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1. INTRODUCTION

Digital signal processors (DSPs) have been extensively used in modern con-
sumer electronics. The increasing demand for new and complex applications
running on these processors has brought a strong interest to compilers capable
of generating efficient DSP code. DSPs are very irregular architectures, mak-
ing them hard targets [Leupers 2000] to traditional compilation techniques
designed for general-purpose processors [Aho et al. 1986; Muchnick 1997]. As
a result, new techniques tailored to these processors have been intensively
studied. Because of code size and performance constraints, many DSPs have
no offset-based addressing mode. They usually provide a small register set
capable of indirect addressing. To support indirect addressing, DSPs have spe-
cialized address generation units (AGU), which provide address computation in
parallel to the execution in the main datapath. AGUs perform autoincrement
(decrement) in address registers (AR) by some fixed values.1 When a different
value is demanded, the program is required to provide an explicit update in-
struction (prior to the memory access) in order to compute the memory address.
This extra update instruction increases code size and degrades performance,
especially in critical innerloops. To produce efficient DSP code, autoincrement
(decrement) addressing modes must be carefully used, so as to minimize the
need for update instructions. Needless to say, such problems are faced not only
in DSPs architectures, but also in many highly constrained application specific
instruction-set processors (ASIPs).

Offset assignment (OA) is the optimization that tries to minimize the number
of update instructions in a program, by making use of autoincrement (decre-
ment) to access local scalar variables. A solution to an OA problem seeks to find
a stack layout for these variables such that fewer update instructions are re-
quired. An OA problem is called simple offset assignment (SOA), when a single
address register is present, and general offset assignment (GOA), when more
than one address register is available in the processor.

This paper describes the coalescing SOA (CSOA) algorithm [Ottoni et al.
2003] and a new heuristic for the GOA problem, called coalescing general
offset assignment (CGOA). Moreover, it presents a thorough comparison be-
tween these techniques and the main methods in the literature to solve the OA
problem.

The proposed CSOA and CGOA algorithms are based on a new approach
to the OA optimization problem, which uses liveness information [Aho et al.
1986; Muchnick 1997] to coalesce variable memory slots while solving OA.
This new approach was independently proposed by Zhuang et al. [2003] and by
Ottoni et al. [2003]. The interference graph [Muchnick 1997] is used to identify
which pairs of variables can be coalesced. During the CSOA optimization, only
variables that do not interfere2 are considered for coalescing. The experimen-
tal results show that variable coalescing can produce a large improvement in
code quality (61.8% fewer update instructions) when comparing CSOA to the

1Generally, autoincrement (decrement) values are one, but in some architectures these values can

be larger sometimes.
2Two variables interfere if they are simultaneously live at any program point.
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Fig. 1. (a) A fragment of C code. (b) Memory layout with one slot per variable. (c) Memory layout

with more than one variable per slot.

previously best algorithm from OffsetStone [Leupers 2003] and (59.5% fewer
update instructions) when comparing CGOA to the GOA heuristic proposed by
Leupers and Marwedel [1996], for two address registers. Moreover, CSOA and
CGOA (for two address registers), respectively, produce 15.5 and 9.3% fewer up-
date instructions when comparing them to the heuristics proposed in Zhuang
et al. [2003]. These results show that CSOA and CGOA are the most efficient
algorithms for the OA problem and dismisses the first conjectures to this prob-
lem [Liao 1996], which seemed to indicate that variable coalescing could lead
to worse offset assignment costs.

The rest of this paper is organized as follows. Section 2 describes an example
that shows how the number of required update instructions can be reduced by
adopting coalescing. Section 3 lists the previous work on OA. The CSOA heuris-
tic is described in Section 4 and Section 5 presents the new CGOA technique.
In addition, Section 6 compares CSOA and CGOA with previous heuristics.
Finally, Section 7 summarizes the main results of this work.

2. MOTIVATION

This section shows an example that illustrates how coalescing variables can
decrease the number of update instructions. For this example, consider that
only a single address register is available in the processor, which can be autoin-
cremented (decremented) only by one.

To illustrate coalescing, Figure 1a shows a fragment of C code, annotated
with liveness information at each program point. Figures 1b and c contain
two possible memory layouts for the program variables and the sequence in
which variables are accessed in memory at run-time. The arrows in Figures 1b
and c show points where explicit address calculation instructions (i.e., update
instruction) are required between two consecutive variable accesses. Update
instructions are used to redirect the address register from the first to the second
variable, whenever the memory distance between these variables is larger than
one. In Figure 1c, the memory layout has one slot that is shared between two
variables (b and g ) that do not interfere. By sharing a single memory slot for
these variables, one less update instruction is required in the program. Clearly,
variable coalescing increases the proximity between variables in memory, thus
reducing the number of update instructions.
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Fig. 2. (a) A fragment of C code. (b) The access sequence of this fragment. (c) The corresponding

access graph.

3. RELATED WORK

The OA problem was first studied by Bartley [1992]. In that paper, Bartley
proposed an approach to SOA problem, in which only one address register
was available in the architecture. Bartley’s technique is based on finding a
maximum-weight path cover (MWPC). Later, Liao et al. [1996] showed that
the graph problem MWPC (known to be NP-Complete) can be reduced to SOA,
thus proving that SOA is NP-Hard. In addition, Liao et al. extended SOA to
the GOA problem, a variation of SOA for more than one address register. A
large number of heuristics to solve SOA and GOA have followed [Leupers
and Marwedel 1996; Leupers and David 1998; Rao and Pande 1999; Atri et al.
2001; Udayanarayanan and Chakrabarti 2001; Zhuang et al. 2003; Ottoni et al.
2003; Li and Gupta 2003], making it one of the most studied problems in code
generation for DSPs and embedded processors, in general.

Liao et al. [1996] solution to SOA uses a heuristic based on the Kruskal
minimum spanning tree algorithm [West 2001]. Liao et al. [1996] call access
sequence the sequence, in a basic block, used by a program to access variables at
run-time. For example, the access sequence for instruction a = b op c is bca. By
using the concept of access sequence, Liao et al. define a weighted graph G(V , E)
(access graph), where V is the set of basic block variables and E an edge set.
Each edge e = (u, v) ∈ E is labeled with a weight w(e), meaning that the access
sequence has w(e) consecutive accesses from variable u to v (or v to u). If two
variables u and v are never accessed consecutively, then (u, v) /∈ E. In its global
form, access graphs can cross basic blocks boundaries. In this case, the relevant
edge weights should reflect the profiling information associated to the blocks
execution time. After constructing the access graph, Liao et al. tried to find a
set of maximum weighted paths, called assignment, which define the variables’
layout in memory. The cost of an assignment to memory is the addition of the
weights of all edges that connect variables in nonadjacent memory positions,
as only autoincrement (decrement) by one is available.

Consider, for example, the C code fragment of Figure 2a, and its correspond-
ing access sequence (Figure 2b) and access graph (Figure 2c). Liao et al.’s heuris-
tic is a greedy algorithm that, at each step, selects the edge with the greatest
weight. It takes care not to choose an edge that can lead to a vertex with degree
greater than 2, and not an edge that forms a cycle with the previously selected
edges. The assignment resulting from the access graph of Figure 2c is fecadgb
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(highlighted), and has an offset cost of four. In other words, four update instruc-
tions (corresponding to the nonhighlighted edges), are required by the program
when that memory layout is used.

An extension to Liao et al.’s heuristic was proposed by [Leupers and
Marwedel 1996]. It is called tie-break and its goal is to decide which edge to
choose when edges with the same weight are available in the access graph.
Leupers and David [1998] proposed a genetic algorithm to solve SOA. Instead
of using the access sequence, they compute the offset assignment directly by
simulating an evolutionary process. Later, Rao and Pande [1999] described a
technique that considers the order of the accesses. This technique uses algebraic
transformations in the expression tree to optimize the access sequence.

Sudarsanam et al. [1997] used graph-coloring techniques to coalesce vari-
ables before SOA. Their goal was to reduce memory utilization, but they have
not shown that coalescing can improve the offset cost. Section 6 presents ex-
perimental results of Sudarsanam et al.’s heuristic and compares them with
CSOA.

Zhuang et al. [2003], like us in [Ottoni et al. 2003], also uses liveness infor-
mation in their technique to solve SOA. First, Zhuang et al. coalesce variables,
and then use path covering to solve the SOA problem. This method differs from
our CSOA algorithm in the way that we perform coalescing simultaneously
while choosing the best path covering. Section 6 shows that CSOA produces,
on average, 15.5% fewer update instructions when comparing to the results of
SOA–Zhuang. Li and Gupta [2003] proposed a new approach to SOA that tries
to assign to the same memory slot several variables that are smaller than one
memory word.

The GOA problem is NP-Complete, so many heuristics have been proposed
to solve it. Most of these use the same approach to solve GOA: break the GOA
problem into n SOA problems, with n address registers available, and solve
each SOA problem with the already known techniques. The GOA solution will
be the concatenation of all SOA solutions. The breaking, called partitioning, is
made by assigning each variable to an address register. All variables assigned
to the same AR will form a SOA problem. This type of solution was introduced
by Liao et al. [1996] and then used in many other works [Leupers and Marwedel
1996; Zhuang et al. 2003].

Zhuang et al. [2003] proposed a GOA heuristic that first tries to partition
the variables by coloring them using register coloring [Muchnick 1997]. If more
then 2k colors are needed, where k is the number of ARs, then a heuristic similar
to the partitioning described in Leupers and Marwedel [1996] is used instead of
register coloring. This partitioning heuristic uses SOA–Zhuang [Zhuang et al.
2003] to decide in which partition to put each variable. After partitioning, the
SOA–Zhuang algorithm is applied to each resulting partition.

Many generalizations of the OA problem have been proposed. Some
important generalization are: the use of modify registers [Leupers and
Marwedel 1996; Leupers and David 1998], autoincrement (decrement) ranges
[Sudarsanam et al. 1997], instruction scheduling coupled with offset assign-
ment [Choi and Kim 2002] and procedure-level offset assignment [Eckstein
and Krall 1999].
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Another problem related to OA is the problem known as array reference
allocation (ARA), which optimizes the access to array variables instead of scalar
variables. This problem was originally studied by Araujo et al. [1996], and later
extended by Leupers et al. [1998], Ottoni et al. [2001], Cintra and Araujo [2000],
and Ottoni and Araujo [2003].

Finally, another important problem related to OA is global register allocation
for general-purpose registers. This problem consists of determining which values
will reside in general-purpose registers and which register will hold each of
those values, considering multiple basic blocks. Most global allocators use the
graph-coloring paradigm [Chaitin 1982; Briggs 1992; George and Appel 1996].

4. COALESCING SIMPLE OFFSET ASSIGNMENT

This section describes an approach that uses liveness information to optimize
the solution to SOA. Our approach, called coalescing simple offset assignment
(CSOA), takes as input the access sequence and the variables’ interference
graph, and outputs an offset assignment for the variables in memory. This
technique improves all the previous heuristics that solve SOA [Bartley 1992;
Liao et al. 1996; Leupers and Marwedel 1996; Atri et al. 2001; Leupers 2003;
Zhuang et al. 2003].

Although the use of coalescing can be applied to most previous SOA algo-
rithms, we describe and evaluate a CSOA algorithm based on the SOA algo-
rithm proposed by Liao et al. [1996], with the tie-break heuristic in Leupers
and Marwedel [1996] to decide between edges with the same weight. Liao et al.
try to form a maximum path in the access graph, sorting the edges of the access
graph in decreasing order of their weights. After that, their algorithm iterates
until all vertices are inserted onto the path or no other edge is available. At
each iteration, Liao et al. choose the valid edge (i.e., one not already selected,
which does not cause a cycle, and does not increase the degree of a vertex on
the path to more than two) with maximum weight.

The pseudocode for CSOA is presented in Algorithm 1. Instead of always
choosing an edge at each iteration, as in typical SOA solutions, Algorithm 1
considers another alternative: coalescing two vertices. Specifically, it chooses
one of the two operations: (a) coalesce two vertices u and v in the access and
interference graphs, if they do not interfere; (b) select a valid edge of maximum
weight from the sorted list of edges (L in the Algorithm 1), as in Liao et al.’s
approach.

Function FindCandidatePair, in Algorithm 1, tries to find the two candi-
date vertices for coalescing. It returns a quadruple (coal , u, v, csave), where
coal is a flag that is set if there are two vertices u and v for coalescing, and
csave is the number of update instructions that are saved if u and v are
coalesced.

In order to find the two candidates for coalescing, function FindCandi-
datePair (line 7) searches, in the interference graph, among all possible com-
binations of two vertices u and v, considering only the vertices that satisfy the
following conditions:

1. (u, v) /∈ the interference graph;
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Algorithm 1 Coalescing-Based SOA

Input: the access sequence LAS ,
the interference graph GI (VI , EI ).

Output: the offset assignment.
(1) G A(VA, EA) ← BuildAccessGraph(LAS);
(2) L ← sorted list of the EA;
(3) coal ← false;
(4) sel ← false;
(5) repeat
(6) rebuild ← false;
(7) (coal , u, v, csave) ← FindCandidatePair(GI , u, v);
(8) sel ← FindValidEdgeNotSel(L, e);
(9) if (coal && sel )
(10) if (csave ≥ w(e))
(11) rebuild ← true;
(12) else
(13) mark e as selected;
(14) else
(15) if (coal )
(16) rebuild ← true;
(17) else if (sel )
(18) mark e as selected;
(19) if (rebuild )
(20) RebuildAccessGraph(G A, u, v);
(21) RebuildInterferenceGraph(GI , u, v);
(22) RebuildL(L);
(23) until (!(coal || sel ))
(24) returnBuildOffset(G A);

2. Coalescing u and v creates no cycle in the access graph, when considering
only the selected edges;

3. Coalescing u and v, in the access graph, does not result in a coalesced vertex
with degree greater than two, when only the selected edges are considered.

These three conditions can be tested very efficiently. While checking con-
ditions (1) and (3) is very straightforward, condition (2) is a bit trickier to be
implemented efficiently. However, this can be done by using a Union-Find data
structure to implement disjoint sets [Cormen et al. 1990], where each set corre-
sponds to a connected component in the subgraph of the current access graph
induced by the edges that have already been selected.

Algorithm 1 then picks, among all pairs of vertices that satisfy the above
conditions, the pair u and v, whose coalescing produces the highest csave.

In order to determine csave, function FindCandidatePair computes the state-
ments below, where Ad jsel ( y) is the set of vertices adjacent to y in the access
graph. Here again, only the already selected edges are considered:

1. ∀x ∈ (Adjsel(u) − Adjsel(v)), add w(x, v) to csave;

2. ∀x ∈ (Adjsel(v) − Adjsel(u)), add w(x, u) to csave;

3. Add the weight of the edge between u and v, w(u, v), to csave, if this edge
has not been selected yet.
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Fig. 3. One access graph and the resulting access graph after coalescing variables u and v.

To illustrate how the above statements work, consider the example in
Figure 3. According to statements (1–3) and Figure 3, the value of csave, when
u and v are coalesced, is the weight of edge (x, v) (since x is adjacent to u, edge
(x, u) is selected, and edge (x, v) has not been selected) plus the weight of the
nonselected edge (u, v). The value of csave becomes 6, 4 from edge (u, v), and
2 from edge (x, v).

The computation proceeds to line (8) of the Algorithm 1, where function
FindValidEdgeNotSel searches for the valid edge e with maximum weight w(e)
in the sorted list of edges (L). Flag sel is set if e is found.

Eventually, if both coal and sel are true (line 9), the algorithm chooses (line
10) the operation (coalescing versus edge selection) that produces the largest
reduction in the number of update instructions.

Whenever two vertices u and v are coalesced, parts of the access and inter-
ference graphs need to be rebuilt to reflect the operation. This is achieved in
lines (19–22) of Algorithm 1. Hence, all the old adjacencies of u and v, in the
old access graph, must be redirected to the coalesced vertex (uv) in the new
graph. In the new interference graph, the coalesced vertex must interfere with
all vertices that were adjacent to either u or v in the old interference graph.

Function RebuildL, line (22) of Algorithm 1, is used to reconstruct the sorted
list of edges (i.e., L) from the new access graph. Algorithm 1 ends when
there are no more valid edges that can be chosen and no more vertices to
coalesce. This condition is tested by using flags sel and coal in line (23) of
Algorithm 1.

4.1 Complexity Analysis of CSOA

In this section, the worst-case time-complexity of CSOA is analyzed. Let m be
the length of the access sequence and n the number of variables considered for
CSOA. In Algorithm 1, the complexity of BuildAccessGraph is O(m + n2). The
sorting operation in line (2) takes O(n2 log n). After that, the repeat-until loop
can be executed at most 2(n − 1) times (at most n − 1 edges are selected and
n − 1 coalescing operations are performed). The repeat-until loop is dominated
by the RebuildL function, which is O(n2 log n). Thus, this loop has complexity
O(n3 log n). Finally, the BuildOffset function takes O(n2) time. Therefore, CSOA
has time-complexity O(m + n3 log n). Notice that this is a worst-case analysis.
In practice, the CSOA run-time is considerably better.

4.2 Example of Coalescing SOA

In order to illustrate how CSOA works, consider the code fragment of Figure 4a.
In that code, each program point has the set of live variables (assuming that
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Fig. 4. (a) A fragment of C code with liveness information at each point. (b) The interference

graph of the variables. (c) The access sequence of this fragment. (d–j) The access graphs result-

ing after each iteration of the algorithm. (k) The resulting memory layout. Selected edges are

highlighted.

only g is live at the exit of the fragment). When Algorithm 1 is applied to this
example, it takes as input the interference graph shown in Figure 4b and the
access sequence in Figure 4c.

As the algorithm runs, it produces, at each iteration, the access graphs shown
in Figures 4d–j. At each step, the edges selected during the assignments are
highlighted. The final memory assignment is defined by the selected paths on
the last access graph. The resulting memory layout is shown in Figure 4k.
The reader should remember that whenever two vertices in the access graph
are coalesced, these vertices are also coalesced in the interference graph (not
shown in the figures).

Running CSOA in the example code of Figure 4a will result in the following
execution. In the first iteration (Figure 4d), edge (a, c) is selected, as no pair of
vertices can be coalesced to produce savings as high as 2. In the next iteration,
the best choice is to coalesce vertices b and c, given that it results in a saving
of 2 (corresponding to the edges (a, b) and (b, c)). The new vertex (bc) becomes
adjacent to the vertices that were adjacent to b or c in the previous access graph,
i.e., a, e, and f . Notice that the weight of the edge between a and (bc) becomes 3,
which is the sum of the weights of edges (a, b) and (a, c) in the previous graph.
In the next steps, the algorithm has to decide between coalescing two vertices or
selecting an edge, until no more operations are possible. The resulting covered
access graph is shown in Figure 4j.
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As all edges in the final access graph are selected, the final cost of applying
CSOA to the example is zero. Notice that this example is the same as the one
in Section 3, for which Liao et al.’s algorithm produces a final cost of four.

5. COALESCING GENERAL OFFSET ASSIGNMENT

The technique described in this section is a solution to the GOA problem that
was designed to be used with CSOA (described in Section 4). CGOA, like most
methods for GOA, first partitions the set of variables, and then applies CSOA
to each partition. The main objective of the partitioning of CGOA is to increase
the opportunities of variable coalescing for the CSOA method. The partitioning
made by CGOA is based on variables’ liveness information. It tries to put each
variable v in the partition that has fewer variables that interfere with v. This
partitioning is greedy and, at each step, it chooses the partition in which one
variable will be inserted.

The algorithm that describes the CGOA partitioning is shown in Algorithm 2.
This algorithm receives three inputs: access sequences, interference graph and
number of address registers available. As output, it returns the set of variables’
partitions. Initially, as shown in line (1) of Algorithm 2, the partition data struc-
tures are initialized, based on the number of ARs that are available. After that,
in line (2), the number of interferences of each variable is computed, using the
interference graph. Following this, as shown in line (3) of Algorithm 2, vari-
ables are sorted in decreasing order of their number of interferences. They are
then assigned to the appropriate partition using this order, as shown in lines
(5–10) of the algorithm. At each partition, Algorithm 2 computes the number of
interferences of the variable under consideration with all the variables in the
partition. This is shown in line (7) of Algorithm 2. The variable is assigned to
the partition for which it has the fewest interferences (line 11 of the algorithm).
After all variables have been assigned to a partition, the algorithm returns the
set of partitions. There are two important details that are not shown in the
algorithm. The first detail not shown is the tie-break criterion, which is used
when one variable has the same minimum number of interferences in more
than one partition. In such cases, the variable under consideration is assigned
to the partition that has fewest variables, among the partitions with which it
has the minimum number of interferences. The goal here is to minimize the
creation of unbalanced partitions. The second detail (not shown) is that our
CGOA algorithm only returns the partitioning if the addition of all SOA costs,
resulting from this partitioning, is less than the CSOA cost. Otherwise, CGOA
returns CSOA’s solution corresponding to a single partition.

After partitioning, the CSOA algorithm is applied to each resulting partition.
The solution for the GOA problem is the concatenation of the CSOA solutions
of all partitions.

5.1 Complexity Analysis of CGOA

In this section, the worst-case time complexity analysis of Algorithm 2 is
presented. Let nars denote the number of ARs available, m the length of the
access sequence, and n the number of variables. First, the complexity analysis
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Algorithm 2 CGOA Partitioning Algorithm

Input: LAS access sequence,
GI (VI , EI ) interference graph,
NARs number of address registers.

Output: PartitionsSet set of disjoint subsets of all variables.

(1) PartitionsSet ← InitSetofPartitions(NARs);
(2) IgDegree ← CalculateIgDegree(GI (VI , EI ));
(3) VarsOrdByDegree ← FillVarsReverseOrdedByDegree(IgDegree);
(4) for each v ∈ V , according to the VarsOrdByDegree order, do
(5) MinNInt ← NVARs + 1;
(6) for each Partition ∈ PartitionsSet do
(7) NInt ← CalculateNInterferences(VarsOrdByDegree, Partition);
(8) if NInt < MinNInt then
(9) MinNInt ← NInt;
(10) NPartMinNInt ← Partition;
(11) PutVarInPartition(VarsOrdByDegree, NPartMinNInt, PartitionsSet);
(12) return PartitionsSet;

of Algorithm 2 is performed. Function InitSetofPartitions, line (1) of Algo-
rithm 2, takes O(nars) time. Function CalculateIGDegree, line (2), traverses
the interference graph in order to count the number of interferences of each
variable. The resulting complexity for this part is, thus, O(n2). In line (3)
of Algorithm 2, function FillVarsReverseOrderedByDegree time complexity is
O(n log n), since it has to sort the variables in decreasing order of their number
of interferences. Finally, the loop shown in lines (4–11) has time complexity
O(n (n + nars)), given that function CalculateNInterferences, which is O(n), is
invoked inside this loop (line 7). Function PutVarInPartition, line (11), takes
constant time. Thus, Algorithm 2 complexity is O(n (n + nars)).

After partitioning, CGOA executes CSOA for each partition. This part of the
CGOA algorithm is O(nars (m + n3 log n)), since it runs the nars times CSOA
algorithm, and has complexity O(m+n3 log n). Therefore, the CGOA algorithm
is O(nars (m + n3 log n)).

As before, this is a worst-case time complexity, and, in practice, this algorithm
runs more efficiently.

5.2 Example of CGOA Partitioning

The example shown in Figure 5 illustrates how CGOA partitioning works.
Figure 5a has an interference graph, and Figure 5b shows the variables sorted
in decreasing order of their number of interferences. In this example, there
are only two ARs. Figures 5c–h show the interference graphs of each partition
while partitions are constructed. Figure 5i shows the interference graph for
each partition after the partitioning algorithm is finished. To build the par-
titioning, variables are considered in the order shown in Figure 5b. Initially,
variable 9 is arbitrarily placed into partition P0, since variable 9 has the same
number of interferences with the variables in partitions P0 and P1 (Figure 5c).
Variable 6 is placed into partition P1 (Figure 5d), because it has one interfer-
ence with variables in P0 and none in P1. Variables are being placed into the
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Fig. 5. (a) Interference graph; (b) variables sorted in decreasing order of their number of interfer-

ences; (c–h) interference graph of each partition during the process; (i) interference graphs resulting

for each partition.

partition with fewer interferences, obeying the order shown in Figure 5b. The
algorithm ends when each variable is assigned to a partition. In Figure 5h,
the tie-break criterion is used, and variable 5 is placed into partition P1, as P1
has fewer variables than P0, and the number of interferences between vari-
able 5 and variables in P0 and P1 is the same. Figure 5i shows the resulting
partitions.

6. EXPERIMENTAL RESULTS

In this section, we compare CSOA to six other solutions to SOA, and CGOA to
three other approaches to GOA. We use the MediaBench benchmark [Lee et al.
1997] to evaluate the heuristics.

The techniques proposed in this paper were implemented in OffsetStone
[Leupers 2003], a toolset used to test and evaluate OA algorithms. Benchmark
programs were compiled using the LANCE [Leupers 2001] compiler front-end,
which translates the C source code into three-address code intermediate repre-
sentation. The resulting intermediate representation code was then optimized
through a combination of the following optimizations: constant folding, constant
propagation, jump optimization, loop-invariant code motion, induction vari-
able, elimination, global common subexpression elimination, dead code elimi-
nation and copy propagation. Notice that memory aliasing is not an issue for
OA, as only scalar, local variables are rearranged on the stack. Because the
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Table I. Offset Cost Relative to SOA–OFU

Benchmarks Liao (%) TB (%) GA (%) INC-TB(%) CSOA (%)

adpcm 66.7 63.8 63.8 63.8 30.0

epic 72.3 70.0 69.8 69.8 36.3

g721 73.3 70.5 70.5 70.5 20.2

gsm 72.2 69.6 69.6 69.6 13.4

jpeg 68.8 66.7 66.5 66.5 21.9

mpeg2 71.5 69.6 69.4 69.5 24.5

pegwit 68.3 62.2 61.9 61.9 26.0

pgp 70.8 67.2 67.1 67.1 22.5

rasta 65.7 64.7 64.7 64.7 13.9

Average 69.9 67.1 67.0 67.0 25.6

programmer cannot assume any ordering among these variables on the stack,
the compiler has freedom to perform OA safely.

Access sequences were then extracted from each basic block and basic block
access graphs merged on a function basis. Variable live ranges were computed
by doing liveness analysis [Aho et al. 1986] in the intermediate representation
(after the optimizations described above) and the interference graph [Muchnick
1997] was then constructed.

CSOA is compared (Table I) to four other approaches that do not use vari-
able coalescing. To evaluate the results, we measured the percentage of the
number of update instructions inserted by each method. The baseline metric
is the number of update instructions inserted by SOA–OFU, a trivial offset
assignment algorithm where variables are assigned to offsets in the order of
their first use in the code. The four other methods used in this comparison are:
SOA-TB, the heuristic described in Leupers and Marwedel [1996]; SOA–GA,
the heuristic described in Leupers and David [1998]; SOA–INC-TB [Leupers
2003], the combination of two SOA algorithms, SOA-incremental Atri et al.
[2001], SOA–TB [Leupers and Marwedel 1996]; and SOA–Liao, the algorithm
described in Liao et al. [1996].

Notice from Table I that CSOA reduces, on average, the number of update
instructions to 25.6% of the SOA–OFU cost. This is a very significant improve-
ment over the previous algorithms. The best of the other algorithms (SOA–
INC–TB and SOA–GA) reduced the offset cost, on average, to 67.0% of the
SOA–OFU cost.

Table II shows the numbers of update instructions necessary when SOA–
OFU is used.

Table III shows the results of CSOA when compared to the results of two
other methods that also use variable coalescing. As in Table I, we measured the
percentage of the number of update instructions inserted by each method, with
respect to the number of update instructions inserted by SOA–OFU. The other
two heuristics are: SOA–Color, the optimization described in Sudarsanam et al.
[1997], and SOA–Zhuang, the algorithm described in Zhuang et al. [2003]. The
table shows that, on average, CSOA reduces the number of update instruc-
tions to 25.6%, while SOA–Zhuang reduces to 30.3% and SOA–Color to 35.8%
of the SOA–OFU cost. In other words, CSOA produces 15.5% fewer update

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.



Offset Assignment Using Simultaneous Variable Coalescing • 877

Table II. Offset Cost Returned by

SOA–OFU

Benchmarks SOA–OFU

adpcm 207

epic 6235

g721 718

gsm 1511

jpeg 10338

mpeg2 7981

pegwit 2249

pgp 7235

rasta 6626

Table III. Offset Cost Relative to SOA–OFU

Benchmarks CSOA(%) SOA–Color (%) SOA–Zhuang (%)

adpcm 30.0 37.2 31.9

epic 36.3 53.7 39.9

g721 20.2 37.1 22.1

gsm 13.4 19.2 14.6

jpeg 21.9 36.2 26.6

mpeg2 24.5 43.1 26.8

pegwit 26.0 51.3 30.3

pgp 22.5 39.0 26.3

rasta 13.9 21.8 24.7

Average 25.6 35.8 30.3

instructions than SOA–Zhuang and 28.5% fewer update instructions than
SOA–Color. We believe that this exceptional improvement is because of the
fact that CSOA does not coalesce variables aggressively and indiscriminately,
but tries to make adjacent in memory variables that have many consecutive
accesses. This increases the closeness between variables that are accessed con-
secutively. CSOA, in opposition to other techniques that naively coalesce vari-
able slots [Sudarsanam et al. 1997], wisely takes advantage of coalescing to
reduce both the SOA cost and the memory requirement. This is achieved by
simultaneously performing variable coalescing while solving SOA.

Another important result is the memory (stack) savings, when variable coa-
lescing is used combined with the OA techniques. These results can be observed
in Table IV. The results shown in Table IV are the percentages of memory size
used by SOA–Color, CSOA, and SOA–Zhuang when compared to the memory
size used by all other methods that do not use variable coalescing [Liao et al.
1996; Leupers and Marwedel 1996; Leupers and David 1998; Leupers 2003;
Atri et al. 2001], and considering that only local statically allocated variables
are in the stack.

From Table IV, one can observe that CSOA reduces the size of the stack
used to store local variables to 28.6%, when compared to the other methods
that do not perform variable coalescing, while SOA–Color reduces to 11.6 and
SOA–Zhuang to 24. It is important to emphasize that, although CSOA makes
fewer variable coalescing, the OA cost resulting from CSOA is the smallest cost,
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Table IV. Stack Length Relative to Stack Length of the Methods Not

Performing Variable Coalescing

Benchmarks CSOA (%) SOA–Color (%) SOA–Zhuang (%)

adpcm 27.3 15.7 28.3

epic 27.0 11.6 26.6

g721 25.0 13.3 22.7

gsm 21.5 7.0 19.8

jpeg 34.7 14.6 25.7

mpeg2 31.8 12.2 21.9

pegwit 35.3 9.7 26.8

pgp 31.5 12.8 24.7

rasta 26.1 9.9 21.4

Average 28.6 11.6 24.0

Table V. Percentage of Temporary

Variables, Considering as Temporary a

Variable Alive in Only One Basic Block

Benchmarks %Temporaries

adpcm 59.6

epic 48.1

g721 80.7

gsm 86.6

jpeg 65.2

mpeg2 65.6

pegwit 72.1

pgp 67.5

rasta 43.6

Average 64.1

compared with SOA–color and SOA–Zhuang. In addition, by achieving a better
OA, CSOA reduces the code size more than the other techniques.

Finally, Table V shows the number of temporary variables (among those con-
sidered for SOA) in each program.3 Observe through these numbers that, on
average, 64.1% of the variables are temporaries. Memory-stored temporaries
are very common in DSP and other ASIP architectures, given their reduced
number of general-purpose registers. Thus, temporary allocation plays an im-
portant role in the final code performance, reinforcing our perception that there
are many opportunities for CSOA to coalesce variables in DSP code, as shown
by the experimental results.

Yet another experimental result revealed that in 43.9% of the instances of
all benchmarks, CSOA resulted in zero cost. Thus, at least for this percentage
of the instances, CSOA resulted in the optimal cost. We also believe that this
percentage is significantly higher, in fact, as many of the other instances may
have an optimal cost greater than zero.

Table VI shows the results obtained by the following methods:

� CGOA, the technique proposed in this paper, and described in Section 5;

3We consider here as temporaries those variables whose liveness are restricted to a single basic

block.
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Table VI. Offset Cost Relative to SOA–OFU Cost When Using Two

ARs

Benchmarks CGOA (%) CGOA–Liao (%) GOA–Leupers (%)

adpcm 7.3 44.4 23.2

epic 22.8 51.3 30.3

g721 6.8 47.1 27.3

gsm 3.0 32.4 36.0

jpeg 12.5 46.6 23.5

mpeg2 15.2 52.0 28.9

pegwit 10.8 41.8 19.1

pgp 11.4 44.9 25.2

rasta 10.4 54.1 12.0

Average 11.3 52.8 27.9

Table VII. Offset Cost Relative to SOA–OFU Cost When Using Four

ARs

Benchmarks CGOA (%) CGOA–Liao (%) GOA–Leupers (%)

adpcm 4.4 25.1 8.2

epic 10.5 31.5 8.7

g721 7.1 30.6 14.6

gsm 4.4 27.0 36.7

jpeg 9.2 34.5 15.2

mpeg2 10.1 38.2 13.7

pegwit 5.7 24.2 12.9

pgp 7.8 31.4 14.3

rasta 9.2 46.2 5.4

Average 8.4 36.4 14.6

� CGOA-Liao, a hybrid technique that performs our variable partition de-
scribed in Section 5 and, after that, performs SOA–Liao [Liao et al. 1996]
in each partition;

� GOA-Leupers, which is the method described in Leupers and Marwedel
[1996].

Only two address registers were used to obtain the results of Table VI. The
results are the percentages of the number of update instructions inserted by
each method, with respect to the number of update instructions inserted by
SOA–OFU. Observe that, on average, for only two ARs, CGOA reduces the
offset cost to 11.3%. CGOA–Liao and GOA–Leupers reduce the offset cost to,
respectively, 52.8 and 27.9%.

Table VII shows the CGOA, CGOA–Liao and GOA–Leupers results when
four address register are available. Again, the percentages are the offset cost for
each method when compared to the SOA–OFU offset cost. The CGOA heuristic
reduces the cost to 8.4%, CGOA-Liao to 36.4%, and GOA–Leupers to 14.6%.
Again, CGOA produces the best results.

Table VIII shows the results of CGOA, CGOA–Liao, and GOA–Leupers, for
eight address registers. Like in the previous tables, the percentages are the off-
set cost of each method compared to SOA–OFU cost. For all three methods, the
results obtained when eight ARs are used were worse than the results achieved

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 4, November 2006.



880 • D. Ottoni et al.

Table VIII. Offset Cost Relative to SOA–OFU Cost When Using Eight

ARs

Benchmarks CGOA (%) CGOA–Liao (%) GOA–Leupers(%)

adpcm 10.1 23.7 16.9

epic 5.5 19.9 5.8

g721 13.1 29.7 27.3

gsm 7.1 45.3 55.7

jpeg 9.3 38.8 27.8

mpeg2 9.2 34.5 17.9

pegwit 9.4 31.5 26.6

pgp 8.2 34.4 24.0

rasta 9.4 39.7 6.8

Average 10.2 37.2 22.0

Table IX. Stack Size Result CGOA Relative to the Stack

Size Resulting from the Methods that Do Not

Performing Variable Coalescing

Benchmarks 2 ARs (%) 4 ARS (%) 8 ARS (%)

adpcm 28.8 44.5 55.6

epic 32.0 37.3 48.3

g721 30.6 42.7 57.3

gsm 27.3 36.7 46.2

jpeg 43.0 55.4 68.5

mpeg2 41.8 52.3 62.5

pegwit 42.5 54.5 65.7

pgp 53.2 53.4 68.5

rasta 23.1 47.8 56.1

Average 35.5 46.7 58.2

when four ARS are available. This is probably because of the cost to initialize
four other ARs, which considerably impacts the final code quality. Besides that,
in CGOA, more partitions decrease the variable coalescing opportunities, be-
cause only variables in the same partition can be coalesced. CGOA reduces the
offset cost to 10.2%, CGOA–Liao to 37.2%, and GOA–Leupers technique to 22%.

Table IX shows the CGOA stack savings when two, four, and eight ARs are
used. The results are in percentage of the stack size when compared to the
methods that do not perform variable coalescing. CGOA reduces the stack size,
on average, to 35.5, 46.7, and 58.2%, for two, four and eight ARs, respectively.
These numbers confirm that more partitions imply fewer opportunities for vari-
able coalescing, since less variables are assigned to each partition. Obviously,
there is an ideal number of partitions, that should be between three and seven
for the Mediabench benchmark. A simple technique to find the real number of
ARs for each instance is to test all values between 1 and the total number of
ARs in the processor.

Tables XI, XII, and XIII show the results obtained by CGOA and GOA–
Zhuang [Zhuang et al. 2003], using, respectively, two, four, and eight ARs. Be-
cause of the high-time complexity of GOA–Zhuang and the large number of
variables generated by the LANCE compiler [Leupers 2001] to some instances
of Mediabench programs, we ran the GOA–Zhuang and CGOA algorithms only
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Table X. Offset Cost Returned by

SOA–OFU with Restriction on Number

of Variables per Instance

Benchmarks SOA–OFU

adpcm 207

epic 1560

g721 588

gsm 1105

jpeg 9247

mpeg2 5024

pegwit 1410

pgp 6160

rasta 1359

Table XI. Offset Cost Relative to SOA–OFU Cost

when Two ARs Are Available

Benchmarks CGOA (%) GOA–Zhuang (%)

adpcm 7.3 8.7

epic 15.5 12.4

g721 6.8 8.5

gsm 3.4 9.4

jpeg 11.6 12.7

mpeg2 13.9 10.7

pegwit 9.7 10.3

pgp 10.7 10.8

rasta 12.8 12.3

Average 6.8 7.5

Table XII. Offset Cost Relative to SOA–OFU Cost

When Four ARs Are Available

Benchmarks CGOA (%) GOA–Zhuang (%)

adpcm 4.3 12.1

epic 8.6 17.7

g721 8.2 17.5

gsm 5.4 25.4

jpeg 8.1 20.4

mpeg2 8.9 17.0

pegwit 8.0 22.1

pgp 7.1 18.7

rasta 8.3 19.4

Average 7.3 18.6

to the instances with less than 270 variables. It is important to emphasize that
this is a limitation of GOA–Zhuang algorithm only and not of CGOA.

Table X shows the offset cost returned by SOA–OFU, considering only the
instances with less than 270 variables.

Table XI shows that CGOA, on average, reduces the offset cost to 6.8% and
GOA–Zhuang to 7.5%, using as baseline the SOA–OFU cost. In general, we
want to stress that CGOA has many advantages, when comparing to GOA–
Zhuang, namely: (1) CGOA produces a better offset cost than GOA–Zhuang; (2)
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Table XIII. Offset Cost Relative to SOA–OFU

When Eight ARs Are Available

Benchmarks CGOA (%) GOA–Zhuang (%)

adpcm 10.1 16.9

epic 9.6 26.0

g721 14.8 32.1

gsm 9.0 57.6

jpeg 9.0 33.9

mpeg2 9.3 27.1

pegwit 14.5 43.7

pgp 8.6 30.1

rasta 9.5 30.1

Average 10.3 31.4

it has a much smaller time complexity; and (3) CGOA is a much simpler algo-
rithm when compared to GOA–Zhuang, and, thus, is much easier to implement.

Table XII shows the results obtained by CGOA and GOA–Zhuang, when there
are four ARs available. CGOA reduces offset cost to 7.3% and GOA-Zhuang to
18.6%, again comparing to the SOA–OFU cost. The solutions achieved by CGOA
and GOA–Zhuang, considering four ARs are worse than considering two ARs,
and even worse when considering eight ARs, as illustrated in Table XIII.

7. CONCLUSIONS

In this paper we described the CSOA heuristic, originally presented in Ottoni
et al. [2003], and proposed a heuristic to solve the GOA problem based on coa-
lescing memory variable slots. The experimental results show that our method
(CGOA), for two address registers, eliminates, on average, 17.2% of the up-
date instructions when compared to GOA–Zhuang, the best previous method
to GOA. In addition, CGOA runs faster and is much simpler to implement. An-
other important side effect of our technique is the reduction in the size of the
memory layout when compared to methods that do not perform variable coa-
lescing. The large presence of temporaries in DSP programs and the increased
closeness resulting from the coalescing technique justify these good results.
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