspberry acts as a data pooler and gateway. The measurements are then

forwarded to the message queue in our distributed data warehouse.

Despite its easy deployment, measuring each device on the power outlet is ex-

pensive and considerably intrusive to users. We devise to use fewer plug meters

(e.g., installed in the root of an electric circuit) to reduce costs and simplify the ap-

proach. Therefore, we use the power aggregation of plug meters to simulate mea-

surement of an incoming line in a power circuit. Devices’ switching states are then

detected in the aggregate power consumption.

4.3.2 The Proposed Procedure

We propose a procedure for identifying electric low power monitor screens based

on switching event detection.

Event Detection and Event Validation

Let X be the aggregate power consumption of computer monitors belonging to a set

of individuals J “ tj1, j2, . . . , jnu. We assign an event detection function fevpOq to

detect potential switching events on the ordered sequence of active power observa-

tion O “ X1, X2, . . . , XT .

The detection process starts with scanning power changes using a threshold of

the absolute difference between consecutive power measurements (wattThreshold “

10W ). Any events occurring within less than 60s (i.e., a durationThreshold) from

the preceding event are ignored to prevent false event detection due to oscilla-

tions happening slightly after switching events. Once potential events are detected,

care is taken to compute ∆X , i.e., the difference values after and before the events

(meanafterpevq and meanbeforepevq). The average values of 30 samples before and
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after the event are considered in the computation. The value of ∆X needs to be

higher than 10W to be considered as a real switching event. The precise procedure

is presented as Algorithm 1.

Algorithm 1 Event detection and event validation

1: global variables

2: wattThreshold, the minimum power change of consecutive measurements

3: durationThreshold, the minimum duration of consecutive events

4: durationBetweenEvent, the duration of two candidate events

5: validatedEvents, the array of validated events

6: end global variables

7: procedure EVENT-DETECTION(X )

8: Input: the aggregate power consumption

9: Output: potential events

10: for all sliding windows w in X do

11: range Ð maxpwq ´ minpwq

12: if range ą wattThreshold then

13: if durationBetweenEvent ą durationThreshold then

14: events Ð w

15: return events

16: procedure EVENT-VALIDATION(events)

17: Input: potential events

18: Output: validated events

19: for all event ev in events do

20: ∆X Ð pmeanafterpevq ´ meanbeforepevqq Ź get power changes after an

event occurred

21: if ∆X ą wattThreshold then

22: validatedEvents Ð ev

23: return validatedEvents

Feature Extraction

Following the event detection, we examine all combinations of events to find start-

end combination matches based on variance. That is, we calculate some parameters

between the consecutive events evi and evi`1. Inspired by the field of dynamic sys-

tems [46] and statistics, we consider: rise time, overshoot, steady level, variable

variance, and the mean of absolute difference. However, due to the limitation of

the power meter in capturing positive-going transition in 10s interval, rise time and
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overshoot are less meaningful and thus not reported in this thesis (see [98] for de-

tails).

Delta X (∆X) shows the difference value of average power before and after an

event [130].

Steady level (or power level) indicates the power of a device (or set of devices) in

a stable state. We use the histogram method to estimate the upper and lower

levels [1]. We then assign the value that closest to the mode as the steady level.

Mean of Absolute Difference (MAD) captures the ripples during a device active

period, Eq. 4.1 [62].

MAD “
1

N

N
ÿ

i“2

|Xi ´ Xpi´1q| (4.1)

Variance measures how far a set of values are spread out from the steady level, i.e.,:

var “
1

N ´ 1

N
ÿ

i“1

|Xi ´ X̄|2 (4.2)

Finally, we compute the changes on steady level, mean of absolute difference,

and variance due to event occurrences. The feature extraction process is shown

in Algorithm 2.

Algorithm 2 Feature extraction

1: procedure FEATURE-EXTRACTION(X, validatedEvents)

2: Input: the aggregate power consumption and validated events

3: Output: the array of features

4: Global variable: varThreshold, the maximum variance between two events

5: for all event ev in validatedEvents do

6: steadyLevel Ð levelspXevi
, Xevi`1

q

7: MAD Ð madpXevi
, Xevi`1

q

8: variance Ð varpXevi
, Xevi`1

q

9: if variance ă varThreshold then

10: featuresArr Ð {∆level; ∆MAD; ∆variance} Ź get the

state-transition values after an event occurred

11: return featuresArr
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4.3.3 Techniques/Methods

Given a set of monitors D “ td1, d2, . . . , duu, where individual ji P J has a monitor

di P D, we assign classifier hrecog which labels the events detected by the event

detection function fev with a monitor label di, formally hrecog : fevpOq Ñ di. Several

classification methods are possible:

k-Nearest Neighbor is one of the simplest learning techniques that works by find-

ing the labeled samples nearest to a query and predict the class label with the

highest votes [117].

Naive Bayesian is a simple probabilistic classifier that assumes features are inde-

pendent given a class label [122].

Neural network is a nonlinear statistical model for regression or classification, typ-

ically represented by a network diagram [37]. This algorithm consists of neu-

rons that are interconnected and can be arranged in various architectures.

4.3.4 Metrics

We investigate the performance of event detection and device classification to eval-

uate the occupancy detection based on monitor activation.

Metrics: Event Detection

Precision and sensitivity are employed to evaluate the detected events. The earlier

is the rate of correct classification over all events detected by the system, while the

latter is the proportion of actual events that are correctly identified over all occurred.

Metrics: Device classification

In classifying an appliance among similar appliances, the classification accuracy

may be lower than expected. Thus we relax the classification to top ´ n classifi-

cation [24]. The classification is considered correct when an event is classified as

one of the most likely n classes. It allows, for example, to scale down an occupancy

investigation for an event of interest to a reasonable size set of suspect occupants.

We use top-n classification accuracy per day with n “ 2.

Accuracy “
correctly predicted events

N
, (4.3)

where N is the total number of events being classified.
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The average accuracy can then be computed as Eq. 4.4:

Accuracyavg “
1

ddays

ddays
ÿ

d“1

accuracy dayd (4.4)

where ddays is the number of observation days.

4.4 Experiments

We detect monitor activation/deactivation from the aggregate power consumption

as an indication of occupancy in offices. This section describes datasets that we have

collected and the experiment setup.

4.4.1 Data

To test the performance of the proposed approach, we collected the real power con-

sumption of monitors in two different offices. The first office is an academic build-

ing located in the Zernike Campus of the University of Groningen, The Netherlands.

Another office is a commercial office of a mid-size software house company located

in Germany. In the second office, there are employees and internship students de-

veloping application products using laptops and external monitors.

Dataset A

In the university office, the involved monitors belonging to four graduate students

are not necessarily the same due to the different periods of procurement. The data

collection phases were divided into several parts. The first and second part of the

experiment took place from March 13, 2017 until March 31, 2017 (for training) and

from April 17, 2017 to June 22, 2017 (for testing). Another dataset was collected to

study the relation of monitor activation to occupants’ presence. It took place from

July 19, 2017 until July 27, 2017.

Dataset B

In the commercial office, seven of ten monitors belonging to employees are of the

same type (i.e., having the same brand and the same 24-inch screen size). The data

collection started from April 24, 2019 until May 2, 2019 for ground truth observa-

tion, and until July 21, 2019 for training. For testing, the experiment took place from

September 18, 2019 until October 15, 2019. Monitor power consumption was mea-

sured in eleven workspaces in the office. The size of the office is larger than in the
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first office. We include a set of volunteers W “ tW1 ´ W7,W10,W11,W12u with a

set of monitor loads JB “ tG1, G3, G4, G5, G7, G10, G11, G14, G16, G18u.

The actual presence of people, i.e., the ground truth, was taken based on the

paper-based diary and human observation and improved using the measured mon-

itors’ power consumption data. If, due to some failure, we miss readings, we keep

the previous valid one. This approach is common to mimic the constant consump-

tion of simple devices, such as LCD monitors.

4.4.2 Setup

We manually observe the occupants’ presence during a week observation and an-

notate the time. Additionally, we infer presence using a simple power consumption

threshold, as in [26]. We compare the manual presence observation in the workspace

(i.e., 8:00 AM to 9:00 PM) with the consumption upper threshold (i.e., 5W ). We then

report the agreement to show the relation of monitor activation with occupant pres-

ence.

Prior to commencing the study, an appliance signature database is built by col-

lecting individual power consumption during the training period. It is then fol-

lowed by a feature extraction process based on switching events on the smoothed

power readings. We apply the moving average technique to smooth ripples on the

power consumption readings. The feature extraction from individual consumption

signatures results in 252 and 363 training instances for dataset A and B, respectively.

The monitors’ features are then used to supervise classifier models.

After the training features are extracted, we combine the individual power con-

sumption to obtain aggregate power consumption. Note that, this step aims to

acquire aggregate power consumption, i.e., simulating a fewer number of power

meters in the root of the electric circuit, as we collect data per monitor in this exper-

iment. We build several aggregate consumptions by adding one-by-one a monitor

per set. In dataset A, three power aggregations are formed, each with a combination

of two to four monitors that represent up to four participants. In dataset B, eight

sets are formed, each with a combination of three to ten monitors, representing up

to ten participants. Tables 4.1 and 4.2 show the details of monitor combination. The

aggregate power consumption is then analyzed as an input.

Once the classifier models and power consumption aggregation are ready, the fi-

nal phase is to recognize the monitors on the aggregate power consumption. Similar

to the signature preparation step, this process consists of standardization, event de-

tection, and feature extraction. However, these are applied to daily aggregate power

consumption, according to Algorithms 1 and 2. Finally, the outputs of this process
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Table 4.1: Power consumption aggregation for testing dataset A

Set Monitor set #persons #presence #events

A1 {M4, M10} 2 12 days 82

A2 {M4, M7, M10} 3 28 days 168

A3 {M4, M7, M10, M14} 4 32 days 279

Table 4.2: Power consumption aggregation for testing dataset B

Set Monitor set #persons #presence #events

B1 {G4,G7,G11} 3 12 days 169

B2 {G4,G7,G11,G14} 4 12 days 169

B3 {G4,G7,G11,G14,G17} 5 15 days 196

B4 {G3,G4,G7, G11,G14,G17} 6 15 days 301

B5 {G3,G4,G5, G7,G11,G14,G17} 7 15 days 331

B6 {G3,G4,G5,G7,G10,G11,G14, G17} 8 15 days 398

B7 {G3,G4,G5,G7,G10,G11,G14,

G17,G18}

9 15 days 414

B8 {G1,G3,G4,G5,G7,G10,G11,G14,

G17,G18}

10 15 days 501

are supplied to classifiers for appliance identification.

In this work, we compare different feature combinations to see the performance:

(i) the difference in power before and after an event (∆X), (ii) steady-level, and (iii)

steady-level, MAD, and Variance.

4.5 Results and Discussion

This section begins by discussing the agreement of monitor activation to occupancy.

It then elaborates on the performance of switching event detection and device clas-

sification from the aggregate power consumption.

4.5.1 Occupancy via monitor activation

Prior to undertaking the appliance recognition investigation, the relation of monitor

activation to occupancy states was observed to see how far the monitor activation

may represent individual occupancy. Table 4.3 shows the agreement of monitors’

power consumption and occupant presences over a five-minute interval. One can

see that the power consumption of each monitor provides a reasonable estimation

of users’ presence, reaching 98% agreement. Weaker relations, reaching 83% agree-
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Table 4.3: Occupancy accuracy over a 5-minute interval

Employee ID Presence days Agreement

Dataset A

W1 7d 96.7949

W2 5d 89.8718

W5 4d 83.4936

Dataset B

W1 4d 95.833

W2 2d 93.59

W3 2d 90.705

W4 4d 82.692

W5 4d 98.077

W6 6d 97.329

W7 3d 91.026

W10 2d 97.115

W11 5d 97.821

W12 5d 95.897

ment, are due to monitor activation while someone is away. For example, the mon-

itor is waiting for a timeout to automatically put on sleep mode after plugged out

from a source (e.g., a laptop).

Based on the empirical observation, it seems that the monitor activation, if rec-

ognized correctly, can reveal the present state of most of the individuals. That is, 7

of 13 participants (i.e., 54%) have only 5% error or less, and 10 of 13 participants (i.e.,

77%) have up to 10% error. The problem is then how to recognize the monitor acti-

vation with a fewer number (or even a single) of power meters. We thus investigate

the switching event recognition on the aggregate power consumption.

4.5.2 Event Detection Rate

Following Algorithm 1), we perform switching event detection on the aggregation

of monitor consumption. The result is shown in Figure 4.1. In Dataset A, the sensi-

tivity of event detection is higher than precision, reaching more than .90 sensitivity

for the three monitor sets. In dataset B, it drops reaching about .70. It is because

more events are not detected in dataset B that lower the sensitivity. This result cor-

responds to the nature of the dataset B, where it consists of monitors with lower

power consumption. The nature of dataset B brings worse event detection perfor-

mance (i.e., in terms of sensitivity) than in dataset A.

The proposed event detection results up to .80 precision for both datasets. In
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Figure 4.1: Precision and sensitivity of detected events

monitor set A3, however, the precision declines reaching .70. The reason is that

the aggregate consumption ripples and sometimes drops suddenly up to 20W for

a short time (up to 3 minutes). This behavior is affected by adding monitor M14

in dataset A. It triggers false detected events and thus reduces the precision. This

result shows that the event detection is affected by the pattern of monitors’ power

consumption.

4.5.3 Appliance Classification

We compare several feature sets and different techniques to classify particular mon-

itors from power consumption aggregation. The comparisons are summarized in

Figure 4.2.

Feature ∆X is barely sufficient to classify monitor sets, especially in dataset B.

Features steady level, MAD, and variance can improve the classification in both

datasets. Other features that do not contribute positively are not shown in this thesis

(we refer to [98] for details).

Given only feature steady level, k-NN has a performance of 77-88% in dataset A,

but of only 24.3-53% in dataset B (see blue bars in the second row). The perfor-

mance can be explained by the fact that in dataset A, the monitors are relatively

distinguishable, considering only feature power level. In dataset B, the monitors are

not distinguishable based only feature steady level due to the monitors’ homogene-

ity. Adding features MAD and variance helps to distinguish the monitors, reaching

39-64% in dataset B (see the right graph in the third row).

Neural Networks (NN) generally perform well for considered features (either

only steady level or steady level, MAD, and variance) in both datasets (see yellow

bars in the second and third rows). More specifically, NN outperforms the k-NN

using the same features (steady level, MAD, and variance), reaching 72-84% and
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Figure 4.2: Monitor identification on the dataset A (left) and dataset B (right) using

various feature combinations: the 1st row: ∆X ; 2nd row: Steady level; 3rd row:

Steady level, MAD, and variance

39-67% in dataset A and B, respectively (see yellow bars in the third row). The

average accuracy on dataset A, however, are still below the classification using k-

NN with feature only steady level that reaches 77-88% (see blue bars in the left

graph in the second row). In this case, k-NN outperforms NN when to recognize

small number distinguishable appliances, such as in dataset A. k-NN performance

drops in the higher number of non-distinguishable appliances such as in dataset B. It

might be because the k-NN works based on the distance to the samples. In contrast,

NN works by optimizing networks (backpropagation), so giving a higher chance to

predict the label .

NB mostly performs worse than the other techniques, except in monitor set B1

and B2 where this technique slightly outperforms NN (see red bars in the right

graph in second row). NB is a generative model that works based on the class condi-

tional densities. On the contrary, discriminative models (e.g., k-NN and NN) focus

on determining decision boundaries, thus perform better in classification tasks.

Finally, one can see that the performance declines as the number of monitors

increases. It indicates that the more electrical appliances involved in the aggregate

power consumption, the more difficult detection.

Figure 4.3 and 4.4 illustrate the proposed event detection and monitor classifica-
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Figure 4.3: Actual monitor activation states on September 19, 2019.
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Figure 4.4: Prediction of monitor activation states (top-n classification) on September

19, 2019.

tion of monitor set B4 using NN and features steady level, MAD, and variance on

September 19, 2019. There were only employee W2 and W11 who are present on

the corresponding date. The blue line represents the aggregate power consumption,

while the red line represents an employee’s binary presence state. It can be seen in

Figure 4.3 that there are six real switching states of monitor G3 belonging to em-

ployee W2 (the graph on top) and two switching states of monitor G17 belonging
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to employee W11 (the graph at the bottom). The proposed procedure can detect

five of the six switching events correctly, but it misses the switching OFF event at

around 7.00 PM, as shown in Figure 4.4. The system can detect events at noon and

at 5.00 PM, however, it misclassifies the monitor G17 as monitor G18 (the graph at

the bottom).

4.6 Conclusion

This study set out to explore occupancy detection in an office based on the activation

of computer equipment. We propose a procedure to recognize low-power electric

loads (i.e., monitors) from the aggregate power consumption (e.g., as measured in

the root of electrical lines). Some features inspired by the field of dynamic systems

and statistics are investigated. The meaningful features are the value changes of

power in a steady level, MAD, and variance. In our procedure, events are firstly

detected based on thresholds. Then, based on the events, features are extracted to

be used in the classification process. This step is then followed by examining the

event detection rate in terms of precision and sensitivity. We also examine classi-

fication performance per day based on various combinations of features. Finally,

the average of top-n (n “ 2) classification accuracy is provided. The present study

contributes techniques to electric load identification. The proposed classification is

tested in actual use cases in offices with various typical work situations. That is, one

is at a university office, and another one is at a commercial office of a software com-

pany. While both offices have occupants who work in computer-related fields (e.g.,

researching and developing software and applications), these offices are different in

terms of employees’ behavior and available monitor devices.

The experiment begins by observing the conformity of individual monitor acti-

vation to real occupancy based on individual measurements. It is shown that mon-

itor activation has a relationship with user presence; namely, the presence of up to

77% of the total of 13 participants may be inferred with less than 10% error using

monitor activation. Even further, more than half of the participants have only 5%

error or less. Recognizing monitor activation on the aggregate power consumption

is challenging as it thoroughly relies on the accuracy of detected events. Further-

more, it is challenging to match a switching OFF event with the previous switching

ON event. The more devices involved and the lower amount of power consumed,

the harder to detect switching events.

In summary, the experiment shows the relation of monitor activation and em-

ployee presence. It also demonstrates the feasibility of low-power monitor detec-

tion based on events. When the aggregate power consumption consists of different
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monitors, they are relatively distinguishable, reaching 80% top-n accuracy per day

(i.e., in dataset A). The approach struggles and cannot distinguish the loads when

the monitors are similar, as shown by the 39% top-n accuracy per day for detecting

up to ten monitors in dataset B. Another strategy (e.g., moving windows) may avoid

event detection problems in appliance detection, as we will explore in the next chap-

ter. In this way, appliance signatures are taken at a particular time without detecting

events in advance.



Chapter 5

Windowing based Power Meter Classification

5.1 Overview

In Chapter 4, we investigate the electric load identification for occupancy detection

based on switching state detection in active power measurements. The system, how-

ever, suffers from miss detected events. It is also difficult to distinguish similar low

consuming power appliances (e.g., monitors in an office). In this chapter, we explore

electric load identification without event detection to avoid miss-detection prob-

lems. We apply a moving window segment-by-segment on the aggregate power

consumption (i.e., sliding windows). The power consumption readings consist of

some variable measurements, such as active power, reactive power, and apparent

power. Every time the window slides, a classification of the power readings is per-

formed. We analyze the readings sequentially and non-sequentially to see if histor-

ical observation brings advantages in recognizing the electric loads.

In addition to electric load identification, we also mine power consumption data

for fine-grain occupancy detection using the same approach. Namely, we utilize

sliding windows on the composite loads that correspond to occupants’ power con-

sumption during the occupation. There might be patterns of power consumption of

each individual during his occupancy in the office to detect his presence. The pat-

terns allow by means of low-intrusive identification to obtain fine-grain occupancy

information (e.g., identifying who is sitting in a particular office). We find that the

detection and recognition of up to three employees are possible based on the ag-

gregate power readings with a sub-metering system in a shared room. The finding

complements earlier studies that typically either produce coarse-grain contexts (e.g.,

vacancy or occupancy state of a house) or require more meters to obtain finer-grain

contexts (see Figure 2.2).

The clamp-based meter technology and experiment design are described in Sec-

tion 5.2. The discussion of the first experiment about electric load identification is

provided in Section 5.3, followed by the second experiment to reveal occupancy in

Section 5.4. Finally, lessons learned are presented in Section 5.5.
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5.2 Design

We utilize power meters installed in a room (i.e., sub-metering). It is assumed that

dedicated circuits of PC equipment are available in the office, and power meters

are attached to them to measure the aggregate power consumption. The dedicated

circuits are commonly assigned to eliminate the risk of outages and to guarantee the

quality of supplied power [128, 34], or serving some offices based on their location

in a building (e.g., [22]). Another assumption is that the occupants do not use a

remote desktop application, hence the computer usage implies physical presence

in the office. We then classify sensor readings per instance and per sequence (i.e.,

consecutive instances in a historical observation) for identifying office appliances

and individual presence in an office.

5.2.1 Sensing Technology

We use Smappee power meters, a clamp based one that supports electricity mea-

surement with five observed variables: active power, reactive power, apparent power,

power factor, and electric current. Hence, we distinguish the notation of power

readings with more features ( ~X) in this chapter. Active power is the amount of

power that flows through the power meter (measured in Watt). Reactive power

is the dissipated power as a result inductive or capacitive components in appli-

ances (measured in Volt-Amps-Reactive, VAR). Apparent power is the product of

the root-mean-square voltage and the root-mean-square current (measured in Volt-

Amps, VA). Power factor or cosphi (in percents) represents the ratio of the active

power flowing to the appliance divided by the reactive power. Electric current is

the amount of electron flowing through the clamp (measured in ampere). All these

variables are collected in a five-second interval.

By default, the meter supports data collection to up to 5 minutes. Data will be

kept up to one month in the Smappee cloud. To acquire data more frequently (i.e.,

up to 5s), we use a local REST API by connecting a thin client (i.e., Raspberry Pi) to

the built-in WiFi module. We use the local API by implementing Smappee-pooler1

module on the thin client. This module polls and forwards the measurements to the

message queue (MQTT). We develop a script to consume messages coming to the

queue and send them to our distributed data warehouse2.

To study information extraction from power meters, we initially install a Smappee

power meter in a work desk to investigate the aggregate power consumption. We

then install the meter to measure at a larger scale (i.e., an office room), where three

1https://github.com/NMichas/smappee-local-mqtt
2Website: https://github.com/rug-ds-lab/system-core
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graduate students sit during work hours. In the first case, we extract individual

appliance loads from the aggregate power readings, while in the second one, we ex-

tract composite loads of several appliances belonging to occupants. We discuss the

experiment cases in Sections 5.3 and 5.4, respectively. In the following, we describe

common techniques to analyze the data.

5.2.2 Techniques

Given a set of individuals J “ tj1, j2, . . . , jnu and a set of electric features E “

te1, e2, . . . , ehu, the aggregate power reading at time t is

~Xt “ rf1p~xt,e1q, f2p~xt,e2 , q . . . , fhp~xt,ehqs,

where ~xt,ek “ rxj1
t,ek

, . . . , x
jn
t,ek

s is the vector of feature readings ek of individual load

ji P J , and fkp~xt,ekq is the aggregate function of feature ek over all individual load

ji P J . An example of such a function is the aggregation of active power fap~xt,aq “
řn

i“1
x
ji
t,a.

We aim to identify component loads from the aggregate power readings ~X . The

loads can be electric appliances belonging to an occupant (i.e., investigated in Sec-

tion 5.3) or composite loads consumed by occupants in a shared office room (i.e.,

investigated in Section 5.4). The latter correspond to the total power consumption

of an occupant, and thus, the detection of such composite loads may indicate occu-

pancy.

We investigate several techniques to extract information from aggregate power

readings. First, in per instance classification, the classification task is performed by

determining a class label of the unlabeled aggregate power consumption. Second,

we perform sequence classification based on sliding windows. Finally, generative

classification is investigated.

Per instance classification

This approach assumes independent data points. Thus, there is no sequential corre-

lation in power presentations, and the classification may be performed per instance.

This technique maps the aggregate power consumption ( ~Xt) into a class label using

classification techniques as follows.

k-NN is a classification method that infers a class label by comparing a query in-

stance to stored training instances without constructing any classification models,

so-called instance-based learning, or lazy learning method [9]. A label is assigned

to each of the queries based on the majority labels of the nearest neighbors.
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SVM works by generating a nonlinear decision boundary. It maximizes the mar-

gin of separation by training on a dataset. This method is generally designed to

solve binary classification problems. One way to solve the multi-class problem with

SVM is by one-against-one approach that combines several binary classifiers [68].

Neural Networks or feedforward neural networks is an algorithm that fits a non-

linear estimator from a feature vector in a training set [37]. Generally, it is formed

by input, output, and one or more (non-linear) hidden layers. Input layers consist

of a set of neurons representing input features. Hidden layers consist of a set of neu-

rons that transform input values from the previous layer with weighted linear sum-

mation followed by a non-linear activation function (e.g., hyperbolic tan function).

Finally, the output layer receives values from the last hidden layer and transforms

them into output values.

Sequence classification (Temporal data type)

We investigate sequence classification to study the correlation between consecutive

instances in historical observation and its advantage in recognizing occupancy. The

intuition is that once a person is present and actuating devices, the devices will stay

activated for a long period. We provide an ordered list of power measurements into

classifiers.

This technique performs classification based on non-overlapping sliding win-

dows. Given an observation O “ ~X1, . . . , ~XT , we define sub-sequences sk with

window length w. That is, sk “ ~Xwpk´1q`1, . . . , ~Xw¨k, 1 ď k ď T {w. We thus classify

the sub-sequence sk using several methods as presented next.

Sequence distance-based classification measures the similarity between a pair of

sub-sequences [133]. We adapt the k-NN to sequential classification by appending

the elements of power measurement vectors to form a list or sequence. An input

sequence is assigned to a single class. The sequencing means that before a classifica-

tion is being done, the full sequence needs to be prepared. The k-NN classifier then

compares the distance between a query sequence s and train data sequences.

Similar to the per-instance classification, classification based on distance or sim-

ilarity measures also works in series or temporal data type. One of distance mea-

sures is Lp-Norms, which requires two compared time series or sequences of the

same length. Special case of Lp-Norms with p “ 2 is the Euclidean distance, where
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N is the number of instances:

distps, s1q “

g

f

f

e

N
ÿ

i“1

psris ´ s1risq2 (5.1)

Looping neural networks. We extend the traditional, feedforward neural network

architecture by considering recurring events. That is, we apply Recurrent Neural

Networks (RNN). RNN is a type of neural network that takes the previous output

as the next input value in a sequence, as illustrated in Figure 5.1. In typical neural

networks (i.e., feedforward), an input vector flows through a hidden layer resul-

ting in an output vector without forming any cycles. While in RNN, the output

from previous time step (t ´ 1) is fed to every neuron of the current time step (t).

This characteristic offers advantages when used in time-series data, as the model

can theoretically see the context of data readings from the previous occurrence. In

our work, we design a RNN that takes a chunk (or a sub-sequence) of a whole long

sequence. The chunk consists of power readings during a specific period. The net-

work then infers a label as illustrated in Figure 5.2.

Figure 5.1: Feed forward neural network (left) and recurrent neural networks (right)

When data passes hidden layers multiple times, it might get flattened, also known

as the vanishing gradient problem, and affect RNN’s memory from the past read-

ings. One solution is to utilize the Long Short-Term Memory (LSTM) architecture

which can decide when to forget or keep the current input for the next output using

logical gates. The comparison of standard RNN and LSTM is given in Figure 5.3.

Model-based classification (HMM)

Finally, we model the problem based on Hidden Markov Models. The reason is that

the electric loads are ’hidden’ as they cannot be observed directly, while we have

access only to observe the aggregate power consumption. The HMM is a generative

model as it relies on the class conditional densities and prior class probabilities to
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Figure 5.2: Recurrent neural networks

Figure 5.3: Standard RNN (top) and LSTM cells (bottom), adopted from [87]

find posterior values. An HMM model Mji is assumed to generate a sequence of

load ji at time t “ 1, . . . , T , namely, s “ x
ji
1
, . . . , x

ji
T . The parameters of model
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Figure 5.4: Factorial HMMs

Mji are learned in the training phase (e.g., using the Baum Welch algorithm). The

model Mji then assigns a sequence of class labels with the highest likelihood to the

rest of the sequence (e.g., the z-length query sequence s1 “ x
ji
T`1

, . . . , x
ji
T`z).

Note that in building the model, we only consider a single observed variable

(i.e., active power), as considering all the observed variables to predict a single hid-

den variable inflates the probability space immensely, and we do not have enough

training data to calculate the parameters properly.

We construct an HMM chain for each load ji P J . As we measure the total

power consumption Xt “
řn

i“1
x
ji
t , the model is generalized to Factorial HMM [48],

as illustrated in Figure 5.4. We then find the optimal sequence of hidden states by

means of the Viterbi algorithm [101].

5.2.3 Metrics

In order to evaluate the classification, we provide total accuracy to indicate overall

performance. We also consider Cohen’s Kappa measure [29] to eliminate the accu-

racy bias due to imbalanced class distribution.

Accuracy defines the correct prediction of all class labels over the total number of

predictions that have been made, specifically,

Accuracy “
correctly predicted windows

N
, (5.2)

where N is the total number of windows being classified.

Cohen’s Kappa measures the agreement between accuracy of the system to the ac-

curacy of a random system, as shown in Equation 5.3. The total accuracy is an
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observational probability of agreement while the random accuracy is a hypo-

thetical expected probability of agreement under an appropriate set of baseline

constraints [29].

kappa “
totalAccuracy ´ randomAccuracypRAq

1 ´ RA
(5.3)

where RA is the sum of the products of reference likelihood and result likeli-

hood for each class. Mathematically,

randomAccuracy “

ÿ

cPC

actualclassc ˚ predictedclassc

N2

5.3 Experiment-1: Office Appliance Identification

First, we experiment electric load identification with an assumption that a power

meter is available in a workspace, measuring the aggregate power consumption of

a user. This section describes conducted experiments. It then provides the results

and discusses the findings.

5.3.1 Data

We measured power consumption in a workspace of the University of Groningen,

The Netherlands, during several weeks between June 2017 and February 2018 [96].

The data collection was based on appliances that are known in active states. Specif-

ically, we note the timestamp and the corresponding class label when a particular

appliance is set off. We involved two LCD monitors, a CPU, laptop, and a portable

heater. The appliances were connected to the power source through a power exten-

sion. We clamp the meter on the extension, as illustrated in Figure 5.5. In total, we

collected 92,580 data points of 14 classes.

The data readings were normalized to scale the measurement to a range between

0 and 1. We applied k-fold cross-validation with k “ 5 to assess model generaliza-

tion to the dataset. Several feature sets were investigated to compare recognition

performance based on various measurements. The sets consist of FS-1 (active and

reactive power), FS-2 (active power, current, and power factor), and FS-3 (Active-,

reactive-, and apparent-power, current, and power factor).

5.3.2 Setup

In appliance identification experiment, we assign a classifier hrecog2 to recognize

a class label c that represents an appliance or a combination of appliances that
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Figure 5.5: Office appliance identification

contribute to the total power readings ~X . Formally, hrecog2 : ~X Ñ c, c P C “

ttlaptopu, tlaptop and monitorsu, . . .u.

We design an RNN architecture such that we can input a sequence (e.g., 60 data

points during 5 minutes) of a set of electric features E to the model. The sequences

are from non-overlapping moving windows, as this performs better than overlap-

ping windows according to our experiments [121]. For each sequence, we expect a

class label to be learned or classified. We feed 20 chunks of the sequences in an iter-

ation to reduce the number of looping needed to complete one epoch, thus, speed-

ing up the learning process. We apply either one LSTM layer or two LSTM layers

(LSTML2), stacked in the hidden layer of the network.

Each LSTM layer consists of ht hidden states, where ht “ 20. The reason of the

chosen architectures is that the layer size is not more important than the layer depth

[52], hence we stick in the fixed size of ht and change the level of the hidden layer.

We apply Adam optimizer [65] and determine the learning rate of 0.001 to optimize

a cost function during iteration. The cost function is based on cross entropy [50].

We determine the number of epochs to be completed to make sure that the model

has learned sufficiently without memorizing the training data (overfitting). To do so,

we implement the early stopping strategy. We evaluate the model performance on

a validation set and save the best model snapshot when it outperforms the previous

best winner. We terminate the training when the network does not perform better

after the i-th epoch, where i “ 100 when the maximum number of epochs is 400,

and i “ 50 when the maximum number is set to 200.

To evaluate the approach, we also consider k-NN (with k “ 7) and SVM with

linear- and polynomial-kernels (with regularization parameter C “ 1) [21]. We

choose k-NN as this is a simple yet powerful technique. The critical issue is the

efficiency of the approach in the classification process as the running time is linear

with the size of the data set. SVM is a widely used technique for classification due
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to its ability to generate nonlinear decision boundaries. Both k-NN and SVM are de-

signed to classify on the basis of one single point of measurement, instead of giving

a sequence of data as input.

5.3.3 Results and Discussion

The classification results are shown in Table 5.1. In general, the performance indi-

cated by the accuracy and Kappa measure are comparable. The reported measures

are the average of the completion of 5-folds cross-validation. The RNN with LSTM

based classification delivers Kappa between 60-97%, depending on the network con-

figuration, the number of iterations on the training phase, and the feature set taken

into account. LSTM and LSTML2 differ in terms of cells number. The former uses

a single LSTM cell while the latter uses two. Using LSTM, we can achieve a Kappa

measure of up to 90.1%, while based on LSTML2, 96.8% of the same measure can be

achieved. These results can be improved up to 97.6-99.4% by increasing the number

of training epochs. The higher number of epoch iterations are allowed, the better

results are obtained. It is because the approach is based on iterative optimization.

The approach tries to adjust model’s weights along the iterations to find the optimal

network configuration.

In general, the classifications using FS-3 achieve higher performance than the

other sets, reaching at least 90%. SVM with the polynomial kernel is an exception.

While SVM with the linear kernel can achieve Kappa measure of about 82-93%,

the same classifier with the polynomial kernel (degree 3) reaches roughly 40% for

feature FS-2 and FS-3. The reason is that, in SVM, the decision boundary is decided

by a hyperplane that is shaped by kernel functions. The model with polynomial

kernel tries to overfit the training data and fails to classify the rest of the data, while

the linear kernel works quite well. The k-NN based inference results up to 99.9%

Kappa measure on the all set of predictors. This result might indicate that feature

combinations are distinct and non-overlapping, thus can be classified well with k-

NN. As a comparison, when we put only active power, k-NN will return worse

result than the one reported in this thesis.

5.4 Experiment-2: Occupancy Detection

The second experiment is the extension of the previous investigation. Given the

promising results in appliance classification using k-NN and RNN LSTM for a single

user, we expand the research by involving more users. We infer occupancy of three

graduate students with disguised ID. To approach the real case, each user may use
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Table 5.1: Cohen’s Kappa measure of classifiers with different feature sets

Method
Accuracy Kappa measure

Remarks
FS-1 FS-2 FS-3 FS-1 FS-2 FS-3

LSTM .73 .629 .909 .709 .599 .901
iteration max 200 epochs

LSTML2 .779 .719 .97 .761 .696 .968

LSTM .819 .782 .978 .804 .765 .976
iteration max 400 epochs

LSTML2 .848 .841 .995 .836 .829 .994

k-NN .999 .996 .999 .999 .996 .999 k “ 7

SVM (lin) .84 .92 .934 .827 .914 .928 C “ 1

SVM (poly) .31 .444 .456 .24 .396 .408 degree=3, C “ 1

any appliances. We do not observe the individual appliances’ signatures, but we

look for patterns on the occupant signatures.

5.4.1 Data

We collected power consumption in a shared room office at our university between

May 31, 2018 and September 11, 2018 [94]. We used two Smappee power meters.

One clamp was dedicated to measuring the total power consumption, while the

other clamps were attached per user for behavior investigation, including (i) ground

truth refinement, (ii) user energy profile construction, and (iii) train data labeling.

In actual deployments, only one smappee power meter is needed. That is, one

clamp measures total consumption in the circuit-breaker of a room, and the other

two clamps alternately collect labeled training data (i.e., one class after another).

The ground truth data was manually collected in a spreadsheet document. Due

to ground truth incompleteness during a long period of data collection, we gener-

ated class labels by applying a threshold (i.e., 20-Watt) to the per individual power

consumption. The validation of the generated class labels was done by camera

recordings from February 4, 2019 until February 8, 2019. It was shown that two

of three participants had the Kappa measure of agreement of .97 between the oc-

cupancy based on the power threshold and the occupancy based on the camera

observation. Another participant, unfortunately, missed the experiment at the time

of camera deployment.

We apply normalization on the data readings to scale measurement values to a

fixed range (i.e., between 0 and 1). We then relabel the sequential data to make sure

the training process is supplied with sequences that represent a homogeneous class.

We only process full-length and partially complete sequences. Full-length sequences

refer to w-length consecutive instances with the same label. The partially complete

sequence consists of ordered instances with the same label, but the length is slightly
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Figure 5.6: Occupancy detection in a shared office

less than w. As for the latter, we impute the last value to form a full of w- length

consecutive instances. We investigate a different combination of raw measurement

time series variables to discover potential patterns formed during occupancy. This

includes (i) Watts, VAR, VA, current, and cosphi as proposed by Akbar et al. [10],

(ii) Watts only, as the most basic measurement component in a power meter, (iii)

VAR and Watts, as proposed by Hart [55], and (iv) Watts, current, and cosphi. We

also add features that indicate the range of the time of day when a measured value

occurred. We mark the instances as a member of the corresponding time of day. The

markers that are represented using one-hot-encoding are considered as additional

features to the estimators.

5.4.2 Setup

In occupancy detection experiment, classifier hocc is assigned to identify a class that

summarizes the presence states of all individuals in a particular room. Formally,

hocc : ~X Ñ Y , where Y “
 

yj1 , yj2 , . . . , yjn
(

and yji P t0, 1u.

We divide the collected data into training, validation, and test set. We exclude

15% of the total data set for testing purposes (the hold-out test set). Two directions

on the selection data portion are investigated. First, a subset of data is selected after

doing randomized shuffling by preserving the proportions of the class prior proba-

bilities. Second, data division is done based on the historical occurrence, which re-

tains historical order and corresponds to a real-world scenario. In the first phase of
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the experiment, 85% of the total data set are used for exploring classification models

and finding the optimal model parameters. This phase is done through 5-fold cross-

validation. In the next phase, the parameters are used to retrain the model using

the combination of training and validation set as the full training set. In the final

phase, the trained model is used to classify the final 15% of the data to evaluate the

performance.

We use similar architectures as in the previous experiment (i.e., the same Adam

optimizer, and LSTM cell activation function). The number of hidden neurons in

a single LSTM cell and epochs are parameters to tune in the beginning. We also

tune various sequence lengths (1,2,5,10, or 20 minutes) and different features (ac-

tive power only; active and reactive power; active, current, cosphi; and with the

addition of time of the day every 45 and 60 minutes). We utilize our university’s

computer cluster (Peregrine High-Performance Computing cluster3) to experiment

with several parameters simultaneously.

5.4.3 Results and Discussions

Based on hyperparameter optimization that works best on the training validation

set, we set several parameters as following. Using the data division procedure, we

find that the best k for k-NN is 11 for both sequence and non-sequence analysis.

For neural networks, the best number of neurons is 30. We apply LSTM cells as

activation function with Adam Optimizer. We apply 100 hidden neurons in a single

cell LSTM layer and an epoch of 744. Using the saved parameters, we classify the

test set and presented the results in Table 5.2.

Table 5.2: Classifier accuracy and Kappa measures on the shuffled test set

Techniques Accuracy Kappa

k-NN .966 .937

k-NNseq .970 .946

NeuralNet .941 .891

RNN LSTM .964 .934

FHMM .774 .622

As shown in the table, the nearest-neighbor based methods slightly achieve im-

provement in the sequential analysis over the per-instance classification, while the

RNN achieves about 5% more of the kappa measure than the neural network. This

finding suggests that one may achieve better results by looping the information from

the previous input values to predict outcomes of the following instances on a se-

3https://www.rug.nl/society-business/centre-for-information-technology/research/services/hpc
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Table 5.3: Classifier Kappa measures on the last seven days of the un-shuffled test

set
Date Max Occupancy with ID Occupant counting

persons k-NNseq RNN LSTM k-NNseq RNN LSTM

2018-9-3 3 .865 .841 .911 .858

2018-9-4 3 .877 .801 .905 .816

2018-9-5 1 .850 .876 .855 .876

2018-9-6 2 .559 .628 .737 .796

2018-9-7 3 .787 .897 .783 .911

2018-9-10 3 .717 .836 .859 .888

2018-9-11 3 .854 .952 .855 .960

7-day average .787 .833 .844 .872

quence. As for k-NN, the algorithm works based on the voting labels of the nearest

samples to the query. Hence, the performance solely relies on sample availability

and does not affect much to classification performance. FHMM is the worst per-

forming algorithm. It might be because this algorithm does not work by finding

separation boundaries among different occupancy states; rather, it finds the most

probable occupancy states given the observed power consumption. Moreover, in

this work, we only define two individual states (i.e., being present or absent) with-

out focusing on which appliances occupant use. Therefore, the power consumption

range during present condition is wide. The model simplification (i.e., by providing

only the active power variable) might also negatively influence the results of FHMM

inferences.

The results on the test set based on historical occurrence (i.e., without shuffling)

in Table 5.3 show daily performances that seem to be lower than the shuffled data

division (i.e., reaching 93-94% kappa measure in Table 5.2). It might be due to the

variance of power consumption that we may find in practice. As we only provide

the first 85% portion of the data, the last portion of the data were not sampled.

In this particular case, RNN LSTM gains benefits in several days (i.e., the five of

seven work days) and outperforms k-NNseq . A possible explanation for this might

be that RNN regards the output of the previous instances to predict the output of

the current instance which did not occur in the training data. On the contrary, k-

NNseq does easily misclassify a class if there are very similar samples that belong to

different classes. k-NNseq outperforms when it finds many similar samples with the

major label as in the first two days (i.e., September 3, 2018 and September 4, 2018).

A comparison of the two algorithms on September 10, 2018 is illustrated in Fig-

ure 5.7. The figure presents the identification of present occupants, as expressed

in the seven class labels. Each class represents the combination of three occupants’
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Figure 5.7: Occupancy detection with ID on September 10, 2018 using k-NNseq with

a Kappa of 71.7% (top) and RNN LSTM with a Kappa of 83.6% (bottom). Blue line

shows the active power in Watts, orange line shows the labels of predicted occu-

pancy, and dashed green line shows the labels of real occupancy

presence states. The top figure shows the prediction using k-NNseq , while the bot-

tom is the prediction using sequence RNN LSTM. It can be seen from the figures that

there were some misclassified class-5 instances using k-NNseq at 08.30-09.00 AM due

to the power consumption going up to 80 Watts. RNN LSTM could handle it better

without misclassification until 12.15 AM. While around 02.00 PM, both classifiers

failed in detecting class-7. The classifier based on RNN LSTM performed better in

recognizing class-3 at 02.15 PM. In the same period, the k-NNseq classifier mostly

misclassified as a class-6 until at 03.00 PM.

5.5 Conclusion

This study set out to investigate power consumption in sub-metering of a shared

office room using sliding windows. Sequential and non-sequential approaches are
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explored to identify electric loads. We begin with the identification simple loads

consisting of five office appliances belonging to an occupant. We then continue

with the identification of composite loads that corresponds to occupants’ power

consumption during their presence in the office.

Compared to the study in Chapter 4, the power meters used in this study mea-

sure more variables, including active power, reactive power, apparent power, power

factor, and electric current. By considering the measurement of these variable (i.e.,

in feature set FS-3), we show that the appliances and their combinations can be

identified up to .99 Kappa measure using k-NN and RNN LSTM. Next, we show up

to three-person occupancy detection by recognizing the aggregate loads consumed

by each individual. We find that sequence analysis gives improvements from the

non-sequence analysis in neural network approaches, but not in nearest neighbors.

Nonetheless, no significant benefits in using RNN LSTM as the nearest neighbors

approach outperforms the other method in our experiments, reaching .946 Kappa

measure. We show that the RNN LSTM might be useful when there is no sample

provided to the classifier, such as in predicting typical days when power consump-

tion patterns have not appeared at all before.



Chapter 6

Beaconing-based Occupancy Detection

6.1 Overview

The proliferation of mobile phones and wearables (e.g., smartwatches) contributes

to context gathering without requiring dedicated tags or signal receivers attached

to users. Those devices are equipped with communication modules that support re-

ceiving Radio Frequency (RF) signals from transmitting nodes, such as WiFi access

points (APs) and BLE beacons. WiFi is more common in indoor spaces like in an

office. However, as the WiFi deployment is not tailored to localization (i.e., to pro-

vide wireless Internet connection instead), the location of WiFi APs are frequently

hidden and unknown, thus, unable to be used as a reference position. Furthermore,

they are usually arranged to get the maximum coverage (e.g., covering the whole

area with fewer APs) regardless of the installation geometry. While BLE beacons are

less deployed, they are gaining popularity because people are making more use of

wireless peripherals (e.g., headphones). Off-the-shelf beacons are commonly found

for proximity-based services, such as in the American Museum of Natural History1

and Amsterdam Schiphol Airport2. The beacons are affordable; namely, they cost

as low as three euros per piece. Another advantage is its flexibility in the deploy-

ment, as it is compact with small size and battery-powered (i.e., with up to 3 years

life-expectancy, depending on the configuration).

A serious weakness with beaconing-based sensory sources is the signal strength

that may be erratic due to environment dynamics or hardware diversity. Let us take

the scenario of a shared office as an example. When Aldo becomes the first person

who comes to the office, his mobile phone receives strong signals from BLE beacons

located in the office and medium signal strength from BLE in the neighboring of-

fice. As this observation matches the signals collected during the training phase, the

system may correctly locate him in the office and assigns the room as occupied by

Aldo. A moment later, Cecilia comes to the office and frequently moves around her

1https://www.amnh.org/explore/news-blogs/news-posts/bluetooth-beacons-help-navigate-

museum-halls
2https://news.schiphol.com/amsterdam-airport-schiphol-first-airport-in-europe-with-full-beacon-

coverage/
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space. Aldo’s phone then often receives weaker signals from beacons in the office,

just similar to the signals from the neighboring office. This signal observation leads

to the wrong inference of Aldo’s position. It triggers all the light in the office with

60% brightness (e.g., as Cecilia’s preference) since the building assumes that Aldo is

not in the office, and Cecilia is alone. The automatic lighting control might even turn

off the light in the office when Cecilia’s phone discovers BLE signals with different

strength that leads to unoccupied state inference.

In this chapter, we study beacon signals collected in some observation points

using a mobile phone. We propose to use the cosine similarity approach to find

vector representation in different locations in offices and to classify the location of

other employees. The scenario is considered as low intrusive as it does not require

employee participation to collect new training data using different phones. The em-

pirical findings in this study provide a new understanding of how the low-intrusive

approach may perform in the detection of multi occupants, especially in adjacent

office rooms. This chapter begins by presenting the relevant literature and general

design in Sections 6.2 and 6.3, respectively. The experiment setup and results are

given in Section 6.4. Finally, we conclude the experiments in Section 6.5.

6.2 Relevant Literature

Previous research has established that localization systems can derive room occu-

pancy. The systems localize a user by estimating a coordinate and assigning positive

occupancy when the inferred position is within the area boundary of a target room,

for example, a system proposed by Paek et al. [88]. The authors investigate a trilat-

eration technique using BLE beacons for the class attendance detection system in a

university. Trilateration is a process to find a location that is described in terms of

fixed distances to the known points using geometry approaches. As they discover

that beacon RSS readings have high variation and tend to be weaker than obser-

vation in a line-of-sight (LOS) environment, they propose geometric manipulation,

mainly when there are no intersection points between beacons. They enlarge the

estimated radius from the receiver to a beacon with an increment of one meter until

intersection points formed. Given the intersections, the trilateration method may es-

timate the location. The proposed approach is evaluated in checking the attendance

of four students in three classrooms. They report that no false detection occurred

during the experiment. The experiment setup, however, is not particularly clear,

such as whether the classrooms are adjacent, what size the rooms are, and in which

part of the classrooms the students occupied. Furthermore, it is almost certain that

the beacon coverage signal is not perfectly circular. There is no guarantee that the
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real-location can be inferred precisely by extending the radius by a uniform value

(i.e., 1m). Also, a one-meter increment seems not fit with small-medium offices.

Other localization techniques based on RF, including BLE and WiFi, are com-

monly based on a fingerprinting map, a pre-surveyed map of radio signal strength

across the environment. A seminal study in location fingerprinting with BLE bea-

cons is the work of Faragher and Harle [44]. The authors estimate user locations

based on Maximum a posteriori (MAP) or Minimum Mean Square Error (MMSE)

on the posterior distribution. The distribution is calculated from a distance between

current signal measurement and the fingerprinting map. Therefore, the fingerprint-

ing map holds a vital role. Given the BLE fingerprinting map, the positioning is

even more promising than WiFi, namely, reaching the average error of up to 2.6m

and 8.5m of 95% of the time, respectively. Thanks to the flexible placement of BLE,

that brings advantage to better signal geometry [43]. However, the map is chal-

lenging to make. It requires site survey and manually taking readings at each point

(e.g., [15]) or requires additional high-precision localization equipment to assign a

true-position to the recorded BLE signals and create a signal strength map accord-

ingly (e.g., using Active Bat [44]).

Another method exists to model the indoor radio signal propagation without

building a fingerprint map, by calculating the distance between beacons and the

receiver and estimating the current position [143]. The propagation formula is based

on the log-distance path loss model that reflects the trends of radio propagation of

wireless devices [103]. It is reported that the average error of location inference is up

to 2.18m in semi-outdoor areas (e.g., in a corridor out of a building). The evaluation

is based on a walking track with around 450m distance. This result is relevant since

there are fewer obstacles in the investigated area, such as walls and office objects,

than in the indoor office area.

Low-intrusive Approaches

Other researchers have looked at low intrusive approaches. An intuitive way to

infer the current location is to take the location of the nearest beacon discovered

by the signal receiver. Lin et al. demonstrate a localization system based on the

strongest beacon and achieve more than 95% average accuracy in locating a person

in twelve subareas [78]. The approach is applied to the smoothed signals, where

the smoothing process is based on the average value of the last five samples. They

select the major strongest beacon during the five consecutive timestamps.

As a proximity-based localization, iBeacon protocol describes nearby beacons

into some categories (i.e., immediate, near, and far)3. However, the formulation

3https://developer.apple.com/documentation/corelocation/determining the proximity to an ibea-
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to determine proximity category and the distance approximation is not accessible.

Likewise, Kyritsis et al. categorize beacon for each discovered beacon based on RSSI

thresholds [70]. Two thresholds (i.e., thrin, throut) are set for each beacon to deter-

mine beacon categories (i.e., strong (RSSI ą thrin); medium (thrin ą RSSI ą

throut); weak (throut ą RSSI ą ´127dBm)). In assigning the thresholds, the au-

thors consider the signal propagation model and room dimensions, assuming that

adjacent rooms have different sizes. A calibration process is needed to relate the RSS

to the known distance for a specific signal receiver (e.g., a phone). Once beacons

have been assigned to a category, they predict the location of the receiver based on

the beacon location with the highest category. In the case of multiple beacons have

the same category (e.g., due to unpredicted environment noise), the system assigns

the location based on the highest probability. That is, the probability is the normal-

ized value of scores among the same category beacons. The score is defined as the

difference of RSS measurement to the lower threshold of the category.

Various studies have assessed the efficacy of pattern recognition and machine

learning on the RSS in occupancy detection. Conte et al. propose single-occupant

multi-class occupancy detection using BLE [30]. The authors deploy one beacon per

room in three rooms. The inference is made per instance using k-NN and DT. The

experiment result is obtained based on ten-fold cross-validation with 1234 instances.

They report 83% accuracy. Similarly, the same procedure is applied by Corna et al.

to detect occupancy of one room [33].

Filippoupolitis propose a single user localization in ten areas using eight BLE

beacons [45]. The areas are divided into two independent sectors. The authors

investigate Logistic Regression, k-NN, and SVM technique on BLE signals measured

using a mobile phone. They report the classification performance based on 10-cross

validation. The accuracies are between 80-100% depending on the rooms.

Localization using WiFi and BLE beacon by placing one beacon per room also

has been done in [123]. From beacon readings, features are extracted (i.e., max, min,

mean, std. dev) followed by machine learning utilization, such as a Bayesian-based

classifier. The test bed is a house with five rooms. However, as the work focus on

the load disaggregation based on occupancy, the authors do not provide localization

accuracy [124].

Challenges and proposed solutions

Several lines of evidence suggest that RSS of BLE beacons suffers from several dis-

turbances. Multipath and fast fading signals during propagation appear to be signif-

icant problems in an electromagnetic-based localization, including BLE [25]. Device

con device



6.2. Relevant Literature 69

heterogeneity in the market also provides various readings for the same broadcasted

signal strength [102]. Furthermore, for battery-powered BLE, the beacons’ battery

level affects the signal transmits, up to 5dBm [123]. The human body may also block

and weaken the RSS [143]. Interference on WiFi signals affects on dropped reception

ratio to around 75% and lower RSS values (more than 10dBm reduction) [88]. Fur-

ther, Paek et al. also observe that a phone held on hand can attenuate the received

signal as much as 30dBm. Especially in real life, these unforeseen circumstances

may affect the performance of localization. Therefore, testing in real-life holds an

important role.

A number of studies have addressed the problems. Castillo Kara et al. pro-

pose beacons’ asymmetric transmission power [25]. The authors firstly investigate

beacon signal attenuation per unit beacon. Based on this insight, they evaluate

some different combinations of beacons’ transmission power to improve classifi-

cation models in the localization system. While they claim that some improvement

exist over the homogeneous transmission power, the approach is not portable and

requires much effort to investigate the transmission power setting of each BLE bea-

con. Furthermore, there is no way to guarantee that the best performance is the best

it can achieve, unless one tries a very large number of experiments.

To deal with device heterogeneity, some researchers propose offset calibration

to compensate the RSS offsets of different devices in relation to a reference de-

vice [125, 120]. While it is reported that this approach may increase the localiza-

tion performance (i.e., reducing up to 80% localization error in 50% percentile), it

requires calibration of each type of mobile phones used by users.

Apart from the data or program manipulation approaches, hardware-based ap-

proaches have also been proposed. Barsocchi et al. propose to use BLE beacons

with multiple signal strength (i.e., ´18dBm and 3dBm) to improve occupancy de-

tection [17]. The transmitting beacons are provided and carried by a user, thus,

the hardware is uniform. The receiver nodes, on the other hand, are deployed in

the rooms to receive the transmitted signals. A participant walks through prede-

termined routes and stays about a minute in marked positions to evaluate the oc-

cupancy inference performance. The authors report up to 10% accuracy improve-

ment compared to single signal strength transmission. However, the approach is

intrusive, as it forces people to carry the transmitting beacons. In our work, we

utilize existing mobile phones as receivers instead of attaching additional hardware

to users. Hence, we achieve additional benefits, such as reducing intrusiveness to

users in carrying special beacons and improving chances to track users as they use

the phones during activities. Furthermore, this approach diminishes the building

manager’s responsibility to manage the battery of emitting beacon tags carried by

users.
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Vigneshwaran et al. equip two access doors with two BLE beacons [127]. Each

beacon is set with relatively strong power (´8dBm) and short-interval transmission

(i.e., 109ms). The authors configure a mobile application as a receiver with a high

duty cycle, that is, less than 1s of waiting interval. This configuration allows them to

detect enter/exit movements through the observation of signal strength variation.

Such a high-demand arrangement consequently impacts to the beacon lifetime (i.e.,

about only three months) and phones’ battery life. Our work, on the other hand,

aims at power saving. We set a more efficient beacon to transmit energy into 950ms

and, most importantly, the duty cycle of 2.5s ON and 1.5s OFF to preserve phones’

battery. The beacon lifetime is also longer using such a less powerful configuration

(e.g., in our experience, the beacons still have more than two years of battery life

after about three years of deployment).

6.3 Design

We aim to investigate the performance of multi-occupant low-intrusive room-level

localization using BLE beacons. Two assumptions have been made. First, the oc-

cupants carry a mobile phone to support work activities. Second, The participants

agree to keep the beacon application and Bluetooth scanning services running. They

understand that the system does not recognize activities and productivity, therefore,

they give consent to collect occupancy data in common spaces (i.e., offices and a so-

cial corner). At any time, they can stop the services when needed to protect their

privacy.

We collect BLE beacons signals using various mobile phones. Instead of build-

ing fingerprint maps, we limit to a few hours of training data collection only in a

few observation points. This simple step is to to keep the intrusiveness-level low.

We ensure that the collected training data well represent each room by using a co-

sine distance between the reference vectors acquired in the observation points [97].

Based on the collected signals, we extract features for training purposes. We thus

infer multi-occupants location in a typical week and compare to the related works

to evaluate the performance of our approach.

6.3.1 Sensing Technology

We use off-the-shelf Proximity Tag from Estimote4, which has a default battery

life of two to three years. The vendor provides two Software Development Kits

4https://estimote.com/products/
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(SDKs), namely Proximity SDK5 and Android-Fleet-Management-SDK6 (the latter is

also known as Estimote SDK). Proximity SDK is an advanced SDK with Estimote’s

signal-processing technology, running on top of Estimote’s proximity monitoring

framework. This SDK, however, only provides information of enter or exit events to

a defined area. On the other hand, Estimote SDK is a basic SDK that provides APIs

for detecting beacons in two ways: monitoring and ranging. Monitoring enables to

know events of entering or exiting of an area, while ranging provides more granular

information. It returns a list of beacons in range, together with signal strength and

estimated proximity to each of beacon. We opt to implement ranging beacons from

Estimote SDK to collect raw RSS data and beacon categorization7 (i.e., immediate,

near, far, unknown), and process in our way, as will be discussed in the next section.

Also, the SDK is the most widely used development kit and it is supported by most

Estimote beacon types. Each beacon node broadcasts tiny BLE packets based on a

beacon protocol. We use the most standard iBeacon protocol8 that is fully supported

by the beacon nodes we used.

6.3.2 Techniques

Prior to the localization investigation, signal references are collected to supervise

classifiers. For each location li P L,L “ tl1, l2, . . . , lru, we sample signals from a set

of beacons B “ tb1, b2, . . . , bmu in observation points P “ tp1, p2, . . . , pou. The obser-

vation point p is a position where people are mostly staying in the office rooms, such

as in a chair or sofa. From each observation point pi P P , we compute the median of

beacon signal readings as a reference vector v that represents the location li.

We investigate the similarity of the reference vectors to evaluate whether such

vectors are valid for representing a class of location [97]. For this, we calculate the

degree of similarity between a pair of reference vectors, vi and vj (i.e., Eq. 6.1). We

then keep the signals collected at the observation points if they have different direc-

tions with other vectors representing different classes.

simpvi, vjq “
~vi ¨ ~vj

|~vi||~vj |
(6.1)

Having the collected training signals to represent classes properly, we continue

the processing. We transform the RSS signals into magnitude power P (Eq. 6.2), and

normalize the value into a range of 0 to 1 (Eq. 6.3).

5https://github.com/Estimote/Android-Proximity-SDK
6https://github.com/Estimote/Android-Fleet-Management-SDK
7https://developer.estimote.com/ibeacon/tutorial/part-3-ranging-beacons/
8https://developer.apple.com/ibeacon/
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P “ 1mW ¨ 10
RSS dBm

10 (6.2)

P 1 “
P ´ minpP q

maxpP q ´ minpP q
(6.3)

We extract a number of features, including mean, mode, standard deviation, and

maximum value over a non-overlapping sliding window of length w. We also con-

sider the difference between the means of the current window and the previous win-

dow as features. Furthermore, we consider Boolean features that indicate whether

beacon nodes are discovered and being the strongest, among others. The feature

space is summarized in Table 6.1.

Table 6.1: Feature space of a single beacon made up of N observations over a sliding

window

Features Formula

mean µ “ 1

N

řN

i“1
Pi

mode P̂ “ argmaxpPiq
N
i“1

std. deviation Pstd “
b

1

N

řN

i“1
pPi ´ µq2

max Pmax “ maxpPiq
N
i“1

diff Pdiff “ µt ´ µpt´1q

isDiscovered 1pDPi‰8,iPNq, 0 otherwise

isStrongest 1pmaxpPmaxqPRM q, 0 otherwise

Finally, we build classification models based on k-NN with cosine distance. A

localization classifier hloc assigns lji , a location of individual ji, to βji , the extracted

features of the RSS beacons discovered from ji’s phone. Formally, hloc : βji Ñ

lji , lji P L. The extracted feature βji has pn ¨ Mq columns, where n is the number of

extracted features per beacon, and M is the number of deployed beacons. We use

the built models to classify any query RSS.

Baseline: Low-intrusive Approaches

We replicate the nearest beacon approach proposed by Lin et al. [78] and provide the

inference results of experiments in our dataset. Furthermore, we adopt the thresh-

olding approach proposed by Kyritsis et al. [70] with some adjustments in the cal-

ibration process. As our environment differs from the original author’s setup (i.e.,

we have adjacent rooms with the same size), the room dimension does not signifi-

cantly contribute to the threshold assignments, and thus, room inference. Therefore,
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we calibrate the thresholds based on the visual observation of signals strength mag-

nitude received by different phones. The assigned thresholds are then used to infer

room-level localization in our dataset.

6.3.3 Metrics

We measure overall accuracy and per class F-measure to evaluate the system in de-

termining room-location of each participant.

Accuracy

Accuracy defines the correct prediction of all class labels over the total number of

predictions that have been made. In the case of beaconing-based occupancy detec-

tion, we assign localization classifier hloc : βji Ñ lji . The metric should evaluate

how good the classifier is in assigning a room location lji P L to the beacon signals

of each participant ji. The general formulation of accuracy in Equation 5.2 can be

specified as:

Accuracyji “
ÿ

lPL

TPl

TPl ` TNl ` FPl ` FNl

(6.4)

The True Positive or True Negative of location l (TP l or TNl) is the number of

windows that correctly inferred as location l, or others (i.e., not in location l), respec-

tively. False Positive or False Negative (FPl or FNl) is the number of instances for

which location l, or not in l, are misclassified.

Since employees spend most of the work hours in their room office, we provide

the correctness of whether they are in the office. Therefore, we also expose the per-

centage of correct inference of being present (i.e., true presence) and error inference

of being not present (i.e., false absence) in the corresponding work office.

F-measure per-class

As accuracy is prone to be misleading (e.g., a high accuracy due to inferring a major

class in imbalanced data), we calculate precision and recall for each room location

l P L. Precision in detecting location l is defined as the rate of inferred class-l that are

predicted precisely. While recall in detecting location l is defined as the rate of the

real ”in room location l” instances that are identified correctly. Finally, we provide

the harmonic mean of precision and recall with an equal weight. Precision, recall,

and F-measure are defined in Equation 6.5, 6.6, and 6.7, respectively.

Precisionl “
TPl

TPl ` FPl

(6.5)
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Recalll “
TPl

TPl ` FNl

(6.6)

F ´ measurel “ 2 ¨
recalll ¨ precisionl

recalll ` precisionl

(6.7)

6.4 Experiments

We experiment multi-occupant localization based on BLE beaconing system. This

section describes datasets and the experiment setup. Finally, it discusses the local-

ization results.

6.4.1 Data

We included five participants in carrying mobile phones loaded with BLE signal

acquisition application during typical workdays on the fifth floor of the Bernoulli-

borg building at Zernike Campus of the University of Groningen, The Netherlands.

The data collection was performed from October 15, 2018 until October 19, 2018. For

training purposes, we collected additional data on the weekend on October 20, 2018.

The training data covered eight observation points. At each point, the training data

were collected for about 20 minutes. We opted to use occupant work desks in three

room-offices and a sofa in Social Corner (SC) as observation points as these places

are the most occupied position during the occupancy period.

6.4.2 Setup

We initially deployed twelve beacons across the office environment on the fifth floor

of Bernoulliborg building in the Zernike Campus, the University of Groningen, The

Netherlands. One of the beacons, unfortunately, was missing during the data collec-

tion period. The beacons have adjustable configuration parameters. As we focus on

a low-intrusive approach, we set low power signal transmission to preserve battery

life and, thus, lowering the need for beacon battery maintenance. Table 6.2 provides

the overview of our low-power beaconing system, compared to other deployments.

To receive signals broadcasted by the beacons, we install application listener on

the mobile phones carried by the participants. The app has capabilities of accessing

the Bluetooth and Internet connection for sending the measurement to our server.

The application is set to listen and wait for signals in 2.5s and 1.5s, respectively.

Furthermore, the application has a user interface to receive the actual room locations

as ground truths. The participants have fixed workplaces. Figure 6.1 illustrates the

experiment testbed in our university building.
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Table 6.2: Beacon Deployment

Refs. Transmitted sig-

nal strength

Beacon density Broadcast interval

This thesis ´16dBm 2 per 30m2 950ms

[17] ´18 and 3dBm 2 beacon per person,

1 static receiver per

room (26m2)

1000ms

[127] ´8dBm 1 per door 109ms

[44] 0dBm 1 per 28m2 20ms

[88] 4dBm 3 per classroom 950ms

[143] ´12dBm 1 per 30m2, semi-

outdoor

645ms

[70] ´12dBm 1 per room 350ms

[45] unknown 1 per 48m2 125ms

[83] 4dBm unknown unknown

Figure 6.1: Layout of the work spaces and deployed beacons

Prior to locating people based on RSS, the received signal strengths are inves-

tigated. We collect signals from two observation points in room B at the weekend

when nobody is present in the office. The first observation is from j5’s desk on sig-

nals from beacons b3 (vertically on the access door of room B), b2 (on the ceiling of

room B), and b0 (on the ceiling of room C). The second observation is from j3’s desk

on signals transmitted by beacons b2 (placed on the ceiling of room B) and b4 (placed

on the ceiling of room A).

In our approach, we use window width w “ 10, which is equal to 50-second

measurement. The window is non-overlapping. Such a window configuration is
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Table 6.3: Calibrated thresholds for each user (dBm)

Users bin
0

bout
0

bin
2

bout
2

bin
4

bout
4

bin
6

bout
6

j1 -87 -93 -89 -93 -86 -98 -80 -90

j2 -81 -88 -81 -91 -81 -90 -75 -92

j3 -90 -95 -83 -92 -85 -90 -81 -90

j4 -84 -89 -87 -96 -86 -92 -81 -93

j5 -83 -93 -91 -98 -89 -97 -85 -92

based on the assumption that people will stay at least a minute in a room, for exam-

ple, taking a cup of coffee at the coffee machine in Social Corner (SC). As we focus

on a low-intrusive approach, the training instances are only from a single mobile

phone (i.e., belong to individual j2) to prevent the necessity of all participants to

take training data.

Implementation: Low-intrusive Approaches

When comparing to the related works, care is taken to replicate the experimental

setup. We consider only one beacon on ceilings per room as proposed by Lin et al.

and Kyritsis et al. [78, 70]. While we have different signal sampling rates with the

authors, we assign the same window size. The reason is that we consider the same

number of samples in smoothing the BLE signals. For the Lin’s approach, we use

w “ 5, which means that we average signal readings in about 25s (5 times wider

than the original work). For Kyritsis’s approach, we use w “ 10 of the latest RSSI

readings. We assign the thresholds thrin and throut that well differentiate beacon

strength categories (i.e., strong, medium, and weak). The thresholds are listed in

Table 6.3.

6.4.3 Results and Discussion

This section discusses the preliminary investigation on the received signal strength

in the test environment. It then elaborates the localization results based on the ap-

proaches mentioned earlier.

Preliminary RSS Observation

We investigate the signal strength collected from two observation points (i.e., at the

work desks belonging to individual j3 and j5) located in Room B. The findings are

discussed in the following.
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Distance is not the only factor affecting the received signal strength. Ideally, bea-

con b2 should be the strongest due to its closest distance and the same room loca-

tion as the phone, and beacon b0 should be the weakest due to its location in the

neighboring room. However, there is a variability of signal strength from beacons

in different places

Figure 6.2 shows BLE signals observed at the j5’s desk. The phones belonging

to j1 (the blue line), j2 (the orange line), and j4 (the red lines) receive the strongest

signals from beacon b3, between ´75 and ´70dBm. From beacons b2 and b0, the

j4’s (the red line) and j1’s (the blue line) phones receive signals about ´85dBm and

´90dBm, respectively.

The signals of beacon b0, as expected, are weaker than the other two beacons, as

this beacon is located in the next office with a wall separation between the rooms.

Interestingly, signals from beacon b2 are weaker than signals from b3 for all phones,

even though the distance from the phones to b2 is closer (i.e., 2.3m) than to b3 (4.9m).

It is probable that the beacons’ positioning and antenna directions affects the signal

strength. Both beacons b3 and b2 are located in Room B. That is, beacon b3 is attached

vertically on the door with the distance about 1.9m from the ground, while beacon

b2 is attached on the ceiling with the distance about 2.7m from the ground. It is

apparent that placing beacons vertically on the doors or walls is more effective than

on the ceiling.

Signals from beacons in neighboring offices may be discovered with a similar

signal strength by some mobile phones. Figure 6.3 presents an overview of sig-

nal strength of beacons b2 and b4 received at the j3’s desk. One can see that the

mobile phone belonging to j4 (the red line) observes signals from beacon b2 with

signal strength between ´75 and ´80dBm, and, as expected, the same phone ob-

serves weaker signals from b4 in the neighboring office with signal strength be-

tween ´85 and ´90dBm. Interestingly, the other mobile phones report similar sig-

nal strength for the same beacons in different locations. That is, the phone belonging

to j1 (the blue line) observes fluctuation signals between ´85 and ´90dBm for sig-

nals from both beacons b2 and b4. Also, the j2’s phone (the orange line) observes

about ´75dBm, and the j5’s phone (the purple line) observes about ´85dBm for

both beacons, even though the signal fluctuation is slightly different. A likely expla-

nation of the similarity is the difference on sensor sensitivity .The phone belonging

to j4 is sensitive enough to distinguish beacons b2 and b4, while the other phones

are not. The mobile phones have different receiver sensitivity and radio-frequency

interference (RFI) due to noise within the devices [115]. It might be affected by the

noise generated by memory interfaces, clock signals for the SD card, sensors, etc. It

is likely that the mobile phone belonging to j4 has higher sensitivity than the others.
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Figure 6.2: Received signal strength transmitted from three different beacons and

observed from j5’s desk in Room B. Top: the observation of beacon b3 (at the door of

Room B). Middle: the observation of beacon b2 (on the ceiling of Room B). Bottom:

the observation of beacon b0 (on the ceiling of the neighboring Room C)

The findings suggest that there are some irregular unexpected received signal

strengths from the empirical experiments. To infer the location of different phones

based on RSS, pre-process calibration, or complete fingerprinting surveys may be

necessary. In this thesis, however, we avoid such a way to reduce intrusiveness. We

use machine learning approaches to explore the pattern of the RSS instead. We also

compare with other considerably low-intrusive approaches, based on the strongest

beacon and thresholding approach.
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Figure 6.3: Received signal strength transmitted from two beacons on the ceilings of

Room B (top) and neighboring Room A (bottom). The observation was from j3’s

desk in Room B

The Classification Results and Discussions

The inference results of the proposed low-intrusive approaches are presented in Ta-

bles 6.4 and 6.5, respectively. As can be seen in the tables, utilizing the strongest bea-

con (i.e., Lin’s approach) and the threshold-based beacons’ signal-level (i.e., Kyrit-

sis’s approach) one can infer per room location with an F-measure between .82 and

.91 in four of five employees in a week of observation. The Kyritsis approach slightly

improves the baseline for most people except for j1. This declined performance

might be affected by the threshold assignments that do not entirely fit with the

test data. The best inference of Kyritsis’s approach is on individual j5, with .906

F-measure of presence in the j5’s office (i.e., Room B) which is inferred using the

baseline reaching .881 F-measure.

Table 6.6 presents room-level classification results over five participants using

our proposed approach. What stands out in the table is that our approach improves

the inference of majority rooms of all participants. While the approach does not im-

prove in the inference of room C and SC for individual j1, it significantly improves

the inference in j1’s office, reaching .973 F-measure. The improvement of the self-

office inference also happens to individual j3, but the inference is still not satisfying.

When we look at the self-office inference, the False Negative (FN) is higher than TP.

That is, about 44.36% of the time of his presence in his office (i.e., Room B) is correct,
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Figure 6.4: The localization Inference of j1 based on RSS of BLE beacons

and 55.64% are misclassified as not in the office. There are many misclassifications

to the neighboring Room A. Sitting near the room border may cause false inferences.

Figure 6.4 illustrates room-level localization using several approaches. From the

figure, one can see that the localization systems often misclassified adjacent rooms.

For example, starting from 09:07 until 12:00, the person is actually in Room C. How-

ever, the system sometimes infers that the person is in Room B, in turn leading to an

increasing number of FN. While our proposed approach may reduce this number

(i.e., it shows that our approach is more robust due to more features and matched

training samples), if we look at the FN, it gives 123 inference which means 102.5

minutes or 1.7 hours of false detection on average in five workdays. This misclassi-

fication may still lead to power waste, or even worse, inconvenience or frustration

for the users when it is connected to automatic control systems.
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Table 6.4: Room location classification using the Lin’s approach [78]

ID Acc. F-measure per class Self-office (%)

Out. A B C SC True Pres. False Abs.

j1 .95 .9870 .91306 .8871 .8713 84.34 15.66

j2 .95 .9814 .8219 70.64 29.36

j3 .79 .9589 .4588 29.89 70.11

j4 .99 .9932 .8879 .9339 81.19 18.81

j5 .97 .9922 .8812 79.35 20.65

Table 6.5: Room location classification using the Kyritsis’s approach [70]

ID Acc. F-measure per class Self-office (%)

Out. A B C SC True Pres. False Abs.

j1 .94 .9936 .8921 .8333 .7083 80.85 19.15

j2 .96 .9814 .8608 76.68 23.32

j3 .80 .9626 .4895 32.53 67.47

j4 .99 .9938 .8919 .7629 83.90 16.10

j5 .97 .9929 .9064 83.57 16.43

6.5 Conclusion

The RSS based localization or occupancy detection systems suffers from distur-

bances, as noted already in the literature. The problems are also in line with our

observations, which show that: 1) the distance between beacons and mobile phone

receivers is not the only factor that affects the RSS. The beacon orientation could also

effects the received signal strength; 2) receiving signals in the edge of the adjacent

rooms may lead to the similar signal strength of beacons located in different rooms.

Some mobile phones are not sensitive enough to sense the difference. Based on this

observation, deciding a room location of adjacent rooms might be difficult due to

many factors affecting the irregular RSS.

We propose to use the BLE beaconing system in a low-intrusive way. Instead of

conducting dense fingerprinting surveys, we propose to only sample signals using

a phone in some parts of the most occupied points and use the signals as location

references. We validate the collected reference vectors based on the cosine similarity.

We thus extract features from the collected training data and build nearest neighbors

classification models. To test the performance, we investigate five mobile phones

and compare with previous works that we consider low-intrusive (i.e., [70, 78]).

We find that the proposed low-intrusive approach performs reasonably well for

four of five participants in a week investigation. It also improves the occupancy

detection in self-office for whole employees over the baselines, even though the
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Table 6.6: Room location classification using the proposed approach

ID Acc. F-measure per class Self-office (%)

Out. A B C SC True Pres. False Abs.

j1 .98 .9980 .9725 .8169 .7727 95.09 4.91

j2 .97 .9856 .8847 80.68 19.32

j3 .83 .9628 .6126 44.36 55.64

j4 .99 .9938 .9017 .9344 83.22 16.78

j5 .99 .9931 .9559 NaN 92.31 7.69

strongest beacon indication still infers better in some places with a short occupancy

period. The individual whose presence is not inferred well is the one who sits near

the separator wall among two adjacent rooms. This results even in 55% of mis-

classification. The other finding is that even in the best inference results, the false

detection happens for about 100 minutes in five-day observation. These findings

show that the proposed approach still needs improvement. As we will explore in

the next chapter, the fusion of different modalities may provide improvements.



Chapter 7

Fusion of Power-metering and Beaconing
Systems

7.1 Overview

The BLE beaconing systems often experience false negatives when neighboring of-

fices are misclassified or BLE beacons are not detected. In this chapter, we sur-

vey sensor fusion of the two sensory sources introduced in the previous chapters,

namely, the power metering system and beaconing system. Sensor fusion is defined

as a technique to combine sensor readings from multiple sources to improve accu-

racy and reliability, or to achieve more specific inferences than could be achieved by

the use of a single sensor alone [54, 140]. The fusion process, unfortunately, does not

always lead to improvements. Additional data or information may even confuse the

inferences based the individual sensors, especially when the additional information

is incorrect or inconsistent [53]. Hence, care must be taken to properly investigate

the fusion process by, for example, selecting fusion techniques that are appropriate

to the available information.

Hall and Llinas further define three types of architectures based on the data ma-

nipulation level, namely, data-level fusion, feature-level fusion, and decision-level

fusion [54]. In data-level fusion, the raw sensor data from commensurate sensors

(i.e., sensors observing the same physical quantities, such as visual images) are com-

bined. It is then followed by extracting feature vectors from the fused data. In the

other fusion approach, feature-level fusion fusion, each sensor extracts feature vec-

tors of the observation. The vectors are then concatenated to form a single feature

vector, which in turn is input to any classification techniques. The output is a joint

or fused decision based on the combined feature vectors from the sensors. Finally, in

decision-level fusion fusion, each sensor performs a decision-making process based

on its observational data. The temporary inference of each sensor can be combined

to form a final decision.

We particularly focus on the feature-level fusion and decision-level fusion, as

power metering system and beaconing system observe occupants from different

perspectives. That is, the power metering system observes power consumption
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while the beaconing system investigates the signal strength received by phones be-

longing to individuals. We investigate per-user occupancy in shared offices using

classification and decision-based methods. To the best of our knowledge, none of

the earlier occupancy detection systems have attempted to extract multi-occupants

presence from the fusion of power metering system and beaconing system.

This chapter begins by presenting the relevant literature in Section 7.2. The ex-

perimental design is described in Section 7.3. Next, it discusses the experiment on

decision-level fusion and feature-level fusion in Sections 7.4 and 7.5, respectively.

Finally, general conclusions are drawn in Section 7.6.

7.2 Relevant Literature

Various studies have assessed the efficacy of decision-level fusion. An example is

based on a Bayesian approach [140]. Zhao et al. consider two-level occupancy de-

tection. Namely, occupancy at room-level, which covers two private room offices,

and occupancy at the work zone level, which covers three zones in a building floor.

At the room level, the authors use Passive InfraRed sensors (PIRs), computer key-

boards, and mice to sense the human presence in the workspaces. At the work zone

level, they utilize WiFi connection and GPS position to infer either an occupant is

outside of the building, in one of the observed zones, or coming/leaving to/from

the building. The fusion is done using the Bayesian Belief Network (BBN), which re-

quires prior probabilities of all possible events as input parameters. The parameters

are assigned per sensor or information source and are learned with an Expectation

Maximization (EM) algorithm if there is enough historical data available. Other-

wise, the values are to be determined by experts or conducting a survey. It is shown

that the accuracy increases from 73.4% (using PIR) and 92.8% (keyboard and mouse)

to 96.7% by the BBN for a typical day. While they can achieve improvement, the

testbed is intrusive in terms of attaching sensors in private offices. We address mul-

tiple occupants in shared offices with less intrusive sensors. For example, we use a

power meter that measures the aggregate power consumption in the offices.

The other example is a fusion based on Dempster-Shafer Theory of Evidence

(DST) that requires sensor beliefs or Probability Mass Assignment (PMA) from each

sensory input. Nesa et al. propose a formula to compute PMA, assuming that the

measurements follow a normal distribution [86]. The goal is to infer the occupancy

of a single room occupied by two persons. They experiment with humidity-, light-,

CO2-, and temperature-sensors. As a comparison to the fusion technique, they im-

plement single sensor inferences using decision trees, gradient boosting, and Linear

Discriminant Analysis (LDA) approach. From a six-day training set, they validate
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the proposed approach in two testing sets; each contains two and seven days. The

achieved result is promising for all sensory combinations that fused with a light

sensor, that is, about 97% for classification with a decision tree, LDA, and DST. For

the single sensor inference, the results reach 78% and 84% for CO2 and temperature

sensors, respectively. Their solution, however, lacks of occupant identification due

to information insufficiency acquired from the applied sensors. That is, there is no

information on how many persons are present and who they are.

A fusion algorithm inspired by the stigmergy of ant’s pheromone release is pro-

posed to detect occupancy of two single-occupancy offices [16]. The authors exploit

motion, noise, and power meter sensors. Unlike our power meter that measures the

consumption of multiple users, their current-transformer (CT) based power meters

observe individual employees. This setup allows them to exploit mean and stan-

dard deviation of power meter readings that represent individual presence states,

but with high intrusiveness of deployed devices. To combine with the other sensors,

the authors perform optimization of two parameters from each sensor, i.e., ampli-

tude intensity and dispersion decay. They then use an equation based on the natural

exponential function to compute a sensor-specific value that needs to be summed up

to see whether or not it exceeds a pre-determined threshold. An occupancy status is

decided when the value is greater than the threshold.

A number of previous research into feature-level fusion has focused on environ-

ment sensors to count people numbers in an office room. Khan et al. propose to

use at least 127-dimensional feature vectors in combining light, humidity, acoustic,

and PIR sensors to detect occupancy [64]. Occupancy detection is in hierarchical

forms. The lowest level is binary occupancy inference (i.e., occupancy/no occu-

pancy state). One level higher is category inference (i.e., none, low, medium, high

occupancy). Counting the number of occupants becomes the highest level of infer-

ence in the hierarchy. On each inference level, the system outputs inference as well

as its confidence degree. The confidence is computed from the probability of the

class occurred and considered as an additional feature to infer higher-level occu-

pancy. Furthermore, they propose to combine with contextual information, such as

computer activities and meeting schedules to improve decision confidence. Based

on the experiment in an open office space (92m2) and a small meeting room (45m2)

during up to two weeks, they show that embedding additional features can improve

the classification accuracy up to 6% and for both k-NN and SVM methods.

Ekwevugbe et al. utilize environment sensors, such as air quality (i.e., CO2 level

and Volatile Organic Compounds (VOC)), acoustic, infrared cameras, and indoor

climate (i.e., temperature, humidity, and illumination) to detect the number of occu-

pants in addition to PIR [41]. They aim to predict occupancy numbers in a consid-

erably large room (i.e., 8m x 13m) occupied by up to six persons. They extract some
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features from the sensors and select the best describe class according to the criteria.

The selected features are the first order of difference of CO2, an average of case tem-

perature, sounds related features, the difference of CO2, the variance of case temper-

ature, and the total duration of occupancy as detected by PIR sensor. Given the ex-

tracted features, they use backpropagation NN to estimate the occupancy numbers,

resulting in about 70% accuracy per day. One major drawback of the environment

sensor approach is the system’s detection delay due to the slow mixture rate of the

air [71]. Further, the detection is non-individualized, meaning that the estimation

does not distinguish people, thus unable to be used in personalized-based control.

Mohebbi et al. establish information fusion between anonymous and epony-

mous sensors (i.e., PIR sensors and BLE) for localization systems of two occupants

in a residential building [83]. There are 14 motion sensors, and 30 Estimote Sticker

Beacons1 (i.e., the light version of BLE nodes) in a space sized about 70m2. They pro-

pose to fuse the location estimation (so-called confidence-map) produced by each

sensor modality. The confidence map is a set of values in the cartesian coordinate

that representing location estimation sensed by the sensors. That is, the value will

be one if any movement triggers PIR sensor or a mobile phone sees a broadcasting

beacon about 1m distance (represented by ´70dBm RSS). The PIR sensor produce a

single confidence map, while BLE produce a set of confidence maps (i.e., one map

per-occupant). The fusion is processed by summing the confidence values across

the entire two-dimensional coordinate-space using a weighted sum, resulting in the

merged location estimation from several confidence maps. In this chapter, we utilize

low-intrusive power metering system and beaconing system for occupancy detec-

tion system in adjacent shared rooms. We involve up to six participants to inves-

tigate fusion techniques that are appropriate to the available low-intrusive sensory

systems.

7.3 Design

The power metering system and beaconing system have different perspectives on

the presence sensing. The power metering system sees occupancy from a global

infrastructure perspective. Namely, it discovers generic situations without paying

attention to a specific individual. A concrete example is the aggregate power con-

sumption X in shared offices. A classifier hocc assigns a class label into power read-

ing X , formally hocc : X Ñ Y . Y is a class label that represents the presence of

all individuals in the offices, Y “
 

yj1 , yj2 , . . . , yjn
(

, where yji P t0, 1u represents

occupancy state of an individual ji relative to his office space.

1https://estimote.com/products/
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Table 7.1: Fusion of power consumption Xt and BLEs’ RSS β
ji
t

Instances fused feature Yt

t “ 1 X1
~β
j1
1

~β
j2
1

... ~β
jn
1

j1j2j3

t “ 2 X2
~β
j1
2

~β
j2
2

... ~β
jn
2

j1j2

. . .

t “ T XT
~β
j1
T

~β
j2
T ... ~β

jn
T j1j4j5

On the other hand, the beaconing system observes occupancy from an individual

perspective. That is, this system works by discovering broadcasted signals with

respect to the individuals’ position. Given a set of room locations L “ tl1, . . . , lru,

and a set of beacons B “ tb1, . . . , bmu, the signal strength of beacons received by

any individual ji P J sampled in any discrete time t, t Ď N, is measured as β
ji
t . A

localization classifier hloc assigns a class label ljit into beacon readings βji
t , formally,

hloc : β
ji
t Ñ l

ji
t , l

ji
t P L. To associate one’s location lji to occupancy yji , we make

use of a workspace location map that indicates the work space of each employee,

formally, mloc : l
ji
t Ñ y

ji
t . The y

ji
t “ 1, if lji is equal to one’s office space, and 0

otherwise. Such information is commonly maintained by building administrators,

for example, to handle letters and parcels.

7.3.1 Fusion Techniques

We focus on the feature-level fusion and decision-level fusion. A notable difference

between the two techniques is on the level where data fusion happens. The former

method fuses data at the lower level before any decision has been made. The latter

approach combines higher-level decisions inferred based on individual readings.

Feature-level fusion

Feature-level fusion is defined as an action of joining features from two sensory

sources, before a decision has been made. This technique concatenates features

from each sensory sources, followed by classifying the concatenated features. As

the power metering system and beaconing system have different perspectives, a

problem transformation needs to be performed. We transform the problem by con-

catenating a set of labels yji to form a multi-label class Y “
 

yj1 , yj2 , . . . , yjn
(

. This

approach is known as label combination or label power-set (LC) method [105] or the

Combination Method (CM) [104]. Once labels have been concatenated to repre-

sent employees in an area, beacon observation from the participants are also con-

catenated as illustrated in Table 7.1. Finally, conventional single-label classification
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methods may be used to build classification models by treating Yt as an independent

label.

Decision-level fusion

Decision-level fusion is defined as an action of combining outputs or decisions from

multiple sources to form a final decision. We opt to utilize Dempster-Shafer Theory

of Evidence (DST) to combine inferences obtained from individual sources [116].

The DST is an approach for dealing with uncertainty in a hypothesis based on evi-

dential reasoning.

In DST reasoning, the system needs to infer a temporary decision and assign

’beliefs’ over the possible hypothesis θ based on evidence S reported by sensory

sources. Similar to probability, the sum of the degree of beliefs (also called as masses)

is 1. The belief of any hypothesis θ is defined as the sum of all evidence Sk that sup-

ports hypothesis θ and the sub-hypotheses nested in θ [132], as given in Eq. 7.1.

Beliefipθq “
ÿ

SkĎθ

mipSkq (7.1)

Given observation evidence from multiple sensors, the DST combination rule

provides a mechanism to fuse probability masses of the observation of sensor-i (mi)

and sensor-j (mj) as follows:

BeliefpAq “ mi ‘ mjpAq “

ÿ

AkXAk1 “A

mipAkqmjpAk1 q

1 ´ K
, (7.2)

where K “
ÿ

AlXAl1 “H

mipAlqmjpAl1 q

Based on the belief of sensor-i and sensor-j in generating a proposition A, we

can compute the combined belief of proposition A using the combination rule of

Equation 7.2. This value is normalized by 1´K, where K indicates conflicts among

the sources to be combined. For example, the Beliefpj1 : presentq is computed from

the products of the belief that the sensory modalities identify the j1’s presence. The

conflict factor K represents the disagreement of the two sensors towards proposition

that j1 is present, such as mippresentq.mjpabsentq and mipabsentq.mjppresentq.

7.3.2 Metrics

To evaluate the performance of occupancy detection, we measure accuracy and F-

measure per person. While decision-level fusion results single-label inferences (i.e., yji ),
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feature-level fusion outputs multi-label class Y due to the concatenation of occu-

pants’ presence states.

Single-label Inferences

In decision-level fusion, power metering, beaconing system, and the combination of

them infer yji , the occupancy state of an individual ji, where yji P tpresent, absentu.

The number of instances for which ji’s presence{absence are correctly predicted

count as TPji{TNji . Correspondingly, the number of instances for which ji’s presence{

absence are misclassified count as FPji{FNji . The accuracy and F-measure of each

individual occupancy detection are then defined as follows:

• Accuracyji “
TPji ` TNji

TPji ` TNji ` FPji ` FNji

• Precisionji “
TPji

TPji ` FPji

• Recallji “
TPji

TPji ` FNji

• F ´ measureji “ 2 ¨
precisionji ¨ recallji
precisionji ` recallji

For multi-class problems, such as BLE-based location inferences, the F-measure

is broken down into per room location as defined in Section 6.3.3.

Base-class Evaluation of Multi-label Inferences

Particularly in feature-level fusion, the system infers Yt, a class labels that repre-

sents the presence state of all individuals. We break down the label into individual

occupancy as proposed by Boutell et al. [23].

Let Yt “ tyt,j1 , yt,j2 , . . . , yt,jnu be the set of true labels for an instance at time t

and Y 1
t “

 

y1
t,j1

, y1
t,j2

, . . . , y1
t,jn

(

be the set of predicted labels from classifier h at the

same time t. The hit H
yt,ji

t “ 1, if yt,ji “ y1
t,ji

“ 1, and 0 otherwise. Likewise, let

the true condition positive Ŷ
yt,ji

t “ 1, if yt,ji “ 1, and 0 otherwise, and let the predicted

condition positive
ˆ̂
Y

yt,ji

t “ 1, if y1
t,ji

“ 1, and 0 otherwise. The base-class recall and

precision become:

• Recallji “

ř

t H
yt,ji

t
ř

t Ŷ
yt,ji

t



90 7. Fusion of Power-metering and Beaconing Systems

• Precisionji “

ř

t H
yt,ji

t

ř

t

ˆ̂
Y

yt,ji

t

• F ´ measureji “ 2 ¨
precisionji ¨ recallji
precisionji ` recallji

7.4 Experiment-1: Decision-level Fusion

We combine user presences inferred based on beaconing system and power meter-

ing system. In this section, we describe the collected data and experimental setup,

covering inferences based on individual sensors and decision-level fusion. Finally,

we discuss the results and findings.

7.4.1 Data

We collected training data for the beaconing system using a mobile phone (i.e., the

phone belongs to individual j1), from March 9, 2017 until May 2, 2017. As the col-

lected data were unbalanced, we randomly down-sampled according to the smallest

number of class instances (i.e., 22 instances). There were five room classes (i.e., three

offices, one social corner, and a hallway) involved in the experiment. The model

was built using k-NN with k “ 5 using the cosine distance. We also measured

power metering system for training purposes from March 13, 2017 until March 31,

2017. We tested the occupancy inference using fresh data from September 14, 2017

until October 30, 2017.

The occupancy ground truth was collected using a mobile application. Partici-

pants were asked to report their location whenever they moved to other rooms of the

observation area. The application converts the room location to binary occupancy

according to the workspace location map.

7.4.2 Setup

The appliance-metering system assumes that there is a plug-based power meter at-

tached on each monitor, while the sub-metering system measures the total power

consumption. The volunteers have mobile phones and monitor screens in their

workspace, as listed in Table 7.2.

Presence from appliance-metering system We deploy plug meters to measure

monitor screens’ power consumption, as in Section 4.3. The appliance-metering

based occupancy detection is provided to report how the screen activation is related
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Table 7.2: List of mobile devices and monitors

ID Phone (Android SDK version) Monitor

power rated

j1 S6 edge+ (Android 7.0, API 24) 11.8 W and 21 W

j2 S6 (Android 7.0, API 24) 90W and 19.5W

j5 A5(2016) (Android 6.0.1, API 23) 40W and 21W

j6 Nexus 5x (Android 7.1.1, API 25) 24W

to the occupant presences. The presence is detected using a threshold value on the

plug meter readings. When the measured consumption is over a threshold, we infer

the occupancy state as occupied.

Presence from sub-metering system Occupancy detection in this experiment is

based on the switching state detection, and therefore relies on the event detection

function fev , as defined in Section 4.3.2. Given a set of individuals J “ tj1, j2, . . . , jnu

and a set of monitors D “ td1, d2, . . . , duu, where individual ji P J has at least one

monitor di P D, the classifier hrecog assigns monitor labels into detected switching

events on the ordered sequence of power observation O “ X1, X2, . . . , XT , formally,

hrecog : fevpOq Ñ di, di P D.

Next, the detected switching state of monitor di is associated with individual

occupancy yji using an inventory list map of monitor devices, formally, mmon : di Ñ

yji . The inventory list is assumed to be updated by buildings facility managers since

they provide work-related equipment needed by employees. When an ON/OFF

event is classified as a load di belonging to an employee ji, the event indicates the

start and end of presence states of an employee yji ,where yji P t0, 1u.

We assign belief to this sensory source by determining how closely the activated

monitors agree with the real occupancy of the owner in the past (i.e., we choose

the data from April 19, 2017 until May 1, 2017). The belief assignment is based

on how close the hypothesis and sensor evidence in the past, specifically, similar

to Lawhern et al. [74]. We count the frequency of positive/negative agreement

and positive/negative disagreement between actual occupancy and predicted de-

vice activation. The actual occupancy is obtained from manual user input (or the

appliance-metering system if user inputs are missing), while the prediction of acti-

vated devices is gathered from the device recognition module of the sub-metering

system. The assigned beliefs are shown in Table 7.3.
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Table 7.3: Probability Mass Assignment of room-level power meter, specific for par-

ticipants j1, j2, j5, j6
j1 devices j2 devices j5 devices j6 devices

Belief ON OFF ON OFF ON OFF ON OFF

Presence 71.35 23.71 98.50 38.10 83.20 4.03 68.50 13.63

Absence 28.65 76.29 1.50 61.90 16.80 95.97 31.50 86.37

Presence from beaconing system We utilize w-width overlapping moving win-

dows to extract BLE features from the beacons’ RSS, similar to Section 6.3.2. The

extracted features are mean, the difference of consecutive means, mode, standard

deviation, and maximum value of RSS. In addition, we put binary features to indi-

cate which beacons are discovered and which one has the strongest received signals.

See [99] for details. A localization classifier hloc assigns lji , the location of individual

ji, to βji , the extracted BLE beacon features, formally hloc : β
ji Ñ lji . The workspace

location map is then used to infer binary occupancy yji from the localization out-

put lji .

The system produces inference results and beliefs based on the evidence pre-

sented by RSS. It computes beliefs as the sum of the weight of nearest neighbors

with the same label normalized by the sum of weights of k-NN. We use k “ 5 and

evenly distributed weight for the k-NN.

Presence from decision fusion Given the decision and evidence from each sen-

sory modality, we fuse the inferences to obtain the final decision. DST is used to

deal with uncertainty from each sensor. Occupancy is inferred based on 5-minute

moving windows with 1-minute overlap (i.e., window width w “ 48 instances, in

5-second sampling interval). We define work hours based on common observation,

that is, from 7.00 AM to 9.00 PM. Hence, on a day observation, there are 210 time-

windows during 14 work hours. The classification of the detected events and the

classification of RSS are based on neural networks (see Chapter 4) and k-NN with

cosine distance (see Chapter 6), respectively.

7.4.3 Results and Discussion

The presence inference results from appliance-metering, sub-metering, beaconing

system, and decision-level fusion are shown in Table 7.4. As shown in the table, the

appliance-metering may infer volunteer presences with .92 to .99 F-measure. This

result shows that monitor activation may indicate occupancy as long as an employee

uses a computer during their occupation and consistently put it on standby mode

while he is away. Individual j5 indicates this condition and resulting very high
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precision and recall. On the other hand, for a particular person, such as j2, presence

detection results in a lower recall than the other people, reaching .91 F-measure.

It indicates a high number of false negatives due to j2’s presence without power

consumption.

Table 7.4: Occupancy inference performance per individual.

ID Source Accuracy Precision Recall F-measure

j1 Appliance-metering .9178 .9151 .9623 .9321

Sub-metering .6790 .6696 .9671 .7740

BLE .8874 .8630 .9741 .9088

Fusion .8712 .8429 .9745 .8970

j2 Appliance-metering .9005 .9458 .9107 .9194

Sub-metering .8907 .9483 .8953 .9096

BLE .7969 .7563 .9707 .8397

Fusion .9008 .9462 .8989 .9149

j5 Appliance-metering .9858 .9867 .9891 .9877

Sub-metering .7915 .7952 .9905 .8665

BLE .7970 .7565 .9935 .8557

Fusion .8175 .7962 .9907 .8740

j6 Appliance-metering .9341 .9472 .9765 .9578

Sub-metering .7924 .8107 .9640 .8692

BLE .8947 .8737 .9948 .9286

Fusion .8919 .8745 .9955 .9279

With respect to the beaconing system, the performance seems to depend on the

used mobile phone. Since we use training data collected from individual j1, the

occupancy inference is better for users with mobile phones with similar RSS detec-

tion. That is, for the individuals j1 and j6, the inferences reach a value between .90

and .93 F-measure, while for individuals j2 and j5, the occupancy inferences using

BLE achieve .84 F-measure. This is expected as we do not perform any calibration

process to handle device heterogeneity (such as proposed in [120]).

Occupancy inference based on non-intrusive sub-metering in this experiment is

based on electric load identification (i.e., switching state detection), as discussed in

Chapter 4. The inference system using this modality yields .77 F-measure for pres-

ence of individual j1, and reaches .90 F-measure for other individuals. These results

are related with the appliances being used. Individual j1 has two low consumption

monitors that are difficult to detect and distinguish. The best inference using this

modality is individual j2 who has a notable consumption while he uses the monitor.

The results of this study indicate that neither sub-metering nor beaconing sys-
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tem performs well with the involved volunteers. The decision-level fusion shows

improvement for individuals j2 and j5, while it does not for individuals j1 and j6

for whom the results using beaconing system are better. A possible explanation for

this might be that the DST-based fusion process highly depends on the belief of

its sensory inference. In this thesis, the prior belief of beaconing system is based

on the nearest neighbor instances, while in the sub-metering system, the belief is

based on the past data. The latter case, the performance highly relies on the pattern

of appliance usage in the training dataset, and as such, the performance may vary

considerably from test to test.

To see the fusion impact in more detail, we illustrate the decision-level fusion

inference in two typical days in Figure 7.1 and 7.2. On September 20, 2017, the

sub-metering inference detected monitor activation belong to j1 only from 13:32 to

15:12, with .587 accuracy. The inference based on beaconing system provided better

prediction with .919 accuracy. The decision level fusion worsened the beaconing

system inferences in some time (i.e., 11:00-11:12; 11:56-12:00; 16:28-16.40), resulting

accuracy .872 accuracy. It seems possible that the result was because the BLE in-

ferences at these periods were not more confident than the vacancy inferred by the

sub-metering system, resulting in final false-negative states (i.e., being vacant) for

some periods. On September 23, 2017, the inference based on the beaconing system

showed occupancy changes from 15:00 until 18:32. In the same period, inferences

from the sub-metering system showed accurate detection with increased belief. In

our results, the decision fusion performed better than each modality, reaching .962

accuracy.

7.5 Experiment-2: Feature-level Fusion

In the second experiment, we combine features extracted from the beaconing system

and power metering system to infer user presences. We begin by describing the data

collection procedure and experimental setup. We then continue with the results and

discussion.

7.5.1 Data

We collected data from beaconing system and power metering system simultane-

ously for about four weeks, starting from October 1, 2018 until October 26, 2018.

We consider only work hours, from 7.00 AM to 9.00 PM. We override the undis-

covered beacons with a very weak signal strength value (i.e., ´120dBm). Similar

to the previous experiment, ground truth data collection relies on the volunteers’

room-location reports.
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Figure 7.1: The occupancy inference of j1 on September 20, 2017. Sensor fusion does

not improve the final result.
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Figure 7.2: The occupancy inference of j1 on September 23, 2017. The fusion process

improves the final result

.
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Table 7.5: List of mobile devices and monitors

ID Phone (Android SDK version) Monitor

power rated

j1 S6 edge+ (Android 7.0, API 24) 11.8 W and 21 W

j2 LG Nexus 5x (Android 7.1.1, API 25) 20.6 W and 24 W

j3 A5(2016) (Android 6.0.1, API 23) 34.8 W

j4 Xperia XZ (Android 8.0.0, API 26) 64 W

j5 Galaxy S3 (Android 4.3, API 18) 14 W

7.5.2 Setup

Depending on the portrayal of context observation, a classification can infer single-

label or multi-label classes. When the provided context comes from an individual’s

perspective, such as the beaconing system, the inference has a single-label. In this

case, a localization classifier hloc assigns a label ljit to β
ji
t , a vector of M -dimensional

beacons sampled by individual ji at time t, formally, hloc : β
ji
t Ñ l

ji
t . When the sup-

plied information is in a broader or more general perspective, such as when more

than one individual are involved in the measurement, the inference is on multiple

labels. Multi-label classification deals with a set of labels y Ď Y , where Y is a set of

disjoint labels with |Y | ě 1. From the sub-metering system, a class label Y , which is

a set of presence states of all individuals ji P J , is assigned to the total power con-

sumption Xt. Formally, hocc : Xt Ñ Yt, Yt “ tyj1t , y
j2
t , . . . , y

jn
t u. From the beaconing

system, a set of RSS vectors discovered by n-person may be concatenated that repre-

sents the presence state of all individuals ji, where i “ 1, . . . , n. Thus classification

can be drawn as hocc2 : β2
t Ñ Yt, where β2

t is a vector with pn ¨ Mq columns.

Feature-level fusion is done by concatenating the features, including the RSS

observation over all participants (i.e., β2), and the aggregate power consumption X .

This step is to fit with the observation perspective of X , which monitors the overall

consumption of the users. Subsequently, the classifier hocc3 assigns the label to the

concatenated features, formally hocc3 : rβ2
t , Xts Ñ Yt, where rβ2

t , Xts represents

concatenated features at time sampled at time t.

We involve five volunteers, as listed in Table 7.5. Decision Tree (DT) is utilized

as the features grow with the number of users. This method is particularly use-

ful in efficiently classifying high dimensional feature sets by growing classification

trees [58]. The trees may also provide alternative splitting nodes when some beacon

nodes are not reachable (e.g., out of coverage).

The evaluation is on fresh test data, shuffled with the proportion of 85:15 for

training and testing set. We thus tune parameters using Scikit-learn Randomized-

SearchCV on the training data portion [92].
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Table 7.6: Multi-class classification hloc : βji Ñ lji . Bold font marks individuals’

offices.

ID Overall F-measure per class

accuracy -1 0 A B C SC

j1 .941 .946 .600 .948 .759 .681

j2 .846 .902 .646 0

j3 .826 .877 .706

j4 .985 .993 .831 .955 .899 .680

j5 .990 .994 .975

We also compare with Factorial HMM and Combinatorial Optimization (CO)

with no classification improvement (i.e., see [95] for details). Thus we only report

the inference based on DT in this thesis.

7.5.3 Results and Discussion

In this experiment, we have classifiers hloc and hocc that classify beacon and power

meter readings. The location classifier hloc assigns exactly one location label of a

set of possible rooms in an office to a vector of signal strength readings. Table 7.6

shows the room-level localization based on a decision tree classifier on the RSS data.

As can be seen from the table, the location inference of individual j2 and j3 yields

.65 and .71 F-measure in their offices, respectively. This result is attributed to a high

number of False Negatives (FN). In this case, it is due to missing beacon measure-

ments occurred in a short period during occupancy. A likely explanation is that

a human error (e.g., forgetting to start the application or accidentally stopping the

measurement) or system failure (e.g., application crash or operating system service

interruption). For the other three volunteers (i.e., j1, j4, j5), their presence in their

offices (either room A or B) can be inferred with more than .95 F-measure.

The location inference of individual j1 and j4 in SC results in a comparable per-

formance, reaching .68 F-measure. Interestingly, the inference of the same individ-

uals in room C is with a notable difference, reaching .759 and .90, respectively. A

possible explanation for these results may be the environmental factors, such as

physical room condition, signal blockage, or environment noise, giving various im-

pact on the inference of room C.

The classifier hocc assigns a label that represents a combination of individuals’

occupancy states. Table 7.7 shows occupancy inference based on the beaconing sys-

tem, sub-metering, and feature-level fusion, evaluated per individual ji. The indi-

vidual occupancy results confirm the previous discussion of single-label inferences.

That is, the presence detection of j1, j4, j5 in their office based on the beaconing
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system reaches .96-.98 F-measure, while the detection of j2, j3 yields worse results,

reaching .71-.79 F-measure. The detection recalls for both individuals reach .72 and

.59, respectively. The False Negatives in the beaconing system inference cause these

results. Using the other system, i.e., sub-metering, the presence detection of indi-

vidual j4 in his office results .76 F-measure. This result is almost certainly due to

his appearance in the office without having monitor consuming power energy. Un-

doubtedly, the sub-metering system cannot discover the occupancy of a person who

does not leave power consumption fingerprints.

Comparing the results, one can see that the classification on the fused features

outperforms the inference based on beaconing and sub-metering systems. The im-

provements happen for all the five volunteers, reaching .99 F-measure in the de-

tection of particular volunteers. The results are likely due to the benefits of taking

information from incomplete information from multiple sensor inputs. While the

power metering fails in detecting j4 due to no power consumption measured, the

beaconing system also fails to detect j2 and j3 due to False Negatives (e.g., misclas-

sification or missing beacon measurements). The feature-level fusion improves the

inference by apportioning the shortcomings of each sensor input.

Table 7.7: Occupancy inference of sub-metering (hocc : X Ñ Y ); BLE (hocc2 : β2 Ñ

Y ); and feature-level fusion (hocc3 : rβ2, Xs Ñ Y ), the multi-label Y is evaluated per

base class ji
ID Source Precision Recall F-measure

j1 Sub-metering .9911 .9728 .9819

BLE .9843 .9377 .9604

Fusion .9883 .9889 .9886

j2 Sub-metering .9696 .9377 .9534

BLE .8963 .7155 .7958

Fusion .9742 .9508 .9623

j3 Sub-metering .9595 .8416 .8967

BLE .9016 .5928 .7153

Fusion .9675 .8809 .9222

j4 Sub-metering .8428 .6957 .7622

BLE .9809 .9483 .9643

Fusion .9661 .97 .9681

j5 Sub-metering .9267 .9496 .938

BLE .989 .9647 .9767

Fusion .9906 .9889 .9897
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7.6 Conclusion

This chapter sets out to examine the fusion of power metering system and beaconing

system in detecting occupancy of users in adjacent shared offices. We investigate

decision-level fusion and feature-level fusion and compare them to the inferences

based on the individual systems. The former allows the individual systems to infer

a local decision before performing a final inference; the latter yields an output once

features of the systems have been combined.

The decision-level fusion combines the electric load identification based on sub-

metering system and the location inference based on beaconing system. The pre-

sented experiment shows that the decision-level fusion results depend on the in-

ferred occupancy of both systems. When the inferences of the systems are con-

tradicting, the one with stronger belief will have more impact to decide the final

inference. Assigning the proper beliefs, however, is a challenge. In this thesis, the

belief of sub-metering system is set based on the agreement between monitor acti-

vation (i.e., detected by the appliance-metering system) and the actual presence in

the past. Thus, the sensor beliefs may vary even for the same person and the same

sensor, depending on the chosen portion of the training data. As a consequence,

the final inference may also vary. Note that in this thesis, the results of this fusion

scheme are not always improved compared to the inferences based on its individual

sensory sources.

Feature-level fusion concatenates features from each sensory system. The most

prominent finding from the analysis is that the results are always better than the

individual sensory systems. The improvements present in the occupancy inferences

of all individuals. In this fusion scheme, we show that the occupancy may still be

detected when an employee does not consume electricity or when beaconing system

is faulty, by relying on the other sensory system. A limitation of this approach is that

it is unable to learn labels that do not occur in the training data. Furthermore, the

label combination of multi-occupancy states makes a very sensitive classification

and requires accurate ground truth. It is because small mistakes in labeling data can

shift the present state of the other persons.

In summary, this chapter confirms that no single sensing modality outperforms

in all conditions for all users. In the sub-metering system, False Negative (FN) in-

ferences appear when the system misclassifies the active appliances. Hence, this

modality performs well only when the appliance signatures are distinct. FNs also

appear when people are present without consuming any consumption as the power

metering system does not sense any evidence of presence. In the beaconing system,

FNs happen when the inferred location is not the actual room where a person lies.

Missing beacon data also affects FNs. This modality provides good results when a
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phone for testing matches with the phone used for collection training data. The fu-

sion schemes show different remarks. On the one hand, decision-level fusion does

not always improve the inference of the single modality because the fusion only

considers local inferences that might be misclassified. It also disregards the raw

data. On the other hand, feature-level fusion always improves F-measure, but the

label combination approach makes classification models rigid and very sensitive to

wrong labels. Feature-level fusion might be a good option when it involves a lim-

ited number of occupants, as it is relatively easier to observe and maintain label

correlations for training purposes. Otherwise, one may want to consider decision-

level fusion and concentrate on improving the accuracy of single sensor modality

and finding the way how to acquire proper belief assignments.
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Conclusion

The aim of this thesis is to investigate the use of simple power metering and

beaconing systems for non-intrusive occupancy detection in offices. These sys-

tems are based on off-the-shelf hardware that have been increasingly adopted to

measure electrical energy use and to enable proximity-based services. They have

different, complementary characteristics. Power metering system captures electric-

ity consumption centrally, and may show the occupancy at the aggregate level (un-

less a plug-meter attached to each device, which is more intrusive). This character-

istic makes this modality low-intrusive, but with limited information. On the other

hand, beaconing system is a modality that observes signal strength in the environ-

ment from the perspective of a user. It provides identity (that should be kept to pro-

tect the actual ID) to support preference-based controls. Nonetheless, as this sensing

is based on signals, it faces some problems such as the requirement to collect signal

references (known as fingerprinting surveys) and is susceptible to environmental

disturbances.

While a number of approaches using these simple sensors have been proposed

to reveal occupancy, some gaps are still present: 1) There is a lack of study on ex-

tending power meter usage, particularly sub-metering, for occupancy detection in

non-residential buildings (see Figure 2.2). As discussed in Chapter 3, occupancy

from power metering system is revealed either from detecting appliances or power

consumption data mining. A number of approaches have been proposed for elec-

tric load identification, but not many of them are extended to reveal occupancy.

Furthermore, mining electric power consumption data have been done to extract

occupancy. However, most of them use plug-based metering, either per appliance

or per desk, which is intrusive. 2) Localization has been researched extensively, but

most works have not concerned on the beaconing-based low-intrusive approach to

recognize multi-occupant presence in adjacent shared offices; 3) To the best of our

knowledge, none of the earlier fusion systems have attempted to improve the pre-

cision of multi-occupants presence detection by combining the power metering sys-

tem and beaconing system. We performed empirical investigations to answer our

original research questions.
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8.1 Answers to the Research Questions

How is power consumption data acquired and analyzed while maintaining low-

intrusiveness? How do low-intrusive power metering systems contribute to

context awareness?

Acquiring low-intrusive power consumption data for context recognition can be

done by deploying power meters per room. This way is less intrusive than de-

ploying a power meter for every appliance (i.e., plug-based metering), while still

giving more information than installing a power meter placed at a single point (i.e.,

centralized metering).

Literature review on the field shows that the power meter may determine con-

texts in two ways, namely, electric load identification and power consumption data

mining. First, electric load identification may benefit to occupancy detection through

the detection of the appliances that are related to occupancy (e.g., require physical

interaction to be activated, such as computers). Second, mining data on power con-

sumption benefits to reveal occupancy if there is a pattern indicating a situation

(e.g., the presence of certain individuals related to their appliances being on).

Assuming that a power meter installed in a dedicated electric circuit of computer

equipment is available, how can occupancy information be extracted? How ac-

curate is the occupancy observation in offices based on the computer equipment

activation?

One way to extract occupancy from power meter readings is by identifying op-

erating electrical loads, for example, by detecting switching events (i.e., the action

of activating or deactivating a device) followed by discovering which device turned

ON/OFF. Based on the empirical observation, computer monitor activation can re-

veal the presence of 7 of 13 participants with only 5% error or less, and 10 of them

have less than 10% error. We propose a procedure that computes the state-transition

signatures on each detected event and identifies electric loads using classification

techniques. We thus test the actual use cases in two offices: one is an office in the

academic building (i.e., dataset A); another one is the commercial office of a soft-

ware house company (i.e., dataset B). We find that the load identification perfor-

mance relies on the precision of event detection. The more devices involved and the

lower amount of monitor power consumption, the harder it is to detect the switch-

ing events and, thus, to identify loads accurately. The proposed procedure reaches

80% top-n accuracy per day in dataset A with up to four different monitors. It strug-

gles in dataset B, which has more similar monitors (i.e., seven of ten monitors having

the same brand and size), reaching 39% top-n accuracy per day.
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Assuming that a power meter with more electrical variables are deployed in

shared room offices, how are active appliances recognized, and how are the

present occupants distinguished? To what extent can we make use of this infor-

mation for presence detection?

The office appliances and the present occupants can be seen as electric loads (or

composite loads) that contribute to the power meter readings when they consume

electricity. Instead of detecting the appliances switching ON/OFF or the occupants

activating/deactivating electric loads, the alternative way to extract information is

to find patterns in the power readings. The pattern may exist, for example, when a

specific appliance is operating or when a person present in the space regularly uses

certain devices. The sliding window approach is applied to read power consump-

tion sequentially. We use various sizes of windows and accordingly mine patterns

on the power consumption with different electrical variables using nearest neigh-

bors, neural networks, and Markov-based approaches.

The initial experiment shows that this approach can recognize five office-related

appliances and their combinations with .99 Kappa measure using k-NN and LSTM.

The extended experiment on the present occupant recognition shows .93-.94 Kappa

measure, and it reaches an average of .833 Kappa measure per day when the power

consumption patterns have not appeared in the training phase. This result is based

on the presence detection and recognition of three employees in a shared office.

In general, the nearest neighbors based approach performs better than the other

methods considered in the experiments.

How is beaconing localization carried out while maintaining low-intrusiveness?

How precise is the occupancy inference in adjacent shared office rooms using

beaconing localization?

We design the low-intrusive beaconing localization by limiting the training data

collected in the most visited spaces. The collection process should involve as few

occupants as possible to keep the intrusiveness level low (i.e., only one in our ex-

periment). The collected training data needs to represent different location labels

to build a room-level localization. We utilize cosine similarity to measure the dif-

ference among training references and to classify based on the nearest neighbor

technique. The performance of this system achieves more than .885 F-measure for

detecting the presence of four of five participants in offices during a week of inves-

tigation. One participant is detected with only .61 F-measure due to his workspace

position near to the separator between the adjacent rooms. Compared to the other

low-intrusive works (i.e., [78, 70]), this proposal improves the inference of whole

participants in places where people stay for long occupancy periods, even though

the participant for whom the inference is worst is still misclassified 55% of the times.
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How can sensor fusion improve occupancy inference given individual sensors’

benefits and faults?

The occupancy inference based on switching state detection in the sub-metering

system, presented in Chapter 4, performs worse on the detection of individuals who

work with low consumption devices or do not work consistently with electrical ap-

pliances during their presence in the office. The occupancy inference based on the

beaconing system, in Chapter 6, relies on the quality of training data. It tends to per-

form better when the phone used for localization has similar signals to the collected

training data (i.e., note that signal measurements by various phones may vary even

in the same environment). Also, this modality suffers from a high number of False

Negatives, mainly due to missing beacon measurements that can occur in a short

period during occupancy, and environmental factors (e.g., noise and obstacles).

To overcome these shortcomings, we consider sensor fusions. We work on two

sensor fusion schemes, namely, decision-level fusion and feature-level fusion. The

Decision-level fusion combines the inferred local decisions of individual sensory

modalities. In our experiment, decision-level fusion based on Dempster-Shafer The-

ory of Evidence (DST) depends on the beliefs to its sensory modalities. Depending

on the belief assignments, the fusion may or may not improve the final results. That

is, it improves for two of four participants (i.e., j2 and j5), reaching .91 and .87 F-

measure, respectively. However, the fusion for the other two participants is slightly

lower than the inferences based only on the beaconing system, reaching .897 and

.928 F-measure.

The other fusion scheme, feature-level fusion, combines the data at the lower

level before any decision has been made. In our experiment, the feature-level fusion

improves the inference of all participants in terms of F-measure, reaching up to .99

in the detection of two of five volunteers. This improvement shows that this fusion

scheme benefit from multiple sensory modalities when one or some of them are

incomplete or inaccessible.

8.2 Discussion on Energy Saving

Determining the occupancy of a room does not directly solve the problem of en-

ergy saving, but it is an essential building block to achieve such energy saving. In

fact, energy-consuming appliances (e.g., air conditioners, heaters, and lights) can be

controlled efficiently if the presence can be precisely determined. In non-residential

buildings, we can mainly save energy by turning off unused devices in unoccupied

spaces, or, even further, adjusting the electrical devices regarding the preferences or

activities of present occupants. Recalling the example mentioned in Chapter 1, the
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office’s energy saving can be more than 50% when the lighting system recognizes

Aldo, Cecilia, and Diana presence in the office and activates half of the available

lamp tubes in the space with 90% of brightness. The amount of saved energy may be

affected by factors such as multi-occupancy detection supports, systems’ precision

in inferring occupancy, granular lighting control based on occupant identification,

accommodation of user preferences, and reactive or predictive capabilities.

The multi-occupancy detection system enables lighting control based on spatial

and temporal information of present occupants. The system may adjust the corre-

sponding luminaries depending on occupancy states. A multi-occupancy system

based on PIR sensors and RFID tags to recognize occupants coming to or leaving

from workspaces has been proposed by Manzoor et al. [80]. The granular lighting

control based on seating placements and occupants’ presence achieves an energy

saving of 13% in a one-day observation (i.e., 13-hour duration), compared to reac-

tive controlling based on PIR sensors only. The precise occupancy inference also

influences the amount of saved energy. The more accurate the system inference, the

more savings can be achieved. More recently, Zou et al. [144] propose WinLight, a

WiFi-based occupancy detection, and compare to PIR sensors. The occupancy detec-

tion based on PIR sensors achieves 76.91% accuracy in their experiment. Based on

this inference, the average weekly consumption on lightings is 29.04 kWh. WinLight

improves the accuracy of occupancy detection, reaching 99% accuracy, and saves

up to 51% of energy based on its multi-occupancy inference, consuming only 14.24

kWh. This accurate multi-occupancy inference reduces up to 82.83% energy usage

compared to the static scheduling, which consumes 82.94 kWh. The energy-saving

may be further increased by dimming the light based on the occupants’ location and

preference, reaching the consumption of 5.73 kWh.

Yeh et al. accommodate reactive strategy to control personal lights, appliances,

and HVAC systems [135]. The authors use individual tags to identify users and

users’ proximity to the active tags. Further, they also collect users’ temperature pref-

erences. The information is used to control desk lights, adjust the electric currents

through wires, and set the air conditioner temperature. It is reported that 16.5-46.9%

energy saving can be achieved depending on the number of people, compared to a

baseline without controlling intervention. While it is generally conceded that user

preferences improve the overall comfort levels, the energy-saving may vary de-

pending on the building or occupancy types and user preferences. A solution to

increase the saving might be to set constraints according to comfort standards. For

example, as the comfort standard of working with a computer is 300-500 lux, the

control system should not trigger additional lights only to satisfy user preferences

when this luminous condition has been fulfilled.

Reactive strategies provide a simple way to control lighting. To control HVAC
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systems, however, this strategy may be less effective due to the slow response of

thermal dynamics. The combination of reactive and predictive gives a higher chance

of power-saving. According to a simulation-based study by Goyal et al., the addi-

tional savings are limited, though, if the building needs to maintain the airflow rate

during unoccupied times (as per ASHRAE1 standards) [51]. In the study, the au-

thors compare a feedback control (i.e., based on the occupancy measurement) and

model predictive controls (i.e., based on the occupancy prediction) in achieving en-

ergy saving over an HVAC system in a medium-sized office (1-5 people). The results

show that the energy-saving of 42-59% over the baseline (i.e., no occupancy infor-

mation provided) can be achieved using the feedback on occupancy measurement.

Interestingly, an accurate occupancy prediction in 24-hour ahead only adds energy-

saving of 1-13% compared to the control based on occupancy measurements, which

may not worth the additional computation complexity in the prediction.

Note that the indicated energy savings are not aimed to directly compare the

achieved energy savings among the systems. The performances are merely an in-

dication, and they may vary depending on the system and experiment setups, oc-

cupancy patterns, building layouts, etc. Nonetheless, as the above studies show,

multi-occupancy support, user identification, and precise inference in detection sys-

tems, as we did on this thesis, are key factors to improve energy savings.

8.3 Discussion on Privacy

The work in this thesis uses power meters and mobile phones as well as BLE bea-

cons to acquire occupancy contexts. Power meters are deployed at the office level

while the mobile phones are assumed to be available per user (e.g., provided by the

employer to support work-related tasks). Compared to the camera-based surveil-

lance and sound or noise-based sensing systems, our approach is less intrusive in

terms of privacy exposure. There is no audio or video recorded for detection pur-

poses. Furthermore, the occupants have a full control to limit localization access, as

they can anytime switch the Bluetooth module on or off. While both camera and

beaconing systems enable occupants’ tracking, thus may be harmful to privacy, our

approach does not aim at tracking movement and recognizing activities (e.g., either

working or browsing entertaining sites, like social media). Current and historical

data are not associated with individual productivity and may be removed to pre-

vent misuses. We acknowledge that, however, a proper data protection mechanism

is needed to protect the collected data from any harmful actions. Furthermore, clear

purpose-statements need to be clearly stated, and participants must give a consent.

1American Society of Heating, Refrigerating and Air-Conditioning Engineers
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The more details the building knows (e.g., who is present), the better the building

may adjust its service to meet personal demands (thus improving user satisfaction

and save energy). The personalized services and privacy invasion risks, however,

are a trade-off. Personalized services require detailed contexts to understand the

situation better and act accordingly. The context acquisition may be regarded as

something harmful or unpleasant for a particular person, as this act puts them in

the risk of data breaches. It is left to the users to decide whether they are fine with

the context acquisition for better-tuned services and energy saving, or they prefer

to keep their context hidden with non adaptive environments. The analogy is with

better-matched search results returned by Google2 search engine, which makes use

of historical searches and cookies, compared to DuckDuckGo3, which does not store

any identification and only sets a cookie for saving site settings.

8.4 Discussion on Portability

We envision that the systems proposed in this thesis could be applied to other office

buildings, independent of building’s topology and usage patterns. Especially for

the power metering system, the extension depends on the number of occupants in

the office (i.e., measured by a sub-metering power meter). We have validated our

approach for up to three occupants in a small/medium-sized shared office. We ex-

pect that it may be expanded up to five or six people, but will suffer in larger offices

(i.e., more than ten people), since the amount of power consumption of each user

will be more likely to be similar and overlapping, thus more difficult to distinguish

accurately. As indicated in the experiments, the performance will degrade when

similar electrical loads belonging to different occupants are involved in the measure-

ment. This result is the consequence of utilizing low-intrusive sub-metering systems

where the measured consumption is the aggregate of multi occupants. When the

loads change (e.g., when a new employee joins or the existing one resigns), one also

needs to accommodate the changes and retrain the classification models.

Most approaches proposed in this thesis perform supervised learning. Thus, the

process of collecting appliances’ electrical signatures and ground truth (i.e., the ac-

tual occupancy states given some power meter readings) holds a vital role in the

classifier training process. To collect the signatures and occupancy states, one may

build an interface that allows participants to give input on the actual states, as per-

formed by Ruzelli et al. [112]. According to the input states, the interface triggers

the system to build electric load profiles and save them to a database for further

2https://www.google.com/
3https://duckduckgo.com/
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recognition.

Compared to the power metering system, the beaconing system is more flexible

and compact. It is because the localization inference is made per user, so different

sets of users will not affect each other significantly. Even further, our approach is

designed to be low intrusive, that is, without requiring complete fingerprinting sur-

veys to the whole area of buildings, making it more manageable to execute. Though,

according to our experiments, the inference may be poor in deciding the room loca-

tions when performed in the border of two adjacent rooms.

To improve the inference performance from both sensory modalities, we perform

fusions at the feature-level and decision-level. While it seems that the feature-level

fusion is promising in accuracy improvement, this fusion scheme requires accurate

label-features mapping. That is, this approach maps all possible combinations of

sensor readings to class labels. Thus, the number of labels will grow exponentially,

i.e., 2n, as the number of loads or people increases. This mapping seems reasonable

in small or medium-sized offices with up to five occupants, as we prove in the ex-

periments. In a larger office, it seems more difficult to collect the training data of the

whole presence combinations. The decision-level fusion, on the other hand, seems

to provide better implementation flexibility in different office buildings, as the la-

beling process is done per sensor modality before any fusion processes. However,

as the fusion process relies on the beliefs of each modality’s inferences, it requires

the collection of more historical data that represents each sensory modality’s actual

behavior.

To conclude, the proposed approaches have acceptable portability in small to

medium-sized shared offices. Some conditions are needed to fulfill to use these sys-

tems, such as having phones and dedicated applications, regularly using electrical

appliances during presences, and having an inventory list map and a workspace lo-

cation map to relate the recognized appliances and inferred locations to individual

occupancy states.

8.5 Future Directions

The issues explored in this thesis are open to further investigation. We outline some

of many interesting, possible future directions. First, it would be interesting to in-

volve more participants in the occupancy detection study. The studies of occupancy

detection generally consider a limited number of occupants or, if not, a single occu-

pant. One of the reasons is difficulties in collecting the non-intrusive ground truth.

The ground truth collection process by visual occupancy monitoring requires im-

mense efforts on a large scale. Consequently, accurate deployment plans and good
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support from participants are needed (e.g., the actual presence monitoring using

cameras requires clear purpose-statements and consent from employees).

Next, this thesis focused on the occupancy context inference in multi-occupant

shared offices. While the presented accuracy seems promising with low-intrusive

sensory modalities, and previous studies show high opportunities in energy-saving

based on an accurate system (e.g., [144]), this thesis has not implemented occupant-

centric controls. The integration of the low-intrusive context-aware system and

context-based building control is required to see the actual energy savings and oc-

cupants’ feedback.

This thesis mostly utilize supervised classification techniques that need direct

instructions to teach classifiers. Other methods that allow dynamic adjustment of

controls based on the recent data might worth investigating, such as Reinforcement

Learning. This approach may automate the occupancy inference but may have a

slow convergence rate as it needs to explore all possible class labels for various in-

puts.

Finally, it is necessary to convince people that occupancy detection using the

non-intrusive sensors is harmless to privacy (i.e., given proper data protection) and

that the acquired information contributes to power consumption savings without

sacrificing comfort and safety. This step requires intensive information campaigns

for occupants.





Summary

Energy consumption for both residential and non-residential buildings is signifi-

cant and has been increasing regularly. Floor area expansion and building use in-

tensification are factors that raise energy demands, not to mention the population

growth. For non-residential building, asking the user to be directly involved in en-

ergy saving can be challenging as occupants (e.g., employees) are less aware of and

affected by high energy bills compared to their domestic situation. Employees are

less careful when leaving empty office spaces heated and illuminated, resulting in

unnecessary energy consumption. This thesis focuses on finding solutions for solv-

ing energy waste in non-residential buildings by automatically detecting presence,

thus enabling energy saving automation.

To reduce energy consumption due to unnecessary use, precise and detailed user

contexts play an important role. User contexts (e.g., occupancy and activity of users)

provide grounds to buildings’ control and energy management systems for efficient

lighting and HVAC actuation. We explore sensing systems that indicate occupancy.

Namely, we extract occupancy from power consumption (i.e., power metering or

sub-metering systems) and proximity location (i.e., mobile phones with beaconing

systems).

Power metering systems may reveal occupant contexts once electric loads can

be identified. Appliance signatures are essential in this identification process. The

signatures can be related to switching states (i.e., indicated by power consump-

tion changes) and electrical traces sampled during a particular period (e.g., through

sliding windows). We initially identify the relationship between employees’ pres-

ence and computer monitor use in experiments in actual offices. We show that the

presence of 10 out of 13 participants is related to their monitor consumption with

less than 10% error, and for seven of them the error is smaller than 5%. The low-

power appliances (i.e., monitors), however, are challenging to be identified based



112 8. Conclusion

on switching state on aggregate power readings, especially when the electric loads

are similar. To this end, the accuracy measure is relaxed to top-n accuracy with

n “ 2, which means that the classification is considered correct when an event is

classified as belonging to one of the most likely two classes. We show that it reaches

80% top-n accuracy per day in a small size office (i.e., up to three users). It per-

forms much worse in a larger office (i.e., ten users with more homogeneous moni-

tors) due to difficulties in distinguishing monitors with similar power consumption

and matching pairs of ON/OFF switching events, reaching only 39% top-n accu-

racy. Following this experiment, we investigate electrical traces in a sub-metering

system using sliding windows. We use Cohen’s Kappa, a measure of the agreement

between the observational accuracy and hypothetical expected accuracy, to avoid

bias due to imbalanced class distribution. In the beginning, we notice that aggre-

gate power consumption of appliances on a small scale (e.g., belonging to a single

employee) can be identified almost perfectly. Through another experiment which

involves three employees in a shared office with random loads, we show that the

employee presence can be distinguished, reaching .93 Kappa measure.

Mobile phones and off-the-shelf Bluetooth Low Energy (BLE) beaconing system

are used to reveal occupancy. Based on those devices, room occupancy context may

be identified, for instance, based on the nearest or strongest transmitting beacon,

matching received signal strength to fingerprints, or classifying a room based on

received signals. One benefit of this modality is that it uses available phones that

support location inferences without requiring users to carry additional hardware.

Mobile phones also allow individual preference to be collected through a user in-

terface (e.g., tolerable temperature ranges and preferred light intensity in particu-

lar conditions). Thus, it supports actuation control not only based on location but

also occupant identification and preferences. However, a system involving multi-

occupants faces device heterogeneity problems, not to mention other issues due to

signal propagation. We observe that multiple devices receive irregular unexpected

signal strength that may cause problems in distinguishing adjacent rooms. In gen-

eral, additional steps (e.g., calibration or complete fingerprint surveys) are needed

to improve inference precision. This step, however, requires significant efforts to be

performed. We propose to use limited training data in a few observation points to

lower the setup effort. Collecting good training data is a key to achieve acceptable

performance; that is, training data observed in some places must be able to describe

its room locations. For this purpose, we compare the direction of training data based

on cosine distance, resulting in validated training data. We then extract features and

apply the nearest neighbor approach to infer the room location of each occupant.

We show that four of five employees are detected with at least .88 F-measure. An-

other participant is detected with only .61 F-measure due to his workspace location
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closed to a separator of adjacent rooms. Our approach outperforms other related

low-intrusive methods except for short occupancy periods. In this specific case, the

indication of the nearest beacons results in more accurate inference.

To conclude the work, we consider fusion approaches of the power metering and

beaconing systems to improve inference precision. We study fusions at decision-

level and feature-level. The former allows sub-systems to infer local decisions and

combines the outputs to form a final decision. The latter yields only a decision after

sensor readings have been combined. The approaches are tested in an actual office

environment populated by researchers and software developers.

The general theme of this thesis is to show how low-intrusive sensing modalities

may provide precise, detailed occupancy in small-medium shared offices. We seek

how far we can extract information from the available systems. We finally discuss

potential energy saving, user privacy, and portability, to provide insight into how

the proposed occupancy detection systems may impact building use and control.





Samenvatting

Het energieverbruik van zowel woningen als utiliteitsgebouwen is aanzienlijk en

neemt voortdurend toe. Uitbreiding en intensiever gebruik van gebouwen, evenals

een groeiende bevolking, leiden tot een groeiende vraag naar energie. Voor utili-

teitsgebouwen is het een uitdaging om de gebruikers te betrekken bij het bespa-

ren van energie, aangezien hoge energiekosten voor hen minder inzichtelijk zijn en

geen directe gevolgen hebben zoals voor de eigen woonruimte het geval is. Werk-

nemers zijn veelal minder oplettend als het gaat om het nodeloos verwarmen en

verlichten van ongebruikte kantoren, wat resulteert in onnodig energieverbruik. Dit

proefschrift is gericht op het vinden van oplossingen om energieverspilling in utili-

teitsgebouwen te verminderen door het automatisch detecteren van aanwezigheid,

waardoor het mogelijk wordt om energiebesparende maatregelen te automatiseren.

Om het energieverbruik te verlagen en verspilling tegen te gaan is het belang-

rijk om over nauwkeurige en gedetailleerde informatie betreft de bezetting van een

gebouw en de activiteiten van de gebruikers te beschikken, waarmee systemen de

verlichting en klimaatregeling in het gebouw efficiënt kunnen beheren. We onder-

zoeken systemen waarmee de bezetting van een gebouw gedetecteerd kan worden,

gebaseerd op het energieverbruik, gemeten op verschillende niveaus, en positiebe-

paling met behulp van mobiele telefoons in combinatie met Bluetooth beacons.

Aan de hand van het gemeten energieverbruik is het mogelijk om verschillende

apparaten te herkennen, waarmee vervolgens de aanwezigheid en activiteiten van

gebruikers achterhaald kunnen worden. Hiervoor zijn de verbruikskenmerken van

de apparaten belangrijk, die zowel gebaseerd kunnen zijn op veranderingen in het

verbruik alsook op het verbruik gemeten over een bepaalde periode. In eerste in-

stantie tonen we het verband aan tussen de aanwezigheid van werknemers in een

kantoor en het gebruik van het computerscherm. Voor 10 van de 13 werknemers

kan de aanwezigheid achterhaald worden met een foutmarge van minder dan 10%,
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en voor 7 van deze werknemers is de foutmarge minder dan 5%. Apparaten met

een laag verbruik, zoals computerschermen, zijn echter lastig te herkennen op basis

van veranderingen in het verbruik wanneer dit verbruik over meerdere apparaten

gemeten wordt, voornamelijk als deze apparaten sterke gelijkenissen vertonen. Om

deze reden wordt de nauwkeurigheid gemeten met het flexibeler top-n voor n = 2,

waarmee een classificatie als correct wordt beschouwd als deze tot de twee meest

waarschijnlijke behoort. We tonen aan dat hiermee een nauwkeurigheid van 80%

per dag wordt behaald voor een klein kantoor bestaande uit maximaal drie men-

sen. Voor een groter kantoor, met tien gebruikers en veelal vergelijkbare schermen,

is de nauwkeurigheid met 39% beduidend lager, voornamelijk doordat het lastig

is de verschillende monitoren en aan en uit signalen te onderscheiden. Vervolgens

onderzoeken we verbruiksmetingen over meerdere apparaten met behulp van sli-

ding windows op basis van Cohen’s Kappa, een criterium die robuuster is voor

categorieën van verschillende groottes doordat deze de overeenstemming tussen de

waargenomen nauwkeurigheid en de verwachte nauwkeurigheid meet. Op kleine

schaal, wanneer de apparaten maar van één werknemer zijn, kunnen deze bijna

foutloos worden herkend. Een ander experiment voor een kantoor dat door drie

mensen wordt gedeeld, waarvoor een Kappa waarde van .93 behaald wordt, toont

aan dat de aanwezigheid van de individuen achterhaald kan worden.

Mobiele telefoons en Bluetooth Low Energy (BLE) beacons worden gebruikt

voor het bepalen van aanwezigheid, bijvoorbeeld op basis van de dichtstbijzijnde

beacon of de beacon met het sterkste signaal, door de signaalsterktes te vergelijken

met fingerprints, of door de ruimte te bepalen aan de hand van de ontvangen signa-

len. Een voordeel van deze methode is dat het mogelijk is om de locatie te bepalen

zonder dat het voor gebruikers noodzakelijk is hiervoor extra apparatuur bij zich

te dragen. Via mobiele telefoons kunnen ook andere voorkeuren worden vergaard,

zoals bijvoorbeeld de gewenste temperatuur en lichtintensiteit in bepaalde situaties.

Het is dus niet alleen mogelijk om processen in het gebouw te regelen op basis van

locatie maar ook op basis van identiteit en voorkeuren. Zo’n systeem moet echter

met verschillende type apparaten werken, en heeft ook te maken met problemen

zoals de manier waarop signalen zich verspreiden. Zo observeren we bijvoorbeeld

sterke afwijkingen in de gemeten signaalsterkte tussen verschillende telefoons, wat

problemen kan geven bij het onderscheid maken tussen aangrenzende ruimtes. Om

de nauwkeurigheid te verbeteren zijn aanvullende stappen vereist, zoals kalibratie

of het in kaart brengen van de signalen door middel van fingerprint surveys. Der-

gelijke stappen zijn echter zeer ingewikkeld en tijdrovend. Wij stellen voor om een

beperkte hoeveelheid informatie te verzamelen door op een klein aantal plaatsen

metingen te verrichten, wat het opzetten van het systeem aanzienlijk eenvoudiger

maakt. Het is daarbij belangrijk dat deze locatiegegevens de verschillende ruimtes
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nauwgezet in kaart brengen. Hiervoor onderzoeken we locatiedata op basis van

Cosine Distance, waar verschillende kenmerken uitgehaald worden om vervolgens

de locatie van elke gebruiker te benaderen met de Nearest Neighbor methode. We

tonen aan dat vier van de vijf werknemers gelokaliseerd kunnen worden met een F-

measure van tenminste .88. Voor de andere persoon is de F-measure maar .61, voor-

namelijk omdat de werkplek dicht bij een aangrenzende ruimte gelegen is. Onze

aanpak presteert beter dan andere methoden met een vergelijkbare impact op de ge-

bruikers, behalve voor korte perioden van aanwezigheid. Voor dergelijke gevallen

is het bepalen van de locatie op basis van de dichtstbijzijnde beacon nauwkeuriger.

Als laatste bekijken we twee manieren om de informatie van het energieverbruik

en de Bluetooth beacons te combineren om de nauwkeurigheid te verbeteren. In het

ene geval worden de resultaten van de afzonderlijke systemen gecombineerd om tot

een uiteindelijk resultaat te komen. In het andere geval is het resultaat rechtstreeks

gebaseerd op de samengevoegde sensordata. Beide methoden worden getest in een

kantoor waar verschillende onderzoekers en softwareontwikkelaars werken.

Het doel van dit proefschrift is om aan te tonen dat niet-ingrijpende meetsyste-

men in staat zijn om precieze en gedetailleerde informatie te geven over aanwezig-

heid in kleine en middelgrote kantoren. We onderzoeken in welke mate informatie

van deze systemen verkregen kan worden, en bespreken tenslotte mogelijkheden

tot energiebesparing, privacy van gebruikers en portability, om inzicht te geven in

de manier waarop het voorgestelde systeem het gebruik en beheer van gebouwen

kan veranderen.
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