
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1109/ICPR.2014.507

http://hdl.handle.net/10251/68388

IEEE

Álvaro Muñoz, F.; Sánchez Peiró, JA.; Benedí Ruiz, JM. (2014). Offline Features for
Classifying Handwritten Math Symbols with Recurrent Neural Networks. 22nd International
Conference on Pattern Recognition (ICPR 2014). IEEE. doi:10.1109/ICPR.2014.507.



Offline Features for Classifying Handwritten

Math Symbols with Recurrent Neural Networks

Francisco Álvaro, Joan-Andreu Sánchez, José-Miguel Benedı́
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Abstract—In mathematical expression recognition, symbol
classification is a crucial step. Numerous approaches for recog-
nizing handwritten math symbols have been published, but most
of them are either an online approach or a hybrid approach.
There is an absence of a study focused on offline features for
handwritten math symbol recognition. Furthermore, many papers
provide results difficult to compare. In this paper we assess the
performance of several well-known offline features for this task.
We also test a novel set of features based on polar histograms and
the vertical repositioning method for feature extraction. Finally,
we report and analyze the results of several experiments using
recurrent neural networks on a large public database of online
handwritten math expressions. The combination of online and
offline features significantly improved the recognition rate.

I. INTRODUCTION

Mathematical notation represents a very valuable source of
information in many fields. Automatic recognition of mathe-
matical expressions started several decades ago [1]. However,
handwritten math recognition has lately become a very active
research field [2] due to the development of tactile-devices and
human-based interfaces. Furthermore, in the last years several
competitions on math recognition have been organized with
increasing participation of research groups from all over the
world [3].

Mathematical expression recognition is commonly divided
into three primary tasks [2]: symbol segmentation, symbol
recognition and structural analysis. These subproblems can be
tackled sequentially or jointly, but in any case a good math
symbol classifier is crucial for the performance of the model. In
this paper we focus on classifying handwritten math symbols.

Several features and classifiers have been proposed for
handwritten math symbol recognition [2]. Generally, the pro-
posals are focused on online recognition [4], [5], [6] but it is
difficult to find a paper focused on offline recognition. Some
authors have combined online and offline information and it
has proven to significantly improve the recognition results [7],
[8], [9]. However, we are not aware of a public database of
offline handwritten math expressions or any paper focused
on offline handwritten math symbol recognition that provides
comparable results [10]. For these reasons, in this paper we
want to study the performance of several offline features for
this problem using a large publicly available dataset.

Handwriting recognition has been studied for years and
math expressions are a particular case in that field. For
this reason, the features developed for text recognition have
been successfully applied to math symbol classification [9].

Thereby, in this work we want to explore several well-known
text offline features for math symbol recognition [11], [12],
[13]. Furthermore, we also want to test a novel set of features
based on polar shape descriptors [14], [15].

There was a lack of large public dataset of handwritten
formulae and this caused that some of those approaches
were difficult to compare. In this work we report an exten-
sive experimentation using the dataset of the last CROHME
competition [3] in order to provide comparable results. We
used a Recurrent Neural Network (RNN) classifier because
it has proven to outperform Hidden Markov Models (HMM)
in this task [6]. We report experiments with online features,
offline features and their combination. Results show that offline
features outperform online features and that their combination
significantly improves the recognition rate.

The remainder of the paper is organized as follows. First,
a review of related work is presented in Section II. Then, a
set of online features is defined in Section III. The different
offline features are described in Section IV. Section V presents
the RNN symbol classifier and the experimentation is reported
and analyzed in Section VI. Finally, conclusions and future
work are presented in Section VII.

II. RELATED WORK

In the literature, most of the proposals regarding hand-
written math symbols classification are focused on online
recognition. Several classifiers have been used like elastic
matching [4], HMM [5], [9] or RNN [6]. The advanced
architecture Bidirectional Long Short-Term Memory (BLSTM)
for RNN has outperformed other classifiers in several tasks like
handwritten text recognition [16] or handwritten math symbol
recognition [6]. For this reason we used this classifier to carry
out the experiments.

Regarding offline features, many authors have combined
online and offline feature extraction to obtain a hybrid system
in order to improve the recognition results [7], [8], [9].
In addition to the combination of two independent sets of
features, a hybrid feature set that directly merges online and
offline information has been studied in [6]. This set improved
the classification accuracy of HMM but results with RNN
remained the same.

In this work we study three sets of well-known features that
have been extensively used for handwriting text recognition.
We refer to these features by the name of the group or
university that has developed them: PRHLT, FKI and RWTH.
They are detailed in Section IV. Furthermore, we also wanted



to assess the performance of a set of features based on polar
descriptors because, in the last years, several approaches based
on polar shape descriptors [14] have been published in the
mathematical expression recognition field. For example, polar
features have been used to detect layout classes for sym-
bols [17], symbol segmentation [18] or spatial relationships
classification [19]. There are also proposal for handwritten text
recognition using polar histograms [15].

Since the MathBrush database [20] was released more
papers are reporting comparable results [4], [18], [6]. These
papers presented online math symbol recognition experiments.
Recently, the CROHME 2013 competition [3] has merged
several datasets (including MathBrush) such that it represents
the largest handwritten mathematical expression recognition
corpus currently available. We used the training and test sets
defined in the competition in order to provide comparable
results.

III. ONLINE FEATURES

The CROHME 2013 database is online and there is no
publicly available such a large database of offline handwritten
math expressions. We use the online features to obtain a
comparable experiment with previous published results and,
hence, have a better understanding of the offline features
performance.

A mathematical symbol is represented as a sequence of
points in the space. We compute the 7 time-based features
defined in [21] for each point p = (x, y):

• Normalized coordinates: (x, y) normalized values
such that y ∈ [0, 100] and the aspect-ratio of the
sample is preserved.

• Normalized first derivatives: (x′, y′).

• Normalized second derivatives: (x′′, y′′).

• Curvature: k, the inverse of the radius of the curve in
each point.

Finally, for each point p we obtain a feature vector fon(p) as:

fon(p) = [x, y, x′, y′, x′′, y′′, k ]

It should be noted that no resampling is required prior to
the feature extraction process because first derivatives implic-
itly perform writing speed normalization [21].

IV. OFFLINE FEATURES

Although the CROHME 2013 database is online, we can
easily produce the images representing the mathematical sym-
bols. Then, a wide set of offline features can be extracted from
the images. In the following sections we describe the image
generation process and the different offline sets of features
used for classification.

A. Image Generation

Given an online sample encoding a math symbol as a
sequence of points in the space, we generated the image
representation as follows. We set the image height to H pixels
and we kept the aspect ratio (up to 5H to prevent symbols

like a fraction bar from creating too wide images). Then we
rendered the image representation of each symbol by using
linear interpolation between each two consecutive points in
every stroke. The final image is produced after smoothing it
using a mean filter with a window sized 3× 3 pixels.

B. PRHLT Features

In this section we describe the offline features that
the Pattern Recognition and Human Language Technologies
(PRHLT) group has used for many handwritten text recognition
tasks [13]. These features have also been successfully applied
to math symbol recognition [9].

Given the image of a math symbol (Fig. 1.a) it is trans-
formed into a sequence of feature vectors as follows. First,
the image is divided into a grid of small square cells sized a
small fraction of the image height (H/20). Then for each cell
we compute three different values (Fig. 1): normalized gray
level (b), horizontal gray-level derivative (c) and vertical gray-
level derivative (d). The feature extraction was extended to a
5× 5 window centered at the current cell to obtain smoothed
values. The values are weighted by a two-dimensional Gaus-
sian function in b) and a unidimensional Gaussian function
in c) and d). The derivatives are computed by least squares
fitting a linear function. Finally, we stack the three different
images that result after computing these values for each cell
(see Fig. 1.e). Thus, each column from left to right represents
a feature vector fprhlt of 60 dimensions.
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Fig. 1. Example of PRHLT offline features computation. Given an image
of a math symbol (a) we compute the normalized gray level (b), horizontal
gray-level derivative (c) and vertical gray-level derivative (d). Each column of
the stacked images (e) represents a feature vector.

C. FKI Features

The FKI features [11] are a well-known set of geometric
features that has been used for years in handwriting recog-
nition. Given a binary image of height H , we compute 9
geometrical values ci for each column x as:

• Number of black pixels in the column:

c1(x) =

H∑

y=1

I(x, y)



• Center of gravity of the column:

c2(x) =
1

H

H∑

y=1

y · I(x, y)

• Second order moment of the column:

c3(x) =
1

H2

H∑

y=1

y2 · I(x, y)

• Position of the upper contour in the column:

c4(x) = min{y | I(x, y) = black}

• Position of the lower contour in the column:

c5(x) = max{y | I(x, y) = black}

• Orientation of the upper contour in the column:

c6(x) =
c4(x+ 1)− c4(x− 1)

2

• Orientation of the lower contour in the column:

c7(x) =
c5(x+ 1)− c5(x− 1)

2

• Number of black-white transitions in the column:

c8(x) = NTblack→white I(x, y); 1 ≤ y ≤ H

• Number of black pixels between the upper and lower
contours:

c9(x) =

H∑

c4(x)<y<c5(x)

I(x, y)

Finally, given a binary image of size W × H , for each
column x such that 1 ≤ x ≤ W this definition will generate a
9-dimensional feature vector ffki(x) as:

ffki(x) = [c1, c2, . . . , c9]

D. RWTH Features

The RWTH features have been extensively used in hand-
writing recognition [12]. Given an image of height H , this set
of features is simply computed using a sliding window of width
w from left to right (see Fig. 2a). Then, the w ×H values of
each extracted window are projected to D dimensions by using
Principal Component Analysis (PCA). Finally each projected
window represents a feature vector frwth.

Lately, the vertical repositioning method [22] has provided
very good results in handwriting recognition [23], hence, we
have also tried this method. We first compute the vertical center
of gravity of each extracted window. Then, we reposition the
window such that its vertical center is aligned with the com-
puted center of gravity. Fig. 2 shows an example of the RWTH
features computed with and without vertical repositioning.

E. Polar Features

Shape descriptors are a well-known representation that
have been used for multiple applications [24]. Bing et al. [15]
proposed a feature extraction based on polar histograms for
handwritten text recognition. We defined similar features but
we use circles instead of ellipses and equally spaced distances
instead of log-distances.

Fig. 3. Example of polar descriptor with n = 5 circles and m = 8 arcs in
a particular column of a square root symbol.

We define a polar descriptor centered in a point p as
follows. We draw n circles with radii equally spaced up to
the maximum radius r. Moving counterclockwise, draw radii
dividing each circle into m equal arcs. This descriptor is
encoded as a matrix such that each row represents a circle
and each column represent the angle starting from 0 degrees.
Figure 3 shows an example of polar descriptor.

The idea is to use a sliding polar descriptor instead of
the sliding window used in the previously described RWTH
features. Given a descriptor, each of the n×m bins contains the
number of foreground pixels that fall into that bin normalized
by the total number of pixels in the descriptor. Thus, each
feature vector fpolar is computed as the projection of that polar
histogram to D dimensions using PCA. The feature vectors are
computed setting the center of the polar descriptor on each
column of the input image at row H/2 (centered).

We also wanted to apply the vertical repositioning method
to these features. Given a column x and radius r, the standard
polar features are centered in p = (x,H/2). In this case,
following the methodology described in RWTH features, we
compute the vertical centroid y′ of the window from column
(x − r) to (x + r) and then the descriptor center is set to
p = (x, y′). Fig. 4 shows an example of the polar histograms
computed with and without vertical repositioning.

V. RECURRENT NEURAL NETWORKS

Sequential classification has traditionally been tackled us-
ing HMMs. However, in the last years RNNs have brought
more attention in the research community. RNNs are a con-
nectionist model containing a self-connected hidden layer. The
recurrent connection provides information of previous inputs
such that the network can benefit from past contextual infor-
mation [25]. The LSTM advanced RNN architecture allows
that cells can access to context information over long periods
of time. This is achieved by using a hidden layer composed
of recurrently connected subnets, called memory blocks [16].

Bidirectional RNNs [26] have two separate hidden layers
that allow the network to access context information in both
time directions: one hidden layer processes the input sequence
forward and the other processes it backward. The combination
of bidirectional RNNs and the LSTM architecture results in
BLSTM-RNNs. These networks have outperformed standard
RNNs and HMMs in handwriting text recognition [16] and
math symbol recognition [6] and also they are faster than
HMMs in terms of classification speed.



a) RWTH features

· · ·

b) RWTH features with vertical repositioning (RWTHvr)

· · ·

Fig. 2. Example of the RWTH offline features for a square root symbol using a sliding window of w = 11 pixels. Each window represents a feature vector
after projecting it to D dimensions with PCA.

a) POLAR features

· · · · · · · · · · · ·

b) POLAR features with vertical repositioning (POLARvr)

· · · · · · · · · · · ·

Fig. 4. Example of polar features for a square root symbol using n = 5 circles and m = 12 arcs. The gray-scale colors of the bins in the descriptors represent
the values of the polar histogram, from zero (white) to the maximum value in that descriptor (black).

In this work we used BLSTM-RNN for math symbol clas-
sification. The RNN was trained in a frame-based approach,
i.e., given an input sequence s composed of n vectors such that
s = {f1, f2, . . . , fn}, the network computes for each class c
the posterior probability P ( c | fi ), where fi represents a
feature vector. Then, we obtained the posterior probability per
symbol after the following normalization:

P (c | s) =
1

n

n∑

i=1

P ( c | fi ) (1)

where the probability per symbol for class c is computed as
its average probability per frame.

VI. EXPERIMENTS

In this section we detail the experimentation carried out to
assess the performance of the different features proposed for
handwritten mathematical symbol classification. We used the
RNNLIB library [27] for training the RNN-BLSTM and the
tools for computing the different features are also available1.

A. CROHME 2013 Database

The recent CROHME 2013 competition [3] released a
large resource for mathematical expression recognition as a
result of combining and normalizing several datasets. This
database contains 8, 835 online handwritten math expressions
for training and 671 math expressions for testing. There are
about 86K math symbols for training and 6K symbols for
testing distributed in 101 classes.

We used the train and test sets of the competition in order to
provide comparable results. Moreover, we needed a validation

1Source code available in the software section of www.prhlt.upv.es

set for tuning parameters of some features and also for training
the RNN classifier. Hence, we first extracted a validation set
by taking 10% of the samples of each class in the original
train set, and the remaining 90% were used for training. This
way we also kept proportionally the distribution of the classes.

B. RNN-BLSTM Configuration

We used the same configuration of the RNN-BLSTM
classifier for every experiment. The size of the input layer
was determined by the feature set and the output layer size
was 101, i.e., the number of symbol classes. The forward and
backward hidden layers each contained 100 LSTM memory
blocks. The network weights were initialised with a Gaussian
distribution of mean 0 and standard deviation 0.1. The network
was trained using online gradient descent with a learning rate
of 0.0001 and a momentum of 0.9. This configuration has
obtained good results in both handwritten text recognition [16]
and handwritten math symbol classification [6].

The experimentation was carried out in two steps. First, we
trained the network until the error had ceased to improve on
the validation set for 50 epochs. As the RNN results depend on
the random initialization, we performed four experiments with
the validation set in order to compute the average number of
epochs ē required to obtain the best network. Then we trained
four RNNs using the full training set during ē epochs. Finally,
we classified the test set with the RNNs trained with the full
training set and the average recognition rate is reported.

C. Results

In this section we report the classification performance of
every set of features while recognizing the CROHME 2013
test set using a RNN-BLSTM classifier. The online features



do not need any parameter to be tuned, so we carried out the
experiment as defined in the previous section. Using the online
samples, we rendered the images of every symbol as described
in Section IV-A where the image height was set to 40 pixels.

Regarding offline features, the PRHLT features computed
60-dimensional vectors for each column of the rendered im-
ages and the FKI features extracted 9 features per column.
On the other hand, RWTH and POLAR features had some
parameters to be tuned. We tried several sizes w of the sliding
window in RWTH features. The polar features radius was set
to half the height of the image, in this case r = H/2 = 20, and
we tested different values of circles (n) and arcs (m). We also
tried different number of dimensions for the PCA projection.

The parameters of the features in the final experiment were
obtained according to the error obtained with the validation set.
The RWTH features were extracted using a sliding window
of width w = 5 pixels and projected to 30 dimensions,
whereas the POLAR features were computed with n = 5
circles, m = 12 arcs and also projected to 30 dimensions.
This configuration was also used with the vertical repositioning
method of both sets of features.

Finally, given that we have computed both online and
offline features, the next natural step was to combine both
classification results in order to obtain better results. We ap-
plied a naive Bayes classifier (assuming uniform class priors),
which aimed at balancing the relative reliability of the online
(a) and offline (b) features by using a weight parameter (α):

Pr(c | a, b) = α · Pr(c | a) + (1− α) · Pr(c | b) (2)

where the probability for one model is computed as defined in
Eq. (1). We set α = 0.5 for every combination.

The results are shown in Table I such that there are three
sets of results: using online features, using offline features
and their combination. We report top-1, top-2 and top-5
recognition rates. Furthermore, there are several classes that
produce many classification errors because they have very
similar shape but different semantic [18], [6]. Hence, we
also computed top-1 recognition rate where those similar
classes were merged (TOP′

1). The symbols merged in this
error were: {1, |, ′, comma}, {P, p}, {S, s}, {C, c}, {X,x,×},
{V, v} and {o, 0}. It should be noted that we are dealing with
the handwritten version of these symbols.

TABLE I. CLASSIFICATION RESULTS WITH RNN AND SEVERAL SETS

OF FEATURES: ONLINE, OFFLINE AND THEIR COMBINATION.

Features TOP1 TOP2 TOP5 TOP′

1

Online 82.5 ± 0.3 92.3 ± 0.1 96.8 ± 0.1 88.3 ± 0.2
PRHLT 83.9 ± 0.4 93.4 ± 0.2 97.6 ± 0.1 89.9 ± 0.4
FKI 84.1 ± 0.2 93.6 ± 0.1 97.8 ± 0.1 90.3 ± 0.2
RWTH 83.4 ± 0.3 93.1 ± 0.2 97.5 ± 0.0 89.6 ± 0.3
RWTHvr 82.9 ± 0.2 92.2 ± 0.3 97.4 ± 0.1 88.8 ± 0.2
POLAR 81.2 ± 0.4 91.2 ± 0.3 96.7 ± 0.1 87.2 ± 0.3
POLARvr 80.8 ± 0.3 90.4 ± 0.3 96.4 ± 0.1 86.6 ± 0.4
On. + PRHLT 87.1 ± 0.2 95.0 ± 0.1 98.3 ± 0.1 92.7 ± 0.2
On. + FKI 86.8 ± 0.4 95.3 ± 0.2 98.4 ± 0.1 92.6 ± 0.2
On. + RWTH 86.7 ± 0.3 94.9 ± 0.2 98.4 ± 0.1 92.6 ± 0.1
On. + RWTHvr 86.5 ± 0.2 94.7 ± 0.2 98.4 ± 0.1 92.3 ± 0.0
On. + POLAR 86.1 ± 0.4 94.5 ± 0.2 98.2 ± 0.1 91.9 ± 0.1
On. + POLARvr 86.0 ± 0.2 94.2 ± 0.2 98.1 ± 0.1 91.7 ± 0.1

D. Discussion

The experimentation summarized in Table I produced sev-
eral interesting results. First, although online data normally
yields better results than offline data [28], we obtained higher
recognition rate values with offline features than using online
features. Results show that online features obtained on test
set a 82.5 top-1 recognition rate whereas PRHLT, FKI and
RWTH offline features improved up to 83.9, 84.1 and 83.4
respectively. The difference in performance is significative. In
our opinion, an important factor for these results could be
that the CROHME database comprises samples from many
different writers and datasets. This can cause that the online
samples were more sensitive to the writing style, whereas
the image representation of the symbols could present less
variance.

Regarding the performance of the offline features, there
are several results to take into account. First, we can see that
PRHLT, FKI and RWTH features obtained the best results
outperforming online features. On the other hand, the proposed
POLAR features provided a good performance although not as
good as the rest of offline features, even slightly worse than
the online results.

We would like to remark the results obtained by the FKI
features because they obtained the best results with only 9
features, while the rest of offline features required 30 or 60
dimensions and more complex calculations. We think that
FKI features obtained such a good performance, because the
BLSTM-RNNs can take advantage of context. Hence, it does
not require features to include context in their representation,
like RWTH or POLAR, because the model itself can manage
it. Another result that may suggest this conclusion is that the
recognition rate of RWTH features in validation set worsened
with wider sliding windows.

With respect to the vertical repositioning method, this
technique has really improved the results in handwritten text
recognition [23]. Nevertheless, in this task results did not
present any improvement or they were even slightly worse.
Our intuition is that this could be caused due to we are
tackling the classification of isolated handwritten math sym-
bols. This means that each sample is already segmented,
whereas in handwriting text recognition the segmentation is a
complex problem solved implicitly by the model, like HMMs
or BLSTM-RNNs [16].

The combination of the classification results of online
features and offline features led to significant improvements
in the achieved recognition rate. We combined the poste-
rior probabilities of both results according to Eq. (2) with
α = 0.5. Every combination between online and offline
systems obtained significantly better error rates, with relative
improvements up to 20%.

Finally, we could see that there is an important gap between
top-1 and top-2 results, and top-5 recognition rates are really
high. This behaviour shows that even though there is still room
for improvement, the classifier provides very good results. We
expect that with the integration of this classifier in a mathemat-
ical expression recognition system, the contextual information
of the expression could help to solve many misclassifications.
This can also be seen according to the reported TOP′

1 recog-
nition rate, because the hybrid classification achieved almost



93% recognition rate if those similar shaped classes are not
considered as errors. In addition to the classes detailed in TOP′

1
computation, many errors were caused by very similar classes
like: {5, s}, {t,+}, {comma, )}, {q, 9} or {z, 2}. There are
not published results yet using this database, but an experiment
using the described online features and BLSTM-RNNs is
reported in [6] on a smaller dataset such that it outperformed
previous publications [4], [18].

VII. CONCLUSION

In this paper we have studied the performance of several
sets of offline features for handwritten math symbol clas-
sification. We tested different well-known features, a novel
set of features based on polar histograms and the vertical
repositioning method. We reported experiments on a large
public database of a recent competition [3]. This database
provides online data, hence, we also obtained results with
online features in order to provide a better analysis.

Results show that offline features provided better results
than online features, and the their combination produced up to
20% relative improvement. FKI offline features presented the
best performance due to they obtained the best recognition
rates using only 9 features. Finally, vertical repositioning
method did not improve results in this task.

Future work will be focused on improving the discrimina-
tion of symbols with very similar shape. Furthermore, it would
be interesting to continue developing the polar histogram
features because they seem promising. There are still several
configurations that should be tested: log-distances vs equally
spaced distances and circles vs ellipses. Also it could be
convenient to use more than one polar descriptor on each
column because this type of descriptor is more sensitive to
angular variations of points near to its center than to variations
of points farther away.
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