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Abstract:

This paper addresses the design of a dynamic state feedback receding horizon controller, which guaran-
tees robust constraint satisfaction, robust stability and offset-free control of constrained linear systems
in the presence of time-varying setpoints and unmeasured disturbances. This objective is obtained by
first designing a dynamic linear offset-free controller and computing an appropriate domain of attraction
for this controller. The linear (unconstrained) controller is then modified by adding a perturbation term,
which is computed by a (constrained) robust receding horizon controller. The receding horizon controller
has the property that its domain of attraction contains that of the linear controller. In order to ensure
robust constraint satisfaction, in addition to offset-free control, the transient as well as the limiting be-
havior of the disturbance and setpoint need to be taken into account in the design of the receding horizon
controller. The fundamental difference between the results in this paper and the existing literature on re-
ceding horizon control is that, in this paper, the transient effect of the disturbance and setpoint sequences
on the so-called “target calculator” is explicitly incorporated in the formulation of the receding horizon

controller. An example of the control of a continuous stirred tank reactor is presented.
Topical Heading: Process system engineering

Key Words: Model predictive control, constraints, offset-free control, tracking, robust control.



Introduction

The control of systems in the presence of constraints is an important task in many application fields because con-
straints “always” arise from physical limitations and quality or safety reasons. Moreover, in practical applications,
disturbances are usually present and often they are not measurable or predictable. For example, in the chemical indus-
tries disturbances arise from interactions between different plant units, from changes in the raw materials and in the
operating conditions (such as ambient temperature, humidity, etc.).

It is well-known that with an unmeasured persistent disturbance offset-free control is, in general, not possible.
However, if the disturbance has the additional property that it is integrating or periodic, then offset-free control may
be an achievable goal. In many practical applications, especially in the process industries, disturbances are often inte-
grating and reach, after some transient, a constant value. Hence, one basic objective of an effective control algorithm
is that it guarantees offset-free control whenever this is possible. Moreover, an effective control algorithm is also
applicable to cases in which the setpoints of the controlled variables are allowed to vary over time.

The design of control algorithms able to stabilize constrained linear plants with input and state constraints subject
to unknown, but bounded disturbances, has been the subject of several works over the last few decades; a number of
excellent surveys are available [1-5], which discuss how the important goal of guaranteeing closed-loop stability and
constraint satisfaction can be obtained. Existing control algorithms, which address the problem of robust control of
constrained systems, are usually based on ideas from set invariance [1, 6, 7], reference governors [8—12] or receding
horizon control [13-22]. It is interesting to note that, despite the practical importance of guaranteeing offset-free
control in the presence of integrating disturbances, none of the existing receding horizon control algorithms with
robust stabilityand robust constraint satisfaction guarantees are able to guarantee offset-free control.

Compared to linear (unconstrained) control, the rigorous study of designing controllers that guarantee offset-
free control has received very little attention in the constrained control community, until relatively recently [23—30].
However, though the receding horizon control algorithms presented in [23—-30] guarantee offset-free control around a
neighborhood of the steady-state, they do not guarantee robust constraint satisfaction for all initial states over which
the controller is defined (in other words, they do not guarantee feasibility of the optimization problem for all time and
for all allowable disturbance and setpoint sequences). Furthermore, with the exception of [8-10, 14, 16] (which do
not guarantee offset-free control for disturbances that decay to non-zero values), none of the existing receding horizon
control algorithms that guarantee robust stability and robust constraint satisfaction, address the problem of tracking
arbitrary setpoints.

In this paper, we present a novel receding horizon control algorithm for controlling constrained linear systems
subject to unmeasured, bounded disturbances. The proposed algorithm is guaranteed to remove steady-state offset in

the controlled variables whenever the disturbances reach an (unknown) steady-state value. Moreover, the setpoints



of the controlled variables are allowed to vary arbitrarily with time within a pre-specified set, provided they also
converge to some limit. Importantly, the algorithm also guarantees to satisfy input and state constraints for all allowable
disturbance sequences. None of the existing receding horizon control algorithms are able to provide similar guarantees.

The difficulty with guaranteeing robust constraint satisfactioadditionto offset-free control, is that the transient
as well as the limiting behavior of the disturbance and setpoint need to be taken into account during the computation
of the control input. The fundamental difference between the algorithm proposed in this paper and those available in
the literature, is that we consider both the transient and limiting effect of all allowable future disturbance and setpoint
sequences when computing the receding horizon control action. This is the key idea that allows us to guarantee offset-
free controlandrobust constraint satisfaction. Existing approaches either neglect the transient response or they neglect
the ultimate behavior of the disturbance and setpoint, hence why they are unable to offer the same kind of guarantee.

This paper is organized as follows. First, the problem definition is given, followed by the design of a linear offset-
free controller. Following this, we show how a receding horizon controller can be used to improve on the linear
controller by enlarging the region of attraction. The main characteristics of the proposed receding horizon controller
are illustrated on an example of a continuous stirred tank reactor. Finally, the main contributions of this work are
summarized and some possible extensions are discussed. To simplify the presentation and reading of this paper, the
proofs of results that can be derived using well-known methods have been omitted. The only proofs that have been
included are for those cases where we were unable to find equivalent and sufficiently detailed proofs, where we have
used unconventional proof techniques or where we feel that a particular detail of the proof is important.

Notation: If aandb are vectors, then the column vectarb) := (a' b")T. Given an arbitrary se¥’, 2N denotes

the Cartesian product x --- x Z.

Problem Description and Preliminary Results

In this paper we consider a discrete-time linear time-invariant plant:

x(k+1) = AX(K) + Bu(k) + Ed(K), (1a)

z(k) = Cx(k), (1b)

in whichk is the sample instank, € R" is the plant stata) € R™ is the control input (manipulated variable)c R’

is an unmeasured disturbance a@RP is the controlled variable, i.e. the variable to be controlled to a given (time-



varying) setpoins. Affine inequality constraints are given on the state and et
XeX, UEX, 3

where Z" is a polyhedron (i.e. a closed and convex set that can be described by a finite number of affine inequality
constraints) and” is a polytope (i.e. a bounded polyhedron); the interiot®fx % contains the origin. We also

make the following standard assumption:

Assumption 1 (General). A measurement of the plant state is available at each sample ingtaB},is stabilizable,

(A,C,) is detectable and (see e.g. [28])

I-A -B
rank =n-+p. 3
C, 0

Remarkl. The rank condition (3) is used to guarantee the existence of an offset-free steady-state for any constant
setpoint and disturbance pair. In general, the steady-state is not necessarily unique for a given setpoint and disturbance.
Note also that this condition implies that the number of controlled variables cannot exceed the number of control inputs
or the number of states, i.@a < min{m,n}. It is easy to find examples for which offset-free control is not possible

if (3) is not satisfied.

We also consider the following assumptions on the setpoint and disturbance sequences:

Assumption 2 (Setpoint). At each time instant, the current setpoint is known but future setpoint values are unknown.
The setpoint sequencg ) takes on values in a polytop# C RP containing the origin and asymptotically reaches an

unknown steady-state value, isk) € . for all k € N and there exists asc .# such that lim_.. s(k) =S.

Assumption 3 (Disturbance). At each time instant, curremind future disturbances amnknown The disturbance
sequencel(-) takes on values in a polytopgg C R' containing the origin and asymptotically reachesuaknown

steady-state valu, i.e. d(k) € & for all k € N and there existsd € 2 such that ling_.., d(k) = d.

Remark2. Note that, unlike many existing results, we do not assume that the disturbance or setpoint is constant.
Furthermore, unlike [25], we do not assume that the setpoint and/or disturbance are generated by a known finite-

dimensional exogenous system. The lack of these assumptions in this paper complicates the design of the controller.

Under the above assumptions we present a novel method for designing a dynamic, state feedback receding hori-
zon controller that, for any allowable disturbance and setpoint sequences (i.e. any infinite disturbance and setpoint

sequences that satisfy Assumptions 2 and 3), accomplishes the goal of asymptotically driving the controlled variable

1The results in this paper can easily be extended to the case with mixed constraints on the state and input.



to any given allowable asymptotic setpoint, while respecting the state and input constraints, i.e.

lim (k) = § (4a)
x(K) € 2, uk) € % , vk e N. (4b)

Before proceeding, we present here the following well-known result [6, 15, 18, 20, 31]:

Proposition 1. Let the polyhedron
2 :={veR" |Fv<g+Hwforallwe 7 }

where F€ R9t and H € RS are matrices, g= RY is a vector and# is a compact (i.e. closed and bounded) subset
of RS, then
P = {v eR

Fv<g+ min HW}
wew

where the minimization is performed row-wise, i.e. jiddnotes the row of H, then

min Hw := [min Hyw --- min Hew]" .
we/ weW/ we/

Since our system, in closed-loop with the receding horizon controllagn$inearand we are interested in robust
stability results, we review the following definitions and results, adapted from [32], for a generic nonlinear perturbed

discrete-time system:

C(k+1) =F(L(k)) +w(k), ©)
in whichF : R® — R’ andF (0) = 0. LetB, := {£ e R* | ||| <r } if r > 0.

Definition 1. The origin is a robustly asymptotically stable fixed point of (5) if foralb O, there exist @ > 0 and a
u > 0 such that for all initial condition§ (0) € Bs and perturbation sequenosé ) satisfyingw(k) € B, forallk e N,

the following two conditions are satisfied:
1. (Robust stability The solution of (5) satisfie§(k) € B, for allk € N;
2. (Robust convergentd@he solution of (5) satisfies lign,c., & (K) = 0 if limy_. w(k) = 0.

Definition 2. If w:= limy_,w(k) is the limit point of the perturbation sequeneg-), then a vectorg_ satisfying
C_ =F (C_ )+wis a robustly asymptotically stable fixed point of (5) if the origin is a robustly asymptotically stable fixed
point of the systeny (k+ 1) = G(x(k)) + o(k), in whichy :={ — §_ o:=w—wandG(y) := F(f+x) - F(C_).



Theorem 1. [32, Thm. 3] Let F: R — R’ be a Lipschitz continuous function in a neighborhood of the origin with
F(0) = 0. If the origin is an exponentially stable fixed point of the unperturbed sy§té&m 1) = F({(k)), thenitis
a robustly asymptotically stable fixed point of the perturbed systgm- 1) = F(£(k)) +w(k).

Linear Controller Design

In order to guarantee robust constraint satisfaction and stability in receding horizon control, it is by now standard
practice to compute a suitable terminal constraint and terminal cost based on a stabilizing linear controller [2-5]. This
section shows how one can compute such a linear controller and an appropriate terminal constraint. The difference
between this paper and standard results is that the controller in this paper is dynamic, rather than static, hence the
terminal constraint is computed in the joint plant-controller state-space, rather than just the plant state-space.

In order to guarantee offset-free control when disturbances are asymptotically constant and non-zero, it is standard
practice to augment the plant model with a disturbance model and use this combined model to estimate the size of the
disturbance. However, as pointed out in [27, 28], this is not necessarily as straightforward as is commonly thought.
Care has to be taken in constructing the controller, since offset-free control is guaranteed only if the combined plant-
disturbance system is detectabled the closed-loop system (feedback gain + observer + target calculator + plant)
satisfy a couple of additional, technical assumptions (see [27, 28] for details). This section will therefore show in
detail how one can design a dynamic controller (observer and static state feedback gain) for (1) that guarantees offset-
free control. The general structure of the proposed controller is depicted in Figure 1 and each block is described

next.

The Augmented System

We will make use of the following auxiliary system in order to define the controller dynamics:

K(k+ 1) = AX(K) + Bu(k) + (d(K) +x(K) — X(K)), (6a)

d(k+1) = d(k) 4+ x(k) — (k). (6b)

Note that the system (6) corresponds to using a dead-beat observer for the following system:

x(K+ 1) = Ax(K) + Bu(k) + d(k),

d(k+1)=d(k),



in which it is clear thatl € R" is an integrated (step) disturbance acting on the stat&". The role ofd is essential
in removing steady-state offset in the presence of an unknown persistent disturbance [27,28]. As will be seen later,
the dimensions off andd need not be the same in order to guarantee offset-free control.

By combining the plant dynamics (1) and the auxiliary system (6), we obtain the following augmented system:

E(k+1) = 7E(K)+ABu(k) +&d(k), (7a)

2(k) =6E(K), (7b)

in which & := (x,%X,d) and.«7, &, ¢ and& are suitably-defined.

Target Calculation

When a non-zero disturbance affects a system (and/or the current setpodifferent from zero), the steady-state
‘target’ value of the state and input may need to be shifted in order to cancel the effect of such a disturbance on the
controlled variable [33, 34]. To this aim, at each sample instant we use the estimate of the future disturbance and
compute the steady-state tar@etu) such that one can drive the controlled variable to the current setpoint, by solving

the following least-squares problem [34] in whigle R™™M js a positive definite matrix:

&Wgsymxggy:a@mm}ﬁém (8a)
(%0

I—A —B| |x] =11 :
C; 0| (U 0 0 O
where it can be seen that the current estimate of the limiting value of the disturbance is giE{en by |} Ek) =

x(K) — %(K) +d(k) = d(k+1).

For a given augmented stateand a given setpoirg, one can think of x* (&,s),u* (£,s)) as the new ‘origin’

subject to

+
I

0]
s, (8b)

around which the system should be regulated. SolvingX¥of,s),u* (€,s)) is trivial:

Lemma 1 (Target calculation). If Assumption 1 holds, then the target calculati@&) has a unique solution that is

linear with respect to the augmented sttand the setpoint s, and has the form

[)?F (575)] _ [nx,é —lyg nx,é] n |:nx,s] s, ©)
J*(g,s) nu,:: _rlu.é nu,é Mys



for suitably-defined constant matricBlg . € R™", M,z € R™", Mys € R™PandM,s € R™P.

Proof. The statement follows immediately from the Lagrangian/KKT conditions for (8) [35, Sect. 16.1]. Itis possible
to verify that the matrix, which is to be inverted when obtaining the expression for the stationary point of the La-
grangian, is non-singular because of the rank condition iau(8)the fact thaRis positive definite. Hence, the target

calculation (8) has a unique minimizer [36]. O

RemarlB. Recall that (3) on its own is not sufficient to guarantee that the minimizer of (8) is unique. Howd¥s, if
positive definite, then we do not need to include a penaltyiorthe cost (8a) in order to guarantee that the minimizer

is unique.

Remark4. Note that, unlike [27, 28], the constraints on the state and input are not included in (8). In order for the
receding horizon controller to take account of the transient of the disturbance and setpoint in its predictions, it needs
to calculate how(X* (€,s),U* (£,s)) will vary over the control horizon. As will be shown later, this is easy if the
mapping(&,s) — (X* (&,s),U* (€,s)) is linear, as above. If inequality constraints had been included in (8), then the
mapping(&,s) — (X* (€,s),U0* (£,s)) would have been nonlinear, hence the computatiofxdfé,s),u* (£,s)) at

each time instant in the prediction horizon, and hence the computation of the receding horizon control input, would be

considerably more complicated.

Unconstrained Offset-free Controller Design

We now consider what would happen if one were to choose a gain nkagiixch thatA + BK is strictly stable and, as

is common practice, let the control input in the augmented system (7) be given by

U= (&,9+KX-X(E,9). (10)

Clearly, as can be seen in Figure 1, there is a feedback path around the target calculator and therefore it is important
to verify that the closed-loop system (observer + target calculator + state feedback gain + plant) is stable. We therefore

present the following intermediate result:

Lemma 2 (Stability). Suppose that Assumption 1 holds and=lR™" is such that A+ BK is strictly stable. If

I € R™"Nis any constant matrix and

H =K+ - T}, (11)

then

Ay =+ BH (12)



is strictly stable.

Proof. The statement follows from straightforward block matrix manipulations [36], where one can shown thfat 2

the eigenvalues o7 are at zero and the rest are the eigenvaluesoBK. O

By defining
M=y —KhMye, £ =Mys— Ky, (13)

and substituting (9) into (10) it easily follows that

u=2&+.7s, (14)

where. 7" is defined as in (11).
After substituting (14) into (7), one can write an expression for the augmented system (7) under the linear control

u=x§&+ . ¥sas

E(k+1) =y &E(k) +&d(k)+.Fs(k), (15a)

z(k) = €& (K), (15b)

where.% is suitably-defined.
It immediately follows from Lemma 2 that the closed-system (15) is stable if the disturbance and setpoint are zero

(or asymptotically constant). As a consequence, we introduce the following standing assumption:

Assumption 4 (Stabilizing gain). The matrixK € R™" is chosen such tha + BK is strictly stable, 7" is given
by (11),I and.Z given by (13) and«, := of + B% .

The following result states that if the control is givenioy: 7€ + .#s, then the value of the controlled variable
for (15) is guaranteed to converge to the asymptotic setgpiiten any allowable infinite setpoint and disturbance

sequence:

Lemma 3 (Offset-free control). If Assumptions 1-4 hold, then the solution of the closed-loop sydfgnsatisfies

limy_..z(k) = Sfor all £(0) € R3",
Proof. See the Appendix. O

Remarks. In this paper, we have assumed that there is no mismatch between the plant Ag8dEl) and the actual
plant dynamicgAp, Bp, Ep). However, it is important to point out that, as in [24, 28], it is possible to verify that the

offset-free property in Lemma 3 holds even if there is a mismatch between the plant (AcBgt) and the actual

10



plant dynamicgAp, Bp, Ep), provided the augmented closed-loop system is stable. This fact is not surprising. Recall
that the internal model principle [37] (roughly) states that a controller that guarantees offset-free control even when
the system parameters are perturbed, must incorporate a model of the dynamic structure of the disturbance and the
reference signals; in our case, the observer contains a model of the disturbance and the target calculator contains a

model of the disturbance and setpoint. This point will be further illustrated in the example section.

The Maximal Constraint-admissible Robust Positively Invariant Set

As mentioned earlier, since the constraints on the state and input (2) are not included in the target calculation (8),
there is no guarantee that the steady-state target will satisfy constraints. Furthermore, there is also no guarantee that
the linear controller defined above will guarantee the satisfaction of the constraints during the transient. We therefore
proceed along similar lines as in conventional receding horizon control [2-5] and compute a constraint-admissible,
robust invariant set that could be used as a terminal constraint in our receding horizon controller (to be defined in the
next section). However, since our linear controller is dynamic and not static, we depart from convention and compute
an invariant set in the space of the augmented (plant + controller)&tatex, X, &) of the closed-loop system (15),
rather than in the plant state-space (as is usually done [2-5]).

Let theconstraint-admissible sét be defined as all augmented states for which the constraints on the plant state

and plant input are satisfied, for any choice of setpsint, if the control is given byu= #¢ + Zs.
Z={EcR¥ |xe Fand#E+ Lse % forallse 7 } . (16)

The maximal constraint-admissible robust positively invariant ggtfor the closed-loop system (15) is defined
as all initial states irE for which the evolution of the system remains3nfor all allowable infinite setpoint and

disturbance sequences, i.e.
On:={6(0) €= | E(k+1) = &K +Ed(K)+.F5(k) € =, Vs(K) € .7, d(k) € 2, ke N}. a7)

Assumption 5 (Maximal invariant set). The set?, is non-empty, contains the origin in its interior and is finitely

determined (i.e0. can be described by a finite number of affine inequality constraints).

Note that sinceZ” and% are polyhedra given by affine inequalitiés,is easily computed by applying Propo-
sition 1 to the above definitions. Since (15) is linear and time-invariant=aisdgiven by a finite number of affine
inequality constraints/., (or an inner approximation to it) is easily computed by solving a finite number of LPs [31].

We are now in a position to collect all of the results in this section into a single statement. The following result

states that, provided the state of the augmented system (controller + planf)isaintimek = 0, then the evolution

11



of the augmented system under the linear conire! 7' & + #s is such that offset-free control is guaranteed, the
state and input constraints are satisfied for all allowable setpoint and disturbance sequences and robust stability is

guaranteed:

Theorem 2 (Linear controller). Suppose that Assumptions 1-5 hold. The solution of the closed-loop $¥S)esa-
isfies(4) if and only if the initial augmented (controller + plant) sta§€0) € ... Furthermore,ﬁ_:z (I —«Qfx)*l(é”dﬁr
Z5) is the robustly asymptotically stable fixed point(tb).

Proof. See the Appendix. O

Before proceeding, we also defiXg, the set of plant states for which there exists a controller state such that the

augmented state is ifl,, as

Xo:= {x€R" | 3(&,d) € R such that € 0o, } . (18)

Receding Horizon Controller Design

The setXy, defined in (18), is the set of initial plant states for which one can initialize the controller state such that the
controlled variable will ultimately be driven by the linear controller to the asymptotic setpofBkearly one would

like to enlarge this set, if possible. It is well-known that receding horizon control allows one to achieve this aim [2-5].
This section therefore presents an approach for computing a (dynamic) receding horizon controller, which enlarges
the set of initial plant states for which the controlled variable can ultimately be driven to the asymptotic setpoint.

As mentioned earlier, in order to guarantee robust constraint satisfaction and stability in receding horizon control,
it is by now standard practice to compute a suitable terminal constraint and terminal cost based on a stabilizing linear
controller [2-5]. However, all existing results on receding horizon control do not include the effect of all allowable
disturbance and setpoint sequences on the target calculator in their predictions. This is an important difference that,
coupled with the fact that the controller in this paper is dynamic and not static (as in [2-5]), makes it necessary to show

in detail how the results from the previous section can be used to define an appropriate receding horizon controller.

Definition of the Receding Horizon Controller

For the sake of simplicity of exposition and implementation, we follow the approach of [14, 16-18, 20] by “pre-

stabilizing” the plant and letting the linear control in (14) be modified with a perturbation term as follows:

u=J#&+.Ls+v, (19)

12



wherev € R™ is the perturbation term. The solution to the finite horizon optimal control problem (defined below)
is then a finite sequence of input perturbations that guarantees robust constraint satisfaction over the horizon and
optimizes some cost function.

Under the control in (19), the augmented state dynamics in (7) become

E(k+1) = Ty E(K) +Bv(k)+ &d(k) + Fs(K). (20)

Remark6. At this point, it is useful to recall that¢”, .2, <7, and.# in (19)—(20) implicitly contain the solution
of the target calculation (8)—(9). Since these equations are linear, it is easy to compute the set of admissible input

perturbations, as detailed below.

Remark?7. Obviously, there exist many alternative robust receding horizon control formulations that can also be
generalized to incorporate the results in this paper. For example, one could adopt a less conservative framework,
such as the ones proposed in [15, 19, 22, 38]. However, this will come at a greater cost in off-line and/or on-line
implementation. We believe that the pre-stabilizing framework adopted here is a practical approach that can be used
to illustrate the main ideas of this paper without introducing unnecessary detail. The results in this paper are easily

extended using the ideas in [15, 19, 22, 38].

Before proceeding, we need to define some notation. Let the horizon Idhgth a positive integer and the
block vectorsy € R™, se RPN-1 d € RN be defined as := (Vo,v1,--- ,Vn_1), S:= (S1,%, - ,Sn_1) andd :=
(do,d1,---,dn-1). Note thats and all related terms are present onl\Nif> 1. Let&; denote the predicted solution
to (20)i time steps into the future (timle+ i), given the augmented stafe:= £ (k) at the current time, a finite
sequence of control perturbatiomsthe current setpoirdy := s := s(k), a finite sequence of future setpoirstand
a finite sequence of future disturbanaks The corresponding predicted plant state= [I,, 0] and inputy; :=
X &+ £Ls +v; are similarly defined.

Given the above, we can now define the set of admissible input perturbafi@gss) as the set of input pertur-
bations of lengthN such that for all allowable future setpoint sequences of leNgthl and disturbance sequences of
lengthN, the input constraint% are satisfied over the horizar=0,...,N — 1, the state constraintg™ are satisfied

over the horizon =0,...,N — 1 and the augmented state at the end of the horizond%ithence the predicted plant

13



state at the end of the horizon is alsa%f), i.e.

éo=& 20=s5,
§i+1:ﬂ%§i+%w+(godi+ys,i:O,...7N—1,
Y(E,s) = {ve R™ xi:[|n o]gie%,i=o7...,N—1,§Nem, . 1)

Uuy=x+%s+view,i=0,....N—1

forallse .#N"1and alld ¢ 2N

Remark8. Note that the predictions in (21) take into account the solution of the target calculation in (8)—(9) on the
control and state trajectories over the horizea 0,...,N. This is the fundamental difference between this paper
and existing results in receding horizon control and therefore allows one to provide a guarantee of robust constraint

satisfaction during transients.

In order to compute the receding horizon controller, we need to define a cost and set up an appropriate finite
horizon optimal control problem (FHOCP). We choose to define the FHOCP to be solved for the current augmented
state£ and setpoins, as

Vﬁ(é,S) = min VN(éaSaV)v (22)
vern(§,s)
where the cost to be minimized is

N-1

W(G;8V) == _ZO(”' —X(£,9)TQ(% —X'(§,9) + (G —'(£,9)) "R — T (&, 9))

+(&—X(8,9) P& —X(&,9)),  (23)

with the matrice®Q € R™", Re R™ M andP € R"™" positive definite. The vectors &€ R" andu; € R™ are defined as

fo=x=[l, 0]¢. (242)
i1 =A% +Bli+(x—%+d), i=0,...,N—1, (24b)
G = 0 (E,9) +K(&K — X (E,9)+Vi, i=0,...,N—1. (24c)

The target state*(&,s) and target inputr (£, s) are given by (8)—(9).

Remark9. Note that the choice of cost (23) corresponds to assuming the disturbance sequence is constant over the
control horizon and equal to the current estimate, and similarly with the setpoint. However, note that in the definition

of the constraints on the input perturbations (21) it is assumed that the disturbance and setpoint may change over the

14



prediction horizon. As will be shown below, these two facts can be combined to guarantee, respectively, offset-free

control in the limit and robust constraint satisfaction during transients.

The minimizer of the FHOCP (22) is defined as

V(&9 = (%(&.9),- - W-1(§,9) i= arg r(Tgir;VN(é,SN). (25)

As is standard in receding horizon control, for the current augmentedéstatel setpoins, we only keep the first
elementy;(&,s) of the solution to the FHOCP. Using this receding horizon principle, we define our receding horizon
control input as

u(k) = 2 & (K) +-2Ls(k) +vo(§ (k), (k). (26)

Properties of the Receding Horizon Controller

It is well-known that if there are disturbances present and the receding horizon control action is computed by opti-
mizing overopen-loop input sequencesther tharfeedback policiesthen the optimization problem may become
infeasible for large control horizons [3,22]. Since we are not optimizing over feedback policies, but over a sequence
of perturbationsto a stabilizing control law (which is equivalent to optimizing over open-loop input sequences if the
system is open-loop stable and the chosen control law is zero), it is important to be able to characterize the properties
of the set of plant states for which one can guarantee that the FHOCP (22) has a solution.

Fortunately, optimizing over perturbations to a stabilizing control law does not suffer the same drawbacks as
optimizing over open-loop input sequences [14, 16-18, 20]. However, since we are including the solution of the target
calculator in our control input and predictions, it is still important to verify that feasibility of the optimization problem
is not lost in the formulation presented in this paper. We will therefore proceed to show that if the FHOCP (22) is
feasible at time&k = 0, then the FHOCP (22) is feasible at all future time instants and offset-free control is guaranteed
in the limit.

The set of plant states, for which one can initialize the controller stateéd) such that the set of admissible input

perturbations/y(&,s) is non-empty for als € . (and hence the FHOCP (22) has a solution), is given by
XV = {xe 2" | 3(%,d) € R?" such that/A(€,9) £ D forallse .7 }. (27)

As will be shown belowXy is the set of plant states ifi” for which the controlled variable will ultimately be driven
to the setpoins by the receding horizon controller.

We can now give our first main result:
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Theorem 3 (Domain of RHC law). Suppose that Assumptions 1-5 hold. {fiXdefined as if18) and each )}(
j €{1,...,N}, is defined as if27) with N = j, then all the sets ifXo, X}, ..., X\ } contain the origin in their interior
and satisfy

XoCX{ S C Xy 1 EXN- (28)
Proof. See the Appendix. O

Theorem 3 is very important because it shows that, under the above assumptions, the set of states for which the
FHOCP (22) has a solution is non-empty and an increase in the horizon length does not decrease the size of the set of
initial plant states for which the controlled variable can be driven to the setpoint. Furthermore, it also implies that the
domain of attraction of the receding horizon controller contains the domain of attraction of the linear (unconstrained)
controller defined in the previous section.

We now proceed to give conditions under which one can guarantee offset-free control in addition to robust con-

straint satisfaction. For this purpose, we introduce the following assumption:

Assumption 6. The matrices) andR are chosen to be positive definite, the maRiis the positive definite solution
of the discrete algebraic Riccati equatiBr= Q + ATPA— ATPB(R+ BTPB)~1BTPA, and the matrixX is the corre-
sponding gairk = —(R+BTPB)"'BTPA % is given by (11) withl" given by (13),47 = & + X% and.Z is
given by (13).

Before giving our second main result, we need the following two lemmas, which are generalizations of results

in[17]:

Lemma 4 (FHOCP equivalence). Suppose that Assumptions 1 and 6 hold. If the matrix W™ ™ is given by
W := R+BTPB, therv*(£,s) = argmin, { SN ;' Wy |ve R(E,s) }.

Proof. A similar result, for robust receding horizon controllers that do not provide offset-free control, is well-known [17,

Rem. 3]. A detailed proof for the offset-free receding horizon controller proposed in this paper is reported if]36].
Lemma 5 (Robust feasibility and perturbation sequence).Suppose that Assumptions 1-3 and 5-6 hold. If the set

1 (€(0),s(0)) is non-empty, then the s#f (& (k),s(k)) is non-empty for all ke N and

im v3( (K). (k) = 0.

k—oo

Proof. The proof follows fairly standard arguments in receding horizon control and is reported in [36]. O

Theorem 4 (Offset-free control, robust constraint satisfaction and stability of RHC). Let Assumptions 1-3 and

5-6 hold. One can choose the initial controller st§%0),d(0)) such that the FHOCR22) has a solution and the

16



evolution of the augmented systémin closed-loop with the receding horizon cont(@b) satisfieq4) if and only if
the initial plant state ¥0) € XY. Furthermoreﬁj_:: (- gfyg)*l(gdq— Z79) is the robustly asymptotically stable fixed
point of (20)if it is in the interior of ..

Proof. See the Appendix. O

Implementation of the Receding Horizon Controller

Recall from (21) that the constraints on the input perturbations have to hold for all allowable setpoint and disturbance
sequences. In this section, we point out the fact that the (infinite) set of constraints in (21) is easily rewritten in terms
of afinite andtractable set of linear inequality constraints. This then allows one to compute the receding horizon
control action by setting up and solving a tractable, strictly convex quadratic program (QP) at each sample instant.

Since 2", % and 0., are polyhedral sets with non-empty interiors, they are given by a finite number of affine
inequality constraints. As a consequence, one can obtain an expression for the set of admissible input perturbations
IN(E,s) as

IN(E,S) = {v e R™N ’ Fv<b+G%+G%s+HSE +HSs, vse. Nt de N } , (29)

where the matriceB € R&*™N, G4 ¢ RI*™N GS ¢ RA*PIN-1) HE ¢ RA%3n HS c RI*P and the vectob € RY depend
on the augmented system dynamics (20) (see [36] for the exact expressions).
By applying Proposition 1 one can compute an equivalent expressicfifdr,s) in terms of a finite number of

affine inequality constraints:

V/N(é,s):{veRmN ‘ Fv§c+H5§+Hss}7 (30)
where
c:=b+ min G+ min GSs. (31)
degN sc.yN-1

Since2 and.7 (and hencezN and.”N-1) are polytopes and can therefore be described by a finite number of
affine inequality constraintg,can be computed efficiently by solvimgLPs. However, if7 and.” are given only by
upper and lower bounds on the componentd ahds, respectively, then it is not necessary to solve LPs in order to
computec; computing the absolute values of the the componen® @indGS is sufficient. For example, let the distur-
bance and the setpoint take on values in the hypercghes{d € R" | [|d]|lo < B} and” :={seRP | |Is|l« <7 }.
Recall now that theo-norm is the dual norm of the 1-norm [39], i.gal|; = max{a'x | ||X||~ < 1} for any vectora.
Hence, it is easy to show that

c=b—pabgG")1—nabgG")1, (32)
where ab&M) is the matrix of the absolute values of the corresponding components of the Matrigl is a column
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vector of ones of appropriate length.

It is also important to note that the number of constradnits (30) is not dependent on the description f8rand
2, but only dependent oN and the number of constraints that descritie  andd.. As a matter of fact, it is easy
to show that the number of constraigts= O(N).

Given all of the above, it is now clear that the solution to the FHOCP (22) exists if and offly( &,s) # 0. The

solution of the FHOCP (22) is the solution to the following tractable, strictly convex QP:

\

N-1
v (E,s) = argmin{ zoviTWw ’ Fv<c+ H‘5§+Hss} , (33)
i=

whereW := R+BTB as in Lemma 4.

lllustrative example

Process and constraints

As an example, we consider a jacketed continuous stirred tank reactor (CSTR) studied by Henson and Seborg [40] in
which an irreversible liquid-phase reaction occurs. A detailed nonlinear model has two states (reactant concentration
and reactor temperature), one input (cooling liquid temperature) and two disturbances (feed temperature and feed
reactant concentration). This CSTR shows three steady states, two of which are open-loop unstable, and for quality
and safety reasons the middle conversion open-loop unstable steady-state is chosen as a nominal operating setpoint.
Using a sampling time of; = 0.1 min and introducing deviation variables (from the corresponding steady state) a

linearized model is as follows:
x1(k+1) B 0.7776 —0.0045| |xy(k) N —0.0004 u(k) & —0.0002 00893| |[di(k)
X2 (k+1) 26.6185 18555 | [x2(k) 0.2907 0.1390 12267 |dx(Kk)
k
Z(k):[o l} x1(K) 7
Xz(k)

in which x; andx, represent the reactant concentration and the reactor temperature, respeatreglisesents the
coolant temperaturel; andd, represent the feed temperature and the feed reactant concentration, respectively. Notice
from the structure o€; that the controlled variable is the reactor temperature, for which offset-free control to the

setpointsis required. The following constraints on the plant states and input and on the admissible disturbances and
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setpoint are considered:

2
< < —15<u< 15, < < ~1<s<1.

— — )

Results and comments

We present in Figure 2 the domain of attraction (¢}) of four receding horizon controllers using different fixed
horizons (specified in the figure) and the same penalty matrigesi, andR = 0.2. Notice thatX; is the domain of
attraction of the linear controller. As expected from Theorem 3 we have that an increase in the fixed horizon length
results in a larger feasible region and also that the domain of attraction of the linear controller is included in that of the
receding horizon controllers.

We present in Figure 3 the closed-loop simulation results (controlled variable and input) obtained with four reced-
ing horizon controllers using the same fixed horizdn; 10, different penalty matrice€(= |, for all controllers and
R specified in the figure). The initial plant statex{®) = {—0.258 %T, the disturbances and the setpoint vary during
the simulation time as reported in Table 1. The initial controller st&@),d(0)) (as well as the initial perturbation

term) is computed from the following strictly convex QP:

argAmin{/l ((R—x(0))T (*R—x(0)) +d"d) +NZ:viTvv\4 ‘ Fv < c+HSE(0) + H3(0) } ,
x,d,v i=
in which A = 1000.

For the receding horizon controller based @r= 1, andR = 0.2 the plant state sequencs;), is also shown
in Figure 2. Notice that the state sequemc¢g initially starts at the boundary of the domain of attractiy and
enters the domain of attraction of the linear controMgrin finite time. As expected from Theorem 4 the proposed
controllers asymptotically drive the controlled variable to the asymptotic setpoint despite the presence of persistent
unmeasured disturbances. Also, when the setpoint is changed the controllers drive the controlled variable to the new
setpoint. Moreover, it is interesting to notice that the choice of penalty matrices has a direct impact on the closed-loop
performance. As expected, when a lower input penRltg chosen, the disturbance is rejected (and the setpoint is
reached) more quickly and a larger control input is used.

In Figure 4 we present the closed-loop simulation results obtained with the same four controllers as in Figure 3
when the plant is described by the “original” nonlinear system [40]. From these results it is clear that the proposed

controllers are able to achieve offset-free control even when there is a mismatch between the plant model and the
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actual plant dynamics. As mentioned after Lemma 3, as long as the closed-loop system is stable, it is possible to show
that offset-free control holds independently of the actual plant dynamics.

We finally present in Figure 5 a comparison of the proposed receding horizon controller with a “standard” (i.e. non
offset-free) robust receding horizon controller. As an example we chose the approach in [17], which is similar to the
one proposed in this paper, in the sense that a pre-stabilizing gain matrix is used and the plant state prediction at the
end of the horizon in restricted to be in the maximal disturbance invariamt.seBoth controllers are based on the
same stabilizing gain matri, which is the optimal LQR gain witkQ = I, andR = 0.2. The fixed horizon used for
both controllers idN = 10 and the perturbation penalty for the “standard” controller is chos#h-asR+ BT PB with
P the solution to the corresponding steady-state Riccati equation. The initial plant stge-is [—0.258 4T and
the disturbance varies as specified in Table 1. In this comparison the setpoint is the origin since the method in [17]
does not apply to setpoints different from the origin (an extension of [17] to the setpoint tracking problem has been
proposed in [16]; however, the controller proposed in [16] still does not guarantee offset-free control). As expected,
the goal of offset-free control is achieved by the proposed method whereas the controller of [17] leaves a significant

and undesired steady-state offset.

Conclusions

This paper has shown how one can design a dynamic receding horizon controller that guarantees robust constraint sat-
isfaction, robust stability and offset-free control in the presence of asymptotically constant disturbances and setpoints.

The design of the controller was split into two parts:

e The design of a dynamic linear time-invariant controllek deadbeat observer is used to estimate the distur-
bance, the new steady state is given as a linear function of the current plant and observer states and of the current

setpoint, and the controller aims to regulate the plant state and input to the new target steady-state.

e The design of a dynamic nonlinear time-invariant receding horizon contrdhesrder to increase the region of
attraction of the linear controller a robust receding horizon controller, which computes perturbations to the linear
control law, was proposed. The receding horizon controller includes the state and input constraints explicitly
in its computations, as well as the transient effect of the unknown disturbance and time-varying setpoint on the
target calculator and closed-loop response, thereby guaranteeing robust constraint satisfaction. It was shown
that the specific formulation of the proposed receding horizon controller improves on the linear controller in
terms of the domain of attraction. The proposed controller is computationally tractable since one has to solve,

at each sampling time, a QP whose dimension increases linearly with an increase in the horizon length.
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The paper also demonstrated the effectiveness of using the results in this paper in designing a controller for guar-
anteeing offset-free control of a continuous stirred tank reactor with respect to existing non offset-free algorithms. The
simulation results were shown to be in agreement with the theory.

We conclude this paper with some recommendations on how the results in this paper may be extended:

e The choice of auxiliary system (i.e. observer) has an impact on the region of attraction and closed-loop perfor-

mance of the system. A more detailed investigation into this topic could be undertaken.

e The constraints on the state and input were not included in the target calculation in (8). If the constraints
are included in the target calculation, then the optimal steady-state target is no longer a linear function of the
augmented state and setpoint. Clearly, this complicates the receding horizon controller design. However, the
inclusion of constraints in the target calculation will enlarge the domain of attraction and increase the size of
the disturbance and setpoints that can be handled by the controller. An extension of this paper, which includes

constraints in the target calculation, could combine the results in [28] with those in [16].

e Due to the requirement that all setpoint sequences need to be handled, the approach presented in this paper is
potentially conservative, since the maximal constraint-admissible robust positively invari@qtrsaty be small
or empty for the given range of setpoints. Further work could involve removing this source of conservativeness
to allow a larger range of setpoints to be tracked without offset. Once again, this may be possible by combining

results in [28] with those in [16].

e Clearly, the rank condition in (3) is not always satisfied. If this assumption is violated, then one might have
to relax the requirement that offset-free control be achieved on all controlled variables. One possible approach
to resolving this problem is to prioritize the controlled variables when performing the target calculation. The

framework proposed in [41] may be useful in this context.

e Rather than optimizing over perturbations to a pre-stabilizing control law, one could consider optimizing over
feedback policies [2,3, 15,19, 22]. This will enlarge the region of attraction of the receding horizon controller at

the expense of an increase in computational complexity.

e The important problem of guaranteeing robust stability, performance, constraint satisfaction and offset-free

control when output feedback (rather than state feedback) is used, remains to be addressed.
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Appendix: Selected Proofs

Proof of Lemma 3

Since lim_. s(k) = Sand lim_.. d(k) = d we have from (14)-(15) and from Lemma 2 that
oo 1= M E(K) = G + Ed+.F5= o € + Bl + &4, (34)

in which U, = .7 &, + .5, Let&., be partitioned as followsEs, = (X, %, ) in which each block is a column vector

of lengthn. We can rewrite (34) explicitly as follows:

Xeo = AXeo + Blbo + Ed (35a)
Reo = Ao + Blko + (Xeo — S0 + Cloo) (35b)

From (35c) we immediately obtain tha = X., (note thaix, = %, and hence the rest of the proof holds independently

of (35a), i.e. independently of the actual plant dynamics and disturbance), which combined with (35b) leads to
Xeo = Ao + Blbo + (Xeo — Koo + G ). (36)

Let (X, Us) denote the solution to the target calculation problem (8) for the augmented stae the setpoirg. —

From (8b) and (36) we can write
Xeo — Xoo = A(Xeo — Xo0) + B(Uso — Uo) = (A+ BK) (Xeo — X0 ) (37)
where the last step comes from (10). It is important to notice that (37) and Assumption 4 implies that
Xoo = Xeo . (38)
Finally, from (38) and from (8b) we obtain:

S= Cp¥eo = CoXeo = Ceo
= lim €E(K).

k—o0
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Proof of Theorem 2

Robust constraint satisfaction follows immediately from the fact thais robust positively invariant for the closed-
loop system (15) and the fact thak, is constraint-admissible.
Since is strictly stable(l — <7, )~! exists and hencéis well-defined and unique. Note also from the proof

of Lemma 3 thatﬁ_: Eo 1= limy_ & (K). Robust asymptotic stability follows from Theorem 1 by defining

=€, w:=¢&(d—-d)+.F(s—5).

Hence, we can write the closed-loop system dynamics in terms of the “shifted” variablék-ad) = <7 {(K) +

w(k). The proof is completed by noting that lm. w(k) = 0.

Proof of Theorem 3

Though a result, similar to the one stated here, appears to be known [17, Sect. 4.2], we have been unable to find a
detailed proof in the literature. Classical robust “open-loop” receding horizon control [3, Sect. 4.5] is well-known

to exhibit infeasibility problems if the plant is open-loop unstable and no pre-stabilizing policy is used in the pre-
dictions [22]. However, it is a remarkable fact that one can remove this problem by optimizing over a sequence of
perturbations to a pre-stabilizing control law. To show that this is indeed still true for the control algorithm proposed

in this paper, we present a detailed proof.

It follows trivially from Assumption 5 thakKg contains the origin in its interior. The rest of the proof is by induction.

Let the plant state € XY, wherej € {1,...,N — 1}, the controller statéx d) be such that’j(£,s) is non-empty
andvj := (vo,...,Vj—1) € #j(&,s) be an admissible perturbation sequence of lefg#iso, lets;_1 := (sy,...,Sj-1) €
1=t and dj := (do,...,dj_1) € 2] be allowable setpoint and disturbance sequences of lgngthand j, respec-
tively.

From the definition of#j(&,s), it follows that&; € O, for all 51 € #1~1 and alldj € 2'. Recall thatd., is
disturbance invariant and constraint-admissible for the closed-loop system (15) Meiscdisturbance invariant and
constraint-admissible for system (20) under the infinite perturbation seqfefige, , := {0,0,...}.

It follows that if &j € 0., for all sj_1 € 1~ and alldj € Z', thenéj,1 € 0., for all s € 7' and alld;y1 € Z'+2.

This implies that ifvj € ¥j(&,s), then(v;,0) € #j11(&,s). Hence, if#j(&,s) is non-empty, ther¥|,1(,s) is
non-empty. It follows from the definition of{’ that if x € X}’, thenx € X, ;, henceXj’ C X ;.

Using similar arguments as above, the result is completed by noticinighaixy’.
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Proof of Theorem 4

Sufficiency.Suppose that(0) € Xy, then it immediately follows from (27) that for any initial setpog(0) € .~ one
can choose a controller stat&0), d(0)) such that/ (£ (0),s(0)) # 0 and hence the FHOCP (22) has a solution. This
implies from Lemma 5 we have th#f (& (k)) # 0 for allk € N and also that

Ve 1= lim v(k) := lim v§(& (k),s(k)) = 0. (39)

k— o0 k—o0

The fact that (4a) holds can now be shown exactly as in the proof of Lemma 3, since from (20) and (39) it follows
that
oo = lIM & (K) = o+ BVeo + Ed+ FS= oy b+ Ed+ FS= o £ + P + £d,

in which U = £ &w + LS+ Voo = H & + £S.
The fact that (4b) holds follows trivially from Lemma 5 and the definitior¥Qf-).
NecessityThis is obvious becausexf0) ¢ Xy, then we either have thaf0) ¢ 2" or that there exists as{0) € .7
such that for al{%(0),d(0)) € R?", %y(£(0),s(0)) = 0 and hence the control input is undefined at time 0.
Finally, robust asymptotic stability follows from Theorem 1 and can be shown in a similar fashion as in the proof of
Theorem 2. This is because it is easy to show that forGaay’., the optimal perturbatiowy(§,s) =0 for allse ..
Hence, we can write the closed-loop system dynamics in a neighborhdi)droferms of the “shifted” variables, as

C(k+1) = o (k) +w(k). Again, the proof is completed by noting that jim, w(k) = 0.
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Table 1: Disturbances and setpoint

t(min) | [0,4) [4,8) [8,12) [12,16) [16,24) [20,24]
d |01 [2-01" [-2-01" [-204" [204" [-201
s 0 0 1 1 -1 -1
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Dynamic offset-free feedback controlle
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Figure 2: Domain of attractiorXy) for different fixed horizons
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Figure 3: Closed-loop comparison of different receding horizon controllers (linear plant): controlled variable (top)
and input (bottom)
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Figure 4: Closed-loop comparison of different receding horizon controllers (nonlinear plant): controlled variable (top)
and input (bottom)
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Figure 5: Closed-loop comparison of offset-free and standard robust receding horizon controllers: controlled variable
(top) and input (bottom).
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