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Most of the current visual Simultaneous Localization andMapping (SLAM) algorithms are designed based on the assumption of a
static environment, and their robustness and accuracy in the dynamic environment do not behave well. .e reason is that moving
objects in the scene will cause the mismatch of features in the pose estimation process, which further affects its positioning and
mapping accuracy. In the meantime, the three-dimensional semantic map plays a key role in mobile robot navigation, path
planning, and other tasks. In this paper, we present OFM-SLAM: Optical Flow combining MASK-RCNN SLAM, a novel visual
SLAM for semantic mapping in dynamic indoor environments. Firstly, we use the Mask-RCNN network to detect potential
moving objects which can generate masks of dynamic objects. Secondly, an optical flow method is adopted to detect dynamic
feature points. .en, we combine the optical flow method and the MASK-RCNN for full dynamic points’ culling, and the SLAM
system is able to track without these dynamic points. Finally, the semantic labels obtained fromMASK-RCNN are mapped to the
point cloud for generating a three-dimensional semantic map that only contains the static parts of the scenes and their semantic
information. We evaluate our system in public TUM datasets..e results of our experiments demonstrate that our system is more
effective in dynamic scenarios, and the OFM-SLAM can estimate the camera pose more accurately and acquire a more precise
localization in the high dynamic environment.

1. Introduction

Simultaneous Localization and Mapping (SLAM) enables
the mobile robot to estimate the current position and
posture through the sensor and the corresponding motion
estimation algorithm without any prior environmental in-
formation and establish a three-dimensional map of the
environment. RGB-D cameras have become one of the
important sensors for the mobile robot assembly due to its
cost effectiveness, application occasions, and availability of
rich scene information. In the meantime, with the devel-
opment of computer vision, deep learning, and the im-
provement of hardware computing capabilities, the research
on vision-based Visual SLAM (VSLAM) continues to
deepen and is widely used in fields such as autonomous
driving, mobile robots, and drones.

Most SLAM algorithms are not robust in dynamic en-
vironments; it is easier to calculate their own pose based on
static environment information. Dynamic objects in the
environment, such as walking people, opening and closing
doors, or any other change in the environment, will bring
unpredictable abnormal observations to the system, reduce
the positioning accuracy of mobile robots, cause dynamic
interfering objects to become part of the environment map,
and even cause the SLAM system to fail completely.
.erefore, the existing algorithms are not well applicable to
dynamic environments, and the accuracy and robustness of
SLAM systems in dynamic environments need to be im-
proved. At the same time, intelligent mobile robots need to
have a higher level of understanding of the scene to perform
complex tasks, such as the semantic information of sur-
rounding objects and their location information. .e
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semantic map contains not only the spatial structure in-
formation of the surrounding environment but also the
semantic information of the environment. Semantic infor-
mation can be used to reason about objects and environ-
ments around the robot, or to provide additional
information for navigation and robot tasks. .erefore, the
correct analysis of the environment and the establishment of
a semantic map are the prerequisites for the interaction
between the human and the robot in the intelligent system,
and it is also the basis for the mobile robot to perform
advanced tasks. With the development of deep learning,
some networks can achieve good performance in semantic
segmentation, such as Semanticfusion [1], Semantic 3D
Mapping [2], MaskFusion [3], and MID-Fusion [4]. .is
global semantic information obtained through semantic
segmentation networks can help robot navigation and path
planning, which will significantly improve the intelligence of
mobile robots.

In view of the above problems, it is necessary to increase the
processing of moving objects in the environment, reduce its
impact on the visual SLAM system, and improve the accuracy
and robustness of the SLAM system positioning and mapping.
At the same time, the semantic segmentation algorithm and the
visual SLAM algorithm need to be merged to construct a
semantic map of the environment to obtain richer information
and a better understanding of the scene. Based on the complex
and dynamic indoor dynamic environment, this paper explores
the methods of constructing the semantic map in the dynamic
environment, combining the visual SLAM system based on the
RGB-D camera and the deep learning method. .e methods
proposed in this paper have a certain value in semantic map
construction in the dynamic environment and can help robots
achieve more intelligent navigation tasks.

.e contributions of this paper can be seen as follows:

(1) A novel OFM-SLAM system is proposed based on
ORB-SLAM2 for more accurate positioning and
mapping in dynamic scenarios.

(2) A deep convolutional neural network MASK-RCNN
framework is adopted to eliminate potential dynamic
objects, merge pose information and semantic in-
formation, and build a semantic target database to
build the high-level semantic map.

(3) We combine the optical flow method with the
network of MASK-RCNN to get masks of moving
objects, then, we fully remove the dynamic objects in
the scenes.

(4) A semantic octree map is constructed using the results
of semantic segmentation, and then, we use the log-
odds method to remove the residual part of the dy-
namic target in the map. .e dynamic factors in the
map are eliminated to generate a three-dimensional
octree map of the static environment, which provides
reliable environmental information for the navigation
of the mobile robot.

.e rest of the paper is structured as follows: intro-
duction of related works in Section 2, detailed description of
the materials and method we proposed in Section 3, our

experimental part in Section 4, and finally, the summary and
expectation the future work in Section 5.

2. Related Work

2.1. Visual SLAM. With the continuous improvement of
algorithms and computer hardware performance, visual
SLAM has developed rapidly in recent years and has been
successfully applied to many occasions, such as service
robots, sweeping robots, and drones. .e basic principle of
visual SLAM is to observe the same scene from different
perspectives and perform data correlation between different
images to calculate the camera movement between different
frames. Visual SLAM algorithms are mainly divided into
filter methods and optimization methods. In the early SLAM
algorithms, filter methods [5] were widely used, such as the
Kalman filter (KF) and particle filters. .ey are only focused
on the state estimation at the current moment, but do not
make a full use of the previous state. In recent years,
nonlinear optimization has gradually become the main-
stream solution of the visual SLAM method. With the de-
velopment of graph optimization theory, many SLAM
systems based on optimization methods, such as ORB-
SLAM [6] and SVO [5], are proposed to construct a more
accurate map. According to the form of map construction,
the SLAM algorithm is divided into sparse methods, sem-
idense method, and dense method. According to the dif-
ferent cameras used, it is divided into monocular SLAM,
binocular SLAM, and RGB-D SLAM. Visual SLAM algo-
rithms can also be divided into indirect method, semidirect
methods, and direct methods according to whether feature
points are needed. Mur-Artal and Tardos proposed the
ORB-SLAM, which provides a classic visual SLAM algo-
rithm, and it can achieve long-term operation in large
scenarios due to the pose map optimization used in the
optimization part, which can correct trajectory errors in the
system. Subsequently, the author made improvements to the
original system, adding support for binocular cameras and
RGB-D depth cameras, and developed the ORB-SLAM2 [7]
system. .e ORB-SLAM2 algorithm is an outstanding al-
gorithm framework among the visual SLAM algorithms
based on the feature point method in recent years.

In an ideal environment without dynamic targets, the
visual SLAM system can operate normally without inter-
ference, but in the actual environment, there are many
dynamic targets, such as walking people, running vehicles,
and other targets. In the SLAM system, the dynamic feature
points extracted on the dynamic target will directly affect the
accuracy of the robot’s pose estimation, causing errors and
drift in the system. To improve the accuracy and robustness
of visual SLAM in a dynamic environment, it is necessary to
eliminate the influence of dynamic targets in the environ-
ment. .erefore, we need to identify and process dynamic
targets in the environment.

2.2. SLAM inDynamic Scenes. In dynamic scenes, scene flow
methods are often used to detect dynamic objects in images.
Alcantarilla et al. [8] used the scene flow changes of the
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features to identify the dynamic features in the system, and
after removing these dynamic features, the pose estimation
was performed. However, the method removed too many
dynamic feature points, and the static feature points were
prone to be insufficient. Palazzolo [9] presented re-fusion
which uses an efficient direct tracking on the truncated
signed-distance function (TSDF) and leverage color infor-
mation encoded in the TSDF to estimate the pose of the
sensor. For detecting dynamics, they exploited the residuals
obtained after an initial registration, together with the explicit
modeling of the free space in the model. Zhang et al. [10]
presented FlowFusion using optical flow residuals to highlight
the dynamic semantics in the RGB-D point clouds and
provided more accurate and efficient dynamic (static) seg-
mentation for camera tracking and background reconstruc-
tion, and there are other geometric methods used for large-
scale and dynamic environment, such as Lsd-SLAM [11],
Static-Fusion [12], EM-Fusion [13], and SOF-SLAM [14] .

In recent years, deep learning-based methods have
achieved significant results in the tasks of target recognition
and semantic segmentation. .erefore, many researchers
believe that applying deep learning technology to visual
SLAM is the key to solving dynamic environment problems.
.e combination of deep learning and visual SLAM en-
hances the ability of mobile robots to understand and
perceive the surrounding environment. In dynamic scenes,
Runz et al. [3] presented MaskFusion, a real-time, object-
aware, semantic, and dynamic RGB-D SLAM system that
goes beyond traditional systems which output a purely
geometric map of a static scene. Xu et al. [4] proposed a new
multi-instance dynamic RGB-D SLAM system MID-Fusion
using an object-level octree-based volumetric representa-
tion. It can provide robust camera tracking in dynamic
environments and, at the same time, continuously estimate
geometric, semantic, and motion properties for arbitrary
objects in the scene. Bescos et al. [15] proposed to add
dynamic target detection and background repair functions
to the ORB-SLAM2 system and used Mask-RCNN [16] for
instance segmentation to obtain dynamic target parts, which
greatly improves the SLAM performance, but the system
cannot achieve real-time operation. .e DS-SLAM system
proposed by Yu [17] combines the semantic segmentation
network SegNet with ORB-SLAM2 to reduce the impact of
dynamic targets on the system. Dai et al. [18] proposed a
method that utilizes the correlation between map points
which could separate points that are part of the static scene
and moving objects into different groups. Cui et al. [19]
improved the yolov3 algorithm to detect indoor objects, and
the real-time semantic segmentation network model based
on deep learning is used to segment indoor objects to achieve
the classification of objects. .en, they combine the depth
information to build the three-dimensional semantic map.

3. Materials and Methods

3.1. SystemOverview. We proposed the OFM-SLAM system
which is based on the state-of-the-art ORB-SLAM2. We add
the dynamic objects’ processing module and semantic
mapping module to the system. .e image information

stream input to the visual SLAM algorithm often contains
various objects, combined with the semantic information
extraction of the target detection network MASK-RCNN.
.e precise geometric information obtained by the RGB-D
camera and SLAM algorithm enables the robot to obtain
more structured, semantic, and hierarchical map informa-
tion from the surrounding environment. Figure 1 shows the
flow chart of OFM-SLAM.

3.2. Moving Objects’ Detection Based on MASK-RCNN.
We adopt the network of MASK-RCNN to detect the
moving object, with the continuous development of machine
learning, more and more semantic segmentation networks
have been proposed, and they can achieve pixel-level se-
mantic segmentation. In OFM-SLAM, Mask R-CNN is used
to obtain semantic information which was proposed by He
et al. [16].

Mask R-CNN can obtain pixel-level semantic segmen-
tation and instance labels at the same time and has high
accuracy. For each frame of the input image, Mask-RCNN
first obtains the corresponding feature map through the
trained ResNet network and sets a fixed number of ROI
(Region of Interest) for each feature in the feature map to
obtain multiple candidates’ ROI through RPN (Region
Proposal Network)..en, the ROI Align operation is used to
realize the correspondence between the feature map and the
original image and adopt a fully connected network for each
ROI to classify and establish a bounding box. In another
branch, the FCN (Fully Convolution Network) is used to
achieve semantic segmentation. .e results of semantic
segmentation can be used for the construction of semantic
maps, and the instance labels can be used to determine
potential dynamic targets in the scene.

Figure 2 shows the pipeline of instance segmentation
using MASK-RCNN. .e Mask-RCNN network mainly
consists of two parts. .e first part scans the entire input
image and generates a candidate area that may contain the
target object. .e second part classifies the generated can-
didate area and generates the mask and bounding box
through convolution operation. .en, we use the semantic
information generated by theMASK-RCNN to construct the
semantic map.

.e network input is the original RGB image, and the
output is a segmented image containing semantic labels. In
order to introduce Mask-RCNN into the SLAM framework,
on the one hand, it needs to provide semantic information for
the SLAM algorithm, and on the other hand, it provides the
SLAM algorithm with a priori information that has a high
probability of being a dynamic target in the scene. In order to
enable the segmentation results of Mask-RCNN to better
integrate the SLAM algorithm, the segmentation results of
Mask-RCNN are preprocessed, and the segmentation
bounding box is removed from the output results of the
original Mask-RCNN. While, preserving the semantic labels
and segmentation results, we visualize objects that have a high
probability of being a dynamic target in the image.

As shown in Figure 3, visualization refers to setting the
pixel value of the object detected as a human in the image to
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0, and the pixel value of the remaining objects including the
background remains unchanged.

3.3.DynamicPoints’DetectionAlgorithmBasedon theOptical
Flow. We use the optical flowmethod to detect the potential
dynamic point in the scene. .e optical flow field is the
instantaneous velocity field that describes the movement of
pixels in the image, that is, the position and velocity changes

of the pixels in the image. It uses the temporal changes of the
pixel grayscale in the image sequence and the correlation
between adjacent frames. .e algorithm calculates the
motion information of any object between the pixels in the
image and then knows the correspondence between the
feature points in the current frame image and the previous
frame image. According to the velocity vector characteristics
of each pixel, the image can be dynamically analyzed. If there
is no moving target in the image, the optical flow vector

RGB-D
Frame

MASK-RCNN

Optical flow
method 

Dynamic
object culling

Semantic map
construction 

Keyframe 

Semantic mapping

Dynamic objects’ culling

Point cloud
generation Data association

Tracking 

Local mapping 

Loop closing

Figure 1: Pipeline of OFM-SLAM which contains five threads as follows: tracking, local mapping, loop closing, dynamic objects’ culling,
and semantic mapping.
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Figure 2: Pipeline of dynamic object detection using MASK-RCNN.

(a) (b)

Figure 3: MASK generation using Mask-RCNN in TUM RGB-D datasets and our datasets in our laboratory. (a) Sitting-xyz.
(b) Walking-lab.
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changes continuously throughout the image area. When
there are moving objects in the image, there is relative
movement between the target and the background. .e
velocity vector formed by the moving object must be dif-
ferent from the background velocity vector so that the
position of the moving object can be calculated.

.e dynamic point detection algorithm in this paper is
based on the optical flow method. It uses the sparse pyramid
Lucas–Kanade (LK) optical flow to track some points in the
image to directly obtain the corresponding relationship of
the feature points. It does not require descriptor calculation
and feature matching process, so it has better real-time
performance. Since the consistency of the optical flow is used
for moving object detection, the choice of optical flow
threshold has a greater impact on the acquisition of dynamic
point information. .erefore, the dynamic point detection
algorithm in this paper only uses the optical flow for feature
point tracking and uses it after obtaining specific corre-
sponding feature points. .e epipolar constraint makes
dynamic point determination. .e pseudocode of the spe-
cific dynamic point detection algorithm is shown in
Algorithm 1.

By tracking the optical flow of two consecutive frames of
images, several pairs of matching points between the images
can be obtained so that the positional relationship between
the two frames can be restored. .e fundamental matrix F
describes the relative transformation relationship between
the two frames of images..e solution of F can be calculated
using the eight pairs of matching feature points.

Consider a pair of matching points, their normalized
coordinates are pi � (ui, vi, 1) and pi′ � (ui′, vi′, 1). According
to the epipolar geometric constraints, there are

ui, vi, 1( )
e1 e2 e3

e4 e5 e6

e7 e8 1

 
ui′

vi′

1

  � pTi Fpi′ � 0. (1)

Since the fundamental matrix F itself is equivalent, 8
pairs of matching points can be used to calculate the fun-
damental matrix F to obtain the correspondence between
the two frames of images.

Using the basic matrix F, the key point p1 in the previous
frame can be projected to the current frame to obtain the
epipolar line l2 in the current frame, which is the search
domain of the projection point of the spatial point P in the
image I2. By calculating the distance from the key point p2 to
the polar line l2 obtained by optical flow tracking, it is
determined whether it is a dynamic point:

l2 �

X

Y

Z

  � Fp1
′ � F

u1

v1

1

  (2)

where X, Y, and Z represent the line vector of the epipolar
line and F is the basic matrix.

.e distance D from the matching feature point p2

tracked by the optical flow to the corresponding polar line l2
can be calculated by the following equation:

D �
p′T2 Fp1

∣∣∣∣∣ ∣∣∣∣∣����������
‖X‖2 +‖Y‖2

√ . (3)

If D>threshold, then p1 and p2 are dynamic points, and
the threshold is set to 6 in the algorithm in this paper.
Figure 4 shows the result of the optical method.

3.4. Tracking without the Moving Feature Point. .ere are
many feature descriptor methods, which are divided into
two categories: gradient histogram-based feature descrip-
tors, such as SIFT and SURF [20], and binary feature de-
scriptors, such as FAST [21], Oriented Fast and Rotated
BRIEF (ORB) [22], and Binary Robust Independent Ele-
mentary Features (BRIEF) [23]. .e ORB algorithm was
proposed by Rublee et al. in 2011 [22]. .e algorithm ex-
tracts feature points through the FAST algorithm and cal-
culates the descriptor through BRIEF, which makes the
system more robust to noise. .erefore, our system tracks
with the ORB feature points.

Tracking calculation is performed for every new frame of
the image stream. .e main idea is to find the relative re-
lationship between the current frame and the existing key
frames bymatching with the key frames in themap to update
and calculate the pose of the current frame. We combine the
MASK-RCNN and the optical method to remove the dy-
namic points in the frame; then, the pose of the camera is
tracked using the static points in the scene. Figure 5 shows
the flow chart of the tracking module of OFM-SLAM. We
feed the MASK-RCNN network with the RGB-D image to
eliminate the potential dynamic points. .en, we initialize
the pose of the camera and perform feature point tracking-
combined optical flow method to fully remove the dynamic
points. And, the pose of the camera is optimized iteratively
by the least square method.

As shown in Figure 6, we compare the tracking result
with ORB-SLAM2. It can be seen that our methods do not
track the feature points on dynamic objects so that we can
get more accurate pose of the camera.

It can be seen in Figure 6(b) that there are still feature
points on the chair, due to the chair has not beenmoved or
moved slowly by people in the scene. In fact, in our system,
we set people as dynamic objects regardless of whether they
move. In order to solve the potential dynamic feature points
in the scene, such as chairs, books, mouse, and other po-
tential dynamic objects, we combine the system with the
optical flow method to remove them.

3.5. Semantic Map Construction. .e scene map is the basis
for the mobile robot to interact with the environment. At the
same time, the established map can help the mobile robot
better understand the scene for its positioning, navigation,
and obstacle avoidance tasks. On the one hand, most of the
mapping links of the previous SLAM algorithm are designed
for static environments. .e lack of corresponding pro-
cessing for dynamic objects in the environment causes them
to be in different positions on the map at different times,
which seriously affects the consistency of the scene map. On
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the other hand, the established map does not make full use of
the semantic information of the environment, and it is
usually based on geometric information, such as sparse maps
and point cloud maps based on the landmark. .e estab-
lishment of three-dimensional semantic scenes is mainly
divided into two methods at the semantic level: one is to
construct a spatial map of the scene first, and then, use deep
learning methods to train point clouds or voxels to obtain
semantic information. .e other is using semantic seg-
mentation which is performed on the two-dimensional
image to obtain the semantic information, and then,
combine it with the depth map to introduce the semantic

information into the three-dimensional space to obtain the
semantic map. Since OFM-SLAM has performed the se-
mantic segmentation of the image before the robot pose
estimation is performed at the front end, we adopt the latter
to construct the semantic map.

For semantic map construction in a dynamic environ-
ment, we add a semantic mapping thread. .e framework of
the algorithm system in the overall dynamic environment is
shown in Figure 7.

When we initially get the semantic map, there will also be
some undetected dynamic target parts in the map. It can be
solved by the log-odds method. .e logarithmic value of the

(a) (b)

Figure 4: Results of the optical flow method in various conditions. (a) Tum datasets of walking-xyz. (b) Actual environment in our lab. .e
green line shows the moving direction of the feature points in frames.

RGB-D image

MASK-RCNN
Eliminate potential

dynamic points 

Pose
initialization 

Feature
tracking 

Combined optical flow
Full dynamic points

culling 

Pose optimization

Figure 5: Pipeline of tracking without dynamic points.

Input: Last frame, I1; Last frame’s keypoints, P1; Current frame, I2;
Output: Dynamic points, M

(1) Current frame’s keypoints P2�CalcopticalFlowPyrLK (I1, I2, P1)

(2) Dynamic points’ detection
(3) F� FindFundamentalMatrix (P1, P2)

(4) for each matched points’ pair p1, p2 in P1, P2

(5) I�CalcEpipolarLine (p1, F)
(6) D�Distance (I, p2)

(7) if D> σ then
(8) add p2 in M
(9) end if
(10) end for

ALGORITHM 1: Dynamic points’ detection algorithm.
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probability is used to describe the probability that a voxel in
the octree is occupied. If the probability value of a voxel is
greater than a threshold, the voxel is considered to be oc-
cupied. .e probability of a certain voxel being occupied is
expressed as p ∈ [0, 1], the log odds of p is l ∈ R, logit is the
logarithm of odds, and the two can be transformed by the
following equation:

l � logit(p) � log
p

1 − p
( ). (4)

.e inverse transformation of the two is expressed as
follows:

p � log it− 1(l) �
exp(l)

exp(l) + 1
. (5)

In the octree map, the logarithmic value of probability l is
used to represent the occupancy of the voxel.When the voxel
is observed to be occupied, the logarithmic value of the
probability will increase. If it is observed that the voxel is not
occupied, reduce the logarithmic value of the probability.
.en, the probability that the voxel is occupied is solved
using the logarithm of the probability obtained. Suppose a
certain voxel is denoted as n, Zt represents the observation
result of voxel n at time t and using L � (n|Z1:t+1) represents
the logarithm value of the probability of the voxel from the
beginning to t + 1.

.e log-odds calculation process is shown in the fol-
lowing equation:

L � L n |Z1:t+1( ) + L n |Zt( ). (6)

When voxel n is observed to be occupied at time t, then
L(n|Zt) � τ, or L(n|Zt) � 0, where τ is the preset value.
When a voxel is repeatedly observed to be occupied or
unoccupied, the logarithmic value of the probability in-
creases or decreases accordingly. .e occupation probability
p of a voxel can be obtained by the inverse transformation of
the logarithm of the probability. When the probability p is
greater than the set threshold, the voxel is finally considered
to be occupied and the voxel is added to the map. .e
probability logarithm method can remove the residual part
of the dynamic target in the map, which is beneficial to the
SLAM system to construct a robust octree map. Figure 8(a))
shows the semantic octree map construction using the
original TUM RGB-D datasets freiburg3_waking_xyz.
Figure 8(b) shows the semantic octree map we constructed
that only contains the static part of the whole map.

4. Results and Evaluation

We experimented the OFM-SLAM on eight public TUM
datasets to validate our system. And, the tool of the Evo is
used to estimate the Absolute Trajectory Error (ATE) and
Relative Pose Error (RPE). In the meantime, the accuracy is
compared with other systems which are state-of-the-art on
two kinds of datasets (including datasets of high-dynamic
scenes and low-dynamic scenes).

(a) (b)

Figure 6: (a) Tracking with ORB-SLAM2. (b) Tracking using our methods.

RGB-D image

MASK-RCNN Semantic label

Optical
flow method 

Target
detection 
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Dynamic object
culling 
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Figure 7: .e pipeline of input and output.
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.e algorithm was executed on a desktop PC with an
Intel Core TM i3-8100 with 8GB of memory and a NVIDIA
GeForce GTX-1070 graphical card.

4.1. ATE in Low-Dynamic Scenes. .e absolute trajectory
error (ATE) is the direct difference between the estimated
pose and the real pose. Figures 9 and 10 show the ATE result
in low-dynamic scenes using ORB-SLAM2 and our
methods. .e black and blue line represents the camera
trajectory of the ground truth and the estimated result of the
system, and the red line represents the difference between
the ground truth and the estimated result which are the same
in Figures 11 and 12. We can see that the result of OFM-
SLAM is competitive in low-dynamic scenarios compared
with ORB-SLAM2.

Since the result of OFM-SLAM is competitive in low-
dynamic scenarios compared with ORB-SLAM2, Figure 13
shows more details in x, y, and z views of the trajectory
results. In datasets sitting-rpy, the trajectory error of OFM-
SLAM is larger compared with the ground truth, and the
estimated trajectory by ORB-SLAM2 due to the dynamic
objects does not move or moves slowly. However, it can be
seen that the trajectory error of OFM-SLAM and ORB-
SLAM2 in datasets sitting-halfsphere, sitting-static, and
sitting-xyz is almost no deviation.

4.2. ATE in High-Dynamic Scenes. Figures 11 and 12 show
the ATE result in high-dynamic scenes using ORB-SLAM2
and our methods. We can see the result of OFM-SLAM is
much more accurate in high-dynamic scenarios compared
with ORB-SLAM2 due to the moving objects in the
environment.

4.3. OFM-SLAM RPE in Low- and High-Dynamic Scenes.
.e relative pose error (RPE) is used to calculate the dif-
ference between the actual pose and estimated pose changes
at the same time interval, which is suitable for estimating the
drift of the system. Figures 14 and 15 show the RPE result in
four datasets (sitting-halfsphere, sitting-xyz, walking-half-
sphere, and waking-xyz) using our methods.

From Figure 14, it can be seen that the relative pose mean
error is 1.1833 (cm) and 0.8697 (cm) in datasets sitting-
halfsphere and sitting-xyz which are low dynamic. From

Figure 15, it can be seen that the relative pose mean error is
1.1850 (cm) and 0.9971 (cm) in datasets walking-halfsphere
and walking-xyz which are high dynamic. It shows the
relative pose error of our system is little in dynamic
scenarios.

4.4. A Comparison with ORB-SLAM2. Figure 16 shows the
absolute pose error (APE) result of our system on TUM
datasets waking-xyz compared with that of ORB-SLAM2.
.e blue part refers to the estimated camera trajectory of the
ORB-SLAM2, and the green part represents the camera
trajectory generated by OFM-SLAM. It can be seen that our
system achieved high accuracy in high-dynamic scenes.

4.5. Benchmark. We compare the ATE RMSE (Root Mean
Square Error) and RPE RMSE of OFM-SLAM with DS-
SLAM [17] and ORB-SLAM2 [7] According to Table 1, we
can find that OFM-SLAM is competitive in contrast to the
two other system, and our method performs better and more
accurate in high-dynamic scenes from the six datasets in
TUM that contain moving objects.

4.6. Semantic Map Construction in Dynamic Environment.
In Figure 17, we present the result of semantic map con-
struction using eight TUM RGB-D datasets which contains
moving objects. .ey are divided into low dynamics and
high dynamics, and we run our system in the two kinds of
scenarios. It can be seen that the semantic map is more
accurate and robust in high-dynamic scenes in contrast to
low-dynamic scenes.

In the left column of the semantic map, due to people
moving slowly or even not moving in low-dynamic scenes,
we can still see humanoid black shadows in some places. In
our system, we will remove dynamic objects and fill static
background objects based on the information of the key
frame images before and after. If people never move or move
too slowly, it will cause our system to fail to obtain static
background information blocked by dynamic objects.
However, in the right column of the semantic map, people
move faster in a high-dynamic environment, so our system
can get the occluded background information in time to
build the corresponding part of the map.

(a) (b)

Figure 8: (a) Semantic octree map construction that contains moving objects. (b) Semantic octree map construction removing dynamic
objects.
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Figure 9: ORB-SLAM2 in low-dynamic scenes. (a) sitting-halfsphere. (b) sitting-rpy. (c) sitting-static. (d) sitting-xyz.
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4.7. Semantic Octree Map Construction in Dynamic Scenes.
.e semantic octree map is essential for mobile robots to
perform advanced and complex tasks, such as obstacle
avoidance and navigation or grasping objects. A semantic

octree map is generated using the constructed dense point
cloud map. .e spatial information of the points is stored in
the map. Each small square indicates the probability of being
occupied. 0 is free, which means passable, and 1 means
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Figure 10: OFM-SLAM in low-dynamic scenes. (a) sitting-halfsphere. (b) sitting-rpy. (c) sitting-static. (d) sitting-xyz.
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Figure 11: ORB-SLAM2 in high-dynamic scenes. (a) walking-halfsphere. (b) walking-rpy. (c) walking-static. (d) walking-xyz.
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Figure 12: OFM-SLAM in high-dynamic scenes. (a) walking-halfsphere. (b) walking-rpy. (c) walking-static. (d) walking-xyz.
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Figure 14: (a) (b) Relative pose error of the sitting-halfsphere. (c) (d) Relative pose error of the sitting-xyz.
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Figure 15: (a) (b) Relative pose error of the walking-halfsphere. (c) (d) Relative pose error of the walking-xyz.
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Table 1: ATE and RPE RMSE compared with other systems.

Datasets

Error

ATE RMSE (cm) RPE RMSE (cm)

ORB-SLAM2 DS-SLAM OFM-SLAM ORB-SLAM2 DS-SLAM OFM-SLAM

Sitting_static 0.8948 0.650 0.6520 0.5001 0.780 0.5464
Sitting_xyz 0.9033 0.979 1.3789 0.8347 0.863 0.9989
Walking_hs 75.1594 3.030 2.5202 3.7078 2.970 1.4401
Walking_rpy 86.5038 44.420 3.2643 11.2434 15.030 2.3025
Walking_static 39.5077 0.810 0.8085 1.7274 1.020 0.6066
Walking_xyz 59.3589 2.470 1.6777 4.3485 3.330 1.2050

Figure 17: Semantic map construction in low and high dynamic environment.
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Figure 16: Error estimate in TUM datasets rgbd_dataset_freiburg3_walking_static. (a) (b) Absolute pose error compared with ORB-
SLAM2. (c) (d) Relative pose error compared with ORB-SLAM2.
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occupied, which means impassable. .e higher the resolu-
tion setting, the smaller the volume of the block. By checking
whether each small block is occupied, the mobile robot can
navigate with different accuracies. Using the octree to store
the map solves the problem that the points in the point cloud
map have no volume information and large storage space.

Figure 18 represents semantic map construction in the
TUM datasets that have moving objects. We can effectively
remove dynamic objects in the scene and reconstruct a more
accurate static background semantic map. Due to people not
moving or walking slowly, it can be seen that there are still
small parts of dynamic objects remaining in the area marked
by the red box. However, our system removed most of the
dynamic objects successfully in front of the table.

5. Conclusions

To improve the accuracy and robustness of visual SLAM
in a dynamic environment and solve the problem that the
visual SLAM system generates a large deviation in the pose
estimation due to the existence of the moving object in the
dynamic scene, we propose a visual SLAM system OFM-
SLAM for dynamic indoor environments. OFM-SLAM is
able to construct a three-dimensional semantic map that
only contains static part in dynamic scenarios. We inte-
grate the optical flow method and the deep learning
network MASK-RCNN into OFM-SLAM for dynamic
object culling. In high-dynamic indoor environments,
OFM-SLAM not only has extremely high positioning
accuracy but also has semantic information in dynamic
scenes compared to other SLAM systems. However, we
cannot generate the sematic map in real time which means
it will cost more time to run our proposed system.

.erefore, in future works, we can optimize our algorithm
to improve real-time performance for application in ac-
tual scenarios.
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