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Abstract

Generic face detection and facial landmark localization

in static imagery are among the most mature and well-

studied problems in machine learning and computer vision.

Currently, the top performing face detectors achieve a true

positive rate of around 75-80% whilst maintaining low false

positive rates. Furthermore, the top performing facial land-

mark localization algorithms obtain low point-to-point er-

rors for more than 70% of commonly benchmarked images

captured under unconstrained conditions. The task of facial

landmark tracking in videos, however, has attracted much

less attention. Generally, a tracking-by-detection frame-

work is applied, where face detection and landmark local-

ization are employed in every frame in order to avoid drift-

ing. Thus, this solution is equivalent to landmark detec-

tion in static imagery. Empirically, a straightforward ap-

plication of such a framework cannot achieve higher per-

formance, on average, than the one reported for static im-

agery1. In this paper, we show for the first time, to the best

of our knowledge, that the results of generic face detection

and landmark localization can be used to recursively train

powerful and accurate person-specific face detectors and

landmark localization methods for offline deformable track-

ing. The proposed pipeline can track landmarks in very

challenging long-term sequences captured under arbitrary

conditions. The pipeline was used as a semi-automatic tool

to annotate the majority of the videos of the 300-VW Chal-

lenge2.

1. Introduction

Generic face detection is widely regarded as a mature

field and has been successfully integrated into a number of

consumer-grade electronics including digital cameras and

∗The authors had equal contribution.
1We found that, in practice, the performance is dramatically lower than

the one reported for static imagery due to the extremely challenging record-

ing conditions of arbitrary videos.
2http://ibug.doc.ic.ac.uk/resources/300-VW/

(a) Our proposed pipeline.

(b) State-of-the-art detector [23] + landmark localization [22].

(c) State-of-the-art tracker [16] + landmark localization [22].

Figure 1: We propose a pipeline for robust and accurate

offline deformable face tracking in long-term sequences.

Our system significantly outperforms current tracking-by-

detection techniques using either state-of-the-art face detec-

tors (1b) or rigid object trackers (1c).

modern smartphones [45, 48, 39, 28]. Modern face de-

tectors are robust under a large variety of arbitrary, often

termed “in-the-wild”, conditions. Recently, due to (i) the ef-

forts made by the community to collect and annotate facial

data with regards to a consistent set of facial landmarks [19,

11, 25, 48, 32, 33, 30], and (ii) the development of robust

deformable models [37, 41, 8, 4, 5, 2, 38, 22, 29, 6, 10, 3],

significant progress has been made towards accurate and ef-

ficient facial landmark localization under both controlled

and unconstrained conditions. This progress is, arguably,

one of the most important steps towards high performance

face recognition and verification [36], as well as facial ex-

pression recognition [34].

Despite the fact that face detection and facial landmark

localization in static imagery has received considerable at-

tention, facial landmark tracking in lengthy videos (also re-
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ferred to as deformable face tracking) has attracted much

less research effort. Currently, there are no existing meth-

ods that are able to reliably track the landmarks of a human

face over lengthy periods without the need of human inter-

vention and re-initialization. This challenging problem is

often referred to, in literature, as “tracking in long-term se-

quences” or simply “long-term tracking” [21], even though

those terms are used for tracking by means of a bounding

box. The main reasons behind this lack of attention for de-

formable face tracking are:

• The creation of a meticulously designed benchmark

for deformable face tracking in lengthy videos requires

the manual annotation of a set of landmarks in each

frame of each video. This is a laborious and very ex-

pensive task that has yet to be tackled by any research

group. Furthermore, the sequences that are currently

used for demonstrating qualitative performance of de-

formable face tracking algorithms are very short (in

the range of 3-5 seconds long [40]) and are chosen so

that standard face detection algorithms, such as Viola

Jones [39], perform well [41, 31, 9, 12].

• There is a trend towards approaching facial landmark

tracking as a by-product of generic face detection and

landmark localization (i.e., tracking is performed by

applying face detection followed by landmark local-

ization at each frame) [41, 38, 29]. This is motivated

also by the recent literature in object tracking where

tracking-by-detection is usually applied in order to cir-

cumvent the drifting issues [21, 47].

We believe that deformable face tracking cannot be ef-

fectively solved by using the standard tracking-by-detection

procedure of applying face detection followed by landmark

localization at each frame [41, 38, 29]. By inspecting the

results of coupling state-of-the-art face detection and land-

mark localization algorithms [32, 30, 28, 2, 38, 13], we

note a significant gap in performance. The current state-

of-the-art generic face detection algorithms [28, 13] report

a true positive rate of about 75-80% in the popular FDDB

benchmark [20] whilst allowing for a very small number

of false positives. Hence, approximately 20-25% of faces

have not been successfully detected. Similarly, the re-

sults of the latest landmark localization competition (i.e.,

300W [32, 30]), as well as the reported performance of

recent methods [2, 38, 29], indicate that the best perform-

ing landmark localization methods manage to successfully

align no more than 70% of the images of databases with

challenging capture conditions. In practice, we empirically

found that the performance of state-of-the-art generic face

detection and landmark localization algorithms on arbitrary

videos collected from YouTube and other sources can be

much lower than reported on static images. Figure 1 shows

a characteristic example in which neither a state-of-the-art

tracker [16], or state-of-the-art face detector [23], followed

by landmark localization, successfully track the face in an

arbitrary video. In contrast, our pipeline is both accurate

and robust in these sequences.

In this paper we show that even though state-of-the-art

generic methodologies for face detection and landmark lo-

calization cannot solve the facial landmark tracking prob-

lem in unconstrained videos, they provide an excellent base

on which to build effective procedures. That is, we pro-

pose a pipeline for joint automatic construction of person-

specific deformable face detection and landmark localiza-

tion in an offline manner. Automatic construction of person-

specific statistical facial deformable models from videos by

exploiting a generic model [14, 31] or in an unsupervised

manner [7, 44] has only very recently received attention.

Nevertheless, all these methods assume that correct bound-

ing boxes are provided by a robust face detector for all the

images, which is rarely the case for arbitrary videos. The

aforementioned methods all fail if false positive detections

are provided. On the contrary, our method jointly solves

the problem of automatic construction of deformable face

detection and facial landmark localization. We show that

the proposed pipeline is extremely effective for robust long-

term offline deformable face tracking. We show quantita-

tive experiments in 16 lengthy videos (1-2 mins, 25 fps),

which have been annotated with regards to 68 facial land-

marks (more than 30,000 annotated frames) and qualitative

results in more than 100 long-term sequences.

In summary, the contributions of this paper are:

• We present an accurate and efficient pipeline for of-

fline deformable facial landmark tracking in long-term

sequences. The proposed system is the first, to the best

of our knowledge, to return accurate results for all the

frames of arbitrary length videos without false posi-

tives or drifting issues.

• The proposed technique iteratively updates a person-

specific face detector and facial landmark localization

model which gradually improves accuracy.

• Our experiments show that the proposed pipeline sig-

nificantly outperforms existing tracking methods that

employ state-of-the-art face detection [48, 39, 28] and

landmark localization [41, 8, 38, 22, 29] techniques in

a tracking-by-detection manner on challenging videos.

• The proposed pipeline was used as a semi-automatic

tool to annotate the videos of the 300 Videos in-the-

wild (300-VW) Challenge [35]2.

2. Deformable Face Tracking Pipeline

The proposed pipeline, presented in Fig. 2, aims to per-

form accurate facial landmark tracking on all the frames
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Figure 2: Overview of the pipeline. After applying a state-of-the-art generic deformable face detector (Step 1) to obtain an

initial estimation of the shapes with minimal false positive detections, we iteratively (Step 4) train and fit a person-specific

face detector (Step 2) and a person-specific generative deformable model (Step 3) that gradually improves the results.

of lengthy video sequences3. Let us denote the shape in-

stance of a frame j as sj = [ℓj1, . . . , ℓ
j
n]

T , that consists of

the Cartesian coordinates of n landmark points, denoted by

ℓ
j
i = [xj

i , y
j
i ]

T , ∀i = 1, . . . , n. Thus, given an input long-

term sequence of N0 frames, i.e. IN0 = {I1, . . . , IN0},

the pipeline aims to estimate the corresponding set of land-

marks per frame, i.e. {s1, . . . , sN0}. This involves four

discrete steps solved in an iterative manner which are de-

scribed in detail in the following sections:

Step 1: Acquire an initial estimation of the landmarks per

frame using state-of-the-art generic face detection

and landmark localization techniques.

Step 2: Train and fit a person-specific face detector.

Step 3: Train, fit and iteratively update a person-specific

generative deformable model for landmark local-

ization.

Step 4: Update the person-specific detector and re-apply

Steps (2) and (3).

Step 1: Generic Deformable Face Detection

The first step is to acquire an initial estimation of the

landmarks per frame. We take advantage of recent state-

of-the-art generic face detection and landmark localization

methods in order to obtain acceptable initial estimations for

as many frames as possible. There have also been pro-

posals to perform face detection and landmark localization

jointly [48, 13]. Nevertheless, the best results are achieved

by using different methods for face detection and land-

mark localization (e.g. by combining [48] with [2, 38] or

with [41]).

The results reported in the most well-known face de-

tection benchmark (FDDB [20]) show that there are many

face detection systems that achieve impressive true positive

vs. false positive rates; some with publicly available imple-

mentations [28, 23, 43, 48, 26], others without [13, 42]. The

biggest advantage of most of these methods is that they can

3We make the assumption that the person may leave the frame or that

the camera will move, hence in many frames the face may not be visible.

be adjusted not to return any false positive detections, gen-

erally at the cost of decreasing the true positive rate. Since

the detected faces will be used as initializations when train-

ing person-specific models, we require a face detector that

returns a minimal number of false positives and is highly

efficient. We have experimented with the majority of the

top performing publicly available detectors and we empir-

ically found that the implementation of [23] had the best

ratio of performance and speed4. The decision threshold of

the method in [23] was set so that virtually no false posi-

tives were returned whilst retaining a true positive rate of

approximately 65%.

Existing state-of-the-art generic facial landmark local-

ization methods can be separated in two categories: genera-

tive [37, 2, 38, 5, 6] and discriminative [41, 8, 22, 29]. Most

methods are accompanied by publicly available implemen-

tations pre-trained on multiple databases which makes them

easy to access and use. Based on the results reported on

standard datasets of static images, we chose to use the

open-source implementation4 of the discriminative tech-

nique in [22], which utilizes an ensemble of regression trees

and shows accurate real-time performance.

We wish to reiterate that any reliable face detection and

landmark localization technique is suitable for this step, as

long as the number of false positives is low. Moreover,

as aforementioned, this step is equivalent to the current

state-of-the-art for deformable face tracking in the litera-

ture. However, as we show in our experiments and in Fig. 1,

it is inadequate in the case of arbitrary videos, mainly due

to the small true positive rate of the detectors and the lim-

ited accuracy demonstrated by a generic deformable model

as opposed to a person-specific one.

4The DLib C++ Library provides open-source implementations of [22,

23, 16] in http://dlib.net/. The Menpo Project [1] (http://

www.menpo.org/) provides open-source implementations of various

deformable models, such as [37, 38, 5, 2, 41, 6], and interfaces easily with

the DLib library. Furthermore, the deformable models of [28] and [48]

show similar performance but they are more computationally expensive.
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Step 2: Person-Specific Face Detection

We assume that the first step of the pipeline (Step 1) re-

turns the detected landmarks {s1, . . . , sN1} for a subset of

the original frames IN1 = {I1, . . . , IN1} ⊆ IN0 for which

we obtained a correct detection. In the second step of the

pipeline, we train a person-specific face detector using the

previously returned detections by building a Deformable

Part Model (DPM) [17, 48], which is the discriminative

counterpart to the generative Pictorial Structures (PS) [18].

Let us define a tree structure G = (V,E), where V =
{v1, . . . , vn} is a set of vertices that correspond to n land-

marks (parts) and there exists an edge (vi, vj) ∈ E for each

pair of connected landmarks. DPMs aim to learn a mix-

ture of M different tree models (Gm = (Em, V m),m =
1, . . . ,M ), each one consisting of a set of parameters that

correspond to the appearance of each part and a set of pa-

rameters that describe the deformation of the part connec-

tions. The purpose of this mixture is to cover a range of

different facial poses. DPMs learn the appearance and de-

formation parameters using a discriminative training proce-

dure, typically via Support Vector Machines (SVM). Then,

given an image I, the cost function for the m-th mixture

component is expressed as

C(s|I,m) = A(s|I,m) + S(s|I,m) + am

A(s|I,m) =

n
∑

i=1

wm
i

TF(ℓi|I)

S(s|I,m) =
∑

(vi,vj)∈Em

(

amijdx
2
ij + bmijdxij+

+cmijdy
2
ij + dmijdyij

)

(1)

where

− A(s|I,m) is the appearance cost of placing each part

vmi ∈ V m at the image location ℓi, measured as the

mismatch between the learnt template (filter) wm
i and

the extracted image appearance F(ℓi|I). F denotes a

feature vector extraction function (e.g. HoG [15], SIFT

[27]) from the neighbourhood around location ℓi.

− S(s|I,m) denotes the deformation cost when all the

adjacent parts (vmi , vmj ) : i, j ∈ Em are placed in lo-

cations ℓi and ℓj respectively. dxij = xi − xj and

dyij = yi − yj are the relative locations (displace-

ments) of the i-th part with respect to the j-th one.

− αm is a scalar bias (prior) per mixture component.

The cost function of Eq. 1 can be expressed in a more con-

venient form using a dot product as

C(s|I,m) = wT
my (2)

where wm is the vector of the concatenated appearance and

deformation parameters

wm = [w1
m, . . . ,wn

m, . . . , amij , b
m
ij , c

m
ij , d

m
ij , . . . , α

m] (3)

The final landmark locations are obtained by maximizing

Eq. 2 with respect to s and m, as

C∗(I) = max
m,s

C(s|I,m) (4)

This problem is solved in linear time with respect to the

number of parts n, number of components M and image

size, by employing an efficient dynamic programming al-

gorithm based on the Generalized Distance Transform [18].

There are two main annotation settings for estimating the

parameters of DPMs: weakly and strongly supervised.

Weakly Supervised Setting: In this setting, only the

bounding boxes of the positive examples {s1, . . . , sN1} and

a set of negative examples are available. The number of

parts n and mixtures M are defined a priori, while the part

locations and the mixtures in the training set are considered

as hidden (latent) information revealed during training [17].

By defining z = [m, ℓm1 , . . . , ℓmn ] to be a latent vari-

able vector, the goal is to learn a vector of parameters

wm = [w1
m, . . . ,wn

m]. Since only one of the mixture tree

models Gm can be activated, we define a general sparse

feature vector y(z) = [0, . . . ,y(z̃), . . . ,0], which is the

score for the hypothesis z̃ = [ℓm1 , . . . , ℓmn ]. By denot-

ing the space of possible latent values for an example q

as Z(q), the classifier that scores this example has the

form fwm
(q) = maxz∈Z(q) w

T
my(q, z). In order to find

the parameters wm, given the set of N1 training examples

{(q1, y1), . . . , (qN1
, yN1

)} and yi ∈ {−1, 1}, which are

images with a bounding box annotation, we minimize the

SVM objective function using the standard hinge loss

C(q) =
1

2
||wm||2 + C

N1
∑

j=1

max(0, 1− yjfwm
(q)) (5)

which can be reformulated as

argmin
wm

1

2
||wm||2 + C

N1
∑

j=1

max(0, 1− yjw
T
my(q, z∗))

s.t. z∗ = max
z∈Z(q)

wT
my(q, z)

(6)

The minimization of the above cost function is highly non-

convex, but becomes convex once the latent information is

specified for the positive training examples. In [17], the au-

thors propose an alternating optimization procedure, called

latent-SVM. Specifically, by fixing wm, the highest scoring

latent value for each positive example is determined. Then,

by fixing the latent values for the positive set of examples,

wm is updated by minimizing the SVM cost of Eq. 5, using

stochastic gradient descent.

Strongly Supervised Setting: Under a strongly su-

pervised setting, we assume that (i) the mixture compo-

nents of the training set are labelled, and (ii) the training

set consists of images IN1 with annotated landmarks, i.e.
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{s1, . . . , sN1}. Consequently, there are no hidden latent

variables zj to be estimated for each training sample qj and

only the model parameters wm need to be learnt. That is

argmin
wm,{ξj}

1

2
wT

mwm + C

N1
∑

j=1

ξj

s.t. ∀ qj ∈ C+, wT
my(qj , zj) ≥ 1− ξj

∀ qj ∈ C−, wT
my(qj , zj) ≤ −1 + ξj

∀ k ∈ K, wk ≤ 0

(7)

where K is the set of indices of wm that correspond to

the quadratic terms of the shape cost amij and cmij . The

above constraints state that the score of the positive exam-

ples should be larger than 1 (minus the small slack variable

value ξj), while the score of the negative examples should

be less than −1 (adding the small slack variable value ξj),

for all part configurations and components. The last set of

constraints guarantees that the deformation cost is a proper

metric. The family of optimization problems that have the

form of Eq. 7 are referred to as structural SVMs. Similar

to [48], we employ a modified coordinate descent method,

which allows the incorporation of the last set of negativity

constraints. This method iterates between finding wm in the

dual space and mining for violated constraints according to

the current estimate of wm until convergence is met.

Output Detections: In our experiments, we employ a

strongly supervised DPM trained on the shapes that are re-

turned from the generic deformable face detector of the pre-

vious step, i.e. {s1, . . . , sN1}. Of course, a weakly super-

vised DPM can also be applied, however, in this case, the

final loop of the pipeline (Step 4) that updates the person-

specific DPM would have no effect. This is because the

bounding boxes cannot be improved from the generative

landmark localization procedure of Step 3. Finally, the

person-specific nature of the DPM ensures that the returned

true positive rate will reamin extremely high, while keeping

the false positive rate close to zero. This means that the set

of N2 output shapes for which the DPM returns a correct

detection will be close to the number of the initial frames,

i.e. N1 < N2 ≈ N0.

Step 3: Person-Specific Generative Facial Land-
mark Localization

Due to the use of a highly flexible tree-structure, the

strongly supervised DPMs do not achieve state-of-the-art

facial landmark localization performance. Furthermore,

since the method is discriminative, it is very sensitive to

inaccurate landmark detections. For this step, we employ a

state-of-the-art generative deformable model that is able to

correct inaccurately localized landmarks. Motivated by re-

cent developments in automatic construction of generative

deformable models [14, 31, 44, 7], we use the state-of-the-

art part-based Active Appearance Model (AAM) of [38],

referred to as the Gauss-Newton DPM (GN-DPM), and it-

eratively improve the appearance model.

GN-DPM [38] is a generative statistical model of shape

and appearance that is able to recover a parametric descrip-

tion of a face via Gauss-Newton optimization. By apply-

ing Generalized Procrustes Analysis to align the shapes

{s1, . . . , sN2} obtained from Step 2 and using Principal

Component Analysis (PCA), we build an orthonormal ba-

sis of nS eigenvectors US ∈ R
2n×nS plus a mean shape s̄.

This linear shape model can be used to generate shape in-

stances as s(p) = s̄ + USp, where p = [p1, . . . , pnS
]T

is the vector of shape parameters. Similarly, in order

to build the appearance model, we first sample all the

training images IN2 = {I1, . . . , IN2} in patches cen-

tred around each landmark location using the function

F(ℓji |I
j), ∀j = 1, . . . , N2, ∀i = 1, . . . , n defined for

Eq. 1 and concatenate these vectors in order to acquire

an na × 1 vectorized part-based appearance representation

a(s|I) = [F(ℓ1|I)
T ,F(ℓ2|I)

T , . . . ,F(ℓn|I)]
T for all im-

ages. Then, the linear appearance model of GN-DPM is

trained by performing PCA on the set of part-based appear-

ance vectors of all training images that results in a sub-

space of nA eigenvectors UA ∈ R
na×nA and the mean ap-

pearance ā. This model can be used to synthesize shape-

free appearance instances, as a(λ) = ā + UAλ, where

λ = [λ1, . . . , λNA
]T is the vector of appearance param-

eters. Given a test image I, the optimization problem of

GN-DPM employs an ℓ22 norm and is expressed as

argmin
p,λ

‖a(s(p)|I)− ā−UAλ‖
2 (8)

This can be efficiently solved using the Gauss-Newton al-

gorithm. Due to limited space, the optimization process is

not included. For more details, please refer to [38].

The goal of this step of the pipeline is to construct an op-

timal generative appearance model that best describes the

appearance variation that is present in the video sequence.

For that purpose, we formulate an iterative optimization

problem that aims to minimize the mean GN-DPM fitting

ℓ22 norm of Eq. 8 over all the frames of the video. In order

to facilitate this procedure, we assume that the initial shape

and appearance models that are utilized are trained using a

database with static images of generic faces. Let us denote

the generic shape basis as US , the generic appearance basis

as UA and a person-specific appearance basis as BA. Then,

the minimization problem is expressed as

arg min
ā,[UA BA],pi,λi

1

N2

N2
∑

i=1

‖a(si(pi)|Ii)− ā− [UA BA]λ
i‖2

s.t. [UA BA]
T [UA BA] = Ieye

(9)

where Ieye denotes the identity matrix. This procedure it-

eratively trains a new person-specific appearance basis BA

5



based on the current estimate of the N2 shapes, combines

the generic appearance model UA with BA so that they

are orthogonal ([UA BA]
T [UA BA] = Ieye) and then re-

estimates the parameters {pi,λi}, i = 1, . . . , N2 by mini-

mizing the ℓ22 norm for each frame. Thus, the optimization

is solved in an alternating manner in two steps:

(1) Fix {pi,λi} and minimize for {ā, [UA BA]}: Hav-

ing estimated the current shapes for each frame i =
1, . . . , N2, we build a person-specific appearance sub-

space BA from {a(si(pi)|Ii)} and combine it with the

generic appearance model UA in order to create an up-

dated orthogonal subspace, thus satisfy the constraint

[UA BA]
T [UA BA] = Ieye.

(2) Fix {ā, [UA BA]} and minimize for {pi,λi}:

Having created the orthogonal basis that combines the

generic and person-specific appearance variation, we now

aim to estimate the shape and appearance parameters

per frame. Based on Eq. 8, this is done by solving

argminpi,λi ‖ai(si(pi)|Ii) − ā − [UA BA]λ
i‖2, ∀i =

1, . . . , N2 using the Gauss-Newton optimization [38].

The above iterative procedure gradually improves the ap-

pearance model and therefore also improves the detected

landmarks. Note that other state-of-the-art generative meth-

ods [37, 2, 5] could also be used. Our experiments showed

that, given the person-specific nature of the generative

model, only a few iterations are adequate in order to obtain

accurate results.

Step 4: Person-Specific Face Detection Update

The output of Steps 2 and 3 is a set of tracked shapes

{s1, . . . , sN2} that correspond to each of the frames in

IN2 = {I1, . . . , IN2}. These frames are the ones for which

a correct detection was returned from Step 2. As explained

in Step 2, due to the person-specific setting of the DPM,

N2 must be very close if not equal to N0. The next step

is to further improve the fitting accuracy and increase the

number of true positive detections, if required. This is

done by updating the person-specific DPM with the ac-

quired set of tracked shapes, which makes the generative

deformable model more expressive. Given the fitted shapes

{s1, . . . , sN2}, the DPM can be updated in two ways: (i) re-

train it under a strongly supervised setting (Step 2), or

(ii) update the parameters of the existing model using the

passive-aggressive algorithm of [47]. We have experimen-

tally verified that both have similar performance with the

latter being considerably faster.

This update step dramatically improves the true posi-

tive rate of the detector, as well as the accuracy of the de-

formable model. Our experiments showed that one such

iteration is enough for the vast majority of videos. The av-

erage recall (i.e., true positive rate) we achieve with the pro-

posed procedure is more than 98% with almost an 0% of

false positive rate. However, for a small number of frames

the person-specific model may not return a face. We treat

those cases as a tracking problem and assume a first order

Markov dependency. That is, we deal with those frames

by initializing their shapes with the shapes of the previous

frames and applying the person-specific GN-DPM.

3. Experiments

In this section, we show that our proposed pipeline out-

performs all state-of-the-art tracking methods by a substan-

tial margin. We also explain how the proposed framework

was employed as a semi-automatic tool to annotate the ma-

jority of the videos of the 300-VW Challenge [35]2.

3.1. Dataset and Implementation

We found that the majority of the videos currently used

for demonstrating face tracking results are both easy and ex-

tremely short. Therefore, we carried out experiments on two

video categories: (1) videos for which accurate face detec-

tion can be achieved by most existing detectors, and (2) very

challenging videos where even state-of-the-art detectors fail

to detect the face in the majority of frames. The motivation

behind this classification is that although existing methods

can perform quite well for the sequences of category 1, in

category 2 we find a noticeable deterioration in the number

of true positives and thus the point-to-point error. The input

videos were manually annotated with 68 facial landmark

points, using the standard mark-up of Multi-PIE [19].

Category 1: Includes 14 videos (about 30,000 frames

in total) that are selected from the testset of the 300-VW

Challenge2 (scenarios 1 and 2). These videos exhibit large

variations in pose, resolution and illumination.

Category 2: Includes 2 very challenging videos with

3058 frames in total. The videos exhibit very challenging

conditions, even for the state-of-the-art detectors and track-

ers. Roughly 10% of the frames were annotated, which was

deemed a sufficient number given the nature of the videos.

We note that these videos were so difficult that even manual

annotation was challenging.

Implementation details for our pipeline: For Step 1

(i.e., [23, 22]) and Step 3 (i.e., GN-DPM [38]), we used the

publicly available implementations in Menpo4. The generic

bases of GN-DPM are trained on the iBUG and HELEN

datasets [32, 30], approximately 500 images in total. The

person-specific update of GN-DPM bases is conducted us-

ing 100 randomly selected frames of the video. The GN-

DPM is optimized using a multi-scale Gaussian pyramid of

2 levels. The number of employed shape components (nS)

is 3 and 12 for the low and high pyramidal levels respec-

tively. The number of appearance components (nA) is 50

and 100 respectively and dense SIFT features were used.

Finally, the DPM of Step 2 is trained in a strongly super-

vised manner.
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Figure 3: Indicative qualitative results. Left: Ours. Middle:

Deformable detector ([23] + [22]). Right: SPOT [47]

3.2. Pipeline Experimental Analysis

Herein, we measure the impact of each step of our

pipeline. We report the mean point-to-point error normal-

ized with the face size (i.e., the standard metric that was

proposed in [48]) for each category of videos. Figure 5

shows the output of each stage of the pipeline by applying

a single loop of Step 4. For the first category of videos, the

generic face detector and landmark localization method pro-

duced favourable initial results. The person-specific DPM

increased the true positive rate and the person-specific GN-

DPM of Step 3 improves the landmark localization accu-

racy. That is, for the very low error value of 0.03, the per-

centage increased from 63% to 72%. Note that a single

run of the proposed system is adequate since the update of

Step 4 does not change the results. By inspecting the results

of the second category videos, we see that the effect of the

pipeline is much more evident. That is, the generic face de-

tector failed to detect faces in more than 25% of frames,

in contrast to the final iteration of our proposed pipeline

which managed to reach 100% true positive rate and also

improved the facial fitting accuracy. Nevertheless, the up-

date of Step 4 does not contribute much, due to the difficulty

of the videos.

3.3. Comparison with state-of-the-art

Figure 4 compares our pipeline with other state-of-the-

art frameworks. Specifically, we compare with methods

that use the standard approach of generic face detection plus

generic facial landmark localization. We selected two such

representative methods: (1) the method used to initialize our

pipeline in Step 1 which consists of [23] followed by [22],

and (2) the publicly available implementation of Chehra [9].

For both these methods, when the face detector fails to re-

turn a result we assume a 1st order Markov dependency and

initialize from the most recent returned detection. More-

over, we also compare with methods that employ state-of-

the-art tracking plus facial landmark localization. For this

category of techniques, we selected some of the best per-

forming tracking-by-detection trackers that have appeared

recently and that provide open-source implementations, i.e.,

SPOT [47], FCT [46] and Correlation tracker (Correl) [16].

For these trackers, the ground truth bounding box of the first

frame was provided as the initial input. The generic land-

mark localization method used in combination with these

trackers is the state-of-the-art method of [22].

Figure 4 shows cumulative error distribution curves

based on the 49 internal points of the face (excluding the

points of the boundary), as this is the mark-up returned by

Chehra. Our pipeline significantly outperforms the rest of

the trackers in both categories. For the very challenging

videos of category 2, the state-of-the-art trackers fail to de-

tect several frames. However, our proposed pipeline man-

ages to maintain a high true positive rate.

3.4. Semi-Automatic Annotation Tool

The proposed pipeline was used as a semi-automatic tool

in order to annotate 86 videos for the 300-VW Challenge2.

The annotation procedure involved the following five steps:

1. Download videos from the Internet (e.g. Youtube).

2. Apply the proposed pipeline as described in Sec. 3.1.

3. Manually correct the annotation for every eighth frame

of each video, if required.

4. Use the corrected frames from the previous step to

train and fit a GN-DPM per video (Step 3 of pipeline).

5. Visually inspect the results and finally manually cor-

rect the annotations, if required.

The above procedure manages to return accurate anno-

tations in the majority of cases. Therefore, the required

amount of manual correction was limited given the large

number of frames and the difficulty of the videos. In to-

tal, the manual intervention of steps 3 and 5 required 837
hours of human labour. The annotations were performed

by trained annotators using the web-based landmarking tool

that is provided by the Menpo Project5. In order to practi-

cally measure the benefit of the proposed semi-annotation

tool, we manually annotated 6 out of the 86 videos, which

required approximately 260 working hours. Thus, we es-

timate that the manual annotations of the frames for all

86 videos would have taken around 3727 human working

hours, i.e., approximately 4.5× more than the proposed

procedure. These numbers highlight the effectiveness of

our pipeline for the semi-assisted annotation of large-scale

databases of videos. The pipeline and the annotation tool

5https://www.landmarker.io/
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Figure 4: Comparison of our pipeline with state-of-the-art techniques, evaluated on 49 facial landmark points.
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Figure 5: Illustration of the contribution of each step of the proposed pipeline, evaluated on 49 facial landmark points.

were built within the Menpo Project [1] and will be pub-

licly available soon. The annotation procedure was facili-

tated using the cloud service of [24].

4. Conclusions

In this paper we presented the first, to the best of our
knowledge, pipeline that can perform long-term deformable
face tracking in challenging videos. The pipeline takes ad-
vantage of generic face detection and landmark localiza-
tion algorithms to iteratively train powerful and accurate
person-specific face detectors and landmark localization
techniques. The pipeline was used as a semi-automatic tool
to annotate most of the videos of the 300-VW Challenge2.
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