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Abstract

The area of Handwritten Signature Verification has been broadly researched in the
last decades and still remains as an open research problem. This report focuses on
offline signature verification, characterized by the usage of static (scanned) images
of signatures, where the objective is to discriminate if a given signature is genuine
(produced by the claimed individual), or a forgery (produced by an impostor). We
present an overview of how the problem has been handled by several researchers
in the past few decades and the recent advancements in the field.

1 Introduction

Biometrics technology is used nowadays in a wide variety of security applications. The aim of such
systems is to recognize a person based on physiological or behavioral traits. In the first case, the
recognition is based on measurements of biological traits, such as the fingerprint, face, iris, etc. The
later case is concerned with behavioral traits such as voice and the handwritten signature [1].

Biometric systems can perform two tasks: verification and identification. In the first case, a user
of the system claims to be a particular person, and provides the biometric sample. The role of the
verification system is to check if the user is indeed who he or she claims to be. In the identification
case, a user of the system provides a biometric sample, and the objective is to identify, among all
the people enrolled in the system, who the person is.

The handwritten signature is a particularly important type of biometric trait, mainly due to its ubiq-
uitous use to verify a person’s identity in legal, financial and administrative areas. One of the reasons
for its widespread use is that the process to collect handwritten signatures is non-invasive, and people
are familiar with the use of signatures in their daily life [2].

Signature verification systems aim to automatically discriminate if the biometric sample is indeed of
a particular person or not, that is, they are used to classify query signatures as genuine or forgeries.
This type of system usually consist of an enrolment phase, where the users of the system provide
samples of their signatures, and an operation (or classification) phase, where a user claims the iden-
tity of a person and provide a query signature. The system then classifies such query as genuine
(confirming the user identity), or as a forgery.

In the research of automated signature verification systems, forgeries are often classified in three
types: random, simple and skilled (or simulated) forgeries. In the case of random forgeries, the
forger has no information about the user or his signature and uses his own signature instead. In this
case, the forgery contains a different semantic meaning than the genuine signatures from the user,
presenting a very different overall shape. In the case of simple forgeries, the forger has knowledge
of the user’s name, but not about the user’s signature. In this case, the forgery may present more
similarities to the genuine signature, in particular for users that sign with their full name, or part
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of it. In skilled forgeries, the forger has access for both the user’s name and signature, and often
practices imitating the user’s signature. This result in forgeries that have higher resemblance to the
genuine signature, and therefore are harder to detect.

Depending on the acquisition method, signature verification is divided in two categories: online
(dynamic) and offline (static). In the online case, an acquisition device (such as a digitizing table) is
used to acquire the user’s signature. The data is collected as a sequence S(n), n = 1, ..., N , where
S(n) is the signal sampled at time n∆t, ∆t being the sampling interval. The signal may contain only
the position of the pen, or include additional information such as the pen inclination, pressure, etc.
In offline signature verification, the signature is acquired for the system after the writing process is
completed. In this case, the signature is represented as a digital image, usually in grayscale format,
as a set of points S(x, y), 0 <= x <= H, 0 <= y <= W , where H and W denote the image
height and width [3].

Over the last few decades, some key survey papers have summarized the advancements in the field,
in the late 80’s [4], 90’s [5] and 2000’s [3]. This report reviews the most important techniques
and recent advancements on the field of Offline Signature verification. It is organized as follows:
we start by formalizing the problem at hand, and list the datasets that are available to evaluate such
systems. We then describe the techniques used for each process of the pipeline for training a system:
Preprocessing, Feature Extraction and model training, and finally we summarize the recent progress.

2 Problem Statement

In the literature of Offline Signature Verification, we can find multiple ways of defining the prob-
lem. In particular, one matter is critical to be able to compare related work: whether or not skilled
forgeries are used for training. Some authors do not use skilled forgeries at all for training (e.g. [6],
[7]), other researchers use skilled forgeries for training writer-independent classifiers, testing these
classifiers in a separate set of users (e.g. [8]); lastly, some papers use skilled forgeries for training
writer-dependent classifiers, and test these classifiers in a separate set of genuine signatures and
forgeries from the same set of users.

In this report, we are concerned with the design of an Offline Signature Verification System that
could be used in practice. For this reason, we restrict our analysis to methods that do not rely on
skilled forgeries for the users enrolled in the system, since this is not the case in practical appli-
cations. We do consider, however, that a dataset consisting of genuine signatures and forgeries is
available for training writer-independent classifiers, where the users from this dataset are not used
for evaluating the performance of the classifier.

We first consider a development set D containing samples from a set of users YD. The de-
velopment dataset is composed of genuine and skilled forgeries for the users in YD: D =
{Dgenuine

⋃
DskilledForg}. Each of these sets contain M pairs of signature samples, and their

label: {(X,Y )(m)}, n = 1...M . For genuine signatures, the label represents from which user the
signature comes from, and for forgeries it represents for which user the forgery was created.

Next, we consider a learning set L, containing samples from a set of users Y . These are the users
enrolled to the system, and the learning set consists of the samples obtained in the enrolment process.
Therefore, this set only contains the genuine signatures for each user: L = {Lgenuine}.
For evaluating the performance of the system, we consider a testing set T , containing samples from
the same set of users Y . This set represents the new signatures (genuine and forgeries) presented to
the system after it has been trained. This dataset consists of genuine signatures and skilled forgeries:
T = {Tgenuine

⋃
TskilledForg}.

This problem is then addressed as a Pattern Recognition problem, where the datasets D and L
are used to train a classifier (estimate the parameters of a model), and then are used to generalize
to unseen examples. The quality of the model is evaluated using the testing set T . Commonly, the
following steps are taken: (image) preprocessing, feature extraction, followed by training a classifier.
These steps are reviewed in detail in the subsequent sections of this report.

2



Figure 1: Superimposed examples of multiple signatures of the same user. We can notice a high
intra-class variability of the signatures of the user [10].

2.1 Challenges

Before presenting the methods proposed to address this task, we first highlight some of the most
important challenges of Offline Signature Verification.

One of the main challenges for the task is having a high intra-class variability. Compared to physical
biometric traits, such as fingerprint or iris, handwritten signatures from the same user often show a
large variability between samples. This problem is illustrated in Figure 1. This issue is aggravated
with the present of low inter-class variability, when we consider differences between genuine signa-
tures and skilled forgeries. Figure 2 shows some examples of genuine signatures and forgeries from
the GPDS dataset [9]. In these examples, we can see that not only genuine signatures from the same
user can be very different one from another, but that in some cases the skilled forgeries have a great
degree of resemblance to some genuine samples.

Another important challenge for training an automated signature verification system is the presence
of partial knowledge during training. In a realistic scenario, during training we only have access to
genuine signatures for the users enrolled to the system. During operations, however, we not only
want the system to be able to accept genuine signatures, but to reject forgeries. This is a challeng-
ing task, since during training a classifier has no information to learn what exactly distinguishes a
genuine signature and a forgery for the users enrolled in the system.

Lastly, the amount of data available for training is often limited in real applications. During the
enrolment phase, users are often required to supply only a few samples of their signatures.

3 Datasets

A large amount of research in automated signature verification has been conducted with private
datasets. This makes it difficult to compare relate work, since an improvement in classification
performance may be attributed to a better method, or simply to a cleaner or simpler database. In
the last decade, however, a few signature datasets were made available publicly for the research
community, addressing this gap.

The process to acquire the signature images follows similar steps for most of the datasets. The
genuine signatures are collected in one or more sessions, and require the user to provide several
samples of their signatures. The user receives a form containing many cells, and provide a sample
of his/her signature in each cell. The cells often have sizes to match common scenarios such as
bank cheques and credit card vouchers [9]. The collection of forgeries follows a different process:
the users receive samples from genuine signatures and are asked to imitate the signature one or
more times. For some datasets, the same set of users that provided genuine signatures are used to
provide forgeries (of other users’ signatures), while in other datasets the forgeries were created using
a different set of users. It is worth noting that the users that provide the forgeries are not experts in
producing forgeries. Figure 3 illustrate the forms used to collect genuine signatures and forgeries for
one of these datasets. After the forms are collected, they are scanned (often at 300 dpi or 600 dpi),
and pre-processed. The preprocessing consists in separating the signatures into individual images,
and for some datasets other actions are taken as well, such as binarization or noise removal.

Table 1 presents a summary of the most commonly used signature datasets. The CEDAR dataset
[11] was created with data from 55 users, that wrote their signatures in predefined spaces of 2 x
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Figure 2: Examples of genuine signatures and skilled forgeries from the GPDS-160 dataset. Left:
three genuine samples for each user. Right: a skilled forgery for the same user [8].

Figure 3: Sample forms used for collecting samples for the GPDS-960 signature dataset. Left:
Form used to collect genuine samples, in big and small boxes. Right: Form used to collect forgeries,
containing 5 random genuine signature for the person to imitate 3 times [9].
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Table 1: Commonly used signature datasets

Dataset Name Users Genuine signatures Forgeries

Brazilian (PUC-PR) 60 + 108 40 10 simple, 10 skilled2

CEDAR [11] 55 24 24
MCYT-75 [13] 75 15 15
MCYT-100 [12] 100 25 25

GPDS Signature 160 [14] 160 24 30
GPDS Signature 960 [9] 960 24 30

GPDS Signature 960 Grayscale [9] 881 24 30

2 inches. At random, users were asked to create forgeries for signatures from other writers. Data
was collected during three sessions to provide more variability for the signatures. For the MCYT
datasets [12], [13], the signatures were captured in an online (dynamic) and offline (static) formats.
Users provided their signatures using a pen and paper templates over a pen tablet, and both the online
information (e.g. position over time) as the offline information (signature image) were captured. For
the GPDS datasets [9], [14], the genuine signatures were taken in a single session, using the form
presented in figure 3. A total of 1040 users provided their signatures. The analysis of the forms
showed several cases where the users’ signatures crossed the borders of the forms, resulting in the
forms from 80 people being discarded (leaving data from 960 users). A different set of users (1920
people) participated in the creation of the forgeries. Forgers were allowed as much time as they
wanted to produce the them. It is worth noting that some of the signatures of this dataset are no
longer available as they were lost during a move - leaving signatures from 881 users available to use
(details in 1).

4 Preprocessing

As with most pattern recognition problems, preprocessing plays an important role in signature ver-
ification. Signature images may present variations in terms of pen thickness, scale, rotation, etc.,
even among authentic signatures of a person.

Common preprocessing techniques are: signature extraction, noise removal, application of morpho-
logical operators, size normalization, centering and binarization [3].

• Signature extraction - This is an initial step that consists in finding and extracting a sig-
nature from a document. This is a particular challenging problem in bank cheques, where
the signature is often written on top of a complex background [15], [16]. This step is,
however, not considered in most signature verification studies, that already consider signa-
tures extracted from the documents, that is, each input image containing a single signature,
commonly with no background and little noise.

• Noise Removal - The digital version of the signature images is commonly obtained by the
use of scanners, and this process may produce noise in the signatures, such as single black
pixels on a white background or single white pixels on a black background. A common
strategy is to apply a noise removal filter to the image, such a median filter [17]. It is also
common to apply morphological operations to fill small holes and remove small regions
of connected components (e.g. less than 20 black pixels on the component, in a binarized
image) [17] [8].

• Size normalization and centering - Depending on the properties of the features to be used,
a few strategies for size normalization have been adopted. The simplest strategy is just to
crop the signature images to have a “tight fit” on the signature, that is, crop the image, such
that the frame touches the signature in the four directions (left, right, top, bottom) [18].

1http://www.gpds.ulpgc.es/download/
2for 60 users only
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Figure 4: Signature representations. (a) original, (b) skeleton, (c) outline, (d) ink distribution, (e)
high pressure regions, (f) directional frontier. Adapted from [17]

Figure 5: Signature representations. (a) original, (b) dilated, (c) filled, (d) outline of the signature
[14]

Another strategy is to user an even narrower bounding box, such as cutting strokes that are
far from the image centroid, that are often subject to more variance in a user’s signature [8].
Other authors set a fixed desired width, keeping the height-to-width ratio unchanged [19],
or setting a fixed frame size (width and height), and centering the signature in this frame
[20]. When setting a fixed width and height, the signature is usually centered: the centroid
of the signature is calculated and used to center the image, adding white borders to fill the
remainder of the image [17].

• Signature representation - Besides just using the gray-level image as input, other repre-
sentations for the signature have been considered. Huang et al. [17] consider the signa-
ture’s skeleton, outline, ink distribution, high pressure regions and directional frontiers. An
example of these different representations is found in Figure 4. Ferrer et al [14] used a
morphological operator to dilate the signature image and fill it, to obtain an outline (Figure
5)

• Signature Alignment - alignment is a common strategy in online signature verification,
but not broadly applied for the offline scenario. Yilmaz [8] propose aligning the signatures
for training, by applying rotation, scaling and translation. The objective is to maximize the
similarity of each pair of signatures, by minimizing the distance between their feature vec-
tors, after applying the transformations. The best parameters (rotation angle, scaling factor
and number of pixels in the translation) are found by an exhaustive search. Yilmaz reported
increased accuracy by aligning the signatures during training, but found that aligning the
queries during testing did not improve accuracy, while increasing the computational cost.
Kalera et al. [11] propose a method to perform Rotation normalization, using first and
second order moments of the signature image.
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Figure 6: Examples of static graphometric features [22]

5 Feature Extraction

After the signatures have been acquired and pre-processed, the next step is to extract discriminant
features from the signature images. In the last decades, offline signature verification has been studied
from many perspectives, yielding multiple alternatives for feature extraction. Broadly speaking, the
feature extraction techniques can be classified as Static or Pseudo-dynamic. Using static features
is the most straightforward approach, given the nature of the offline signature verification problem.
Pseudo-dynamic features attempt to recover dynamic information from the signature execution pro-
cess (such as speed, pressure, etc.). Another broad categorization of the feature extraction methods
is between Global and Local features. Global features describe the signature images as a whole
- for example, features such as height, width of the signature, or in general feature extractors that
are applied to the entire signature image. In contrast, local features describe parts of the images,
either by segmenting the image (e.g. according to connected components) or most commonly by the
dividing the image in a grid (of Cartesian or polar coordinates), and applying feature extractors in
each part of the image.

The following sections describe the most common feature descriptors used in the literature.

5.1 Geometric Features

Geometric features measure the overall shape of a signature. This category includes basic descrip-
tors, such as the signature height, width, caliber (height-to-width ration) and area. More complex
descriptors include the count of endpoints and closed loops [19]

Besides using global descriptors, several authors also generate local geometric features by dividing
the signature in a Cartesian grid and calculating features from each cell of the grid. For example,
using the pixel density within grids ([19], [21], [10]). In particular, Huang and Yan [17] used several
types of signature representations (outline, skeleton, etc.) as input, divided each representation in a
grid format, and used the pixel density in each cell of the grids as the features for the signature.

5.2 Graphometric features

Forensic document examiners use the concepts of graphology and graphometry to examine hand-
writing for several purposes, including detecting authenticity and forgery. Oliveira et al. [22] in-
vestigated applying such features for automated signature verification. From the features used in
graphometry studies, they selected a subset that could be applied to the task (e.g. features that could
be described algorithmically), and proposed a set of feature descriptors. They considered the fol-
lowing static features: Calibre - the ratio of Height / Width of the image; Proportion, referring
to the symmetry of the signature, Alignment to baseline - describing the angular displacement to
an horizontal baseline, and Spacing - describing empty spaces between strokes. Examples of these
features can be found in Figure 6.
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Figure 7: Example of a directional PDF extracted from a signature image. We can notice peaks
close to 0, 180 and 90 degrees - showing the predominance of horizontal and vertical strokes for this
signature. [24]

5.3 Directional features

Directional features seek to describe the image in terms of the direction of the strokes in the sig-
nature. Sabourin [23] and Drouhard [24] extracted Directional-PDF (Probability Density Function)
from the gradient of the signature outline (see Figure 7). Recent work from Rivard [25] used this
method of feature extraction using grids of multiple scales, yielding promising results.

Zhang et al. have investigate the usage of pyramid histogram of oriented gradients (PHOG) [26].
This descriptor represents local shapes in a image by a histogram of edge orientations, also in mul-
tiple scales (Figure 8). This strategy obtained state-of-the-art results on an experiment that used
skilled forgeries for training.

5.4 Mathematical transformations

Researchers have used a variety of mathematical transformations as feature extractors. Nemcek and
Lin [27] investigated the usage of a fast Hadamart transform and spectrum analysis for feature
extraction. Pourshahabi et al. [20] used a Contourlet transform as feature extraction, stating that it
is an appropriate tool for capturing smooth contours. Coetzer et al. [28] used the discrete Radon
transform to extract sequences of observations, for a subsequent HMM training. Deng et al [29]
proposed a signature verification system based on the Wavelet transform: first the image is pre-
processed to obtain a closed-contour of the signature. For each pixel in the contour, the coordinates
(x and y), and the tangential angle are recorded. Each sequence is represented as a one-dimensional
signal, and then a discrete wavelet transform is used to decompose the signal. Zouari et al [30] has
investigate the usage of the Fractal transform for the problem.
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Figure 8: PHOG features - the descriptor consists of histogram of oriented gradients extracted at
different resolutions [26]

Figure 9: Example of the application of Extended Shadow Code [23]

5.5 Shadow-code

Sabourin et al. [23], [31] proposed an Extended Shadow Code for signature verification. A grid is
overlaid on top of the signature image, containing horizontal, vertical and diagonal bars, each bar
containing a fixed number of bins. Each pixel of the signature image is then projected to its closest
bar in each direction (i.e. its “shadow” in the vertical / horizontal / diagonal bars), activating the
respective bin. An example of this operator is presented in Figure 9. After all pixels are projected
to the respective bars, the number of active bins on each bar is counted, and used as a description
of the signature. This feature extractor has been used by Rivard [6] and Eskander [7] with multiple
resolutions, together with directional features, to achieve promising results on writer-independent
and writer-dependent classification, respectively.

5.6 Texture features

Texture features, in particular variants of Local Binary Patterns (LBP), have been used in many ex-
periments in recent years. The LBP operator was introduced by Ojala [32] as a discriminant feature
extractor for texture images. The original LBP operator is illustrated in Figure 10 - the objective is
to determine the pattern of the local neighborhood of each pixel. Each of the 8 neighboring positions
is associated a code that goes from 20 to 27. The LBP code for the neighborhood of a pixel is then
found by adding the codes of all neighbors that have a pixel value larger than the central pixel. Com-
monly, the LBP codes for all pixels in the image are calculated, and histograms of these codes are

9



Figure 10: Example application of the original LBP operator [32]. In this example, the LBP code
for the central pixel is 1 + 8 + 32 + 128 = 169

used as features. Several extensions of LBP have been proposed, most commonly a derivation that
considers circular neighbors, equally spaced [33]. In this case, the LBP code has two parameters: P
and R, where P is the number of neighbors, and R is the radius (distance from the central point).
On top of this derived version of LBP, several extensions have been proposed, for instance to group
multiple LBP codes together, as to achieve rotation invariance.

In the context of signature verification, LBP has been used by Yilmaz ([34], [8]), together with other
descriptors to achieve state-of-the-art results on the GPDS dataset, considering models that do not
use skilled forgeries for training. Serdouk et. al [35], [36] used an Orthogonal Combinational LBP
and Rotation Invariant LBP features to obtain state-of-the-art results in the GPDS dataset, using
skilled forgeries for training the models.

5.7 Interest point matching

Interest point matching methods, such as SIFT (Scale-Invariant Feature Transform) and SURF
(Speeded Up Robust Features) has been largely used for computer vision tasks, such as object
recognition and 3D reconstruction. Some authors have created feature extraction techniques on
top of these methods, to enable their use in the Signature verification task.

Ruiz-del-Solar et al. [37] used SIFT to extract local interest points from both query and reference
samples to build a writer-dependent classifier. After extracting interest points from both images,
they generated a set of 12 features, using information such as the number of SIFT matches between
the two images, the processing time (as a measure of complexity of the matching process), along
with other information from the transformations. They then trained a Bayes classifier with these
features. Using skilled forgeries for training, they obtained good results on the GPDS dataset.

Malik et al. [38] used SURF features to classify among genuine signatures, forgeries and disguised
signatures. They first used SURF to extract interest points in the signature images, and used these
features to assess the local stability of the signatures (i.e. find parts of the genuine signatures that are
more stable over time). During classification, only the stable interest points are used for matching.
The number of keypoints in the query image, and the number of matched keypoints were used to
classify the signature as genuine or forgery.

5.8 Pseudo-dynamic features

Oliveira et al. [22] presented a set of pseudo-dynamic features, based on graphometric studies:
Distribution of pixels, Progression - that measures the tension in the strokes, providing information
about the speed, continuity and uniformity, Slant and Form - measuring the concavities in the
signature. These feature extractors are illustrated in Figure 11.

More recently, Bertolini et al. [39] proposed a new descriptor that considers the curvature of the
signature. This was accomplished by fitting Benzier curves to the signature outline (more specially,
to the largest segment of the signature), and using the parameters of the curves as features.

5.9 Feature learning

In recent years, there has been an increased interest on techniques that do not rely on hand-
engineered feature extractors. Instead, the idea is to learn feature representations from raw data
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Figure 11: Pseudo-dynamic Graphometric features. (a) Distribution of pixels, (b) Progression, (c)
Slant, (d) Form [22].

(pixels, in the case of images). This is the case of Deep Learning models, as reviewed by Bengio in
[40] and [41].

Although these techniques have been widely used in recent years for many computer vision tasks,
they have not been broadly used for signature verification. Murshed et al. [42], [43], used auto-
encoders (called Identity-Mapping Backpropagation in their work) to perform image compression
(dimensionality reduction) followed by a Fuzzy ARTMAP classifier. This work, however, considers
only a single hidden layer, with less units than the input. In contrast, in recent successful applications
of auto-encoders, multiple layers of representations are learned, often in an over-complete format
(more hidden units than visible units), where the idea is not to reduce dimensionality, but “disentan-
gle” the factors of variation in the inputs [40]. Ribeiro et al [44] used RBMs to learn a representation
for signatures, but only reported a visual representation of the learned weights, and not the results
of using such features to discriminate between genuine signatures and forgeries. Khalajzadeh [45]
used CNNs for Persian signature verification, but only considered random forgeries in their tests.

6 Model Training

We now discuss the actual machine learning models used for the task of signature verification. The
models can be broadly classified in two groups: writer-dependent and writer-independent. In the
first case, that is more common in the literature, a model is trained for each user, using the user’s
genuine signatures, and commonly random forgeries (by using genuine signature from other users).
During the testing phase, a new signature is input to the model, that classifies a sample as genuine or
forgery. The writer-independent approach, on the other hand, involves only a single classifier for all
users. In this case, usually a distinct set of users is used for training and testing, and during the test
phase both the model is used, as well as reference genuine samples for each user, to make a decision
(genuine or forgery).

Some authors use a combination of both approaches. For example, Eskander et al [7] trained a
hybrid writer-independent-writer-dependent solution, where a writer-independent classifier is used
for classification until a reasonable number of genuine samples for the user is obtained - at this
point a writer-dependent classifier is trained and used for subsequent queries. Yilmaz [8] propose
a hybrid approach, where the results of both a writer-independent and writer-dependent classifiers
are combined. As a third scenario, some authors train writer-dependent classifiers, but due to the
low number of samples, optimize the models’ hyperparameters in a writer-independent format (as
in [46]).

Besides the most basic classifiers (e.g. simple thresholding and nearest-neighbors), several strategies
have been tried for the task of signature verification. The following sections cover the main models
used for the task.

6.1 Neural Networks

Neural Networks have been explored by some authors to perform signature verification, in particular
for writer-dependent classification. In this case, a dataset for each user is created using genuine
samples, and some type of forgery (usually random forgeries, by using genuine samples from other
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Figure 12: The neural network used by Huang and Yan [17]

users). Features are extracted using any feature extraction mechanism, and this dataset is then used
to train a neural network. Huang and Yan [17] used Neural Networks to classify between genuine
signatures and random and targeted forgeries. They trained multiple networks on features extracted
at different resolutions (grid sizes), and another network to make a decision, based on the outputs
of these networks (see Figure 12). Shekar et al [47] trained neural networks and support vector
machines obtaining state of the art results on the GPDS dataset.

Murshed et al. [43] used a Fuzzy ARTMAP architecture for the problem. For each user, the sig-
natures were divided in a cartesian grid, and only the cells (patches) that contained signature pixels
were considered (i.e. forming a particular “mask” for each user). For each cell, they first compressed
the image patch using an auto-encoder. The compressed patch was then fed to a Fuzzy ARTMAP
architecture, that learned the variations in the writer’s signatures. The verification process consisted
of two stages, starting with a global approach, that considered how much of the query signature
lied outside of the grid, and how much of the grid was covered (given the “mask” for the target
user). If the query signature was not consistent with this grid, it was rejected. Otherwise, the system
employed a second step, that averaged the predictions of the Fuzzy ARTMAPs, to obtain a final
prediction.

6.2 Hidden Markov Models

Several authors have proposed using Hidden Markov Models for the task of signature verification
[10], [22], [46]. HMMs are generative models that attempt to learn the joint distribution P (X,Y ),
where X are the features and Y are the labels, instead of just the conditional distribution P (Y |X). In
particular, HMMs with a left-to-right topology have been mostly studied, as they match the dynamic
characteristics of American and European handwriting (with hand movements from left to right).

In the work from Justino [10], Oliveira [22] and Batista [46], the signatures are divided in a grid
format. Each column of the grid is used as an observation of the HMM, and features are extracted
from the different cells within each column - that is, a signature image I is converted to a sequence of
feature vectors F = {f1, ..., fC}, where C is the number of columns in the grid (observations). To
quantize (discretize) the sequence of observations, commonly the K-means algorithm is used on the
feature vectors (of a subset of the dataset) to form a a codebookQ = {Q1, ..., Qk}. The sequence of
the feature vectors for a signature image is then quantized using this codebook, forming a sequence
of observationsO = {O1, ..., OC}, where each observation is a symbol from the codebookOi ∈ Q.

12



Figure 13: The steps for training an HMM for signature verification [49]

With the sequence of discrete observations, a HMM λ is trained, commonly using the Baum-Welch
Forward-Backward algorithm [48]. This process is illustrated in Figure 13. In the verification phase,
a sequence of feature vectors is extracted from the signature and quantized using the codebook. The
HMM is then used to calculate the likelihood of the observations given the model P (O|λ). After
calculating the likelihood, a simple threshold can be used to discriminate between genuine signatures
and forgeries [10], or the likelihood itself can be used for more complex classification mechanisms,
such as the work from Batista [46] that used HMMs trained on the genuine class, and HMMs trained
on the forgery (random forgery) class, and used the likelihoods obtained by the different HMMs as
a feature vector for another classifier to make the decision.

6.3 Support Vector Machines

In its original formulation, SVMs are used for two-class classification problems, and learn a hyper-
plane that maximizes the margin, that is, the distance between the hyperplane and the samples of
each class closest to this hyperplane. A second formulation of the model considers a “soft margin”,
to enable the classification of problems that are not linearly separable [50]. The effectiveness of
the model is further increased by the usage of the “kernel trick”, that allows the classification in a
higher-dimensional feature space implicitly, by the usage of a kernel function.

Support Vector Machines have been extensively used for signature verification, for both writer-
dependent and writer-independent classification [51], [52], [39], [53]. In recent years, Guerbai et
al [54] used One-Class SVMs for the task. This type of model attempt to only model one class (in
the case of signature verification, only the genuine signatures), which is a desirable property, since
for the actual users enrolled in the system we only have the genuine signatures to train the model.
However, even in this scenario there is a need to use forgeries (in their case, random forgeries) to
define the thresholds of the classifiers.

6.4 Writer-independent Classification

Some authors have adopted a writer-independent approach for the signature verification problem
[6], [7], [39], [53]. The objective is to train a classifier on a set of the users, and then use this
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Figure 14: Example of the dissimilarity representation. Left: samples from three classes in the
feature space (with two dimensions). Right: samples in the dissimilarity representation, where
positive samples ω+ come from the same class (e.g. ω1 and ω1), while negative samples ω− are
from different classes (e.g. ω1 and ω2). For a new class c, given a reference point xr and a query
point xq , a model trained in the dissimilarity representation for users 1-3 can be used to classify
samples from the new user. In this case, ur is calculated as the dissimilarity from xq and xr. With
the example decision boundary, the point ur is classified as positive, meaning that the query sample
xq is from the same class c of xr [25]

classifier in a disjoint set of users. In particular, the usage of the dissimilarity representation (or
dichotomy transformation) has shown to be promising for this problem. The idea of the dissimilarity
representation is to transform an N-class problem into a 2-class problem. This transformation is
applied to pairs of samples in the feature space, obtaining new samples from a positive class (when
the two original samples belong to the same class) and negative class (when the two original samples
belong to different classes). A common approach for this transformation is to simply use the absolute
value of the difference between two feature vectors:

ur = |xq − xr| (1)

In this case, the resulting feature vector (in the dissimilarity space) has the same cardinality (num-
ber of features) as the original samples. This procedure is illustrated in figure 14. One important
advantage of this model is that even with a small number of samples in the feature representation, it
is possible to generate a large number of samples in the dissimilarity space. This approach also has
the benefit of only requiring one model to be trained (instead of one model per user), which is an
interesting property for deploying this model in a real application.

6.5 Ensemble of classifiers

Instead of simply training one classifier for the task, some authors have adopted strategies to train
multiple classifiers, and combine their predictions when classifying a new sample.

Bertollini et al. [39] used a static ensemble selection with graphometric features, to reduce forgeries
in a writer-independent classification. They apply a strategy of “overproduce and choose”, by gen-
erating a large pool of classifiers (trained with different grid sizes), and used a genetic algorithm to
select a subset of the models, building an ensemble of classifiers. They performed this optimization
(ensemble selection) using two fitness functions: maximize the Area Under the Curve (AUC) and
maximize the True Positive Rate, given a fixed False Positive Rate. This strategy was used to obtain
state-of-the-art results on the GPDS and Brazilian datasets.

Batista et al [46] used dynamic selection of classifiers for building a writer-dependent system. First,
a bank of HMMs (M) = λ1, ..., λN is trained, using different number of observations (i.e. dividing
the signature image into different number of columns), different codebook sizes, and considering
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two types of HMMs: one to model the genuine class (trained with genuine samples), and one to
model the forgery class (trained with random forgeries). For a given sample, the posterior likelihood
P (O|λi) is calculated for all HMMs. The set of likelihoods is considered as a feature vector, and
a specialized random subspace method (based on [55]) is used to train an ensemble of classifiers
(each classifier in a subspace of the features). Two strategies for dynamic selection of classifiers,
based on Output Profiles [56], are used, to select which classifiers should be used for a given query
signature. After the ensemble is selected, the output of the classifiers in the ensemble is combined
using a majority vote, yielding a final classification label for the sample.

6.6 Feature selection

Rivard et al. [25] and Eskander et al. [7] have used a feature selection approach for signature
verification. Rivard et al. trained a writer-independent classifier, by first extracting a large number
of features from each signature (over 30 thousand features), applying feature extractors at different
scales of the image. A Boosting Feature Selection (BFS) approach was then used to simultaneously
select features and train a classifier. Their method consisted in training an ensemble of decision
stumps (equivalent to a decision tree with only one node), where each decision stump only used
one feature. With this approach, they were able to obtain a smaller feature representation (less than
a thousand features) that achieved good results in the Brazilian and GPDS datasets. Eskander et
al. [7] extended Rivard’s work to train a hybrid writer-independent-writer-dependent classifier, by
first training this writer-independent classifier to perform feature selection, and then train writer-
dependent classifiers using only the features that were selected by the first model. This strategy
presented good results when a certain number of samples per user is reached.

6.7 Data augmentation

One of the main challenges for building an automated signature verification system is the low num-
ber of samples per user for training. To address this issue, some author have suggested ways to
generate more samples, based on existing genuine signatures.

Huang and Yan [17] have proposed a set of “perturbations” to be applied to each genuine signature,
to generate new samples: slant, rotation, scaling and perspective. In their work, they considered a
set of “slight distortions”, used to create new genuine samples, and “heavy distortions” to generate
forgeries from the genuine samples. More recently, Ferrer et al [57], [58] have proposed a signature
synthesis approach inspired on a neuromotor model.

7 Conclusion

Over the last decade, several researchers have proposed different methods for Offline Signature
Verification. In spite of the these advancements, the experimental results still report somewhat large
error rates for distinguishing genuine signatures and skilled forgeries, when large public datasets are
used for testing, such as GPDS. Error rates are at least around 7-8% in the best reported results, even
when the number of samples for training is around 10-15 (results are worse with 1-3 samples per
user, which is a common scenario in banks and other institutions). Although these recent results are
encouraging, and improve upon previous work, the error rates are still large considering the critical
environments where signature verification is used in practice.

Analyzing the recent contributions to the field, we can notice that they concentrate in the following
categories:

• Obtaining better features - In recent years, several new feature extractors have been pro-
posed for the task. Texture features (LBP variations), interest-point matching (SIFT, SURF)
and directional features (HOG) have been successfully used to increase the accuracy of Of-
fline Signature Verification Systems.

• Improving classification with limited number of samples - Given the severe constraints
in practical applications, researchers have searched for ways to increase performance in
cases where a small number of samples per user is available. In particular, the creation
of dissimilarity-based writer-independent solutions have shown to be promising to address
this problem.
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• Augmenting the datasets - Related to the problem of having low number of samples per
user, some researchers have focused in generating synthetic signature samples, in order to
increase the number of samples available for training.
• Building model ensembles - In order to increase classification accuracy, and the robustness

of the solutions, some researchers have investigated the creation of both static and dynamic
ensembles of classifiers.

In the authors’ opinion, this trend will continue for future work, with researchers continuing to
explore better feature representations for the problem; and investigating solutions that address the
particularities of the problem domain, such as having small number of samples per training.
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