
OFLOPS: An Open Framework for
OpenFlow Switch Evaluation

Charalampos Rotsos1, Nadi Sarrar2, Steve Uhlig2, Rob Sherwood3 ?, and
Andrew W. Moore1

1 University of Cambridge 2 TU Berlin / T-Labs 3 Big Switch Networks

Abstract. Recent efforts in software-defined networks, such as OpenFlow, give
unprecedented access into the forwarding plane of networking equipment. When
building a network based on OpenFlow however, one must take into account the
performance characteristics of particular OpenFlow switch implementations. In
this paper, we present OFLOPS, an open and generic software framework that
permits the development of tests for OpenFlow-enabled switches, that measure
the capabilities and bottlenecks between the forwarding engine of the switch
and the remote control application. OFLOPS combines hardware instrumentation
with an extensible software framework.
We use OFLOPS to evaluate current OpenFlow switch implementations and make
the following observations: (i) The switching performance of flows depends on
applied actions and firmware. (ii) Current OpenFlow implementations differ sub-
stantially in flow updating rates as well as traffic monitoring capabilities. (iii)
Accurate OpenFlow command completion can be observed only through the data
plane. These observations are crucial for understanding the applicability of Open-
Flow in the context of specific use-cases, which have requirements in terms of
forwarding table consistency, flow setup latency, flow space granularity, packet
modification types, and/or traffic monitoring abilities.

1 Introduction

OpenFlow1, an instance of software-defined networking (SDN), gives access deep
within the network forwarding plane while providing a common, simple, API for
network-device control. Implementation details are left to the discretion of each ven-
dor. This leads to an expectation of diverse strengths and weaknesses across the existing
OpenFlow implementations, which motivates our work.

OpenFlow is increasingly adopted, both by hardware vendors as well as by the
research community [12, 22, 19]. Yet, there have been few performance studies: to our
knowledge, OFLOPS is the first attempt to develop a platform that is able to provide de-
tailed measurements for the OpenFlow implementations. Bianco et al. [7] show the per-
formance advantage of the Linux software OpenFlow over the Linux Ethernet switch,
while Curtis et al. [9] discuss some design limitations of the protocol when deployed
in large network environments. We consider OFLOPS, alongside [10], as one of a new
generation of measurement systems that, like the intelligent traffic and router evalua-
tors [13, 4], go beyond simple packet-capture.
? The majority of the work was completed while at Deutsche Telekom Inc. R&D Lab
1 http://www.openflow.org/

We present OFLOPS2, a tool that enables the rapid development of use-case tests
for both hardware and software OpenFlow implementations. We use OFLOPS to test
publicly available OpenFlow software implementations as well as several OpenFlow-
enabled commercial hardware platforms, and report our findings about their varying
performance characteristics. To better understand the behavior of the tested OpenFlow
implementations, OFLOPS combines measurements from the OpenFlow control chan-
nel with data-plane measurements. To ensure sub-millisecond-level accuracy of the
measurements, we bundle the OFLOPS software with specialized hardware in the form
of the NetFPGA platform3. Note that if the tests do not require millisecond-level accu-
racy, commodity hardware can be used instead of the NetFPGA [5].

The rest of this paper is structured as follows. We first present the design of the
OFLOPS framework in Section 2. We describe the measurement setup in Section 3.
We describe our measurements in Section 4. We provide basic experiments that test the
flow processing capabilities of the implementations (Section 4.1) as well as the perfor-
mance and overhead of the OpenFlow communication channel (Section 4.2). We follow
with specific tests, targeting the monitoring capabilities of OpenFlow (Section 4.3) as
well as interactions between different types of OpenFlow commands (Section 4.4). We
conclude in Section 5.

2 OFLOPS framework

Measuring OpenFlow switch implementations is a challenging task in terms of char-
acterization accuracy, noise suppression and precision. Performance characterization is
not trivial as most OpenFlow-enabled devices provide rich functionality but do not dis-
close implementation details. In order to understand the performance impact of an ex-
periment, multiple input measurements must be monitored concurrently. Furthermore,
measurement noise minimization can only be achieved through proper design of the
measurement platform. Current controller designs, like [11, 3], target production net-
works and thus are optimized for throughput maximization and programmability, but
incur high measurement inaccuracy. Finally, high precision measurements after a point
are subject to loss due to unobserved parameters of the measurement host, such as OS
scheduling and clock drift.

The OFLOPS design philosophy is to enable seamless interaction with an
OpenFlow-enabled device over multiple data channels without introducing significant
additional processing delays. The platform provides a unified system that allows de-
velopers to control and receive information from multiple control sources: data and
control channels as well as SNMP to provide specific switch-state information. For the
development of measurement experiments over OFLOPS, the platform provides a rich,
event-driven, API that allows developers to handle events programatically in order to
implement and measure custom controller functionality. The current version is written
predominantly in C. Experiments are compiled as shared libraries and loaded at run-
time using a simple configuration language, through which experimental parameters

2 OFLOPS is under GPL licence and can be downloaded from http://www.openflow.
org/wk/index.php/Oflops

3 http://www.netfpga.org

Fig. 1. OFLOPS design schematic

-3e+06

-2.5e+06

-2e+06

-1.5e+06

-1e+06

-500000

 0

 500000

 0 20000 40000 60000 80000 100000 120000

ti
m

e
r

d
ri
ft
 (

n
s
e
c
)

relative delay since first packet (msec)

pcap
oflops netfpga

oflops netfpga calibrated

Fig. 2. Evaluating timestamping precision using
a DAG card.

can be defined. A schematic of the platform is presented in Figure 1. Details of the
OFLOPS programming model can be found in the API manual [1].

The platform is implemented as a multi-threaded application, to take advantage of
modern multicore environments. To reduce latency, our design avoids concurrent access
controls: we leave any concurrency-control complexity to individual module implemen-
tations. OFLOPS consists of the following five threads, each one serving specific type
of events:
1. Data Packet Generation controls data plane traffic generators.
2. Data Packet Capture captures and pushes data plane traffic to modules.
3. Control Channel translates OpenFlow packets to control events.
4. SNMP Channel performs asynchronous SNMP polling.
5. Time Manager manages time events scheduled by measurement modules.

OFLOPS provides the ability to control concurrently multiple data channels to the
switch. By embedding the data channel within the platform, it is possible to understand
the impact of the measurement scenario on the switching plane. To enable our platform
to run on multiple heterogeneous platforms, we have integrated support for multiple
packet generation and capturing mechanisms. For the packet generation functionality,
OFLOPS supports three mechanisms: user-space, kernel-space through the pktgen mod-
ule [16], and hardware-accelerated through an extension of the design of the NetFPGA
Stanford Packet Generator [8]. For the packet capturing and timestamping, the plat-
form supports both the pcap library and the modified NetFPGA design. Each approach
provides different precisions and different impacts upon the measurement platform.

A comparison of the precision of the traffic capturing mechanisms is presented in
Figure 2. In this experiment we use a constant rate 100 Mbps probe of small packets for
a two minute period. The probe is duplicated, using an optical wiretap with negligible
delay, and sent simultaneously to OFLOPS and to a DAG card. In the figure, we plot the
differences of the relative timestamp between each OFLOPS timestamping mechanism
and the DAG card for each packet. From the figure, we see that the pcap timestamps
drift by 6 milliseconds after 2 minutes. On the other hand, the NetFPGA timestamping
mechanism has a smaller drift at the level of a few microseconds during the same period.

3 Measurement setup

The number of OpenFlow-enabled devices has slowly increased recently, with switch
and router vendors providing experimental OpenFlow support such as prototype and
evaluation firmware. At the end of 2009, the OpenFlow protocol specification was re-
leased in its first stable version 1.0 [2], the first recommended version implemented by
vendors for production systems. Consequently, vendors did proceed on maturing their
prototype implementations, offering production-ready OpenFlow-enabled switches to-
day. Using OFLOPS, we evaluate OpenFlow-enabled switches from three different
switch vendors. Vendor 1 has production-ready OpenFlow support, whereas vendors
2 and 3 at this point only provide experimental OpenFlow support. The set of selected
switches provides a representative but not exhaustive sample of available OpenFlow-
enabled top-of-rack-style switching hardware. Details regarding the CPU and the size
of the flow table of the switches are provided in Table 1.

OpenFlow is not limited to hardware. The OpenFlow protocol reference is the soft-
ware switch, OpenVSwitch [17], an important implementation for production environ-
ments. Firstly, OpenVSwitch provides a replacement for the poor-performing Linux
bridge [7], a crucial functionality for virtualised operating systems. Secondly, several
hardware switch vendors use OpenVSwitch as the basis for the development of their
own OpenFlow-enabled firmware. Thus, the mature software implementation of the
OpenFlow protocol is ported to commercial hardware, making certain implementation
bugs less likely to (re)appear. In this paper, we study OpenVSwitch alongside our per-
formance and scalability study of hardware switches. Finally, in our comparison we
include the OpenFlow switch design for the NetFPGA platform [15]; a full implementa-
tion of the protocol, limited though in capabilities due to hardware platform limitations.

Switch CPU Flow table size
Switch1 PowerPC 500MHz 3072 mixed flows
Switch2 PowerPC 666MHz 1500 mixed flows
Switch3 PowerPC 828MHz 2048 mixed flows

OpenVSwitch Xeon 3.6GHz 1M mixed flows
NetFPGA DualCore 2.4GHz 32K exact & 100 wildcard

Table 1. OpenFlow switch details.

In order to conduct our measurements, we setup OFLOPS on a dual-core 2.4GHz
Xeon server equipped with a NetFPGA card. For all the experiments we utilize the
NetFPGA-based packet generating and capturing mechanism. 1Gbps control and data
channels are connected directly to the tested switches. We measure the processing de-
lay incurred by the NetFPGA-based hardware design to be a near-constant 900 nsec
independent of the probe rate.

4 Evaluation

In this section we present a set of tests performed by OFLOPS to measure the behavior
and performance of OpenFlow-enabled devices. These tests target (1) the OpenFlow
packet processing actions, (2) the update rate of the OpenFlow flow table along with its

Mod. type Switch1 OpenVSwitch Switch2 Switch3 NetFPGA
med sd loss% med sd loss% med sd loss% med sd loss% med sd loss%

Forward 4 0 0 35 13 0 6 0 0 5 0 0 3 0 0
MAC addr. 4 0 0 35 13 0 302 727 88 - - 100 3 0 0
IP addr. 3 0 0 36 13 0 302 615 88 - - 100 3 0 0
IP ToS 3 0 0 36 16 0 6 0 0 - - 100 3 0 0
L4 port 3 0 0 35 15 0 302 611 88 - - 100 3 0 0
VLAN pcp 3 0 0 36 20 0 6 0 0 5 0 0 3 0 0
VLAN id 4 0 0 35 17 0 301 610 88 5 0 0 3 0 0
VLAN rem. 4 0 0 35 15 0 335 626 88 5 0 0 3 0 0

Table 2. Time in µs to perform individual packet modifications and packet loss. Processing delay
indicates whether the operation is implemented in hardware (<10µs) or performed by the CPU
(>10µs).

impact on the data plane, (3) the monitoring capabilities provided by OpenFlow, and
(4) the impact of interactions between different OpenFlow operations.

4.1 Packet modifications

The OpenFlow specification [2] defines ten packet modification actions which can be
applied on incoming packets. Available actions include modification of MAC, IP, and
VLAN values, as well as transport-layer fields and flows can contain any combination
of them. The left column of Table 2 lists the packet fields that can be modified by an
OpenFlow-enabled switch. These actions are used by network devices such as IP routers
(e.g., rewriting of source and destination MAC addresses) and NAT (rewriting of IP ad-
dresses and ports). Existing network equipment is tailored to perform a subset of these
operations, usually in hardware to sustain line rate. On the other hand, how these oper-
ations are to be used is yet to be defined for new network primitives and applications,
such as network virtualization, mobility support, or flow-based traffic engineering.

To measure the time taken by an OpenFlow implementation to modify a packet field
header, we generate from the NetFPGA card UDP packets of 100 bytes at a constant rate
of 100Mbps (approx. 125 Kpps). This rate is high enough to give statistically significant
results in a short period of time. The flow table is initialized with a flow that applies a
specific action on all probe packets and the processing delay is calculated using the
transmission and receipt timestamps, provided by the NetFPGA. Evaluating individual
packet field modification, Table 2 reports the median difference between the generation
and capture timestamp of the measurement probe along with its standard deviation and
percent of lost packets.

We observe significant differences in the performance of the hardware switches due
in part to the way each handles packet modifications. Switch1, with its production-grade
implementation, handles all modifications in hardware; this explains its low packet pro-
cessing delay between 3 and 4 microseconds. On the other hand, Switch2 and Switch3
each run experimental firmware providing only partial hardware support for OpenFlow
actions. Switch2 uses the switch CPU to perform some of the available field modifica-
tions, resulting in two orders of magnitude higher packet processing delay and variance.
Switch3 follows a different approach: All packets of flows with actions not supported
in hardware are silently discarded. The performance of the OpenVSwitch software im-

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

d
e

la
y
(m

s
e

c
)

number of flows

barrier reply
transmission delay
first packet

(a) OpenVSwitch (log-log scale)

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

d
e

la
y
(m

s
e

c
)

number of flows

barrier reply
transmission delay
first packet

(b) Switch1 (log-log scale)

Fig. 3. Flow entry insertion delay: as reported using the barrier notification and as observed
at the data plane.

plementation lies between Switch1 and the other hardware switches. OpenVSwitch
fully implements all OpenFlow actions. However, hardware switches outperform Open-
VSwitch when the flow actions are supported in hardware.

We conducted a further series of experiments with variable numbers of packet mod-
ifications as flow actions. We observed, that the combined processing time of a set of
packet modifications is equal to the highest processing time across all individual actions
in the set.

4.2 Flow table update rate

The flow table is a central component of an OpenFlow switch and is the equivalent of
a Forwarding Information Base (FIB) on routers. Given the importance of FIB updates
on commercial routers, e.g., to reduce the impact of control plane dynamics on the data
plane, the FIB update processing time of commercial routers provide useful reference
points and lower bounds for the time to update a flow entry on an OpenFlow switch.
The time to install a new entry on commercial routers has been reported in the range of
a few hundreds of microseconds [18].

OpenFlow provides a mechanism to define barriers between sets of commands: the
barrier command. According to the OpenFlow specification [2], the barrier com-
mand is a way to be notified that a set of OpenFlow operations has been completed.
Further, the switch has to complete the set of operations issued prior to the barrier be-
fore executing any further operation. If the OpenFlow implementations comply with the
specification, we expect to receive a barrier notification for a flow modification once the
flow table of the switch has been updated, implying that the change can be seen from
the data plane.

We check the behavior of the tested OpenFlow implementations, finding variation
among them. For OpenVSwitch and Switch1, Figure 3 shows the time to install a set of
entries in the flow table. The NetFPGA-based switch results (not reported) are similar
to those of Switch1, while Switch2 and Switch3 are not reported as this OpenFlow mes-
sage is not supported by the firmware. For this experiment, OFLOPS relies on a stream
of packets of 100 bytes at a constant rate of 10Mbps that targets the newly installed
flows in a round-robin manner. The probe achieves sufficiently low inter-packet periods
in order to measure accurately the flow insertion time.

In Figure 3, we show three different times. The first, barrier notification, is de-
rived by measuring the time between when the first insertion command is sent by the
OFLOPS controller and the time the barrier notification is received by the PC. The sec-
ond, transmission delay, is the time between the first and last flow insertion commands

are sent out from the PC running OFLOPS. The third, first packet, is the time between
the first insertion command is issued and a packet has been observed for the last of
the (newly) inserted rules. For each configuration, we run the experiment 100 times and
Figure 3 shows the median result as well as the 10th and 90th percentiles (variations
are small and cannot be easily viewed).

From Figure 3, we observe that even though the transmission delay for sending flow
insertion commands increases with their number, this time is negligible when compared
with data plane measurements (first packet). Notably, the barrier notification measure-
ments are almost constant, increasing only as the transmission delay increases (difficult
to discern on the log-log plot) and, critically, this operation returns before any first
packet measurement. This implies that the way the barrier notification is implemented
does not reflect the time when the hardware flow-table has been updated.

In these results we demonstrate how OFLOPS can compute per-flow overheads. We
observe that the flow insertion time for Switch1 starts at 1.8ms for a single entry, but
converges toward an approximate overhead of 1ms per inserted entry as the number of
insertions grows.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

In
s
e
rt

io
n
 t
im

e
 (

m
s
e
c
)

Number of flow entries inserted

switch1 - mod flow
switch1 - add flow
switch2 - mod flow
switch2 - add flow
ovs - mod flow
ovs - add flow

Fig. 4. Delay of flow insertion and flow modification, as observed from the data plane (log-log
scale).

Flow insertion types We now distinguish between flow insertions and the modification
of existing flows. With OpenFlow, a flow rule may perform exact packet matches or use
wild-cards to match a range of values. Figure 4 compares the flow insertion delay as a
function of the number of inserted entries. This is done for the insertion of new entries
and for the modification of existing entries.

These results show that for software switches that keep all entries in memory, the
type of entry or insertion does not make a difference in the flow insertion time. Sur-
prisingly, both Switch1 and Switch2 take more time to modify existing flow entries
compared to adding new flow entries. For Switch1, this occurs for more than 10 new
entries, while for Switch2 this occurs after a few tens of new entries. After discussing

this issue with the vendor of Switch2, we came to the following conclusion: as the
number of TCAM entries increases, updates become more complex as they typically
requires re-ordering of existing entries.

Clearly, the results depend both on the entry type and implementation. For exam-
ple, exact match entries may be handled through a hardware or software hash table.
Whereas, wild-carded entries, requiring support for variable length lookup, must be
handled by specialized memory modules, such as TCAM. With such possible choices
and range of different experiments, the flow insertion times reported in Figure 4 are not
generalizable, but rather depend on the type of insertion entry and implementation.

4.3 Flow monitoring

The use of OpenFlow as a monitoring platform has already been suggested for the appli-
cations of traffic matrix computation [20, 6] and identifying large traffic aggregates [14].
To obtain direct information about the state of the traffic received by an OpenFlow
switch, the OpenFlow protocol provides a mechanism to query traffic statistics, either
on a per-flow basis or across aggregates matching multiple flows and supports packet
and byte counters.

We now test the performance implications of the traffic statistics reporting mecha-
nism of OpenFlow. Using OFLOPS, we install flow entries that match packets sent on
the data path. Simultaneously, we start sending flow statistics requests to the switch.
Throughout the experiment we record: the delay getting a reply for each query, the
amount of packets that the switch sends for each reply and the departure and arrival
timestamps of the probe packets.

Figure 5 reports the time to receive a flow statistics reply for each switch, as a
function of the request rate. Despite the rate of statistics requests being modest, quite
high CPU utilization results for even a few queries per second being sent. Figure 5
reports the switch-CPU utilization as a function of the flow statistics inter-request time.
Statistics are retrieved using SNMP. Switch3 is excluded for lack of SNMP support.

 1

 10

 100

 1000

0.25 0.5 1 4fl
o

w
 s

ta
ts

 d
e

la
y
 (

m
s
e

c
)

flow statistics polling rate (requests/sec)

switch1
switch2
switch3
netfpga

ovs

(a) Reply time.

 0

 20

 40

 60

 80

 100

0.25 0.5 1 4

c
p

u
 u

tl
iz

a
ti
o

n

flow statistics polling rate (requests/sec)

switch1
switch2
netfpga

ovs

(b) CPU utilization.

Fig. 5. Time to receive a flow statistic (median) and corresponding CPU utilization.

From the flow statistics reply times, we observe that all switches have (near-
)constant response delays: the delay itself relates to the type of switch. As expected,
software switches have faster response times than hardware switches, reflecting the
availability of the information in memory without the need to poll multiple hardware
counters. These consistent response times also hide the behavior of the exclusively hard-
ware switches whose CPU time increases proportionally with the rate of requests. We
observe two types of behavior from the hardware switches: the switch has a high CPU

 10

 100

 1000

 10000

210.330.250

in
s
e
rt

io
n
 d

e
la

y
 (

u
s
e
c
)

flow statistics polling rate (requests/sec)

switch1
switch2
switch3
netfpga

ovs

Fig. 6. Delay when updating flow table while the controller polls for statistics.

utilization, answering flow-stats requests as fast as possible (Switch2), or the switch de-
lays responses, avoiding over-loading its CPU (Switch1). Furthermore, for Switch1, we
notice that the switch is applying a pacing mechanism on its replies. Specifically, at low
polling rates the switch splits its answer across multiple TCP segments: each segment
containing statistics for a single flow. As the probing rate increases, the switch will ag-
gregate multiple flows into a single segment. This suggests that independent queuing
mechanisms are used for handling flow statistics requests. Finally, neither software nor
NetFPGA switches see an impact of the flow-stats rate on their CPU, thanks to their
significantly more powerful PC CPUs (Table 1).

4.4 OpenFlow command interaction

An advanced feature of the OpenFlow protocol is its ability to provide applications
with, e.g., flow arrival notifications from the network, while simultaneously providing
fine-grain control of the forwarding process. This permits applications to adapt in real
time to the requirements and load of the network [12, 21]. Under certain OpenFlow
usage scenarios, e.g., the simultaneous querying of traffic statistics and modification of
the flow table, understanding the behavior of the data and control plane of OpenFlow
switches is difficult without advanced measurement instrumentation such as the one
provided by OFLOPS.

Through this scenario, we extend Section 4.2 to show how the mechanisms of traffic
statistics extraction and table manipulation may interact. Specifically, we initialize the
flow table with 1024 exact match flows and measure the delay to update a subset of 100
flows. Simultaneously, the measurement module polls the switch for full table statistics
at a constant rate. The experiment uses a constant rate 10Mbps packet probe to monitor
the data path, and polls every 10 seconds for SNMP CPU values.

In this experiment, we control the probing rate for the flow statistics extraction
mechanism, and we plot the time necessary for the modified flows to become active
in the flow table. For each probing rate, we repeat the experiment 50 times, plotting
the median, 10th and 90th percentile. In Figure 6 we can see that, for lower polling
rates, implementations have a near-constant insertion delay comparable to the results
of Section 4.2. For higher probing rates on the other hand, Switch1 and Switch3 do
not differ much in their behavior. In contrast, Switch2 exhibits a noteworthy increase
in the insertion delay explained by the CPU utilization increase incurred by the flow
statistics polling (Figure 5(b)). Finally, OpenVSwitch exhibits a marginal decrease in
the median insertion delay and at the same time an increase in its variance. We believe
this behavior is caused by interactions with the OS scheduling mechanism: the constant
polling causes frequent interrupts for the user-space daemon of the switch, which leads
to a batched handling of requests.

5 Summary and Conclusions

We presented, OFLOPS, a tool that tests the capabilities and performance of OpenFlow-
enabled software and hardware switches. OFLOPS combines advanced hardware in-
strumentation, for accuracy and performance, and provides an extensible software
framework. We use OFLOPS to evaluate five different OpenFlow switch implemen-
tations, in terms of OpenFlow protocol support as well as performance.

We identify considerable variation among the tested OpenFlow implementations.
We take advantage of the ability of OFLOPS for data plane measurements to quantify
accurately how fast switches process and apply OpenFlow commands. For example, we
found that the barrier reply message is not correctly implemented, making it difficult to
predict when flow operations will be seen by the data plane. Finally, we found that the
monitoring capabilities of existing hardware switches have limitations in their ability to
sustain high rates of requests. Further, at high rates, monitoring operations impact other
OpenFlow commands.

We hope that the use of OFLOPS will trigger improvements in the OpenFlow pro-
tocol as well as its implementations by various vendors.

References

1. OFLOPS. http://www.openflow.org/wk/index.php/Oflops.
2. Openflow switch specification (version 1.0.0). www.openflow.org/documents/

openflow-spec-v1.0.0.pdf, December 2009.
3. The snac openflow controller, 2010. http://www.openflow.org/wp/snac/.
4. Agilent. N2X router tester. http://advanced.comms.agilent.com/n2x/.
5. P. Arlos and M. Fiedler. A method to estimate the timestamp accuracy of measurement

hardware and software tools. In PAM, 2007.
6. G. Balestra, S. Luciano, M. Pizzonia, and S. Vissicchio. Leveraging router programmability

for traffic matrix computation. In Proc. of PRESTO workshop, 2010.
7. A. Bianco, R. Birke, L. Giraudo, and M. Palacin. Openflow switching: Data plane perfor-

mance. In IEEE ICC, may 2010.
8. G. Covington, G. Gibb, J. Lockwood, and N. Mckeown. A packet generator on the NetFPGA

platform. In FCCM 2009.
9. A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. De-

voflow:scaling flow management for high-performance networks. In ACM SIGCOMM, 2011.
10. D. A. Freedman, T. Marian, J. H. Lee, K. Birman, H. Weatherspoon, and C. Xu. Exact

temporal characterization of 10 gbps optical wide-area network. In IMC 2010.
11. N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker. Nox:

towards an operating system for networks. SIGCOMM Comput. Commun. Rev., July 2008.
12. N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari. Plug-n-Serve: Load-

Balancing Web Traffic using OpenFlow. In ACM SIGCOMM Demo, August 2009.
13. Ixia. Interfaces. http://www.ixiacom.com/.
14. L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic aggregates on commodity

switches. In Proc. of the USENIX HotICE workshop, 2011.
15. J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown. Implementing

an openflow switch on the netfpga platform. In ANCS, 2008.
16. R. Olsson. pktgen the linux packet generator. In Proceedings of Linux symposium, 2005.

17. J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby. Virtualizing the network forwarding
plane. In DC-CAVES, 2010.

18. A. Shaikh and A. Greenberg. Experience in black-box ospf measurement. In ACM IMC,
2001.

19. R. Sherwood, G. Gibb, K. Yapa, M. Cassado, G. Appenzeller, N. McKeown, and G. Parulkar.
Can the production network be the test-bed? In OSDI, 2010.

20. A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: traffic matrix estimator for open-
flow networks. In PAM, 2010.

21. K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian, and N. McKeown.
The stanford openroads deployment. In Proceedings of ACM WINTECH, 2009.

22. M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based networking with
difane. In ACM SIGCOMM, August 2010.

