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Abstract:

This paper addresses the design of a dynamic state feedback receding horizon controller, which guaran-

tees robust constraint satisfaction, robust stability and offset-free control of constrained linear systems

in the presence of time-varying setpoints and unmeasured disturbances. This objective is obtained by

first designing a dynamic linear offset-free controller and computing an appropriate domain of attraction

for this controller. The linear (unconstrained) controller is then modified by adding a perturbation term,

which is computed by a (constrained) robust receding horizon controller. The receding horizon controller

has the property that its domain of attraction contains that of the linear controller. In order to ensure

robust constraint satisfaction, in addition to offset-free control, the transient as well as the limiting be-

havior of the disturbance and setpoint need to be taken into account in the design of the receding horizon

controller. The fundamental difference between the results in this paper and the existing literature on re-

ceding horizon control is that, in this paper, the transient effect of the disturbance and setpoint sequences

on the so-called “target calculator” is explicitly incorporated in the formulation of the receding horizon

controller. An example of the control of a continuous stirred tank reactor is presented.

Topical Heading: Process system engineering

Key Words: Model predictive control, constraints, offset-free control, tracking, robust control.
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Introduction

The control of systems in the presence of constraints is an important task in many application fields because con-

straints “always” arise from physical limitations and quality or safety reasons. Moreover, in practical applications,

disturbances are usually present and often they are not measurable or predictable. For example, in the chemical indus-

tries disturbances arise from interactions between different plant units, from changes in the raw materials and in the

operating conditions (such as ambient temperature, humidity, etc.).

It is well-known that with an unmeasured persistent disturbance offset-free control is, in general, not possible.

However, if the disturbance has the additional property that it is integrating or periodic, then offset-free control may

be an achievable goal. In many practical applications, especially in the process industries, disturbances are often inte-

grating and reach, after some transient, a constant value. Hence, one basic objective of an effective control algorithm

is that it guarantees offset-free control whenever this is possible. Moreover, an effective control algorithm is also

applicable to cases in which the setpoints of the controlled variables are allowed to vary over time.

The design of control algorithms able to stabilize constrained linear plants with input and state constraints subject

to unknown, but bounded disturbances, has been the subject of several works over the last few decades; a number of

excellent surveys are available [1–5], which discuss how the important goal of guaranteeing closed-loop stability and

constraint satisfaction can be obtained. Existing control algorithms, which address the problem of robust control of

constrained systems, are usually based on ideas from set invariance [1, 6, 7], reference governors [8–12] or receding

horizon control [13–22]. It is interesting to note that, despite the practical importance of guaranteeing offset-free

control in the presence of integrating disturbances, none of the existing receding horizon control algorithms with

robust stabilityand robust constraint satisfaction guarantees are able to guarantee offset-free control.

Compared to linear (unconstrained) control, the rigorous study of designing controllers that guarantee offset-

free control has received very little attention in the constrained control community, until relatively recently [23–30].

However, though the receding horizon control algorithms presented in [23–30] guarantee offset-free control around a

neighborhood of the steady-state, they do not guarantee robust constraint satisfaction for all initial states over which

the controller is defined (in other words, they do not guarantee feasibility of the optimization problem for all time and

for all allowable disturbance and setpoint sequences). Furthermore, with the exception of [8–10, 14, 16] (which do

not guarantee offset-free control for disturbances that decay to non-zero values), none of the existing receding horizon

control algorithms that guarantee robust stability and robust constraint satisfaction, address the problem of tracking

arbitrary setpoints.

In this paper, we present a novel receding horizon control algorithm for controlling constrained linear systems

subject to unmeasured, bounded disturbances. The proposed algorithm is guaranteed to remove steady-state offset in

the controlled variables whenever the disturbances reach an (unknown) steady-state value. Moreover, the setpoints
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of the controlled variables are allowed to vary arbitrarily with time within a pre-specified set, provided they also

converge to some limit. Importantly, the algorithm also guarantees to satisfy input and state constraints for all allowable

disturbance sequences. None of the existing receding horizon control algorithms are able to provide similar guarantees.

The difficulty with guaranteeing robust constraint satisfaction,in additionto offset-free control, is that the transient

as well as the limiting behavior of the disturbance and setpoint need to be taken into account during the computation

of the control input. The fundamental difference between the algorithm proposed in this paper and those available in

the literature, is that we consider both the transient and limiting effect of all allowable future disturbance and setpoint

sequences when computing the receding horizon control action. This is the key idea that allows us to guarantee offset-

free controlandrobust constraint satisfaction. Existing approaches either neglect the transient response or they neglect

the ultimate behavior of the disturbance and setpoint, hence why they are unable to offer the same kind of guarantee.

This paper is organized as follows. First, the problem definition is given, followed by the design of a linear offset-

free controller. Following this, we show how a receding horizon controller can be used to improve on the linear

controller by enlarging the region of attraction. The main characteristics of the proposed receding horizon controller

are illustrated on an example of a continuous stirred tank reactor. Finally, the main contributions of this work are

summarized and some possible extensions are discussed. To simplify the presentation and reading of this paper, the

proofs of results that can be derived using well-known methods have been omitted. The only proofs that have been

included are for those cases where we were unable to find equivalent and sufficiently detailed proofs, where we have

used unconventional proof techniques or where we feel that a particular detail of the proof is important.

Notation: If a andb are vectors, then the column vector(a,b) := (aT bT)T . Given an arbitrary setZ , Z N denotes

the Cartesian productZ ×·· ·×Z .

Problem Description and Preliminary Results

In this paper we consider a discrete-time linear time-invariant plant:

x(k+1) = Ax(k)+Bu(k)+Ed(k) , (1a)

z(k) = Czx(k) , (1b)

in which k is the sample instant,x∈ Rn is the plant state,u∈ Rm is the control input (manipulated variable),d ∈ Rr

is an unmeasured disturbance andz∈ Rp is the controlled variable, i.e. the variable to be controlled to a given (time-

4



varying) setpoints. Affine inequality constraints are given on the state and input1, i.e.

x∈X , u∈U , (2)

whereX is a polyhedron (i.e. a closed and convex set that can be described by a finite number of affine inequality

constraints) andU is a polytope (i.e. a bounded polyhedron); the interior ofX ×U contains the origin. We also

make the following standard assumption:

Assumption 1 (General). A measurement of the plant state is available at each sample instant,(A,B) is stabilizable,

(A,Cz) is detectable and (see e.g. [28])

rank

I −A −B

Cz 0

 = n+ p. (3)

Remark1. The rank condition (3) is used to guarantee the existence of an offset-free steady-state for any constant

setpoint and disturbance pair. In general, the steady-state is not necessarily unique for a given setpoint and disturbance.

Note also that this condition implies that the number of controlled variables cannot exceed the number of control inputs

or the number of states, i.e.p≤ min{m,n}. It is easy to find examples for which offset-free control is not possible

if (3) is not satisfied.

We also consider the following assumptions on the setpoint and disturbance sequences:

Assumption 2 (Setpoint). At each time instant, the current setpoint is known but future setpoint values are unknown.

The setpoint sequences(·) takes on values in a polytopeS ⊂ Rp containing the origin and asymptotically reaches an

unknown steady-state value, i.e.s(k) ∈S for all k∈ N and there exists an ¯s∈S such that limk→∞ s(k) = s̄.

Assumption 3 (Disturbance). At each time instant, currentand future disturbances areunknown. The disturbance

sequenced(·) takes on values in a polytopeD ⊂ Rr containing the origin and asymptotically reaches anunknown

steady-state valuēd, i.e. d(k) ∈D for all k∈ N and there exists ād ∈D such that limk→∞ d(k) = d̄.

Remark2. Note that, unlike many existing results, we do not assume that the disturbance or setpoint is constant.

Furthermore, unlike [25], we do not assume that the setpoint and/or disturbance are generated by a known finite-

dimensional exogenous system. The lack of these assumptions in this paper complicates the design of the controller.

Under the above assumptions we present a novel method for designing a dynamic, state feedback receding hori-

zon controller that, for any allowable disturbance and setpoint sequences (i.e. any infinite disturbance and setpoint

sequences that satisfy Assumptions 2 and 3), accomplishes the goal of asymptotically driving the controlled variable

1The results in this paper can easily be extended to the case with mixed constraints on the state and input.
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to any given allowable asymptotic setpoint, while respecting the state and input constraints, i.e.

lim
k→∞

z(k) = s̄ (4a)

x(k) ∈X , u(k) ∈U , ∀k∈ N . (4b)

Before proceeding, we present here the following well-known result [6,15,18,20,31]:

Proposition 1. Let the polyhedron

P :=
{

v∈ Rt | Fv≤ g+Hw for all w∈W
}

where F∈ Rq×t and H∈ Rq×s are matrices, g∈ Rq is a vector andW is a compact (i.e. closed and bounded) subset

of Rs, then

P =
{

v∈ Rt

∣∣∣∣ Fv≤ g+ min
w∈W

Hw

}
where the minimization is performed row-wise, i.e. if Hi denotes the ith row of H, then

min
w∈W

Hw := [min
w∈W

H1w · · · min
w∈W

Hqw]T .

Since our system, in closed-loop with the receding horizon controller, isnonlinearand we are interested in robust

stability results, we review the following definitions and results, adapted from [32], for a generic nonlinear perturbed

discrete-time system:

ζ (k+1) = F(ζ (k))+w(k) , (5)

in whichF : R` → R` andF(0) = 0. LetBr :=
{

ξ ∈ R` | ‖ξ‖ ≤ r
}

if r > 0.

Definition 1. The origin is a robustly asymptotically stable fixed point of (5) if for allε > 0, there exist aδ > 0 and a

µ > 0 such that for all initial conditionsζ (0)∈Bδ and perturbation sequencesw(·) satisfyingw(k)∈Bµ for all k∈N,

the following two conditions are satisfied:

1. (Robust stability) The solution of (5) satisfiesζ (k) ∈ Bε for all k∈ N;

2. (Robust convergence) The solution of (5) satisfies limk→∞ ζ (k) = 0 if lim k→∞ w(k) = 0.

Definition 2. If w̄ := limk→∞ w(k) is the limit point of the perturbation sequencew(·), then a vectorζ̄ satisfying

ζ̄ = F(ζ̄ )+ w̄ is a robustly asymptotically stable fixed point of (5) if the origin is a robustly asymptotically stable fixed

point of the systemχ(k+1) = G(χ(k))+ω(k), in which χ := ζ − ζ̄ , ω := w− w̄ andG(χ) := F(ζ̄ + χ)−F(ζ̄ ).
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Theorem 1. [32, Thm. 3] Let F: R` → R` be a Lipschitz continuous function in a neighborhood of the origin with

F(0) = 0. If the origin is an exponentially stable fixed point of the unperturbed systemζ (k+1) = F(ζ (k)), then it is

a robustly asymptotically stable fixed point of the perturbed systemζ (k+1) = F(ζ (k))+w(k).

Linear Controller Design

In order to guarantee robust constraint satisfaction and stability in receding horizon control, it is by now standard

practice to compute a suitable terminal constraint and terminal cost based on a stabilizing linear controller [2–5]. This

section shows how one can compute such a linear controller and an appropriate terminal constraint. The difference

between this paper and standard results is that the controller in this paper is dynamic, rather than static, hence the

terminal constraint is computed in the joint plant-controller state-space, rather than just the plant state-space.

In order to guarantee offset-free control when disturbances are asymptotically constant and non-zero, it is standard

practice to augment the plant model with a disturbance model and use this combined model to estimate the size of the

disturbance. However, as pointed out in [27, 28], this is not necessarily as straightforward as is commonly thought.

Care has to be taken in constructing the controller, since offset-free control is guaranteed only if the combined plant-

disturbance system is detectableand the closed-loop system (feedback gain + observer + target calculator + plant)

satisfy a couple of additional, technical assumptions (see [27, 28] for details). This section will therefore show in

detail how one can design a dynamic controller (observer and static state feedback gain) for (1) that guarantees offset-

free control. The general structure of the proposed controller is depicted in Figure 1 and each block is described

next.

The Augmented System

We will make use of the following auxiliary system in order to define the controller dynamics:

x̂(k+1) = Ax(k)+Bu(k)+(d̂(k)+x(k)− x̂(k)) , (6a)

d̂(k+1) = d̂(k)+x(k)− x̂(k) . (6b)

Note that the system (6) corresponds to using a dead-beat observer for the following system:

x(k+1) = Ax(k)+Bu(k)+ d̃(k) ,

d̃(k+1) = d̃(k) ,

y(k) = x(k) .
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in which it is clear thatd̃ ∈ Rn is an integrated (step) disturbance acting on the statex∈ Rn. The role ofd̃ is essential

in removing steady-state offset in the presence of an unknown persistent disturbance [27, 28]. As will be seen later,

the dimensions of̃d andd need not be the same in order to guarantee offset-free control.

By combining the plant dynamics (1) and the auxiliary system (6), we obtain the following augmented system:

ξ (k+1) = A ξ (k)+Bu(k)+E d(k) , (7a)

z(k) = C ξ (k) , (7b)

in which ξ := (x, x̂, d̂) andA , B, C andE are suitably-defined.

Target Calculation

When a non-zero disturbance affects a system (and/or the current setpoints is different from zero), the steady-state

‘target’ value of the state and input may need to be shifted in order to cancel the effect of such a disturbance on the

controlled variable [33, 34]. To this aim, at each sample instant we use the estimate of the future disturbance and

compute the steady-state target(x̄, ū) such that one can drive the controlled variable to the current setpoint, by solving

the following least-squares problem [34] in which̄R∈ Rm×m is a positive definite matrix:

(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) := argmin
(x̄,ū)

1
2

ūTR̄ū, (8a)

subject to

I −A −B

Cz 0

x̄

ū

 =

I −I I

0 0 0

ξ +

0

I

s, (8b)

where it can be seen that the current estimate of the limiting value of the disturbance is given by
[
I −I I

]
ξ (k) =

x(k)− x̂(k)+ d̂(k) = d̂(k+1).

For a given augmented stateξ and a given setpoints, one can think of(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) as the new ‘origin’

around which the system should be regulated. Solving for(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) is trivial:

Lemma 1 (Target calculation). If Assumption 1 holds, then the target calculation(8) has a unique solution that is

linear with respect to the augmented stateξ and the setpoint s, and has the form

x̄∗ (ξ ,s)

ū∗ (ξ ,s)

 =

Πx,ξ −Πx,ξ Πx,ξ

Πu,ξ −Πu,ξ Πu,ξ

ξ +

Πx,s

Πu,s

s, (9)
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for suitably-defined constant matricesΠx,ξ ∈ Rn×n, Πu,ξ ∈ Rm×n, Πx,s∈ Rn×p andΠu,s∈ Rm×p.

Proof. The statement follows immediately from the Lagrangian/KKT conditions for (8) [35, Sect. 16.1]. It is possible

to verify that the matrix, which is to be inverted when obtaining the expression for the stationary point of the La-

grangian, is non-singular because of the rank condition in (3)and the fact thatR̄ is positive definite. Hence, the target

calculation (8) has a unique minimizer [36].

Remark3. Recall that (3) on its own is not sufficient to guarantee that the minimizer of (8) is unique. However, ifR̄ is

positive definite, then we do not need to include a penalty on ¯x in the cost (8a) in order to guarantee that the minimizer

is unique.

Remark4. Note that, unlike [27, 28], the constraints on the state and input are not included in (8). In order for the

receding horizon controller to take account of the transient of the disturbance and setpoint in its predictions, it needs

to calculate how(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) will vary over the control horizon. As will be shown later, this is easy if the

mapping(ξ ,s) 7→ (x̄∗ (ξ ,s) , ū∗ (ξ ,s)) is linear, as above. If inequality constraints had been included in (8), then the

mapping(ξ ,s) 7→ (x̄∗ (ξ ,s) , ū∗ (ξ ,s)) would have been nonlinear, hence the computation of(x̄∗ (ξ ,s) , ū∗ (ξ ,s)) at

each time instant in the prediction horizon, and hence the computation of the receding horizon control input, would be

considerably more complicated.

Unconstrained Offset-free Controller Design

We now consider what would happen if one were to choose a gain matrixK such thatA+BK is strictly stable and, as

is common practice, let the control input in the augmented system (7) be given by

u = ū∗(ξ ,s)+K(x− x̄∗(ξ ,s)) . (10)

Clearly, as can be seen in Figure 1, there is a feedback path around the target calculator and therefore it is important

to verify that the closed-loop system (observer + target calculator + state feedback gain + plant) is stable. We therefore

present the following intermediate result:

Lemma 2 (Stability). Suppose that Assumption 1 holds and K∈ Rm×n is such that A+ BK is strictly stable. If

Γ ∈ Rm×n is any constant matrix and

K :=
[
K +Γ −Γ Γ

]
, (11)

then

AK := A +BK (12)
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is strictly stable.

Proof. The statement follows from straightforward block matrix manipulations [36], where one can show that 2n of

the eigenvalues ofAK are at zero and the rest are the eigenvalues ofA+BK.

By defining

Γ := Πu,ξ −KΠx,ξ , L := Πu,s−KΠx,s, (13)

and substituting (9) into (10) it easily follows that

u = K ξ +L s, (14)

whereK is defined as in (11).

After substituting (14) into (7), one can write an expression for the augmented system (7) under the linear control

u = K ξ +L s as

ξ (k+1) = AK ξ (k)+E d(k)+Fs(k) , (15a)

z(k) = C ξ (k) , (15b)

whereF is suitably-defined.

It immediately follows from Lemma 2 that the closed-system (15) is stable if the disturbance and setpoint are zero

(or asymptotically constant). As a consequence, we introduce the following standing assumption:

Assumption 4 (Stabilizing gain). The matrixK ∈ Rm×n is chosen such thatA+ BK is strictly stable,K is given

by (11),Γ andL given by (13) andAK := A +BK .

The following result states that if the control is given byu = K ξ +L s, then the value of the controlled variable

for (15) is guaranteed to converge to the asymptotic setpoint ¯s, given any allowable infinite setpoint and disturbance

sequence:

Lemma 3 (Offset-free control). If Assumptions 1–4 hold, then the solution of the closed-loop system(15) satisfies

limk→∞ z(k) = s̄ for all ξ (0) ∈ R3n.

Proof. See the Appendix.

Remark5. In this paper, we have assumed that there is no mismatch between the plant model(A,B,E) and the actual

plant dynamics(Ap,Bp,Ep). However, it is important to point out that, as in [24, 28], it is possible to verify that the

offset-free property in Lemma 3 holds even if there is a mismatch between the plant model(A,B,E) and the actual

10



plant dynamics(Ap,Bp,Ep), provided the augmented closed-loop system is stable. This fact is not surprising. Recall

that the internal model principle [37] (roughly) states that a controller that guarantees offset-free control even when

the system parameters are perturbed, must incorporate a model of the dynamic structure of the disturbance and the

reference signals; in our case, the observer contains a model of the disturbance and the target calculator contains a

model of the disturbance and setpoint. This point will be further illustrated in the example section.

The Maximal Constraint-admissible Robust Positively Invariant Set

As mentioned earlier, since the constraints on the state and input (2) are not included in the target calculation (8),

there is no guarantee that the steady-state target will satisfy constraints. Furthermore, there is also no guarantee that

the linear controller defined above will guarantee the satisfaction of the constraints during the transient. We therefore

proceed along similar lines as in conventional receding horizon control [2–5] and compute a constraint-admissible,

robust invariant set that could be used as a terminal constraint in our receding horizon controller (to be defined in the

next section). However, since our linear controller is dynamic and not static, we depart from convention and compute

an invariant set in the space of the augmented (plant + controller) stateξ := (x, x̂, d̂) of the closed-loop system (15),

rather than in the plant state-space (as is usually done [2–5]).

Let theconstraint-admissible setΞ be defined as all augmented states for which the constraints on the plant state

and plant input are satisfied, for any choice of setpoints∈S , if the control is given byu = K ξ +L s:

Ξ :=
{

ξ ∈ R3n | x∈X andK ξ +L s∈U for all s∈S
}

. (16)

The maximal constraint-admissible robust positively invariant setO∞ for the closed-loop system (15) is defined

as all initial states inΞ for which the evolution of the system remains inΞ for all allowable infinite setpoint and

disturbance sequences, i.e.

O∞ := {ξ (0) ∈ Ξ | ξ (k+1) = AK ξ (k)+E d(k)+Fs(k) ∈ Ξ, ∀s(k) ∈S , d(k) ∈D , k∈ N} . (17)

Assumption 5 (Maximal invariant set). The setO∞ is non-empty, contains the origin in its interior and is finitely

determined (i.e.O∞ can be described by a finite number of affine inequality constraints).

Note that sinceX andU are polyhedra given by affine inequalities,Ξ is easily computed by applying Propo-

sition 1 to the above definitions. Since (15) is linear and time-invariant andΞ is given by a finite number of affine

inequality constraints,O∞ (or an inner approximation to it) is easily computed by solving a finite number of LPs [31].

We are now in a position to collect all of the results in this section into a single statement. The following result

states that, provided the state of the augmented system (controller + plant) is inO∞ at timek = 0, then the evolution
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of the augmented system under the linear controlu = K ξ + L s is such that offset-free control is guaranteed, the

state and input constraints are satisfied for all allowable setpoint and disturbance sequences and robust stability is

guaranteed:

Theorem 2 (Linear controller). Suppose that Assumptions 1–5 hold. The solution of the closed-loop system(15)sat-

isfies(4) if and only if the initial augmented (controller + plant) stateξ (0)∈O∞. Furthermore,ξ̄ := (I−AK )−1(E d̄+

F s̄) is the robustly asymptotically stable fixed point of(15).

Proof. See the Appendix.

Before proceeding, we also defineX0, the set of plant states for which there exists a controller state such that the

augmented state is inO∞, as

X0 :=
{

x∈ Rn
∣∣ ∃(x̂, d̂) ∈ R2n such thatξ ∈O∞

}
. (18)

Receding Horizon Controller Design

The setX0, defined in (18), is the set of initial plant states for which one can initialize the controller state such that the

controlled variable will ultimately be driven by the linear controller to the asymptotic setpoint ¯s. Clearly one would

like to enlarge this set, if possible. It is well-known that receding horizon control allows one to achieve this aim [2–5].

This section therefore presents an approach for computing a (dynamic) receding horizon controller, which enlarges

the set of initial plant states for which the controlled variable can ultimately be driven to the asymptotic setpoint.

As mentioned earlier, in order to guarantee robust constraint satisfaction and stability in receding horizon control,

it is by now standard practice to compute a suitable terminal constraint and terminal cost based on a stabilizing linear

controller [2–5]. However, all existing results on receding horizon control do not include the effect of all allowable

disturbance and setpoint sequences on the target calculator in their predictions. This is an important difference that,

coupled with the fact that the controller in this paper is dynamic and not static (as in [2–5]), makes it necessary to show

in detail how the results from the previous section can be used to define an appropriate receding horizon controller.

Definition of the Receding Horizon Controller

For the sake of simplicity of exposition and implementation, we follow the approach of [14, 16–18, 20] by “pre-

stabilizing” the plant and letting the linear control in (14) be modified with a perturbation term as follows:

u = K ξ +L s+v, (19)
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wherev ∈ Rm is the perturbation term. The solution to the finite horizon optimal control problem (defined below)

is then a finite sequence of input perturbations that guarantees robust constraint satisfaction over the horizon and

optimizes some cost function.

Under the control in (19), the augmented state dynamics in (7) become

ξ (k+1) = AK ξ (k)+Bv(k)+E d(k)+Fs(k) . (20)

Remark6. At this point, it is useful to recall thatK , L , AK andF in (19)–(20) implicitly contain the solution

of the target calculation (8)–(9). Since these equations are linear, it is easy to compute the set of admissible input

perturbations, as detailed below.

Remark7. Obviously, there exist many alternative robust receding horizon control formulations that can also be

generalized to incorporate the results in this paper. For example, one could adopt a less conservative framework,

such as the ones proposed in [15, 19, 22, 38]. However, this will come at a greater cost in off-line and/or on-line

implementation. We believe that the pre-stabilizing framework adopted here is a practical approach that can be used

to illustrate the main ideas of this paper without introducing unnecessary detail. The results in this paper are easily

extended using the ideas in [15,19,22,38].

Before proceeding, we need to define some notation. Let the horizon lengthN be a positive integer and the

block vectorsv ∈ RmN, s∈ Rp(N−1), d ∈ RrN be defined asv := (v0,v1, · · · ,vN−1), s := (s1,s2, · · · ,sN−1) andd :=

(d0,d1, · · · ,dN−1). Note thats and all related terms are present only ifN > 1. Let ξi denote the predicted solution

to (20) i time steps into the future (timek+ i), given the augmented stateξ := ξ (k) at the current timek, a finite

sequence of control perturbationsv, the current setpoints0 := s := s(k), a finite sequence of future setpointss and

a finite sequence of future disturbancesd. The corresponding predicted plant statexi := [In 0]ξi and inputui :=

K ξi +L si +vi are similarly defined.

Given the above, we can now define the set of admissible input perturbationsVN(ξ ,s) as the set of input pertur-

bations of lengthN such that for all allowable future setpoint sequences of lengthN−1 and disturbance sequences of

lengthN, the input constraintsU are satisfied over the horizoni = 0, . . . ,N−1, the state constraintsX are satisfied

over the horizoni = 0, . . . ,N−1 and the augmented state at the end of the horizon is inO∞ (hence the predicted plant
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state at the end of the horizon is also inX ), i.e.

VN(ξ ,s) :=


v ∈ RmN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ0 = ξ , s0 = s,

ξi+1 = AK ξi +Bvi +E di +Fsi , i = 0, . . . ,N−1,

xi =
[
In 0

]
ξi ∈X , i = 0, . . . ,N−1, ξN ∈O∞,

ui = K ξi +L si +vi ∈U , i = 0, . . . ,N−1

for all s∈S N−1 and alld ∈DN


. (21)

Remark8. Note that the predictions in (21) take into account the solution of the target calculation in (8)–(9) on the

control and state trajectories over the horizoni = 0, . . . ,N. This is the fundamental difference between this paper

and existing results in receding horizon control and therefore allows one to provide a guarantee of robust constraint

satisfaction during transients.

In order to compute the receding horizon controller, we need to define a cost and set up an appropriate finite

horizon optimal control problem (FHOCP). We choose to define the FHOCP to be solved for the current augmented

stateξ and setpoints, as

V∗
N(ξ ,s) := min

v∈VN(ξ ,s)
VN(ξ ,s,v) , (22)

where the cost to be minimized is

VN(ξ ,s,v) :=
N−1

∑
i=0

(x̃i − x̄∗(ξ ,s))TQ(x̃i − x̄∗(ξ ,s))+(ũi − ū∗(ξ ,s))TR(ũi − ū∗(ξ ,s))

+(x̃N− x̄∗(ξ ,s))TP(x̃N− x̄∗(ξ ,s)) , (23)

with the matricesQ∈Rn×n, R∈Rm×m andP∈Rn×n positive definite. The vectors ˜xi ∈Rn andũi ∈Rm are defined as

x̃0 = x =
[
In 0

]
ξ , (24a)

x̃i+1 = Ax̃i +Bũi +(x− x̂+ d̂) , i = 0, . . . ,N−1, (24b)

ũi = ū∗(ξ ,s)+K(x̃i − x̄∗(ξ ,s))+vi , i = 0, . . . ,N−1. (24c)

The target state ¯x∗(ξ ,s) and target input ¯u∗(ξ ,s) are given by (8)–(9).

Remark9. Note that the choice of cost (23) corresponds to assuming the disturbance sequence is constant over the

control horizon and equal to the current estimate, and similarly with the setpoint. However, note that in the definition

of the constraints on the input perturbations (21) it is assumed that the disturbance and setpoint may change over the
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prediction horizon. As will be shown below, these two facts can be combined to guarantee, respectively, offset-free

control in the limit and robust constraint satisfaction during transients.

The minimizer of the FHOCP (22) is defined as

v∗(ξ ,s) :=
(
v∗0(ξ ,s), . . . ,v∗N−1(ξ ,s)

)
:= argmin

v∈VN(ξ ,s)
VN(ξ ,s,v) . (25)

As is standard in receding horizon control, for the current augmented stateξ and setpoints, we only keep the first

elementv∗0(ξ ,s) of the solution to the FHOCP. Using this receding horizon principle, we define our receding horizon

control input as

u(k) = K ξ (k)+L s(k)+v∗0(ξ (k),s(k)) . (26)

Properties of the Receding Horizon Controller

It is well-known that if there are disturbances present and the receding horizon control action is computed by opti-

mizing overopen-loop input sequences, rather thanfeedback policies, then the optimization problem may become

infeasible for large control horizons [3, 22]. Since we are not optimizing over feedback policies, but over a sequence

of perturbationsto a stabilizing control law (which is equivalent to optimizing over open-loop input sequences if the

system is open-loop stable and the chosen control law is zero), it is important to be able to characterize the properties

of the set of plant states for which one can guarantee that the FHOCP (22) has a solution.

Fortunately, optimizing over perturbations to a stabilizing control law does not suffer the same drawbacks as

optimizing over open-loop input sequences [14,16–18,20]. However, since we are including the solution of the target

calculator in our control input and predictions, it is still important to verify that feasibility of the optimization problem

is not lost in the formulation presented in this paper. We will therefore proceed to show that if the FHOCP (22) is

feasible at timek = 0, then the FHOCP (22) is feasible at all future time instants and offset-free control is guaranteed

in the limit.

The set of plant statesXv
N for which one can initialize the controller state(x̂, d̂) such that the set of admissible input

perturbationsVN(ξ ,s) is non-empty for alls∈S (and hence the FHOCP (22) has a solution), is given by

Xv
N :=

{
x∈X

∣∣ ∃(x̂, d̂) ∈ R2n such thatVN(ξ ,s) 6= /0 for all s∈S
}

. (27)

As will be shown below,Xv
N is the set of plant states inX for which the controlled variable will ultimately be driven

to the setpoint ¯s by the receding horizon controller.

We can now give our first main result:
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Theorem 3 (Domain of RHC law). Suppose that Assumptions 1–5 hold. If X0 is defined as in(18) and each Xvj ,

j ∈ {1, . . . ,N}, is defined as in(27)with N = j, then all the sets in{X0,Xv
1 , . . . ,Xv

N} contain the origin in their interior

and satisfy

X0 ⊆ Xv
1 ⊆ ·· · ⊆ Xv

N−1 ⊆ Xv
N . (28)

Proof. See the Appendix.

Theorem 3 is very important because it shows that, under the above assumptions, the set of states for which the

FHOCP (22) has a solution is non-empty and an increase in the horizon length does not decrease the size of the set of

initial plant states for which the controlled variable can be driven to the setpoint. Furthermore, it also implies that the

domain of attraction of the receding horizon controller contains the domain of attraction of the linear (unconstrained)

controller defined in the previous section.

We now proceed to give conditions under which one can guarantee offset-free control in addition to robust con-

straint satisfaction. For this purpose, we introduce the following assumption:

Assumption 6. The matricesQ andR are chosen to be positive definite, the matrixP is the positive definite solution

of the discrete algebraic Riccati equationP = Q+ATPA−ATPB(R+BTPB)−1BTPA, and the matrixK is the corre-

sponding gainK = −(R+ BTPB)−1BTPA. K is given by (11) withΓ given by (13),AK := A +BK andL is

given by (13).

Before giving our second main result, we need the following two lemmas, which are generalizations of results

in [17]:

Lemma 4 (FHOCP equivalence).Suppose that Assumptions 1 and 6 hold. If the matrix W∈ Rm×m is given by

W := R+BTPB, thenv∗(ξ ,s) = argminv
{

∑N−1
i=0 vT

i Wvi | v ∈ VN(ξ ,s)
}

.

Proof. A similar result, for robust receding horizon controllers that do not provide offset-free control, is well-known [17,

Rem. 3]. A detailed proof for the offset-free receding horizon controller proposed in this paper is reported in [36].

Lemma 5 (Robust feasibility and perturbation sequence).Suppose that Assumptions 1–3 and 5–6 hold. If the set

VN(ξ (0),s(0)) is non-empty, then the setVN(ξ (k),s(k)) is non-empty for all k∈ N and

lim
k→∞

v∗0(ξ (k),s(k)) = 0.

Proof. The proof follows fairly standard arguments in receding horizon control and is reported in [36].

Theorem 4 (Offset-free control, robust constraint satisfaction and stability of RHC). Let Assumptions 1–3 and

5–6 hold. One can choose the initial controller state(x̂(0), d̂(0)) such that the FHOCP(22) has a solution and the
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evolution of the augmented system(7) in closed-loop with the receding horizon control(26) satisfies(4) if and only if

the initial plant state x(0) ∈ Xv
N. Furthermore,ξ̄ := (I −AK )−1(E d̄+F s̄) is the robustly asymptotically stable fixed

point of (20) if it is in the interior ofO∞.

Proof. See the Appendix.

Implementation of the Receding Horizon Controller

Recall from (21) that the constraints on the input perturbations have to hold for all allowable setpoint and disturbance

sequences. In this section, we point out the fact that the (infinite) set of constraints in (21) is easily rewritten in terms

of a finite and tractableset of linear inequality constraints. This then allows one to compute the receding horizon

control action by setting up and solving a tractable, strictly convex quadratic program (QP) at each sample instant.

SinceX , U andO∞ are polyhedral sets with non-empty interiors, they are given by a finite number of affine

inequality constraints. As a consequence, one can obtain an expression for the set of admissible input perturbations

VN(ξ ,s) as

VN(ξ ,s) =
{

v ∈ RmN
∣∣∣ Fv ≤ b+Gdd+Gss+Hξ

ξ +Hss, ∀s∈S N−1,d ∈DN
}

, (29)

where the matricesF ∈ Rq×mN, Gd ∈ Rq×rN , Gs∈ Rq×p(N−1), Hξ ∈ Rq×3n, Hs∈ Rq×p and the vectorb∈ Rq depend

on the augmented system dynamics (20) (see [36] for the exact expressions).

By applying Proposition 1 one can compute an equivalent expression forVN(ξ ,s) in terms of a finite number of

affine inequality constraints:

VN(ξ ,s) =
{

v ∈ RmN
∣∣∣ Fv ≤ c+Hξ

ξ +Hss
}

, (30)

where

c := b+ min
d∈DN

Gdd+ min
s∈S N−1

Gss. (31)

SinceD andS (and henceDN andS N−1) are polytopes and can therefore be described by a finite number of

affine inequality constraints,c can be computed efficiently by solvingq LPs. However, ifD andS are given only by

upper and lower bounds on the components ofd ands, respectively, then it is not necessary to solve LPs in order to

computec; computing the absolute values of the the components ofGd andGs is sufficient. For example, let the distur-

bance and the setpoint take on values in the hypercubesD := {d ∈ Rr | ‖d‖∞ ≤ β } andS := {s∈ Rp | ‖s‖∞ ≤ η } .

Recall now that the∞-norm is the dual norm of the 1-norm [39], i.e.‖a‖1 = max
{

aTx | ‖x‖∞ ≤ 1
}

for any vectora.

Hence, it is easy to show that

c = b−β abs(Gd)1−η abs(Gs)1, (32)

where abs(M) is the matrix of the absolute values of the corresponding components of the matrixM and1 is a column
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vector of ones of appropriate length.

It is also important to note that the number of constraintsq in (30) is not dependent on the description forS and

D , but only dependent onN and the number of constraints that describeX , U andO∞. As a matter of fact, it is easy

to show that the number of constraintsq = O(N).

Given all of the above, it is now clear that the solution to the FHOCP (22) exists if and only ifVN(ξ ,s) 6= /0. The

solution of the FHOCP (22) is the solution to the following tractable, strictly convex QP:

v∗(ξ ,s) = argmin
v

{
N−1

∑
i=0

vT
i Wvi

∣∣∣ Fv ≤ c+Hξ
ξ +Hss

}
, (33)

whereW := R+BTB as in Lemma 4.

Illustrative example

Process and constraints

As an example, we consider a jacketed continuous stirred tank reactor (CSTR) studied by Henson and Seborg [40] in

which an irreversible liquid-phase reaction occurs. A detailed nonlinear model has two states (reactant concentration

and reactor temperature), one input (cooling liquid temperature) and two disturbances (feed temperature and feed

reactant concentration). This CSTR shows three steady states, two of which are open-loop unstable, and for quality

and safety reasons the middle conversion open-loop unstable steady-state is chosen as a nominal operating setpoint.

Using a sampling time ofts = 0.1 min and introducing deviation variables (from the corresponding steady state) a

linearized model is as follows:

x1(k+1)

x2(k+1)

 =

 0.7776 −0.0045

26.6185 1.8555

x1(k)

x2(k)

+

−0.0004

0.2907

u(k)+

−0.0002 0.0893

0.1390 1.2267

d1(k)

d2(k)


z(k) =

[
0 1

]x1(k)

x2(k)

 ,

in which x1 andx2 represent the reactant concentration and the reactor temperature, respectively;u represents the

coolant temperature;d1 andd2 represent the feed temperature and the feed reactant concentration, respectively. Notice

from the structure ofCz that the controlled variable is the reactor temperature, for which offset-free control to the

setpoints is required. The following constraints on the plant states and input and on the admissible disturbances and
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setpoint are considered:

−0.5

−5

≤

x1

x2

≤

0.5

5

 , −15≤ u≤ 15,

 −2

−0.1

≤

d1

d2

≤

 2

0.1

 , −1≤ s≤ 1.

Results and comments

We present in Figure 2 the domain of attraction (i.e.Xv
N) of four receding horizon controllers using different fixed

horizons (specified in the figure) and the same penalty matrices:Q = I2 andR= 0.2. Notice thatX0 is the domain of

attraction of the linear controller. As expected from Theorem 3 we have that an increase in the fixed horizon length

results in a larger feasible region and also that the domain of attraction of the linear controller is included in that of the

receding horizon controllers.

We present in Figure 3 the closed-loop simulation results (controlled variable and input) obtained with four reced-

ing horizon controllers using the same fixed horizon,N = 10, different penalty matrices (Q = I2 for all controllers and

Rspecified in the figure). The initial plant state isx(0) =
[
−0.258 5

]T
, the disturbances and the setpoint vary during

the simulation time as reported in Table 1. The initial controller state(x̂(0), d̂(0)) (as well as the initial perturbation

term) is computed from the following strictly convex QP:

(
x̂(0), d̂(0),v∗(ξ (0),s(0))

)
:=

argmin
x̂,d̂,v

{
λ

(
(x̂−x(0))T(x̂−x(0))+ d̂T d̂

)
+

N−1

∑
i=0

vT
i Wvi

∣∣∣ Fv ≤ c+Hξ
ξ (0)+Hss(0)

}
,

in which λ = 1000.

For the receding horizon controller based onQ = I2 andR = 0.2 the plant state sequence,x(·), is also shown

in Figure 2. Notice that the state sequencex(·) initially starts at the boundary of the domain of attractionXv
10 and

enters the domain of attraction of the linear controllerX0 in finite time. As expected from Theorem 4 the proposed

controllers asymptotically drive the controlled variable to the asymptotic setpoint despite the presence of persistent

unmeasured disturbances. Also, when the setpoint is changed the controllers drive the controlled variable to the new

setpoint. Moreover, it is interesting to notice that the choice of penalty matrices has a direct impact on the closed-loop

performance. As expected, when a lower input penaltyR is chosen, the disturbance is rejected (and the setpoint is

reached) more quickly and a larger control input is used.

In Figure 4 we present the closed-loop simulation results obtained with the same four controllers as in Figure 3

when the plant is described by the “original” nonlinear system [40]. From these results it is clear that the proposed

controllers are able to achieve offset-free control even when there is a mismatch between the plant model and the
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actual plant dynamics. As mentioned after Lemma 3, as long as the closed-loop system is stable, it is possible to show

that offset-free control holds independently of the actual plant dynamics.

We finally present in Figure 5 a comparison of the proposed receding horizon controller with a “standard” (i.e. non

offset-free) robust receding horizon controller. As an example we chose the approach in [17], which is similar to the

one proposed in this paper, in the sense that a pre-stabilizing gain matrix is used and the plant state prediction at the

end of the horizon in restricted to be in the maximal disturbance invariant setO∞. Both controllers are based on the

same stabilizing gain matrixK, which is the optimal LQR gain withQ = I2 andR= 0.2. The fixed horizon used for

both controllers isN = 10 and the perturbation penalty for the “standard” controller is chosen asW = R+BTPB with

P the solution to the corresponding steady-state Riccati equation. The initial plant state isx(0) =
[
−0.258 5

]T
and

the disturbance varies as specified in Table 1. In this comparison the setpoint is the origin since the method in [17]

does not apply to setpoints different from the origin (an extension of [17] to the setpoint tracking problem has been

proposed in [16]; however, the controller proposed in [16] still does not guarantee offset-free control). As expected,

the goal of offset-free control is achieved by the proposed method whereas the controller of [17] leaves a significant

and undesired steady-state offset.

Conclusions

This paper has shown how one can design a dynamic receding horizon controller that guarantees robust constraint sat-

isfaction, robust stability and offset-free control in the presence of asymptotically constant disturbances and setpoints.

The design of the controller was split into two parts:

• The design of a dynamic linear time-invariant controller. A deadbeat observer is used to estimate the distur-

bance, the new steady state is given as a linear function of the current plant and observer states and of the current

setpoint, and the controller aims to regulate the plant state and input to the new target steady-state.

• The design of a dynamic nonlinear time-invariant receding horizon controller. In order to increase the region of

attraction of the linear controller a robust receding horizon controller, which computes perturbations to the linear

control law, was proposed. The receding horizon controller includes the state and input constraints explicitly

in its computations, as well as the transient effect of the unknown disturbance and time-varying setpoint on the

target calculator and closed-loop response, thereby guaranteeing robust constraint satisfaction. It was shown

that the specific formulation of the proposed receding horizon controller improves on the linear controller in

terms of the domain of attraction. The proposed controller is computationally tractable since one has to solve,

at each sampling time, a QP whose dimension increases linearly with an increase in the horizon length.
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The paper also demonstrated the effectiveness of using the results in this paper in designing a controller for guar-

anteeing offset-free control of a continuous stirred tank reactor with respect to existing non offset-free algorithms. The

simulation results were shown to be in agreement with the theory.

We conclude this paper with some recommendations on how the results in this paper may be extended:

• The choice of auxiliary system (i.e. observer) has an impact on the region of attraction and closed-loop perfor-

mance of the system. A more detailed investigation into this topic could be undertaken.

• The constraints on the state and input were not included in the target calculation in (8). If the constraints

are included in the target calculation, then the optimal steady-state target is no longer a linear function of the

augmented state and setpoint. Clearly, this complicates the receding horizon controller design. However, the

inclusion of constraints in the target calculation will enlarge the domain of attraction and increase the size of

the disturbance and setpoints that can be handled by the controller. An extension of this paper, which includes

constraints in the target calculation, could combine the results in [28] with those in [16].

• Due to the requirement that all setpoint sequences need to be handled, the approach presented in this paper is

potentially conservative, since the maximal constraint-admissible robust positively invariant setO∞ may be small

or empty for the given range of setpoints. Further work could involve removing this source of conservativeness

to allow a larger range of setpoints to be tracked without offset. Once again, this may be possible by combining

results in [28] with those in [16].

• Clearly, the rank condition in (3) is not always satisfied. If this assumption is violated, then one might have

to relax the requirement that offset-free control be achieved on all controlled variables. One possible approach

to resolving this problem is to prioritize the controlled variables when performing the target calculation. The

framework proposed in [41] may be useful in this context.

• Rather than optimizing over perturbations to a pre-stabilizing control law, one could consider optimizing over

feedback policies [2,3,15,19,22]. This will enlarge the region of attraction of the receding horizon controller at

the expense of an increase in computational complexity.

• The important problem of guaranteeing robust stability, performance, constraint satisfaction and offset-free

control when output feedback (rather than state feedback) is used, remains to be addressed.
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Appendix: Selected Proofs

Proof of Lemma 3

Since limk→∞ s(k) = s̄ and limk→∞ d(k) = d̄ we have from (14)–(15) and from Lemma 2 that

ξ∞ := lim
k→∞

ξ (k) = AK ξ∞ +E d̄+F s̄= A ξ∞ +Bu∞ +E d̄ , (34)

in whichu∞ = K ξ∞ +L s̄. Let ξ∞ be partitioned as follows:ξ∞ = (x∞, x̂∞, d̂∞) in which each block is a column vector

of lengthn. We can rewrite (34) explicitly as follows:

x∞ = Ax∞ +Bu∞ +Ed̄ (35a)

x̂∞ = Ax∞ +Bu∞ +(x∞− x̂∞ + d̂∞) (35b)

d̂∞ = x∞− x̂∞ + d̂∞ . (35c)

From (35c) we immediately obtain thatx∞ = x̂∞ (note thatx∞ = x̂∞ and hence the rest of the proof holds independently

of (35a), i.e. independently of the actual plant dynamics and disturbance), which combined with (35b) leads to

x∞ = Ax∞ +Bu∞ +(x∞− x̂∞ + d̂∞) . (36)

Let (x̄∞, ū∞) denote the solution to the target calculation problem (8) for the augmented stateξ∞ and the setpoint ¯s.

From (8b) and (36) we can write

x∞− x̄∞ = A(x∞− x̄∞)+B(u∞− ū∞) = (A+BK)(x∞− x̄∞) , (37)

where the last step comes from (10). It is important to notice that (37) and Assumption 4 implies that

x∞ = x̄∞ . (38)

Finally, from (38) and from (8b) we obtain:

s̄= Czx̄∞ = Czx∞ = C ξ∞

= lim
k→∞

C ξ (k) .

25



Proof of Theorem 2

Robust constraint satisfaction follows immediately from the fact thatO∞ is robust positively invariant for the closed-

loop system (15) and the fact thatO∞ is constraint-admissible.

SinceAK is strictly stable,(I −AK )−1 exists and hencēξ is well-defined and unique. Note also from the proof

of Lemma 3 that̄ξ = ξ∞ := limk→∞ ξ (k). Robust asymptotic stability follows from Theorem 1 by defining

ζ := ξ − ξ̄ , w := E (d− d̄)+F (s− s̄) .

Hence, we can write the closed-loop system dynamics in terms of the “shifted” variables asζ (k+ 1) = AK ζ (k)+

w(k). The proof is completed by noting that limk→∞ w(k) = 0.

Proof of Theorem 3

Though a result, similar to the one stated here, appears to be known [17, Sect. 4.2], we have been unable to find a

detailed proof in the literature. Classical robust “open-loop” receding horizon control [3, Sect. 4.5] is well-known

to exhibit infeasibility problems if the plant is open-loop unstable and no pre-stabilizing policy is used in the pre-

dictions [22]. However, it is a remarkable fact that one can remove this problem by optimizing over a sequence of

perturbations to a pre-stabilizing control law. To show that this is indeed still true for the control algorithm proposed

in this paper, we present a detailed proof.

It follows trivially from Assumption 5 thatX0 contains the origin in its interior. The rest of the proof is by induction.

Let the plant statex∈ Xv
j , where j ∈ {1, . . . ,N−1}, the controller state(x̂, d̂) be such thatV j(ξ ,s) is non-empty

andv j := (v0, . . . ,v j−1)∈V j(ξ ,s) be an admissible perturbation sequence of lengthj. Also, letsj−1 := (s1, . . . ,sj−1)∈

S j−1 andd j := (d0, . . . ,d j−1) ∈ D j be allowable setpoint and disturbance sequences of lengthj −1 and j, respec-

tively.

From the definition ofV j(ξ ,s), it follows thatξ j ∈ O∞ for all sj−1 ∈ S j−1 and alld j ∈ D i . Recall thatO∞ is

disturbance invariant and constraint-admissible for the closed-loop system (15), henceO∞ is disturbance invariant and

constraint-admissible for system (20) under the infinite perturbation sequence{v(k)}∞
k=0 := {0,0, . . .}.

It follows that if ξ j ∈O∞ for all sj−1 ∈S j−1 and alld j ∈D i , thenξ j+1 ∈O∞ for all si ∈S i and alldi+1 ∈D i+1.

This implies that ifv j ∈ V j(ξ ,s), then(v j ,0) ∈ V j+1(ξ ,s). Hence, ifV j(ξ ,s) is non-empty, thenV j+1(ξ ,s) is

non-empty. It follows from the definition ofXv
j that if x∈ Xv

j , thenx∈ Xv
j+1, henceXv

j ⊆ Xv
j+1.

Using similar arguments as above, the result is completed by noticing thatX0 ⊆ Xv
1 .
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Proof of Theorem 4

Sufficiency.Suppose thatx(0) ∈ Xv
N, then it immediately follows from (27) that for any initial setpoints(0) ∈ S one

can choose a controller state(x̂(0), d̂(0)) such thatVN(ξ (0),s(0)) 6= /0 and hence the FHOCP (22) has a solution. This

implies from Lemma 5 we have thatVN(ξ (k)) 6= /0 for all k∈ N and also that

v∞ := lim
k→∞

v(k) := lim
k→∞

v∗0(ξ (k),s(k)) = 0. (39)

The fact that (4a) holds can now be shown exactly as in the proof of Lemma 3, since from (20) and (39) it follows

that

ξ∞ = lim
k→∞

ξ (k) = AK ξ∞ +Bv∞ +E d̄+F s̄= AK ξ∞ +E d̄+F s̄= A ξ∞ +Bu∞ +E d̄,

in whichu∞ = K ξ∞ +L s̄+v∞ = K ξ∞ +L s̄.

The fact that (4b) holds follows trivially from Lemma 5 and the definition ofVN(·).

Necessity.This is obvious because ifx(0) 6∈Xv
N, then we either have thatx(0) 6∈X or that there exists ans(0)∈S

such that for all(x̂(0), d̂(0)) ∈ R2n, VN(ξ (0),s(0)) = /0 and hence the control input is undefined at time 0.

Finally, robust asymptotic stability follows from Theorem 1 and can be shown in a similar fashion as in the proof of

Theorem 2. This is because it is easy to show that for anyξ ∈O∞, the optimal perturbationv∗0(ξ ,s) = 0 for all s∈S .

Hence, we can write the closed-loop system dynamics in a neighborhood ofξ̄ , in terms of the “shifted” variables, as

ζ (k+1) = AK ζ (k)+w(k). Again, the proof is completed by noting that limk→∞ w(k) = 0.
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Table 1: Disturbances and setpoint
t (min) [0,4) [4,8) [8,12) [12,16) [16,24) [20,24]

d [2 0.1]T [2 −0.1]T [−2 −0.1]T [−2 0.1]T [2 0.1]T [−2 0.1]T

s 0 0 1 1 -1 -1

28



Plant

Observer

u

(x̄, ū)
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Figure 1: Graphical illustration of the proposed dynamic offset-free feedback controller
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Figure 2: Domain of attraction (Xv
N) for different fixed horizons
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Figure 3: Closed-loop comparison of different receding horizon controllers (linear plant): controlled variable (top)
and input (bottom)
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Figure 4: Closed-loop comparison of different receding horizon controllers (nonlinear plant): controlled variable (top)
and input (bottom)
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