
Offline Sketch Parsing via Shapeness Estimation

Jie Wu1,∗ , Changhu Wang2,†, Liqing Zhang1, Yong Rui2

1Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering,

Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Microsoft Research, Beijing, P. R. China

Abstract

In this work, we target at the problem of offline
sketch parsing, in which the temporal orders of
strokes are unavailable. It is more challenging
than most of existing work, which usually lever-
ages the temporal information to reduce the search
space. Different from traditional approaches in
which thousands of candidate groups are select-
ed for recognition, we propose the idea of shape-
ness estimation to greatly reduce this number in a
very fast way. Based on the observation that most
of hand-drawn shapes with well-defined closed
boundaries can be clearly differentiated from non-
shapes if normalized into a very small size, we pro-
pose an efficient shapeness estimation method. A
compact feature representation as well as its effi-
cient extraction method is also proposed to speed
up this process. Based on the proposed shapeness
estimation, we present a three-stage cascade frame-
work for offline sketch parsing. The shapeness esti-
mation technique in this framework greatly reduces
the number of false positives, resulting in a 96.2%
detection rate with only 32 candidate group pro-
posals, which is two orders of magnitude less than
existing methods. Extensive experiments show the
superiority of the proposed framework over state-
of-the-art works on sketch parsing in both effective-
ness and efficiency, even though they leveraged the
temporal information of strokes.

1 Introduction

Drawing diagrams and flowcharts is an important means
of conveying information and structure in various domains.
However, it is still a challenging problem for a computer to
understand the structure of diagrams and flowcharts. Cur-
rent flowchart softwares like Visio and SmartDraw still rely
on the traditional point-click-drag style of interaction. It is
highly desired if we have a practical recognition system that
can parse and recognize the structure of diagrams/flowcharts

∗Jie Wu performed this work while being an intern at Microsoft
Research Asia.

†Corresponding author.

Office Lens Now

FRE

Start from 

Capture

Open 

from file

Where?

Word

PPT

FB

twitter
Camera

roll

Share

Figure 1: Illustration of offline sketch parsing. The goal of
offline sketch parsing is to parse and recognize the shapes
and text in a real-world image of hand-drawn diagrams taken
from a mobile phone (left), which could be further converted
to a powerpoint file with structured shapes (right).

in various domains. Although there is an increasing inter-
est in building systems that can automatically interpret hand-
drawn diagrams/flowchart, many challenges still remain in
terms of recognition accuracy, extensibility to different in-
put data types, and real-time performance, as shown in the
example sketches in Fig. 1.

To recognize the symbol in a sketch, a main-stream strat-
egy is to first generate candidate stroke groups, followed by
the recognition of each group, named as selection-recognition
here. Theoretically, if we search for all possible candidate
groups, the candidate group number for recognition is 2N ,
which grows exponentially with the stroke number N . There-
fore, to improve the efficiency and avoid the exponential-
ly growing recognition cost, different kinds of constraints
are leveraged to simplify the problem of full sketch recog-
nition. Typical constraints include explicit cue constrain-
t, temporal constraint, and spatial constraint. For explic-
it cue constraint, some works require explicit cues of user-
s, such as button clicks or pauses, to separate each objec-
t [Hse and Richard Newton, 2005]. In this way, the full s-
ketch recognition problem is reduced to isolated sketch recog-
nition [Kara and Stahovich, 2004; Ouyang and Davis, 2009;
Paulson and Hammond, 2008; Sun et al., 2012b], which has
the assumption that there is only one shape in the sketch.
Temporal (Spatial) constraint means to only search among the
groups of temporally (spatially) neighboring strokes [Bresler
et al., 2013; Lemaitre et al., 2013; Carton et al., 2013;
Sun et al., 2012a], to reduce the number of candidate groups.



Most existing work on full sketch recognition leveraged the
temporal order information of strokes to reduce the search
space, and thus are actually online sketch parsing. In this
work, we focus on the problem of offline sketch parsing,
which refers to methods without temporal constraints. In the
real-world scenario, the input may be an image of sketch tak-
en by mobile devices such as cell phone or Google Glass, as
shown in Fig. 1, in which the temporal orders of strokes are
unavailable. On the other hand, the assumption that a shape
is drawn using temporally-close strokes may not be always
right. E.g., [Sezgin and Davis, 2008] proposed a time-based
model to tackle the problem that a sketch might contain inter-
spersed drawing; [Wu et al., 2014] also showed that in some
shapes with correction/editing, the strokes may not be tempo-
rally close.

Relatively few work has been done in offline sketch pars-
ing. An early work [Shilman and Viola, 2004] present-
ed a framework to spatially group and recognize shapes
and texts, which was however applied on simple cases, and
might suffer from efficiency problem when applied for com-
plex flowcharts. Some work focused on the recognition
of printed flowcharts in patent images [Yu et al., 1997;
Futrelle and Nikolakis, 1995], where some prior knowledge
of printed shapes such as existence of sharp points of some
shapes (e.g., rectangle) was leveraged, and thus cannot be di-
rectly applied to free hand-drawn strokes.

Existing work on online sketch parsing might suffer from
some problems if directly adapted for offline sketch pars-
ing by removing temporal constraint. On the one hand, the
strokes extracted from an image will be much more noisy
than online sketched data and thus bring more strokes. On
the other hand, without temporal order of strokes, more can-
didate groups will be generated, which will not only damage
the recognition results, but also slow the recognition process.
For example, using the selection-recognition strategy, for a
simple flowchart drawing with 460 strokes extracted, 22597
candidate groups were generated only using spatial constrain-
t, and the parsing process cost more than 100 seconds, which
is far from satisfactory.

In this paper, we propose a practical framework for of-
fline sketch parsing using the selection-recognition strategy.
The basic idea is that, instead of directly recognize candidate
stroke groups like in other methods, we first detect a small
number of stroke groups that represent good shapes in a fast
way, and then recognize these groups. We observed that most
of hand-drawn shapes with well-defined closed boundaries
could be distinguished from non-shapes if normalized into a
very small size, as shown in Fig. 2. Based on this observation,
the concept of shapeness as well as an efficient shapeness es-
timation algorithm is proposed to estimate whether a group of
strokes represent a good shape. To speed up the shapeness es-
timation process, we introduce a very compact but effective
feature representation to represent each stroke group. This
feature is better able to handle the range of visual and stroke-
level variations of sketched shapes in freehand drawings. To
avoid frequently extracting features for the same stroke which
might belong to multiple groups, we further propose an effi-
cient feature extraction method by pre-calculating the major
information of each stroke.

(a) input sketch (b) normalized groups 

with size 8 × 8

Figure 2: Illustration of the motivation of shapeness estima-
tion. Although the candidate stroke groups of shapes (red,
green, blue boxes) and non-shapes (yellow boxes) present
huge variation in the sketch space (a), when resized to a very
small scale (b), they share strong correlations respectively.

Based on the proposed shapeness estimation, we present
a three-stage cascade framework for offline sketch parsing,
including 1) shapeness estimation, 2) shape recognition, and
3) sketch parsing using domain knowledge. Extensive ex-
periments are conducted on both shapeness estimation and
sketch parsing. The shapeness estimation technique in this
framework greatly reduces the number of false positives, re-
sulting in a 96.2% detection rate with only 32 candidate group
proposals, which is two orders of magnitude less than ex-
isting methods. The proposed framework also outperforms
state-of-the-art works on sketch parsing in both effectiveness
and efficiency, although counterpart algorithms leveraged the
drawing orders of strokes to make the problem much easier.

2 Shapeness Estimation

As aforementioned, the traditional selection-recognition ap-
proach in state-of-the-art methods [Bresler et al., 2013;
Lemaitre et al., 2013; Carton et al., 2013] might suffer
from both effectiveness and efficiency problem in the face
of offline sketch parsing if without the temporal information.
Thus, we propose the concept of shapeness as well as an effi-
cient shapeness estimation algorithm to reduce the number of
candidate stroke groups in a fast way.

2.1 Motivation and Problem Statement

Shapeness

We observe that the strokes in a flowchart image can be divid-
ed into two categories: 1) appearance-variant shapes which
are similar in global, but might differ in local appearance such
as rectangles, circles and diamonds, etc. 2) geometric-variant
strokes including connectors and texts, which have large ge-
ometric deformation such as arrows, curves, lines, texts, etc.
We find that the former good shapes can be clearly differ-
entiated from the latter ones or non-shape stroke groups, if
resized to a small scale, as shown in Fig. 2.

Based on this observation, we propose the concept of
shapeness, to indicate how much a group of strokes likes a



good shape. Our strategy is to develop a fast estimation ap-
proach to calculate the shapeness of every candidate stroke
group, and the ones with top scores will be reserved for fur-
ther shape recognition.

Challenges

To guarantee the accuracy of sketch parsing, the shapeness
estimation algorithm should achieve a high recall with only a
few output groups. On the other hand, the algorithm should
be very efficient, since it is designed to speed up the whole
process. Denoting N as the number of strokes extracted from
an image, theoretically there will be 2N candidate groups to
process. Although we can add the spatial constraint to reduce
this number, the number of groups is still very large, making
the efficiency problem more challenging.

Shapeness vs. Objectness

One idea is to leverage the objectness estimation technique in
computer vision to solve the shapeness estimation problem,
if we consider the good shapes as a type of objects.

Objectness is usually represented as a value to reflec-
t how likely an image region covers an object of any cate-
gory. Objectness estimation algorithms [Alexe et al., 2012;
Uijlings et al., 2013; Cheng et al., 2014] tried to detect (thou-
sands of) bounding boxes to cover as many objects as possi-
ble.

However, as shown in experiments, to achieve a high
recall (95%+), a state-of-the-art objectness estimation
method [Cheng et al., 2014] needs to output two orders of
magnitude more groups than the proposed method, even with
a loose criteria widely used by objectness estimation works.
The major reason is that, candidate regions are usually rep-
resented by bounding box in objectness estimation. It can be
considered as a very strong spatial constraint to exclude all
non-rectangle regions. It can significantly speed up the pro-
cess, and reasonable for natural images, but will not work for
hand-drawn sketches where shapes and texts might interact
in many ways. For example, it cannot separate a shape with
the text inside it. On the other hand, it is not easy to directly
generalize the algorithms to non-rectangle regions.

In this work, instead of using bounding-box to reduce the
search space, we use the stroke groups as the basic elements
to estimate the shapeness. Although it can solve the problems
that objectness estimation algorithms meet, this will generate
more candidate groups to calculate shapeness. Thus, an effi-
cient algorithm is highly desired.

2.2 Shapeness Estimation Algorithm

Given a collection of strokes extracted from an image, we
first generate a large number of candidate stroke groups to
guarantee a high recall. Then, the compact INT64 features
of these groups are extracted in a fast way, followed by the
shapeness estimation of each group. Finally, only a small
number of stroke groups with top scores are reserved.

Candidate Group Generation

As aforementioned, supposing the image has N strokes, there
will be 2N possible groups. We leverage the spatial constrain-
t to reduce the search space. We first calculate the distance
between every stroke pair si and sj , denoted as Dist(i, j),

(d) learnt model

(b) output group proposals

0° 45° 90° 135°

(a) input sketch

(c) 8−INT64 features
group

Figure 3: Overview of the shapeness estimation algorithm.
Given a collection of strokes (a), the algorithm generates a
small number of group proposals (b). First, we generate a lot
of candidate stroke groups, as shown in green boxes in (a).
Then, for each group, the INT64 feature is extracted for each
group (c). Finally, a linear model (d) was learnt to estimate
the shapeness of a group based on the INT64 feature. Only
the groups with top values are kept as output proposals for
further analysis (b).

which is defined as the minimum distance of points between
si and sj . The Breadth First Search (BFS) is leveraged to
generate candidate groups that satisfy the following condi-
tions: (1) the stroke number of a group is less than a thresh-
old THdepth; (2) for any two strokes si, sj in the group,
Dist(i, j) < THdist × Ldiag , where Ldiag is the median
diagonal length of all strokes and THdist is a parameter; (3)
the candidate groups with aspect ratio larger than THaspect

are removed.

In this work, THdepth, THdist, and THaspect were set to
6, 0.04, and 7, which were learnt from the training set.

Compact Feature Representation

We need an effective but compact feature representation to 1)
handle stroke-level variations of hand-drawn shapes, and 2)
facilitate the fast feature extraction. We first present a 256D
feature to represent each stroke group, and then introduce
how to convert it to the compact INT64 representation.

We follow the idea of the 720-dimension visual fea-
ture [Ouyang and Davis, 2009] to design a 256D feature.
First, we normalize the candidate stroke group by translat-
ing its center of mass to the origin, and scaling it horizontally
and vertically to 8× 8 pixels so it has unit standard deviation
in both axes. This is necessary to handle scale and translation
variants of hand-drawn shapes. Then, four 8 × 8 orientation
feature images are extracted corresponding to four orienta-
tions. Furthermore, we apply Gaussian smoothing to reduce
sensitivity to local distortions, resulting in four 8 × 8 feature
images (4×8×8 = 256D), as shown in Fig. 3(c). Each pixel
in the images is an unsigned int (uint) in [0, 255].

To speed up the feature extraction and testing process, we



further convert the 256D feature to the INT64 feature. For the
four feature images in a 256D feature, we quantify each pixel
value to 16 values, using four bits: abcd, (a, b, c, d ∈ {0, 1}).
Therefore, we can use 16 INT64 to represent the feature of a
candidate group, which was named as INT64 feature.

Fast Feature Extraction

As aforementioned, the number of candidate stroke groups
might be very large, so the key challenge is how to efficiently
extract the INT64 features for all the groups. Although each
stroke belongs to multiple candidate groups, because the nor-
malization step mentioned in last subsection makes the aspect
ratio and position of a stroke change a lot in related group-
s, we cannot directly reuse the features of a single stroke.
Therefore, instead, our solution is to avoid duplicate opera-
tions on the same stroke as much as possible, when extracting
features for related groups.

Let’s first check the operations to extract the feature from
a candidate group with k strokes. The length of the ith stroke
is ni. Naive method to extract features is to 1) scan each
point in the group to calculate the center of gravity (cx, cy),
2) scan each point to get the standard deviation (σx, σy) using
the (cx, cy), and 3) scan again to calculate the feature. The
estimated cost is 3 × k × navg operations, where navg is the
average length of one stroke. Suppose there are totally M
stroke groups resulted from N strokes in the image, and we
have M >> N . So the cost for all groups is 3kMnavg .

In order to speedup the process, we first scan all N strokes
for only one time to obtain all necessary statistics of each
stroke, and then calculate cx, cy , and σ2

{x,y} in each group.

• Pre-calculate statistics for each stroke. Let px(j)
and py(j) denote the coordinates of the jth point
in a stroke. For the ith stroke, we calculate the
point number n(i), center of gravity point c{x,y}(i),
sum of point values along both axes sumx(i) =∑

j px(j), sumy(i) =
∑

j py(j), sum of squared values

in both axes sumsqrx(i) =
∑

j px(j)
2, sumsqry(i) =∑

j py(j)
2. Pre-calculating these values in advance en-

ables us to efficiently calculate the center of gravity, and
the deviation of each group.

• Calculate statistics for each group. For each group,
the center of gravity can be calculate by

c{x,y} =

∑k

i=1 c{x,y}(i)× n(i)
∑k

i=1 n(i)
. (1)

The standard deviation can be calculated by

σ2
{x,y} =

1

n

n∑

t=1

(p{x,y}(t)− c{x,y})
2 (2)

= avg(p{x,y}(t)
2)− 2c{x,y} avg(p{x,y}(t)) + c2{x,y},

(3)

where avg(p{x,y}(t)
2) =

∑k
i=1

sumsqr{x,y}(i)∑
k
i=1

n(i)
, and

avg(p{x,y}(t)) =
∑k

i=1
sum{x,y}(i)∑
k
i=1

n(i)
. Therefore, (cx, cy)

and σx, σy can be calculated by scanning over k strokes,
instead of scanning over each point.

Stroke 

Extraction

Shapeness

Estimation

Shape 

Recognition

Sketch 

Parsing

Stage III 

Three-Stage Cascade Recognition

Stage I Stage II 

1

0

Figure 4: The pipeline of the proposed offline sketch parsing
framework.

Thus, in the feature image generation step, we reduce the
operation number from 3kMnavg to kMnavg , which is three
times faster.

Finally, we use standard methods to conduct Gaussian s-
moothing and quantization to get the final INT64 feature for
each group, which will be not detailed here due to space lim-
itation.

Learning Shapeness Measurement

For efficiency, we learn a linear model w using linear SVM:

s =< w, g > +b, (4)

where s, g are shapeness score, and the INT64 features of the
candidate group. The features of stroke groups of groundtruth
good shapes, and random sampled candidate groups are used
as positive and negative training samples respectively. The
learnt model, i.e., four 8 × 8 feature images, are shown in
Fig. 3(d). We can see that, the outer parts of the model im-
ages are lighter (i.e., larger value) then the inner parts, show-
ing that the boundaries of shapes are emphasized in deciding
whether the group likes a generic shape.

Testing an INT64 Feature

For a new INT64 feature g, we can calculate its shapeness
score s =< w, g > +b. Finally, we only keep the stroke
groups with scores higher than a predefined threshold, e.g., 0
in this work, for further shape recognition.

3 Offline Sketch Parsing Framework

In this section, we introduce a three-stage cascade framework
for offline sketch parsing. For an image with flowcharts, we
could leverage standard stroke extraction techniques [Kovar-
i, 2007; LHomer, 2000] to extract strokes. Given the strokes,
our goal is to 1) group the strokes into distinct objects/shapes;
2) assign a label to strokes in each group from a label set,
e.g., L = {text, rectangle, parallelogram, diamond, eclipse,
circle, arrow} for flowcharts. The grouping of text, shapes,
connectors, and noises has potential to be used in further pro-
cessing and analysis.

The overview of our framework is shown in Fig 4. First,
we adopt shapeness estimation to detect possible good shapes
using only a small number of proposals. Second, an isolated
sketch recognizer is applied to recognize the detected shapes.
Finally, domain knowledge is leveraged to parse and group
each stroke into shapes, text, and connectors.



3.1 Stage I: Shapeness Estimation

Given a collection of strokes, we adopt the proposed shape-
ness estimation method to get the candidate groups. Please
see the previous section for technical details of this part.

3.2 Stage II: Shape Recognition

For each candidate stroke group detected as a shape in Stage
I, we leverage a more accurate isolated sketch recognition al-
gorithm to predict the shape type. Any well-performed classi-
fier can be used here to recognize hand-drawn shapes. In this
work, we adopt 1NN classifier, using the original 720 visual
features in [Ouyang and Davis, 2009]. Each group is scored
as the distance of feature vectors between the input shape and
the shape in training set. After scoring each group, we sort
these groups by their scores, followed by Non-Maximal Sup-
pression (NMS). A group will be removed if 1) it shares a
same stroke with a group with a better (smaller) score; or 2)
its bounding box totally contains (or is totally contained by)
a group with a better (smaller) score.

3.3 Stage III: Sketch Parsing using Domain
Knowledge

After Stage I and II, the appearance-variant shapes can be
recognized. Next, we try to group and parse other strokes,
including the text inside shapes, text outside shapes, ar-
rows, and so on. First, we group the text inside the recog-
nized shapes. Second, the connectors between the recognized
shapes are recognized. Finally, we leverage the spatial rela-
tionship to group the rest of strokes that are spatially close to
each other.

Group Text inside Recognized Shapes

We first use the Graham Scan algorithm [Anderson, 1978] to
compute the convex hull for every recognized shape. Then,
the strokes inside the convex hull will be grouped together. A
handwritten text recognition algorithm could be used to fur-
ther analyze the grouped strokes, but here we do not leverage
it. Our method can be served as a pre-processing module for
text recognition.

Recognize Connectors

We use the Depth First Search (DFS) to search among group-
s that are spatially connected to two different recognized
shapes. The DFS starts from groups with one stroke, one
endpoint of which is (spatially) close to a recognized shape.
Then our algorithm gradually adds a stroke that is close to the
current group. When any two endpoints of the current group
are found to be close to two different recognized shapes, we
use a rule-based connector recognizer to recognize whether
the group is an arrow or curve. This implementation is in
similar spirit with [Hammond and Paulson, 2011]. A benefit
of the rule-based recognizer is that the original connector can
be automatically replaced by the formal connector, because
the parameters are needed to perform beautification such as
the endpoints of the connector are also calculated by the rule-
based recognizer, as shown in the example in Fig. 1. Final-
ly, we use the endpoint positions of connectors to determine
whether it connects to any shape.

Stroke level criteria 
Bounding box criteria

(overlap> 50%)

Figure 5: The shape detection recall curves of different meth-
ods using two criteria: stroke level criteria, and bounding box
criteria.

Group the Rest of Strokes

After recognizing shapes, connectors, and text inside shapes,
we continue to group the rest of strokes as noisy strokes or
other kinds of patterns. We simply group any two strokes
si, sj together if their distance Dist(i, j) is less than a prede-
fined threshold.

4 Experiments

In this section, we evaluate the proposed shapeness estima-
tion algorithm and the offline sketch parsing framework. The
experiments were conducted on the FC Dataset [Lemaitre et
al., 2013], a widely used benchmark dataset on sketch pars-
ing. It contains 419 flowcharts of various complexity (differ-
ent patterns) written by 31 writers, in which 171 were used
as testing data. These flowcharts contain 5,000+ symbols,
including connection, terminator, data, decision, arrow, pro-
cess, and text. The drawing orders of the strokes in each s-
ketch are also provided. It should be noted that, to simulate
the problem of offline sketch parsing, the proposed algorith-
m did not leverage this information, although all compared
sketch parsing algorithms leveraged it to make the problem
much easier.

4.1 Shapeness Estimation

We first evaluate the proposed shapeness estimation algorith-
m. Two evaluation criteria were adopted:

• Stroke level criteria: The predicted group is consid-
ered as correct if the strokes in this group are exactly the
same as the ground truth group. This criteria is adopted
by most state-of-the-art sketch parsing work, and thus
we considered it as the default criteria in the rest of ex-
periments.

• Bounding box criteria: If the overlap between the
bounding box of a groundtruth group and that of the
predicted group is larger than 50%, it is considered as
a correct match. This criteria is widely used in object
detection literature in computer vision. We also adopted
this criteria because it is the criteria of the counterpart
algorithm BING [Cheng et al., 2014].

It is obvious that the stroke level criteria is much stricter
than the bounding box criteria. We compare the proposed al-
gorithm (Ours) with four algorithms and variants: 1) BING:



Method Accuracy (%)
Stroke Symbol

[Bresler et al., 2013] 83.8 74.3
[Lemaitre et al., 2013] 91.1 72.4
[Carton et al., 2013] 92.4 75.0

Ours(without shapeness) 86.2 70.3

Ours 94.9 83.2

Table 1: Comparison on sketch parsing. Note that all com-
pared methods leveraged temporal information to make the
recognition easier. Moreover, [Bresler et al., 2013] removed
all the text from the flowchart dataset, making the problem
simpler.

Accuracy (%)
Class Stroke Symbol

Stat + struct Ours Stat + struct Ours

Connection 80.3 73.3 82.4 73.4
Terminator 69.8 91.6 72.4 90.6

Data 84.3 87.6 80.5 78.5
Decision 90.9 89.7 80.6 78.9
Process 90.4 91.8 85.2 88.3
Arrow 83.8 87.4 70.2 80.3
Text 97.2 98.8 74.1 86.0

Total 92.4 94.9 75.0 83.2

Table 2: Comparison of accuracy of all classes between Stat
+ struct [Carton et al., 2013] and our method.

a state-of-the-art objectness detection method [Cheng et al.,
2014], 2) Random Gauss: randomly generate windows and
consider strokes within the windows as candidate groups, 3)
Ours(BBox): replace our normalization method with a sim-
pler one, i.e., directly resizing the strokes into a fixed size
bounding box, 4) Ours(64D): replace our INT64 feature with
another feature, i.e., resizing the group of strokes into an
8 × 8 binary image, and using the binary image as the fea-
ture. Ours(64D) can be considered as an implementation of
BING’s feature for binary input.

Fig. 5 shows the detection recall curves of shapes, with the
number of output groups changing.

Comparison of features. The superiority of Ours over
Ours(BBox) in Fig. 5 shows the necessity of the normaliza-
tion part in the feature extraction. The reason is that, the
bounding box resizing technique is overly sensitive to arti-
facts like long tails at the ends of strokes or stray ink [Ouyang
and Davis, 2009]. On the other hand, the Ours(64D) in Fig. 5
is very similar to the feature in BING, showing that the IN-
T64 feature is better able to handle the stroke-level variations
of hand-drawn shapes. The time cost of shapeness estimation
using the INT64 feature is 0.36s.

Comparison with BING. Our method greatly out-
performed BING, a state-of-the-art objectness estimation
method, for both criteria. For stroke level criteria, the re-
sults of BING were quite bad, because it is bounding-box
based method, and thus cannot separate a shape with the tex-
t inside. This shows that the window proposals in object-
ness estimation cannot well handle the stroke level labeling.

(a) shapeness estimation results (b) recognition results

Figure 6: Example results of the shapeness estimation (a) and
sketch parsing (b), using stroke level criteria. In (a), green
bounding box represents a detected shape. In (b), yellow
bounding box represents a recognized symbol, within which
different colors of strokes mean different labels. Black dotted
box represents a groundtruth symbol that we failed to recog-
nize. These results show that our method can accurately sep-
arate the shape edges from noisy sketch of flowchart (e.g., red
and green slashed boxes), but might fail in some challenging
cases where some text stroke overlap with the shapes (e.g.,
blue slashed box).

For bounding box criteria, BING achieved 95.0% recall us-
ing 1,000 proposals, while our method reached 96.2% recall
using only 32 proposals. It also verified the necessary of the
shapeness estimation to reduce the number of proposals.

4.2 Sketch Segmentation and Recognition

We follow the same settings and compare with the results
in [Lemaitre et al., 2013]. For this evaluation, we conducted
two tasks: 1) the labeling of each stroke, and 2) the segmen-
tation and recognition of the symbols. A stroke is correctly
labeled if the result label is consistent with the ground truth.
A symbol is correctly segmented and recognized if the strokes
corresponding to the symbol are exactly the same as that in
the ground truth, and that the label of the symbol is correct.

The comparison results are shown in Table 1 and 2. We can
see the superiority of the proposed method over compared al-
gorithms: [Bresler et al., 2013], [Lemaitre et al., 2013], and
[Carton et al., 2013]. The accuracy was not very high be-
cause we used the stroke level criteria which is quite strict.
For example, as shown in the blue box of Fig. 6(b), some
text strokes overlap with the parallelogram, and thus lead to
wrong segmentation. However, this case will be considered
as correct in the bounding box criteria. The time cost of our
method is 0.54s, mostly owning to the speedup of shapeness
estimation. Note that our method did not leverage the tempo-
ral information of strokes, while all compared methods did. It
can be inferred that in the face of offline sketch parsing with-
out temporal information, other methods will cost more time
to ensure a similar recognition rate. To verify the effective-
ness of the shapeness estimation in the whole framework, we
also implemented the version without the shapeness estima-



tion module, denoted by Ours(without shapeness). We can
see that, without shapeness estimation, the accuracy become
much worse when removing the shapeness estimation mod-
ule. This is because the shapeness estimation significantly
reduce the false positive candidate groups, making the shape
recognition in the next step easier.

Fig. 6 visualized an example of shapeness estimation and
sketch parsing with both good and failed results.

5 Conclusion

In this work, we proposed a practical solution for offline s-
ketch parsing, which is more challenging than online sketch
parsing due to the unavailability of temporal information. In
order to reduce the number of candidate stroke groups in
traditional selection-recognition approach, we proposed the
concept of shapeness, as well as an efficient shapeness esti-
mation algorithm to reduce the number of false positives, re-
sulting in a 96.2% detection rate with only 32 candidate group
proposals, which was two orders of magnitude less than coun-
terpart algorithms. Based on the proposed shapeness estima-
tion algorithm, we presented an effective three-stage frame-
work for offline sketch parsing. Experiments on benchmark
dataset showed both the effectiveness and efficiency of the
proposed framework.

6 Acknowledgements

The work of the first and the third authors was supported by
the National Natural Science Foundation of China (Grant Nos
61272251, 91120305) and the National Basic Research Pro-
gram of China (Grant No. 2015CB856004).

References

[Alexe et al., 2012] Bogdan Alexe, Thomas Deselaers, and
Vittorio Ferrari. Measuring the objectness of image win-
dows. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 34(11):2189–2202, 2012.

[Anderson, 1978] Kenneth R. Anderson. A reevaluation of
an efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters, 1978.

[Bresler et al., 2013] Martin Bresler, Daniel Prua, and
Václav Hlavác. Modeling flowchart structure recognition
as a max-sum problem. In ICDAR, 2013.

[Carton et al., 2013] Cérès Carton, Aurélie Lemaitre, and
Bertrand Couasnon. Fusion of statistical and structural in-
formation for flowchart recognition. In ICDAR, 2013.

[Cheng et al., 2014] Ming-Ming Cheng, Ziming Zhang,
Wen-Yan Lin, and Philip H. S. Torr. BING: Binarized
normed gradients for objectness estimation at 300fps. In
CVPR, 2014.

[Futrelle and Nikolakis, 1995] Robert P. Futrelle and Nikos
Nikolakis. Efficient analysis of complex diagrams using
constraint-based parsing. In ICDAR, 1995.

[Hammond and Paulson, 2011] Tracy Hammond and Bran-
don Paulson. Recognizing sketched multistroke primi-
tives. ACM Transactions on Interactive Intelligent Systems
(TiiS), 2011.

[Hse and Richard Newton, 2005] Heloise Hwawen Hse and
A Richard Newton. Recognition and beautification of
multi-stroke symbols in digital ink. Computers & Graph-
ics, 29(4):533–546, 2005.

[Kara and Stahovich, 2004] Levent Burak Kara and
Thomas F Stahovich. An image-based trainable symbol
recognizer for sketch-based interfaces. In AAAI Fall
Symposium, 2004.

[Kovari, 2007] Bence Kovari. Time-efficient stroke extrac-
tion method for handwritten signatures. In Proceedings of
the 7th Conference on 7th WSEAS International Confer-
ence on Applied Computer Science - Volume 7, ACS’07,
2007.

[Lemaitre et al., 2013] Aurélie Lemaitre, Harold Mouchère,
Jean Camillerapp, and Bertrand Coüasnon. Interest of
syntactic knowledge for on-line flowchart recognition. In
Graphics Recognition. New Trends and Challenges. 2013.

[LHomer, 2000] Eric LHomer. Extraction of strokes in hand-
written characters. Pattern Recognition, 33:1147–1160,
2000.

[Ouyang and Davis, 2009] Tom Y. Ouyang and Randal-
l Davis. A visual approach to sketched symbol recogni-
tion. In IJCAI, 2009.

[Paulson and Hammond, 2008] Brandon Paulson and Tracy
Hammond. Paleosketch: accurate primitive sketch recog-
nition and beautification. In Proceedings of the 13th Inter-
national Conference on Intelligent User Interfaces, 2008.

[Sezgin and Davis, 2008] Tevfik Metin Sezgin and Randal-
l Davis. Sketch recognition in interspersed drawings us-
ing time-based graphical models. Computers & Graphics,
32(5):500–510, 2008.

[Shilman and Viola, 2004] Michael Shilman and Paul Vio-
la. Spatial recognition and grouping of text and graphics.
In Proceedings of the First Eurographics Conference on
Sketch-Based Interfaces and Modeling, 2004.

[Sun et al., 2012a] Zhenbang Sun, Changhu Wang, Liqing
Zhang, and Lei Zhang. Free hand-drawn sketch segmen-
tation. In ECCV. 2012.

[Sun et al., 2012b] Zhenbang Sun, Changhu Wang, Liqing
Zhang, and Lei Zhang. Query-adaptive shape topic mining
for hand-drawn sketch recognition. In Proceedings of the
20th ACM International Conference on Multimedia, 2012.

[Uijlings et al., 2013] Jasper RR Uijlings, Koen EA van de
Sande, Theo Gevers, and Arnold WM Smeulders. Selec-
tive search for object recognition. International Journal of
Computer Vision, 104(2):154–171, 2013.

[Wu et al., 2014] Jie Wu, Changhu Wang, Liqing Zhang, and
Yong Rui. Sketch recognition with natural correction and
editing. In AAAI, 2014.

[Yu et al., 1997] Yuhong Yu, A. Samal, and S.C. Seth. A
system for recognizing a large class of engineering draw-
ings. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(8):868 – 890, 1997.


