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Abstract—Pushing data traffic from cellular to WiFi is an
example of inter radio access technology (RAT) offloading. While
this clearly alleviates congestion on the over-loaded cellular
network, the ultimate potential of such offloading and its effect
on overall system performance is not well understood. To address
this, we develop a general and tractable model that consists of M
different RATSs, each deploying up to K different tiers of access
points (APs), where each tier differs in transmit power, path
loss exponent, deployment density and bandwidth. Each class of
APs is modeled as an independent Poisson point process (PPP),
with mobile user locations modeled as another independent PPP,
all channels further consisting of i.i.d. Rayleigh fading. The
distribution of rate over the entire network is then derived for a
weighted association strategy, where such weights can be tuned
to optimize a particular objective. We show that the optimum
fraction of traffic offloaded to maximize SINR coverage is not
in general the same as the one that maximizes rate coverage,
defined as the fraction of users achieving a given rate.

Index Terms—WiFi offloading, heterogeneous cellular net-
works, rate coverage, weighted Poisson Voronoi, stochastic ge-
ometry.

I. INTRODUCTION

IRELESS networks are facing explosive data demands

driven largely by video. While operators continue to
rely on their (macro) cellular networks to provide wide-area
coverage, they are eager to find complementary alternatives to
ease the pressure, especially in areas where subscriber density
is high. Complementing the fast evolving heterogeneous cel-
lular networks (HCNs) [2] with the already widely deployed
WiFi APs is very attractive to operators and a key aspect of
their strategy [3]. In fact, WiFi access points (APs) along with
femtocells are projected to carry over 60% of all the global
data traffic by 2015 [4]. A future wireless heterogeneous
network (HetNet) can be envisioned to have operator-deployed
macro base stations (BSs) providing a coverage blanket, along
with pico BSs, low powered user-deployed femtocells and
user/operator-deployed low powered WiFi APs.
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A. Motivation and Related Work

Aggressively offloading mobile users from macro BSs to
smaller BSs like WiFi hotspots, however, can lead to degrada-
tion of user-specific as well as network wide performance. For
example, a WiFi AP with excellent signal strength may suffer
from heavy load or have less effective bandwidth (channels),
thus reducing the effective rate it can serve at [5]. On the other
hand, a conservative approach may result in load disparity,
which not only leads to underutilization of resources but also
degrades the performance of multimedia applications due to
bursty interference caused by the lightly loaded APs [6].
Clearly, in such cases any offloading strategy agnostic to these
conditions is undesirable, which emphasizes the importance of
more adaptive offloading strategies.

RAT selection has been studied extensively in earlier works
both from centralized as well as decentralized aspects (see
[7] for a survey). Fully centralized schemes, such as in [8]-
[10], try to maximize a network wide utility as a solution to
the association optimization problem. Decentralized schemes
have been studied from game theoretic approaches in [11]—
[13] and as heuristic randomized algorithms in [14]. However
most of these works focused on flow level assignment and
lacked explicit spatial location modeling of the APs and users
and the corresponding impact on association. The presented
work is more similar to “cell breathing” [15]-[17], wherein the
BS association regions are expanded or shrunk depending on
the load. Contemporary cellular standards like LTE use a cell
breathing approach to address the problem of load balancing
in HCNs through cell range expansion (CRE) [2], [18] where
users are offloaded to smaller cells using an association bias. A
positive association bias implies that a user would be offloaded
to a smaller BS as soon as the received power difference from
the macro and small BS drops below the bias value. The
presented work employs CRE to tune the aggressiveness of
offloading from one RAT to another in HetNets. Tools from
Poisson point process (PPP) theory and stochastic geometry
[19] allow us to quantify the optimal association bias of each
constituent tier of each RAT, which maximizes the fraction of
time a typical user in the network is served with a rate greater
than its minimum rate requirement.

The metric of rate coverage used in this paper, which
signifies the fraction of user population able to meet their rate
thresholds, captures the inelasticity of traffic such as video
services [20], whereas traditional utility based metrics are
more suitable for elastic traffic with no hard rate thresholds.
There has been considerable advancement in the theory of
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HCNs [21]-[23] whereby the locations of APs of each tier are
assumed to form a homogeneous PPP. The case of modeling
macro cellular networks using a PPP has been strengthened
through empirical validation in [24] and theoretical validation
in [25]. Load distribution was derived for macro cellular
networks in [26] and an empirical fitting based approach
was proposed in [27] for association area distribution in a
two-tier cellular network. See [6], [28], [29] for a spectral
efficiency analysis, where load is modeled through activity
of AP queues. While the PPP assumption offers attractive
tractability in modeling interference and hence the signal-to-
interference-and-noise ratio (SINR) in HetNets, the distribution
of rate has been elusive. Superposition of point processes, each
denoting a class' of APs, leads to the formation of disparate
association regions (and hence load distribution) due to the
unequal transmit powers, path loss exponents and association
weights among different classes of APs. Thus, resolving to
complicated system level simulations for investigating impact
of various wireless algorithms on rate, even for preliminary
insights, is not uncommon. One of the goals of this paper
is to bridge this gap and provide a tractable framework for
deriving the rate distribution in HetNets.

B. Contributions

The contributions of this paper can be categorized under
two main headings.

1) Modeling and Analysis. A general M-RAT K-tier
HetNet model is proposed with each class of APs drawn
from a homogeneous PPP. This is similar to [21]-[23]
with the key difference being the APs of a RAT act as
interferers to only the user associated with that RAT.
For example, cellular BSs do not interfere with the
users associated with a WiFi AP and vice versa. The
proposed model is validated by comparing the analytical
results with those of a realistic multi-RAT deployment
in Section III-E.

Association Regions in HetNet: Based on the weighted
path loss based association used in this work, the tes-
sellation formed by association regions of APs (region
served by the AP) is characterized as a general form
of the multiplicatively weighted Poisson Voronoi (PV).
Much progress has been made in modeling the area of
Poisson Voronoi, see [30]-[32] and references therein,
however that of a general multiplicatively weighted PV
is an open problem. We propose an analytic approxima-
tion for characterizing the association areas (and hence
the load) of an AP, which is shown to be quite accurate
in the context of rate coverage.

Rate Distribution in HetNet: We derive the rate com-
plementary cumulative distribution function (CCDF) of
a typical user in the presented HetNet setting in Section
III. Rate distribution incorporates congestion in addition
to the proximity effects that may not be accurately
captured by the SINR distribution alone. Under certain
plausible scenarios the derived expression is in closed
form and provides insight into system design.

A class refers to a distinct RAT-tier pair.
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2) System Design Insights. This work allows the inter-
RAT offloading to be seen through the prism of associ-
ation bias wherein the bias can be tuned to suit a network
wide objective. We present the following insights in
Section IV and V.

SINR Coverage: The probability that a randomly located
user has SINR greater than an arbitrary threshold is
called SINR coverage; equivalently this is the CCDF of
SINR. In a simplified two-RAT scenario, e.g. cellular and
WiFi, it is shown that the optimal amount of traffic to be
offloaded, from one to another, depends solely on their
respective SINR thresholds. The optimal association
bias, however, is shown to be inversely proportional
to the density and transmit power of the corresponding
RAT. The maximum SINR coverage under the optimal
association bias is then shown to be independent of the
density of APs in the network.

Rate Coverage: The probability that a randomly located
user has rate greater than an arbitrary threshold is called
rate coverage; equivalently this is the CCDF of rate. We
show that the amount of traffic to be routed through
a RAT for maximizing rate coverage can be found
analytically and depends on the ratio of the respective re-
sources/bandwidth at each RAT and the user’s respective
rate (QoS) requirements. Specifically, higher the corre-
sponding ratio, the more traffic should be routed through
the corresponding RAT. Also, unlike SINR coverage, the
optimal traffic offload fraction increases with the density
of the corresponding RAT. Further, the rate coverage
always increases with the density of the infrastructure.

II. SYSTEM MODEL

The system model in this paper considers up to a K-tier
deployment of the APs for each of the M-RATs. The set of
APs belonging to the same RAT operate in the same spectrum
and hence do not interfere with the APs of other RATs.
The locations of the APs of the k*" tier of the m'™ RAT
are modeled as a 2-D homogeneous PPP, ®,,;, of density
(intensity) A,i. Also, for every class (m,k) there might
be BSs allowing no access (closed access) and thus acting
only as interferers. For example, subscribers of a particular
operator are not able to connect to another operator’s WiFi
APs but receive interference from them. Such closed access
APs are modeled as an independent tier (k') with PPP @,/ of
density A, ;. The set of all such pairs with non-zero densities
in the network is denoted by V 2 [JY_, Usey,, (m, k)
with V), denoting the set of all the tiers of RAT-m, i.e.,
Vin = {k : Ak + A,y # 0}. Similarly, V2, and V5, is
used to denote the set of open and closed access tiers of
RAT-m, respectively. Further, the set of open access classes of
APs is V° = U%:l Ukev;’n (m, k). The users in the network
are assumed to be distributed according to an independent
homogeneous PPP @, with density A,.

Every AP of (m,k) transmits with the same transmit
power P, over bandwidth W, ;. The downlink desired and
interference signals are assumed to experience path loss with
a path loss exponent «y, for the corresponding tier k. The
power received at a user from an AP of (m, k) at a distance x
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TABLE I: Notation Summary

Notation Description
M Maximum number of RATS in the network
K Maximum number of tiers of a RAT
(m, k) Pair denoting the kP tier of the m*® RAT
g
V; Ve The set of classes of APs ,,,—; Upey, (m, k),

where Vp, = {k : Appg + A+ # 0}; the set of
open access classes of APs | J,,_y Upcyo (m, k),
where V2, = {k : Ap # 0}
PPP of the open access APs of (m, k); PPP of the
closed access APs of (m, k); PPP of the mobile
users

[ (bmkl ; Pu

Amki A 05 A Density of open access APs of (m, k); density of
closed access APs of (m, k); density of mobile
users
Tk Tonk Association weight for (m, k); normalized (divided
by that of the serving AP) association weight for
(m, k)
Pk Pk Transmit power of APs of (m, k), specifically
Pmi1 =53 dBm, P2 = 33 dBm, Pp,3 = 23
dBm; normalized transmit power of APs of (m, k)
Bk Bk Association bias for (m, k); normalized
association bias for (m, k).
ag; Qg Path loss exponent of ™ tier; normalized path loss

exponent of k' tier
o2 Thermal noise power corresponding to m®™ RAT

m
Wonk Effective bandwidth at an AP of (m, k)
Tk SINR threshold of user when associated with
(m, k)
Pmk Rate threshold of user when associated with (m, k)
Nk Load (number of users) associated with an AP of
(m, k)
Cmk Association area of a typical AP of (m, k)
Simk; S SINR coverage of user when associated with
(m, k); overall SINR coverage of user
Rmk; R Rate coverage of user when associated with

(m, k); overall rate coverage of user

is P pha™* where h is the channel power gain. The random
channel gains are Rayleigh distributed with average power of
unity, i.e., h ~ exp(1l). The general fading distributions can
be considered at some loss of tractability [33]. The noise is
assumed additive with power o2, corresponding to the m!®
RAT. Readers can refer to Table I for quick access to the
notation used in this paper. In the table and the rest of the
paper, the normalized value of a parameter of a class is its
value divided by the value it takes for the class of the serving
AP.

A. User Association

For the analysis that follows, let Z,,; denote the distance
of a typical user from the nearest AP of (m, k). In this paper,
a general association metric is used in which a mobile user is
connected to a particular RAT-tier pair (i, ) if

(i,j) =arg max T, Z ", (1)

(m,k)eve
where T, is the association weight for (m, k) and ties are
broken arbitrarily. These association weights can be tuned
to suit a certain network-wide objective. As an example, if
Tyr > Tak, then more traffic is routed through RAT-1 as
compared to RAT-2. Special cases for the choice of association
weights, T, %, include:

e T,,. = 1: the association is to the nearest base station.
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o Thir = PpiBmk: is the cell range expansion (CRE)
technique [2] wherein the association is based on the
maximum biased received power, with B, denoting the
association bias corresponding to (m, k).

o Further, if B,,, = 1, then the association is based on
maximum received power.

Note that “=" is henceforth used to assign the same value
to a parameter for all classes of APs, ie., xpp = c is
equivalent to z,,x = ¢ ¥ (m, k) € V. The optimal association
weights maximizing rate coverage would depend on load,
SINR, transmit powers, densities, respective bandwidths, and
path loss exponents of AP classes in the network. Further
discussion on the design of optimal association weights is
deferred to Section IV. For notational brevity the normalized
parameters of (m, k), conditioned on (7, j) being the serving
class, are

A Pmk A A Bmk

a Gk

. Tk =~
A ~
Tk & ==, P = » Bk = , Qp = —.
Tij Pij Bij Oéj
The association model described above leads to the forma-
tion of association regions in the Euclidean plane as described

below.

Definition 1. Association region of an AP is the region of
the Euclidean plane in which all users are served by the
corresponding AP. Mathematically, the association region of
an AP of class (¢, 7) located at x is

ij

) T 1/0‘_7' R
Coy = v e R ly=al < (2] =Kol

mk
Y (m, k) e VoS, ()

where X, (y) = arg min |y —z.
zED 1

The readers familiar with the field of spatial tessellations
would recognize that the random tessellation formed by the
collection {C,,,} of association regions is a general case of
the circular Dirichlet tessellation [34]. The circular Dirichlet
tessellation (also known as multiplicatively weighted Voronoi)
is the special case of the presented model with equal path loss
coefficients. Fig. 1 shows the association regions with two
classes of APs in the network (V = {(1,1);(2,3)}, say) for
two ratios of association weights %—;}5 =20 dB and %—;}5 =10
dB. The path loss exponent is oy = 3.5.

B. Resource Allocation

A saturated resource allocation model is assumed in the
downlink of all the APs. This assumption implies that each
AP always has data to transmit to its associated mobile users
and hence users can be allocated more rate than their rate
thresholds. Under the assumed resource allocation, each user
receives rate proportional to its link’s spectral efficiency. Thus,
the rate of a user associated with (i, j) is given by

Wi
Rij = N J IOg (1 + SINRU) y (3)

ij
where NV;; denotes the total number of users served by the
AP, henceforth referred to as the load. The presented rate
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Association region expansion

Fig. 1: Association regions of a network with V =
{(1,1);(2,3)}. The APs of (1,1) are shown as hollow circles
and those of (2, 3) are shown as solid diamonds. Solid lines
show the association regions with % = 20 dB and dotted
lines show the expanded association regions of (2, 3) resulting
from the use of %—;; =10 dB.

model captures both the congestion effect (through load) and
proximity effect (through SINR). For 4G cellular systems, this
rate allocation model has the interpretation of scheduler allo-
cating the OFDMA resources “fairly” among users. For 802.11
CSMA networks, assuming equal channel access probabilities
[10], [14] across associated users, leads to the rate model (3).
Although the above mentioned resource allocation strategy is
assumed in the paper, the ensuing analysis can be extended to
a RAT-specific resource allocation methodology as well.

III. RATE COVERAGE

This section derives the rate coverage and is the main
technical section of the paper. The rate coverage is defined
as

R 2 P(R> p), )

and can be thought of equivalently as: (i) the probability that
a randomly chosen user can achieve a target rate p, (ii) the
average fraction of users in the network that achieve rate p, or
(iii) the average fraction of the network area that is receiving
rate greater than p.

A. Load Characterization

This section analyzes the load, which is crucial to get a
handle on the rate distribution. The following analysis uses
the notion of typicality, which is made rigorous using Palm
theory [19, Chapter 4].

Lemma 1. The load at a typical AP of (i,j) has the proba-
bility generating function (PGF) given by

Gy, (2) = Efexp (A Cyj (2 = 1))], 5)

where Cy; is the association area of a typical AP of (i, 7).
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Proof: We consider the process ®,; U {0} obtained by
adding an AP of (7, j) at the origin of the coordinate system,
which is the typical AP under consideration. This is allowed
by Slivnyak’s theorem [19], which states that the properties
observed by a typical® point of the PPP, ®;;, is same as those
observed by the point at origin in the process ®;; U {0}.
The random variable (RV) N;; is the number of users from
&, lying in the association region Co,; of the typical cell
constructed from the process ®;; U {0}. Letting Cj; denote
the random area of this typical association region, the PGF of
Nj; is given by

Gn,, (2) =E [2N] = E[exp (\Cij (2 — 1))],

where the property used is that conditioned on Cj;, Nyj; is a
Poisson RV with mean \,C};. [ |

As per the association rule (1), the probability that a
typical user associates with a particular RAT-tier pair would
be directly proportional to the corresponding AP density and
association weights. The following lemma identifies the exact
relationship.

Lemma 2. The probability that a typical user is associated
with (i,7) is given by

Aij = 2m\ij zexp | —m Z Gy;(m, k)25 | dz,
(m,k)eve
(6)
where
Gij (ma k) - Akafn/;:k . (7)

If ai, = «, then the association probability is simplified to
Z(m,k)evo Gij(m, k)

Proof: The result can be proved by a minor modification

of Lemma 1 of [22]. The proof is presented in Appendix A

for completeness. [ ]

The following two remarks provide alternate interpretations
of the association probability.

Aij =

®)

Remark 1. The probability that a typical user is associated
with the i** RAT is given by A; = > jeve Aij. This
probability is also the average fraction of the traffic offloaded,
referred henceforth as traffic offload fraction, to the it RAT.

Remark 2. Using the ergodicity of the PPP, A;; is the average
fraction of the total area covered by the association regions of
the APs of (4, 7).

Based on Remark 2 we note that the mean association area
of a typical AP of (7,7) is % Below we propose a linear
scaling based approximation for association areas in HetNets,
which matches this first moment. The results based on the area
approximation are validated in Section III-E.

Area Approximation: The area Cj; of a typical AP of the j th

tier of the i RAT can be approximated as

o A
<%_c<&), ©)

>The term typical and random are interchangeably used in this paper.
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= Tij G G
S= Z 27r)\ij/0 yexp [ ——2L— —7 ZDij(k,Tij)yz/k‘f' Z Gij(m, k)y?/ o

kEV;

(eve SNR;; (y)
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dy, (19

(m,k)eve

where C (y) is the area of a typical PV of density y (a scale
parameter).

Remark 3. The approximation is trivially exact for a single
tier, single RAT scenario, i.e., for ||V|| = 1.

Remark 4. If T, =T and oy = «, then the approximation
. . Aij

is exact. In this case, A;; = . and

Z(m,k)evo Amk
\is
C Y =C
<«411)

Z )\mk
(m,k)eVe

With equal association weights and path loss coefficients, the
HetNet model becomes the superposition of independent PPPs,
which is again a PPP with density equal to the sum of that of
the constituents and hence the resulting tessellation is a PV.
The right hand side of the above equation is equivalent to a
typical association area of a PV with density E(m k)yeve Ao -

(10)

Remark 5. Using the distribution proposed in [32] for C(y),
the distribution of Cj; is

- 3.53'5 /\ij /\ij %5 /\ij
fc,;(c) = T(3.5) Ay, <Aijc> exp (—3.5Aijc), (11)

where T'(z) = [, exp(—t)t*~'d¢ is the gamma function.

To characterize the load at the tagged AP (AP serving the
typical mobile user) the implicit area biasing needs to be
considered and the PGF of the number of other — apart from
the typical — users (IV, ;;) associated with the tagged AP needs
to be characterized.

Lemma 3. The PGF of the other users associated with the
tagged AP of (i,]) is

AuA: —4.5
G, ., (2) = 3.5° (3.5 + A—7(1 - z)) . (12)
J
Furthermore, the moments of N, ;; are given by

n k
B[N = (A"AA”> S(n, K)E [C*T1(1)],  (13)

k=1 '

j
where S(n, k) are Stirling numbers of the second kind®.

Proof: See Appendix B. [ ]

The moments of the typical association region of a PV

of unit density can be computed numerically and are also
available in [30].

B. SINR Distribution

The SINR of a typical user associated with an AP of (i, 7)
located at y is

Piih,y~
SINR; (y) = =t

=Y 14
Y kev, Lin + 07 (1

3The notation of Stirling numbers given by S(n, k) should not be confused
with that of SINR coverage, S.

where I, is the channel gain from the tagged AP located at a
distance y, I;; denotes the interference from the APs of RAT
¢ in the tier k. The set of APs contributing to interference are
from @, |J @, \ oVk € V;, where o denotes the tagged AP
from (4, 7). Thus

I’ik = P'Lk Z hzx_ak =+ P'Lk Z hzla:/_ak.

zE€P;\o €D,

15)

For a typical user, when associated with (i, j), the probability
that the received SINR is greater than a threshold 7;;, or SINR
coverage, is

Sij(7ij) = Ey [P{SINR;(y) > 7i;}], (16)
and the overall SINR coverage is
S = Z Sij(Tij)Aij. (17)

(i,4)eve

Interestingly, the distance of a typical user to the tagged
AP in (i,7), Yi;, is not only influenced by ®;; but also by
D,k V(m, k) € V°, as APs of other open access classes also
compete to become the serving AP. The distribution of this
distance is given by the following lemma.

Lemma 4. The probability distribution function (PDF),
fyvi; (), of the distance Y;; between a typical user and the
tagged AP of (i,j) is

27‘()\1" &
FriyW) = =Fyep—m D> Gy(m Ry
ij
(m,k)eve
(18)
Proof: See Appendix C. [ ]

The following lemma gives the SINR CCDF/coverage over
the entire network.

Lemma 5. The SINR coverage of a typical user is given by
(19) (at the top of page) where

Dij(k, i)
= f’%a’“ {)\ikz (Ti]', ak,TikPi_kl) + )\ik/Z(Tij, ag, 0)} ,

Z(a,b,c) = az/b/ du

Gij(m, k) = A T2/ 2 —
i(m, k) k (cyern T+ b2

mk

and SNR;; (y) = P”g%aj

Proof: See Appendix D. [ ]

The result in Lemma 5 is for the most general case and

involves a single numerical integration along with a lookup

table for Z. Lemma 5 reduces to the earlier derived SINR

coverage expressions in [24] for M = K = 1 (single tier,

single RAT) and those in [22] for M = 1 (single RAT, multiple
tiers).
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3535 T(n +4.5) [ AeAis \" Au Ay )
R = 27\ wii ) (354 2wl

Z T nt I'(3.5) ( Aij ) ( - Aij )

(ig)eve n>0
> t(pii(n+1 . 5 5

< [y | SHED 3 ST Dk D) S Gl g Qo)
0 SNR; (y)

kev; (m,k)eVve

7?, = Z 27T/\ij
(7;7]‘)6120 y) keV;

> t(pi; Nij) -
[ vesn (- St = o{ X Ptk

2/0% + Z

(m,k)eve

Gij(m, k) de})dy, (26)

C. Main Result

Having characterized the distribution of load and SINR, we
now derive the rate distribution over the whole network.

Theorem 1. The rate coverage of a randomly located mobile
user in the general HetNet setting of Section II is given by
(20) (at the top of page) where p;; is the rate threshold for
(i,), pij = pij/Wij, and t(z) &2 — 1

Proof: Using (3), the probability that the rate requirement
of a user associated with (7, j) is met is

]P)(le > pij) =P N— log(l + SINRU) > Pij
ij

= P(SINR;; > 20isNia/Wii — 1)
= En,; [Si; (t(piNij))],

where t(p;; Nij) = 2riiNii/Wii _ 1 and Nij =1+ N, 5, ie.,
the load at the tagged AP equals the typical user plus the other
users. Using Lemma 3, (22) is simplified as

En,; [Sij (t(piz Nij))]

1)
(22)

= > P(Noij = n)Si (Hpij(n+1))) (23)
n>0

_ Z 3. 535r n+45) (AMAZ-J—)"
n>0 3.5) Aij

A Az (n+4.5)
<35+ - ) Sij (t(pig (n+ 1)) (24)

ij
Using the law of total probability, the rate coverage is
R= Y AyP(Ri; > py)
(i.5)eVve
+ 4.5)

]

(i,5)eV° n>0 )

iy o\ T(n+4.5)

x (A“A”) (3.5 + A“A”) Sis (t(pis (n + 1))
(25)
Using Lemma 5 in the above equation gives the desired result.
|
The rate distribution expression for the most general setting
requires a single numerical integral and use of lookup tables
for Z and T'. Since both the terms P(NV;; = n) and S;; (t(n))
decay rapidly for large n, the summation over n in Theorem
1 can be accurately approximated as a finite summation to a

sufficiently large value, Npy.x. We found Npy.x = 4\, to be

sufficient for results presented in Section III-E.

D. Mean Load Approximation
The rate coverage expression can be further simplified

(sacrificing accuracy) if the load at each AP of (i,j) is
assumed equal to its mean.

Corollary 1. Rate coverage with the mean load approximation
is given by (26) (at the top of page), where

G 1.28\, A;j

Ni; =E[N;] =1+ 1280 Ay
Proof: Lemma 3 gives the ﬁrst moment of load as
E[NU] = 1+E[N071j] = 1+ 2 ”E[Cz( )} where

E [02(1)] = 1.28 [30]. Using an approx1mat10n for (22) with
B, [Sij (£(pij Nig))] =~ Sij (t(pi;E[Ni])), the simplified
rate coverage expression is obtained. [ ]

The mean load approximation above simplifies the rate
coverage expression by eliminating the summation over n. The
numerical integral can also be eliminated in certain plausible
scenarios given in the following corollary.

Corollary 2. In interference limited scenarios (0% — 0) with
mean load approximation and with same path loss exponents
(ar = 1), the rate coverage is
> E .
(520 Lkey, Dis(k t(piiNig)) + 22 gy eve Gis (ms k)
(27

R =

In the above analysis, rate distribution is presented as a
function of association weights. So, in principle, it is possible
to find the optimal association weights and hence the optimal
fraction of traffic to be offloaded to each RAT so as to
maximize the rate coverage. This aspect is studied in a special
case of a two-RAT network in Section IV.

E. Validation

In this section, the emphasis is on validating the area and
mean load approximations proposed for rate coverage and on
validating the PPP as a suitable AP location model. In all
the simulation results, we consider a square window of 20 x
20 km?. The AP locations are drawn from a PPP or a real
deployment or a square grid depending upon the scenario that
is being simulated. The typical user is assumed to be located
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at the origin. The serving AP for this user (tagged AP) is
determined by (1). The received SINR can now be evaluated
as being the ratio of the power received from the serving AP
and the sum of the powers received from the rest of the APs
as given in (14). The rest of the users are assumed to form
a realization of an independent PPP. The serving AP of each
user is again determined by (1), which provides the total load
on the tagged AP in terms of the number of users it is serving.
The rate of the typical user is then computed according to (3).
In each Monte-Carlo trial, the user locations, the base station
locations, and the channel gains are independently generated.
The rate distribution is obtained by simulating 10° Monte-
Carlo trials.

In the discussion that follows we use a specific form of the
association weight as T,,x = P, B corresponding to the
biased received power based association [2], where B, is
the association bias for (m, k). The effective resources at an
AP are assumed to be uniformly W,,;, = 10 MHz and equal
rate thresholds are assumed for all classes. Thermal noise is
ignored. Also, without any loss of generality the bias of (1, 1)
is normalized to 1, or B;; = 0 dB.

1) Analysis: Our goal here is to validate the area approx-
imation and the mean load approximation (Theorem 1 and
Corollary 1, respectively) in the context of rate coverage. A
scenario with two-RATSs, one with a single open access tier and
the other with two tiers — one open and one closed access —
is considered first. In this case, V = {(1,1);(2,3);(2,3)}.
)\11 =1 BS/ka, /\23 = )\23/ = 10 BS/ka, /\u = 50
users’km?, a; = 3.5, and a3 = 4. Fig. 2 shows the rate
distribution obtained through simulation and that from Theo-
rem | and Corollary 1 for two values of association biases.
Fig. 3 shows the the rate distribution in a two-RAT three-
tier setting with V = {(1,1);(1,2);(2,2);(2,3)}, A1 = 1
BS/kmg, /\12 = /\22 =5 BS/kmg, )\23 =10 BS/ka, )\u =50
users/km?, ov; = 3.5, as = 3.8, and a5 = 4 for two values of
association bias of (2, 3). In both cases, B1o = Baa = 5 dB.

As it can be observed from both the plots, the analytic
distributions obtained from Theorem 1 and Corollary 1 are in
quite good agreement with the simulated one and thus validate
the analysis. See [1] for validation of a three-RAT scenario.

2) Spatial Location Model: To simulate a realistic spatial
location model for a two-RAT scenario, the cellular BS
location data of a major metropolitan city used in [24] is
overlaid with that of an actual WiFi deployment [35]. Along
with the PPP, a square grid based location model in which the
APs for both the RATs are located in a square lattice (with
different densities) is also used in the following comparison.
Denoting the macro tier as (1,1) and WiFi APs as (2,3),
V = {(1,1);(2,3)} in this setup. The superposition is done
such that Ao = 10A;;. Fig. 4 shows the rate distribution of
a typical user obtained from the real data along with that of
a square grid based model and that from a PPP, Theorem 1,
for three cases. As evident from the plot, Theorem 1 is quite
accurate in the context of rate distribution with regards to the
actual location data.

IV. DESIGN OF OPTIMAL OFFLOAD

In this section, we consider the design of optimal offloading
under a specific form of the association weight as T, =
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Fig. 3: Comparison of rate distribution obtained from simu-
lation, Theorem 1, and Corollary 1 for Ajo = Aoz = HA1q,
/\23 = 10/\11, o] = 35, Qg = 38, and 3 = 4.

P kB For general settings, the optimum association biases
{B,n«} for SINR and rate coverage can be found using the de-
rived expressions of Lemma 5 and Theorem 1 respectively. As
discussed in Section III-E, simplified expression of Corollary
1 can also be used for rate coverage. We consider below a two-
RAT single tier scenario with ¢ tier of RAT-1 overlaid with
r tier of RAT-2,i.e., V = {(1, q); (2,7)}. Optimal association
bias and optimal traffic offload fraction is investigated here in
the context of both the SIR coverage (i.e., neglecting noise)
and rate coverage.

A. Offloading for Optimal SIR Coverage

Proposition 1. Ignoring thermal noise (interference limited

scenario, 0 — 0), assuming equal path loss coefficients

(ar = 1), the value of association bias g—’f* maximizing SIR
q
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—Square grid for both RATSs
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Fig. 4: Rate distribution comparison for the three spatial
location models: real, grid, and PPP for a two-RAT setting
with Aog = 1017 and o = a3 =4

coverage is

P1 Z(Tl « 1) /2
bopt = 4 ) , 28
PLT P, <CLZ(T2T,OZ,1) (28)
where Mo, = aliq and the corresponding optimum traffic
offload fraction to RAT-2 is
Z(qu, a, 1)

= . 29
A= e+ Z(11g, 0, 1) @9

The corresponding SIR coverage is
Z(tor, o, 1) + Z(T14, 0, 1) (30)

Z(’Tgr, a, 1) =+ Z(’qu, «, ].) =+ Z(’Tgr, «, ].)Z(’qu, «, ].)

Proof: See Appendix E. [ ]

The following observations can be made from the above

Proposition:

o The optimal bias for SIR coverage is inversely propor-
tional to the density and transmit power of the corre-
sponding RAT. This is because the denser the second RAT
and the higher the transmit power of the corresponding
APs, the higher the interference experienced by offloaded
users leading to a decrease in the optimal bias. Also, with
increased density and power, lesser bias is required to
offload the same fraction of traffic.

o The optimal fraction of traffic/user population to be
offloaded to either RAT for maximizing SIR coverage
is independent of the density and power and is solely
dependent on SIR thresholds. The higher the RAT-1
threshold, 7,4, compared to that of RAT-2 threshold, 7,,
the more percentage of traffic is offloaded to RAT-2 as
Z is a monotonically increasing function of 7. In fact,
if 714 = 7o, offloading half of the user population
maximizes SIR coverage.

B. Offloading for Optimal Rate Coverage

For the design of optimal offloading for rate coverage, the
mean load approximation (Corollary 1) is used.
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Proposition 2. Ignoring thermal noise (interference limited
scenario, c* — 0), assuming equal path loss coefficients
(ar = 1), the value of association bias gf;‘ maximizing rate
coverage is

_ ~ —1
bopi = arg max { (Z(th(,alqzvlq), a,1)+1+ a(PgTb)z/a)

—1
- 1

Z(tor (por N ),y 1) 41 4 ———— EY

+<(2(P2 2r), 0, 1) + +a(P2rb)2/“> } @30

where a = Aap/A1q and b = Ba, /By,

Proof: The optimum association bias can be found by
maximizing the expression obtained from Corollary 2 using
V= {(1, q); (2, r)}, Aoy = a)\lq, and By, = bqu. |

Unfortunately, a closed form expression for the optimal
bias is not possible in this case, as the load (and hence the
threshold) is dependent on the association bias b. However,
the optimal association bias, bopt, for the rate coverage can be
found out through a linear search using the above Proposition.
In a general setting, the computational complexity of finding
the optimal biases, however, increases with the number of
classes of APs in the network as the dimension of the problem
increases. While the exact computational complexity depends
upon the choice of optimization algorithm, the proposed
analytical approach is clearly less complex than exhaustive
simulations by virtue of the easily computable rate coverage
expression.

The analysis in this section shows that for a two-RAT
scenario, SIR coverage and rate coverage exhibit considerably
different behavior. The optimal traffic offload fraction for
SIR coverage is independent of the density whereas for rate
coverage it is expected to increase because of the decreasing
load per AP for the second RAT. For a fixed bias, rate coverage
always increases with density, however for a fixed density
there is always an optimal traffic offload fraction. These in-
sights might be known to practicing wireless system engineers
but here a theoretical analysis makes the observations rigorous.

V. RESULTS AND DISCUSSION

In this section we primarily consider a setting of macro
tier of RAT-1 overlaid with a low power tier of RAT-2, i.e.,
V ={(1,1);(2,3)}. This setting is similar to the widespread
use of WiFi APs to offload the macro cell traffic. In particular,
the effect of association bias and traffic offload fraction on SIR
and rate coverage is investigated. Thermal noise is ignored in
the following results.

A. SIR coverage

The variation of SIR coverage with the density of RAT-
2 APs for different values of association bias is shown in
Fig. 5. The path loss exponent used is o = 3.5 and the
respective SIR thresholds are 717 = 3 dB and 793 = 6 dB.
It is clear that for any fixed value of association bias, S is
sub-optimal for all values of densities except for the bias
value satisfying Proposition 1. Also shown is the optimum
SIR coverage (Proposition 1), which is invariant to the density
of APs.
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Variation of SIR coverage with the association bias is
shown in Fig. 6 for different densities of RAT-2 APs. As
shown, increasing density of RAT-2 APs decreases the optimal
offloading bias. This is due to the corresponding increase in
the interference for offloaded users in RAT-2. This insight will
also be useful in rate coverage analysis. Again, at all values of
association bias, S is sub-optimal for all density values except

. . Py 2/ Z(T14,0,1)
for the optimum density, Aopt = (P 5 ) Z(TQ‘“Q’D.
2rD2r 7y

B. Rate Coverage

The variation of rate coverage with the density of RAT-
2 APs for different values of association bias is shown in
Fig. 7 and the variation with the association bias is shown in
Fig. 8 for different densities of RAT-2 APs. In these results,
the user density A\, = 200 users/km?, the rate threshold
pPmk = 256 Kbps, the effective bandwidth W,,,, = 10 MHz,
and the path loss exponent is o = 3.5. As expected, rate
coverage increases with increasing AP density because of
the decrease in load at each AP. The optimum association
bias for rate coverage is obtained by a linear search as in
Proposition 2. For all values of association bias, R is sub-
optimal except for the one given in Proposition 2. Fig. 9
shows the effect of association bias on the 5" percentile
rate pgs with R|,,; = 0.95 (i.e., 95% of the user population
receives a rate greater than pgs) for different densities of RAT-
2 APs. Comparing Fig. 8 and Fig. 9, it can be seen that
the optimal bias is agnostic to rate thresholds. This leads
to the design insight that for given network parameters re-
optimization is not needed for different rate thresholds. The
developed analysis can also be used to find optimal biases for
a more general setting. Fig. 10 shows the 5*" percentile rate
for a setting with V = {(1,1);(1,2);(2,2);(2,3)}, A1 =1
BS/ka, /\12 = /\12 =5 BS/km2, B12 = B22 = 5 dB as
a function of association bias of (2,3). It can be seen that
the choice of association biases can heavily influence rate
coverage.

A common observation in Fig. 8-10 is the decrease in
the optimal offloading bias with the increase in density of
APs of the corresponding RAT. This can be explained by the
earlier insight of decreasing optimal bias for SIR coverage
with increasing density. However, in contrast to the trend in
SIR coverage, the optimum traffic offload fraction increases
with increasing density as the corresponding load at each AP
of second RAT decreases. These trends are further highlighted
in Fig. 11 for the following scenarios:

o Case 1: Wll =15 MHZ, W23 =5 MHZ, P11 = 256
Kbps, and p23 = 512 Kbps.
o Case 2: Wll =35 MHZ, W23 =15 MHZ, P11 = 512

Kbps, and pa3 = 256 Kbps.

It can be seen that apart from the effect of deployment
density, optimum choice of association bias and traffic offload
fraction also depends on the ratio of rate threshold (p;;) to the
bandwidth (W;;), or p;;. In particular, larger the ratio of the
available resources to the rate threshold more is the tendency
to be offloaded to the corresponding RAT.
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VI. CONCLUSION

In this paper, we presented a tractable model to analyze
the effects of offloading in a M-RAT K-tier wireless hetero-
geneous network setting under a flexible association model.
To the best of our knowledge, the presented work is the first
to study rate coverage in the context of inter-RAT offload.
Using biased received power based association, it is shown
that there exists an optimum percentage of the traffic that
should be offloaded for maximizing the rate coverage which
in turn is dependent on user’s QoS requirements and the
resource condition at each available RAT besides from the
received signal power and load. Investigating the coupling of
AP queues induced by offloading, which has been ignored in
this work, could be an interesting future extension. Although
the emphasis of this work has been on inter-RAT offload, the
framework can also be used to provide insights for inter-tier
offload within a RAT. Also, the area approximation for the
association regions can be improved further by employing a
non-linear approximation.

APPENDIX A

Proof of Lemma 2: If A;; is the association probability
of a typical user with RAT-tier pair (i, j), then

Aij =P N

(m,k)eve
(mk)#(i,5)

{162, > Tz, b | 32)

mk

since Z,,; denotes the distance to nearest AP in ®,,,;. Thus

A9 T e (Tijzi;”‘f > kaz;‘;k) 33)
(m,k)eVe®
(k)£ (5,9)

= [ TI B (Ze > (o) /02 fz,, ()2, 34
250 (m,k)eve
(m,k)#(4,5)
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where (a) follows from the independence of @, V(m, k) €

V. Now
P (Zop > 2) = P (@ 1 D(0,2) = 0) = e ™m2* | (35)

where (0, z) is the Euclidean ball of radius z centered at
origin. The probability distribution function fz,_, (z) can be
written as

d
mek (Z) = a{l — ]P)(ka > Z)}
= 2T A\ k2 exp(—m\mkzz), Vz > 0.
Using (34), (35) and (36)

(36)

Aij = 27‘()\1']‘

X /zexp - Z /\mk(’fmk)wo‘kzwdk

250 (m,k)ev®
(m,k)#(i,5)
x exp(—7A;;z2)dz, (37)
which gives (6). [ ]
APPENDIX B

Proof of Lemma 3: As a random user is more likely to
lie in a larger association region then in a smaller association
region, the distribution of the association area of the tagged
AP, C . is proportional to its area and can be written as

ij°
fc;j (C) X cfcqij (C)

Using the normalization property of the distribution function
and (11), the biased area distribution is

. CfCU (C) . 3.5%° Aij Aij 3.5 Aij
fC;j () = E[Ci;] — T(3.5) Aij Ay ¢ xp 3’5./42‘]‘ ‘)

(38)

The location of the other users (apart from the typical user) in
the association region of the tagged AP follows the reduced
Palm distribution of ®, which is the same as the original
distribution since ®, is a PPP [19, Sec. 4.4]. Thus, using
Lemma 1 and (39), the PGF of the other users in the tagged
AP is

Gy, (2) =E [exp ()\UC;J» (z — 1))}

355 Ny (g \OP
. 1] 1]

c>0
exp <—35j::] c> de (40)
—4.5
=3.5%° (3.5 + A}A” (1— z)) : (41)
ij

Using the PGF, the probability mass function can be derived
as

Gy (0)

]P’(Nij:n—l—l):]P)(Nolij:n): nl

3.5 S\ " o\ ~(nt+4.5)
_ 35%°I(n +4.5) (AHAU) " <3.5+ AuAm) .

(42)
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For the second half of the proof, we use the property that the
moments of a Poisson RV, X ~ Pois(\) (say), can be written
in terms of Stirling numbers of the second kind, S(n, k), as

E[X"] =Y o ¢S (n, k). Now
E[Ny) =E []E [NZij|C;jH (43)
=E [i(AuO;j)kS(n, k)] = 2": NeS(n, k)E [O;ﬂ
k=0 P
(44)

Using (39) and the area approximation (9)

E[c*] = E[CE1] (N /Ay)~ FTDE [CF+1(1)]
[ l} O E[Cy] T Ow/AgTE[C(L)]
(45)
and thus
n B k
E[NG =) (A”;—AJ> S(n, k)E [C*F1(1)].
k=1 v
]

APPENDIX C

Proof of Lemma 4: 1If Y;; denotes the distance between
the typical user and the tagged AP in (4, j), then the distribu-
tion of Yj; is the distribution of Z;; conditioned on the user
being associated with (7, j). Therefore

P(Yi; > y) =P (Z;; > y| user is associated with (7, j))

(46)
_ P(Z;; > y,user is associated with (4, 5))
N IP (user is associated with (i, j))

(47)

Now using Lemma 2

P (Z;; >y, user is associated with (4, j))

:27r/\ij/zexp -7 Z Gij(m, k)z%/ % | dz.
Sy (m,k)eve

(48)
Using (47) and (48) we get

P(Yi; > y)
27\ .
= Zijj / zexp | —m Z Gij(m, k)z% % | dz,
Sy (m,k)eve
(49)
which leads to the PDF of Yj;
27\ G
fri, (y) = A—,,Jy exp [ = D Gij(m, k)y*/™
) (m,k)eve
(50)
|
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APPENDIX D

Proof of Lemma 5: The SINR coverage of a user
associated with an AP of (i, 7) is

Sij(7ij) =/ P(SINR;;(y) > 745) fv;; (y)dy. (51)
y>0
Now P(SINR;;(y) > 7i;) can be written as
Pijhyy=
P Y > Tij (52)
<Zkevl Ly, + o7 j)
=P (hy > Y% Py Lk + af}> (53)
keV;
— lexp < YT P { Z Lix, + o }>‘| (54)
keV;
(a)
= exp < SNRU ) H EILk exp —y° leP Lkﬂ
keV;
(55)
— Tij -1
keV;

= Y and (a) follows from the inde-

pendence of I;;, and M}k (s) is the the moment-generating
function (MGF) of the interference. Expanding the interfer-
ence term, the MGF of interference is given by

Mlqzk (5)

=Eo.,0,,/ hohy [exp(—spik{ Z hypx™
z€P;i\o
+ > hx‘*}ﬂ (57)

’
x GQM/

where SNR;;(y) = Su¥ 2

(i) Es,, H My, (SPikx_ak)
€D \o

x Eq)ik/

H Mp,, (sPipa’= ")

’
x GQM/

®) exp <—27r/\ik/ {1 — My, (sPikx_o"“)}xdx)
Zik

X exp <—27r/\ik/ / {1=My, (sPia’ ")} gc’dx’)
0

(59)

(58)

(0 > x
= — 27\ S —
exp < T Aik /Zk 1+ (sPop) Lo T

o0 ./L'/
— 27T\, da’ 60
T, /0 T (sP) o x), (60)

where (a) follows from the independence of ®;;,®,,/, h, and
h!,, (b) is obtained using the PGFL [19] of ®;;, and ®,,, and
(c) follows by using the MGF of an exponential RV with unit
mean. In the above expressions, z;; is the lower bound on
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distance of the closest open access interferer in (i, k) which
can be obtained by using (1)

Tijy = = Tipz,™ or zig = (Tu) Yy (61)
Using change of variables with ¢ = (sP;,)~2/“ 22, the
integrals can be simplified as

o 2z
/Z“c 1+ (sPig)~taox dz
o dt
= (sPik)z/ak/ T a2
(Spik)_2/ak272,k 1 + tak/
=7 (SPika A, Zf];k) 5 (62)
and
/002—‘/”@5 =7 (sPip, ax,0),  (63)
o 1+ (SPik)_lxak = iky Xk, )
where

& du
7 b _ 2/b/ )
(a,b,c) =a e 11 w2

This gives the MGF of interference

My, (s) = exp ( — W(SPik)Q/ak

ay
) AMZ (1,0 22 ) 4 A Z (Lag,0) % |, (64)
sPig
Using s = y%7;P; !

i with z;; from (61) for MGF of
interference in (56) we get

]P)(SINRZ‘j (y) > Tij)

= Ty 2/6k .. -
exp < ) " >y Dy, (k,n])> . (65)

keV;

where
Dij(k’,ﬂ'j) 2/0”” {)\Zkz (T”7Otk,P T ) +)\ik12(7’ij,0¢k70)}.

Using (51) along with Lemma 4 gives

21\ / Tij
yexp | —
Aij Jy>o SNR;; (y)

—W{ S Dk i)y + > Gij(m, k)yQ/a‘k})dy

Sij(Tij) =

keV; (m,k)eve
(66)
Using the law of total probability we get
S= > Sij(nij)Ai;, (67)

(i,4)eve

which gives the overall SINR coverage of a typical user. M

APPENDIX E

Proof of Proposition 1:
coverage can be written as

In the described setting SIR

)\ij
ij (kﬂ Tij) + Z(m,k)evo Gij (m’ k) ’
(68)

S =
(i,5)eVe

Zkev
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and with V = {(1,q), (2,7)}, A2r = a1y, and By, = bBy,

Aig
)\qu(qu, «, 1) + )\1q + )\ZT‘(PQT’B2T‘)2/a
AQT’
+ =
AQTZ(TQT, «, 1) + Aoy + /\1q(P1qB1q>2/o‘
1
Z(T1g, 0, 1) + 1 4 a(Pa,b)?/@
1

+ .
Z(Tgr,a, ].) + 1 + W

S:

The gradient of S with respect to association bias V;S is zero
at

R —1
bopt = arg max (Z(qu, a, 1)+ 1+ a(Pgrb)Z/o‘)

-1
+ | Z(rop, 0, 1) + 1+ Do)
a/2
- E < Z(qu,a,l) )
N Pgr aZ(Tgr,a,l) '
With algebraic manipulation, it can be shown that for all b >
bopt VS < 0 and for all b < bopy VS > 0 and hence S is

strictly quasiconcave in b and by, is the unique mode. Using
Lemma 2, the optimal traffic offload fraction is obtained as
GQT (’I")

( I 1q )2/a
IZTbopt
Z(qu, a, 1)

T Z(rm )+ Z(rig o 1) (69)

Aar
=2 _—g a+

As

The corresponding SIR coverage can then obtained by substi-
tuting the optimal bias value in (68). [ ]
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