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Abstract

We present an offline signature verification system based
on a signature’s local histogram features. The signature
is divided into zones using both the Cartesian and polar
coordinate systems and two different histogram features are
calculated for each zone: histogram of oriented gradients
(HOG) and histogram of local binary patterns (LBP).

The classification is performed using Support Vector Ma-
chines (SVMs), where two different approaches for train-
ing are investigated, namely global and user-dependent
SVMs. User-dependent SVMs, trained separately for each
user, learn to differentiate a user’s signature from others,
whereas a single global SVM trained with difference vec-
tors of query and reference signatures’ features of all users,
learns how to weight dissimilarities. The global SVM clas-
sifier is trained using genuine and forgery signatures of
subjects that are excluded from the test set, while user-
dependent SVMs are separately trained for each subject us-
ing genuine and random forgeries.

The fusion of all classifiers (global and user-dependent
classifiers trained with each feature type), achieves a
15.41% equal error rate in skilled forgery test, in the GPDS-
160 signature database without using any skilled forgeries
in training.

1. Introduction
Signature is a behavioral biometric that encodes the bal-

listic movements of the signer for his/her chosen signature.
Compared to physical traits such as fingerprint, iris or face,
a signature typically shows higher intra-class and time vari-
ability. Furthermore, as with passwords, a user may choose
a simple signature that is easy to forge. On the other hand,
the signature‘s widespread acceptance by the public and
niche applications (validating paper documents and use in

banking applications) make it an interesting biometric.
Depending on the signature acquisition method used, au-

tomatic signature verification systems can be classified into
two groups: online (dynamic) and offline (static). A static
signature image, generally scanned at a high resolution, is
the only input to offline systems. Verification of signatures
found on bank cheques and vouchers are among important
applications for offline systems.

In addition to the signature image, time dimension is also
available for dynamically captured signatures that are ac-
quired using pressure sensitive tablets or smart pens. These
input devices sample the signature at a high frequency, re-
sulting in a time ordered sequence of signature’s trajectory
points. Each point is associated with a corresponding acqui-
sition time stamp and a location coordinate, besides other
dynamic features such as pressure and pen inclination an-
gles that can be captured subject to the hardware used. On-
line signature verification is generally used for access con-
trol and electronic document authentication types of appli-
cation. Due to the differences in the input, preprocessing,
feature extraction and classification methods used in online
and offline systems show significant variations.

Offline signature verification can be said to be more chal-
lenging compared to online signature verification. While
variations among a user’s signatures and easy to forge sig-
natures pose a challenge in both cases, dynamic informa-
tion available in online signatures make the signature more
unique and more difficult to forge. In particular, imitating
both the shape and dynamic information of an online signa-
ture seems to be difficult except for very simple signatures.
On the other hand, it is possible in some real life scenarios,
for an impostor to trace over a genuine offline signature and
obtain a high quality forgery. The availability of the signa-
ture’s trajectory also makes it easier for online verification
systems to align two signatures and detect differences.

Two general approaches may be considered for the



signature verification problem, though preferred methods
vary for online versus offline systems: User-based mod-
eling/discrimination requires one model per user, gener-
ally necessitating a large number of references (typically
10+) for which classifiers such as Hidden Markov Models,
or Support Vector Machines are often used. In template-
based approach, 1 to 5 references of the claimed identity are
enough to be used as template. The query signature is ac-
cepted or rejected by comparing its distance to the template
of the claimed identity, to a global or user-based threshold.
Many possible features and matching methods are possi-
ble based on the task: Dynamic Time Warping (DTW) is
successfully used in online signature verification [9] where
signature trajectory facilitates the registration of signatures.
In offline signature verification, local features that are more
resilient to variations are more commonly used with various
types of classifiers, after rigid or elastic registration of two
signatures, as summarized in 2.

The system performance is generally reported using the
False Rejection Rate (FRR) of genuine signatures and the
False Acceptance rate (FAR) of forgery signatures. Other
measures such as the Equal Error Rate (EER), the error rate
where both FAR and FRR are equal, as well as the ROC
curve and false reject rates at fixed false accept rates are
also commonly reported. It is also possible to use the Dis-
tinguishing Error Rate (DER) which is the average of FAR
and FRR. One of the main challenges in assessing the sys-
tem performance is the skill levels of the collected forgery
signatures. A number of forgery types has been defined: a
skilled forgery is signed by a person who has had access to a
genuine signature for practice, and a random or zero-effort
forgery is signed without having any information about the
signature, even the name of the person whose signature is
forged.

In this paper, we present an offline signature verifica-
tion system based on local features, intended to be robust to
global shape variations that are commonly induced by em-
bellishing strokes that are produced by fast ballistic move-
ments and are floating inside the signature’s overall pattern.
The local features we experimented with are based on gradi-
ent information (histogram of oriented gradients) and pixel
neighborhood patterns (local binary patterns) inside the lo-
cal zones. We analyzed the discriminative power of the
extracted features using support vector machine classifiers
and obtained results comparable to the state-of-the-art using
classifier combination.

The rest of the paper is organized as follows: in Section
2 the state of the art offline signature verification methods
are reviewed and analyzed. In Section 3 proposed method
is described, following with Section 4 where performance
results are presented. Finally, conclusions and future work
are reported in Section 5.

2. Previous work
Offline signature verification is a well-researched topic,

where many different features and classifiers have been
studied. For instance, in one of the earlier works, local
shape descriptors are used as features to train a k-nearest
neighbor (KNN) classifier [20]. Later, local correspondence
between a model and a query signature is used to compare
a set of geometric properties in [7], and Radon transform is
used to extract features to feed to a Hidden Markov Model
(HMM) in [3]. A series of surveys covering advances in the
field are available in [15, 18, 10, 16]. A more up to date
overview of proposed methods is detailed in [2]. Here, we
review some of the recent research on offline signature ver-
ification.

Two approaches are used in [23] to exploit information
related to stable parts of signatures (the parts that do not
show much variation across the signatures of a user). The
first approach is to train a neural network classifier with
artificial forgeries generated by removing stable compo-
nents from genuine signatures, so that the classifier detects
changes in these stable components when verifying signa-
tures. The other is to force the neural network classifier
to pay special attention to local stable parts of signatures
by weighting their corresponding node responses through a
feedback mechanism.

A comparison of support vector machine (SVM) and
HMM classifiers in the context of the off-line signature ver-
ification is reported in [8], where a private database of 100
subjects is utilized to compare the classifiers. Both of the
classifiers are trained using signatures of the first 40 sub-
jects, and tested using signatures of the remaining individ-
uals. According to the reported results, SVM was found
to be superior to the HMM classifier. However, they just
used simple features such as pixel density or gravity center
distance extracted from grids.

In [5], interior stroke distributions in polar and Cartesian
coordinates are used as features. Three types of classifiers
are used to test the performance of the features: HMM,
SVM and simply the Euclidean distance of the extracted
features. The GPDS-160 database is used to evaluate the
method [6]. To find user based thresholds, 3 forgery signa-
tures from each subject are used. This may not be a realistic
scenario since it requires knowledge of existing forgeries
for each user. Authors report performance results based on
DER. When 12 genuine signatures are used as reference, re-
maining 12 genuine and 30 forgery signatures are used for
testing each person; HMM gives 13.35% DER, SVM with
radial basis function (RBF) kernel gives 14.27% DER and
Euclidean distance metric gives 15.94% DER.

Enhanced modified direction features (MDF) are used to
train artificial neural network (ANN) and SVM classifiers in
[12]. Location and direction of transitions from background
to foreground pixels are used as features. The GPDS-160



database is utilized to find the performance of the method.
For the training part for each writer, 12 genuine signatures
are used as positive examples whereas 100 writers are ran-
domly selected to provide 400 random forgeries as negative
examples. For testing, they use a mix of random and skilled
forgeries where the remaining 12 genuine signatures are
used together with 59 random forgeries from the remaining
59 writers and 15 targeted forgery signatures of that specific
writer. The SVM is reported to give the best result which is
20.07% DER.

In [14], vertical projection features are used as features
fed into a Dynamic time warping (DTW) algorithm with
some modifications to incorporate a stability factor to in-
crease the performance of the DTW algorithm. The system
gives a DER of 22.5% on skilled forgery test using a private
database.

High pressure points are matched in polar coordinates
using Probabilistic neural networks (PNN) and KNN as
classifiers, in [21]. To evaluate the performance, GPDS-160
database is used. To test the performance of the proposed
method, genuine and forgery signatures of each subject is
divided into two equal parts; making 12 genuine and 15
skilled forgery training signatures and the same amount of
test signatures. Best KNN result is 12.62% DER and best
PNN result is 12.33% DER.

Local interest points, which correspond to local maxima
in a scale-space representation of a signature, are detected in
[19]. The descriptors that characterize local neighborhood
around corresponding interest points, are calculated using
the scale invariant feature transform (SIFT). The correspon-
dence between descriptors of reference and query signatures
is established using wide baseline methodology, while the
final decision is performed using a Bayes classifier. The
system performance is assessed using the GPDS-160 signa-
ture dataset, where 15.3% DER is reported. However, they
do not perform a full skilled forgery test, they just use a
small subset of all skilled forgeries for testing.

Current state of the art varies between 9.02% and 17.25%
EERs for different variations of GPDS database, consider-
ing the works where no skilled forgery of a user is utilized
in training phase, according to [17, 11, 22]. In Table 2, we
give the summary results for the systems utilizing GPDS-
160 dataset. Performance results are summarized in the
form of average error rate (DER) to be compatible with the
previous results.

3. Proposed method

3.1. Preprocessing

Offline signature verification may benefit from normal-
ization steps to obtain global rotation, scale and transla-
tion invariance, since signing conditions may significantly
change size, orientation and location of the signature in a

document. In the present system, we don’t do any prepro-
cessing since the features used are inherently invariant to
a translation and scale, while rotation normalization is not
very straightforward due to the difficulties associated in as-
sessing the required normalization parameter (e.g. rotation
angle). Our preliminary studies have shown that comparing
two signatures in a few different possible rotation angles
({−10, 0,+10} degrees) improves the overall accuracy.

———————- We experimented the effects of signa-
ture alignment only on the training phase of GSVM (3.4.1).
Because the only available information specific to a user is
some limited number of reference images in USVM (3.4.2),
we use random forgeries (references from other users) for
the training of USVM. It is not possible to align other users’
signatures to the reference signature of a user. It is pos-
sible to do alignment in test phase both for USVM and
GSVM, however this does not improve the results. It is
because, although some genuine queries get higher scores
when aligned, some forgery queries also get higher scores
when they are aligned with references.

However, in the training phase of GSVM, it is possible to
apply signature alignment. Because all signatures of some
reserved users are used for training we have forgeries ready
for training also. When we align a forgery to a reference,
even it may look similar to a reference of that user, we indi-
cate that it is actually a forgery when training the classifier.
Currently we applied alignment only during the training of
GSVM with grid HOG features.

Each query signature image Qimage of a training user
is aligned to each reference Ri

image of that user before ex-
tracting features Q and Ri, and taking the difference Di as
explained in 3.4.1. As the alignment criteria, we currently
extract a small LBP based feature vector from query and
reference, and use the rotation and scaling parameters that
give the minimum Euclidean distance between query and
reference features, when applied to the query. Correspond-
ing results are shown in Table 1. —————

3.2. Grids in Cartesian and Polar Coordinates

In order to develop a system robust to global shape vari-
ations, we extract features from local zones of the signature
image. For this, the image is either divided into zones using
a fixed number of rectangular grids in Cartesian coordinates
or using a circular tessellation around the origin point in po-
lar coordinates. A sample signature, overlaid with a 10x20
rectangular grid is shown in Figure 1 where the signature is
padded with space (shown in gray) to make it fit the grid.
An example of the polar grid where the origin is selected as
the centroid of the signature is shown in Figure 2. The size
of rectangular grid is selected as 10x20, whereas the num-
ber of angular bins used in the polar system is selected as
12, and that of distance bins is selected as 15. Grid sizes are
found experimentally on a separate validation set, though in



future it might be better to use bigger zones for space and
time efficiency.

Figure 1. Sample signature with overlaid with the rectangular grid.
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Figure 2. Signature tessellation using the polar grid, with origin at
the centroid.

Once the grids (rectangular or polar) are fixed, the fea-
ture vectors are obtained from the concatenation of features
extracted from each zone. Using a fixed grid addresses the
problem of uniform scaling, however embellishing strokes
such as those at the beginning or end of a signature may
significantly vary in location, orientation and size; thereby
significantly changing the global shape of a signature and
consequently its alignment to a reference signature.

Since signatures do not contain a reference point such as
those that can be found in fingerprints or faces, the centroid
or center of mass can be used as a lesser alternative in regis-
tering two signatures. Unfortunately, the location of both
of these points may show large variations due especially
to embellishing strokes that often show large variations. If
the registration point is selected as the top-left point of the
bounding box and the embellishing strokes are on the right,
than the left parts of the two signatures align better than the
right. With this observation and at the cost of having some
redundant features, we decided to use multiple registration
points (centroid, top-left, top-right etc.) in the polar grid,
to reduce the effect of registration mismatches. The tessel-
lation obtained by using the top-left corner of the signature
bounding box is shown in Figure 3.

Note that the zones away from the center point are big-
ger than those near the center; thus the features computed
from them are less specific. This also helps to some extent
with the registration problem since coarser features are used
where the variation is large and further justifies the use of
the multiple tessellations. For this reason, we will switch to
the log-polar grid in the future.

3.3. Feature extraction

We have experimented with two separate features: his-
togram of oriented gradients (HOG, [4]) relative to the dom-
inant orientation and local binary patterns (LBP, [13]).
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Figure 3. Signature tessellation using the polar coordinates with
the top-left point as the origin.

3.3.1 Histogram of Oriented Gradients

HOG features are proposed by Dalal and Triggs [4]. They
involve first computing the gradient information at each
pixel inside a particular grid zone (either Cartesian or Po-
lar). Next, histogram of gradient orientations in that zone is
computed.

While computing the gradient orientation histogram, we
apply a normalization to allow for rotational differences of
the strokes within the grid zone. Specifically, after find-
ing the gradient orientation at each point, we find the dom-
inant gradient orientation and represent it at the first bin of
the histogram. Without this normalization, a rotation of the
strokes in a zone would correspond to a circular shift in the
HOG histogram; lowering the match between the original
and matched histograms.

Note that while complex features give more information,
simpler features such as gradient orientation are more ro-
bust to normal variations found in a signature.

3.3.2 LBP features

Local binary pattern (LBP) is a powerful feature proposed
to capture the texture in objects [13]. In the basic LBP
method, a gray scale image is processed such that a binary
code is generated for each pixel in the image. This code
encodes whether the intensities of the neighboring pixels
are greater or less than the current pixel’s intensity. So, for
instance in a 3x3 neighborhood with the current pixel be-
ing the center, a binary code of length 8 is generated con-
sisting of 0s and 1s, according to the relative intensities of
the neighbors. A histogram is then computed to count the
number of occurrences of each binary code, describing the
proportion of common textural patterns.

The LBP method is commonly used in object recogni-
tion with good success and we expected it to also be useful
in offline signature verification. Indeed, it was used previ-
ously in signature verification [22] as well. Furthermore,
since LBP is a texture feature, we expected it to be com-
plementary to the HOG features that are also used in this
work.

3.4. Classification

The classification is performed using Support Vector
Machine classifiers [1], where two different approaches to



train the classifier are investigated, namely global and user-
dependent SVMs.

The number of genuine signatures used as reference is
kept variable (5 or 12). Both classifiers are trained with
RBF kernels and parameters are optimized with grid search
on a separate validation set (users 161-300 from the GPDS-
300 dataset, who are not in the test set).

3.4.1 Global SVMs (GSVM)

In the first approach, we train a global SVM which is a user-
independent classifier trained to learn to separate difference
vectors obtained from genuine signatures of a user, from
those obtained from (skilled) forgery signatures of the same
user.

To obtain the difference vectors, features obtained from
a query signature (genuine or forgery) are compared to the
features obtained from each of the reference signatures of
the claimed identity. The resulting difference vectors are
then normalized so that each element of this vector repre-
sents how many standard deviation away the query feature
is from the reference feature.

More precisely, let {R1, R2, ..., RN} be the feature vec-
tors extracted from the reference signatures of a particular
user and let Q = [q1 . . . qM ] be the feature vector extracted
from a test signature, where N is the number of reference
signatures and M is the number of features. Then, we com-
pute N difference vector for each query, where the ith dif-
ference vector is computed as:

Di = Q−Ri =


q1 −Ri

1/(σ1 + τ)
q2 −Ri

2/(σ2 + τ)
...

qM −Ri
M/(σM + τ)


where σi is the standard deviation of the features among

the ith feature of the claimed user’s reference signatures;
and τ is a small constant to eliminate division by zero.

We devote some of the users who are not in the test set
(users 161-300 from the GPDS-300 dataset), and use all of
their signatures (genuine and skilled forgery) to train the
system. It is important to underline that, in this way, no
skilled forgeries belonging to users in the test set, are used
during training.

Note here that the SVM is learning which changes in
the feature vector may be within the normal variations of
a signer and which changes indicate forgeries. This can
be better explained considering the case of a system using
global features where the SVM learns how much variation
in a particular feature (e.g. size, pixel density, width-to-
height ratio) matters. In the case of local features, the SVM
can learn how to weight differences in the center versus pe-
riphery of the signature for instance.

3.4.2 User-dependent SVMs (USVM)

In the second approach, we train user-dependent SVMs, one
for each user, with the expectation that the user-dependent
SVM can learn to differentiate genuine signatures of a per-
son from forgeries.

For this, each SVM is trained with the raw feature vec-
tors obtained from the reference signatures of the corre-
sponding user and those obtained by random forgeries –
other users’ reference signatures reserved for training. Note
that in this case, we do not need a separate group of users
for training as opposed to GSVM, since we only use gen-
uine signatures of others.

4. Experimental results

4.1. Dataset

A publicly available subset of the GPDS-960 dataset [6],
namely GPDS-300, was used in training and testing the sys-
tem, such that training and testing data were completely
separate. Specifically, the first 160 users of the GPDS-300
dataset (GPDS-160) was used in testing, while users 161 to
300 from the GPDS-300 dataset were used in training.

The amount of data which is publicly available has re-
cently risen from 160 to 300 individuals; hence, most of the
work using the GPDS database reports on the GPDS-160
subset. In order to make our results comparable to those
reported in the literature, we decided to also use the GPDS-
160 dataset to test our system.

The GPDS-960 dataset contains signatures provided by
960 individuals, where each individual provided 24 genuine
signature samples. Genuine signatures were collected in a
single session, where each subject was asked to sign his/her
signature into a form with a preprinted grid containing two
types of cells 5x3.5cm and 5.5x2.5cm, respectively. Addi-
tionally, a total of 30 practiced forgery signatures, provided
by 10 forgers, were collected for each individual. Prior to
collecting forgery signatures of a corresponding individual,
a number of high resolution signature images were made
available to forgers for practice. Likewise, forgers sub-
mitted corresponding signatures using forms with the sim-
ilar grid size. Finally, both reference and forgery signa-
tures were scanned at 300dpi resolution and preprocessed
to a black and white format. Figure 4 depicts sample gen-
uine (odd columns) and their corresponding forgery (even
columns) signatures from the dataset.

4.2. Test Protocol

In order to obtain results that are comparable to those
reported in the literature, we trained classifiers using 12 ref-
erence signatures. However this many reference signatures
are not common in real life applications. So, in the second
part of our tests, we used only 5 references to obtain re-



Figure 4. Sample genuine (odd columns) and their corresponding
forgery (even columns) signatures from GPDS-160 database.

sults that better reflect applications where users are willing
to provide only a few reference signature for enrollment.

In skilled forgery tests, we used all genuine signatures of
a user except those that are used as reference; thus resulting
in 12 and 19 genuine tests per user, for the cases of 12 and 5
reference signatures, respectively. Since we do not use any
skilled forgeries of test users in training, all skilled forgeries
of a user (30) are used in testing.

4.3. Results

The results of our experiments using two different fea-
ture types, two different grids and two different classifier
training approaches described earlier, are given in Table 1.
The entries marked with a star were runs that could not be
fully completed due to time or space requirements.

Analysis of these results shows that the USVM signif-
icantly outperforms GSVM; this is not very surprising as
the USVMs are specifically trained for each user, while
GSVMs only now about variations in each dimension. On
the other hand, the global SVM improves the performance
when used in conjunction with user SVMs.

Classifier combination was applied at score level to com-
bine the decisions of the six classifiers. As found in many
studies in different fields, we also found that classifier com-
bination using a weighted sum rule improves overall accu-
racy (15.08% EER using 12 references). The weights are
found in a separate validation set using grid search. For the
5-reference case, they are {0.15,0.10,0.20,0.20,0.15,0.20}
for classifiers shown in Table 1, from top-to-bottom.

In combining classifiers, we handled the two partially
finished tests as follows: we took the results of the corre-
sponding tests with 5 references and removed the references
6-12 from the genuine tests. In other words, we could not
use those as references, but we did not use them as genuine
either. Note that with the GSVM, using more references
corresponds to having more training data (more difference
vectors) to learn the boundary between forgery and genuine
classes. Hence, we would expect similar or better results,

had we fully completed these two tests.
As for the features, HOG features obtained using Polar

coordinates (HOG-Polar) outperforms all other types of fea-
tures with 19.58% EER using USVMs. The LBP-Grid fea-
ture closely follows, with a 19.84% EER.

Finally, we observe that using a greater number of refer-
ence signatures significantly improves performance, as ex-
pected and observed in previous work also.

Table 1. Summary of the EER performance results of skilled
forgery tests.

Features Classification 12 ref. 5 ref.
HOG-Polar USVM (1) 19.58% 21.73%
HOG-Grid USVM (2) 21.13% 22.65%
LBP-Grid USVM (3) 19.84% 22.90%

HOG-Polar GSVM (4) 22.20% 22.79%
HOG-Grid GSVM (5) 24.13% 26.71%
HOG-Grid GSVM(aligned) 23.29% 25.50%
LBP-Grid GSVM (6) 35.10% 34.11%

Combi. 1+4 17.10% 19.39%
Combi. 2+5 18.74% 21.34%
Combi. 3+6 19.69% 21.88%
Combi. 1+2+3 17.19% 20.18%
Combi. 4+5+6 20.55% 22.01%
Combi. 1+3+4+5 15.08% 17.77%

All Combined 15.08% 17.53%

For comparison, we give state-of-the-art results on the
GPDS database in Table 2; due to space shortage, we could
not include results of other work using a smaller portion of
the database. Compared to the results given in this table, our
classifier combination result when using 12 reference signa-
tures (15.41% EER, equal to 15.35% DER for our system)
is better than the systems that do not use any skilled forg-
eries of a tested user during training ([12, 11]), as is also
the case for our system. Furthermore, our results are only
slightly lower compared to those that do use skilled forg-
eries in testing ([21, 5]).

5. Conclusion

We presented an automatic offline signature verifica-
tion system based on signature’s local histogram represen-
tations. The signature is divided into zones using both fixed
size rectangular or polar grids, where HOG and LBP fea-
tures are calculated. For either of the representations, fea-
tures obtained from grid zones are concatenated to form the
final feature vector. Two different types of SVM classifiers
are trained, namely global and user dependent SVMs, to
perform verification. We also experimented with the fu-
sion of classifiers, and showed that their combination im-
proves overall verification performance. Feature-level fu-



Table 2. Summary of recent results (Distinguishing Error Rates) on GPDS dataset.
Reference Method GPDS Set Training Testing DER
Vargas et. al. [21] PNN GPDS-160 12 genuine + 12 skilled forg. 12 gen. + 12 skl. forg. 12.33%
Ferrer et. al. [5] HMM GPDS-160 12 genuine + 3 skilled forg. 12 gen. + 27 skl. forg. 13.35%
Nguyen et. al. [12] SVM GPDS-160 12 genuine + random forg. 12 gen. + 30 skl. forg. 20.07%
Nguyen et. al. [11] Global feat. GPDS-160 12 genuine + random forg. 12 gen. + 30 skl. forg. 17.25%
Proposed SVM GPDS-160 12 genuine + random forg. 12 gen. + 30 skl. forg. 15.03%
Proposed SVM GPDS-160 5 genuine + random forg. 19 gen. + 30 skl. forg. 17.53%

sion is also possible but we preferred training classifiers to
be experts for each feature type.

The system performance is measured using the skilled
forgery tests of the GPDS-160 signature dataset. Addition-
ally, a classifier fusion is performed, where global and user
dependent SVM classifiers are combined giving the best
result of 15.08% and 17.53% equal error rate on skilled
forgery test with 12 and 5 references, respectively.

In summary, obtained results are comparable or better
compared to those reported in the literature for the GPDS
database, as can be seen in the Table 2. Considering that
using skilled forgeries brings a potentially significant ad-
vantage in accuracy, the results should be deemed compara-
ble and possibly better than state-of-the-art results. On the
other hand, the fact that the proposed system does not re-
quire skilled forgeries of the enrolling user, is attractive for
real life applications.

In future work, we will incorporate some ideas such as
improving alignment of two signatures; using the log-polar
coordinates for better use of the grids; considering different
scales and orientations of the query; and adding comple-
mentary features such as gradient magnitudes in addition to
gradient directions. We will also train our classifiers with
skilled forgeries in order to compare results to those in lit-
erature.
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