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Abstract

We analyze the single microlensing event OGLE-2015-BLG-1482 simultaneously observed from two ground-based
surveys and from Spitzer. The Spitzer data exhibit finite-source effects that aredue to the passage of the lens close to or
directly overthe surface of the source star as seen from Spitzer. Such finite-source effects generally yield measurements
of the angular Einstein radius, which when combined with the microlens parallax derived from a comparison between
the ground-based and the Spitzer light curvesyields the lens mass and lens-source relative parallax. From this analysis,
we find that the lens of OGLE-2015-BLG-1482 is a very low-mass star with amass M0.10 0.02  or a brown dwarf
with amass M55 9 J , which arelocated at D 0.80 0.19 kpcLS =  and D 0.54 0.08 kpcLS =  ,
respectively,where DLS is the distance between the lens and the source, and thus it is the first isolated low-mass
microlens that has been decisively located in the Galactic bulge. The degeneracy between the two solutions is severe
( 0.32cD = ). The fundamental reason for the degeneracy is that the finite-source effect is seen only in a single data
point from Spitzer, and this single data point gives rise to two solutions for ρ, the angular size of the source in units of
the angular Einstein ring radius. Because the ρ degeneracy can be resolved only by relatively high-cadence observations
around the peak, while the Spitzer cadence is typically 1 day 1~ - , we expect that events for which the finite-source
effect is seen only in the Spitzer data may frequently exhibit this ρ degeneracy. For OGLE-2015-BLG-1482, the relative
proper motion of the lens and source for the low-mass star is 9.0 1.9 mas yrrel

1m =  - , while for the brown dwarf it
is 5.5 0.5 mas yr 1 - . Hence, the degeneracy can be resolved within 10 years~ from direct-lens imaging by using
next-generation instruments with high spatial resolution.

Key words: brown dwarfs – gravitational lensing: micro – stars: fundamental parameters

1. Introduction

Microlensing is sensitive to planets orbiting low-mass stars and
brown dwarfs (BDs) that are difficult to detect by other methods,

such as the radial velocity and transit method. Although faint low-
mass stars such as M dwarfs comprise 70%~ of stars in the solar
neighborhood and the Galaxy (Skowron et al. 2015), it is difficult
to detect distant M dwarfs because oftheir low luminosity.
However, microlensing depends on the mass of the lens, not onthe
luminosity, and thus it is not affected by the distance and
luminosity of the lens. Hence, microlensing is the best method to
probe faint M dwarfs in the Galaxy. A majority of host stars of 52
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extrasolar planets detected by microlensing are M dwarfs, and they
are distributed within a wide range of distances about 0.4–8 kpc.

Until now, a large number of BDs (Han et al. 2016) have been
discovered by various methods including radial velocity (Sahlmann
et al. 2011), transit (Deleuil et al. 2008; Johnson et al. 2011; Siverd
et al. 2012; Díaz et al. 2013; Moutou et al. 2013), and direct
imaging (Lafrenière et al. 2007), and most of them are young
(Luhman 2012). There exist various scenarios of BD formation
based on these plentiful BD samples. Since microlensing provides
different BD samples from other methods, the microlensing BD
samples will play an important role to constrain the various BD
formation scenarios. SeventeenBDs have been detected with
microlensing so far. Only two of them, OGLE-2007-BLG-224L
(Gould et al. 2009) and OGLE-2015-BLG-1268L (Zhu et al.
2016), are isolated BDs, while most of the others, OGLE-2006-
BLG-277Lb (Park et al. 2013), OGLE-2008-BLG-510Lb/MOA-
2008-BLG-369L (Bozza et al. 2012), MOA-2009-BLG-411Lb
(Bachelet et al. 2012), MOA-2010-BLG-073Lb (Street et al. 2013),
MOA-2011-BLG-104Lb/OGLE-2011-BLG-0172 (Shin et al.
2012), MOA-2011-BLG-149Lb (Shin et al. 2012), OGLE-2013-
BLG-0102Lb (Jung et al. 2015), and OGLE-2013-BLG-0578Lb
(Park et al. 2015), are binary companions orbiting M dwarf stars.
This is because binary-lens events (i.e., events with anomalies in
the light curve) have a larger chance to measure masses of the lens
than single-lens events, such as isolated BD events.

The key problem in “detecting” isolated BDs is that in general,
we do not know whether they are “detected” or not, since all that
we obtain from observed events is the Einstein timescale tE, which
is the crossing time of the Einstein radius of the lens. With the
observed tE, we can only make a very rough estimate of the lens
mass and so cannot distinguish potential BDs from stars. To
measure the masses of isolated BDs in the isolated BDs events,
two parameters are required: the angular Einstein radius Eq and
microlens parallax Ep . This is because (Gould 1992, 2000)
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Here ML is the lens mass, and DL and DS are the distances to
the lens and the source from the observer, respectively.
However, it is usually quite difficult to measure the two
parameters Eq and Ep .

In general, Eq is obtained from the measurement of the
normalized source radius Er q q= , where q is an angular radius
of the source. The ρ measurement is limited to well-covered
caustic-crossing events and high-magnification events in which the
source passes close to the lens, while q is usually well measured
through the color and brightness of the source. Because isolated
BD events are almost always quite short, Ep can usually be
measured only via so-called terrestrial parallax (Gould 1997; Gould
et al. 2009). Terrestrial parallax measurements are limited to well-
covered high-magnification events. As a result, it is very hard to
measure masses of isolated BDs from the ground (Gould & Yee
2013). The best way to measure Ep is a simultaneous observation

of an event from Earth and a satellite (Refsdal 1966; Gould 1994b).
Fortunately, since 2014, the Spitzer satellite has been regularly
observing microlensing events toward the Galactic bulge in order to
measure the microlens parallax. The Spitzer observations suggest a
new opportunity to obtain the mass function of BDs from the
simultaneous observation from Earth and Spitzer, although they are
not dedicated to BDs (Zhu et al. 2016).
The simultaneous observation from the two observatories with

sufficiently wide projected separation D̂ allows measuringthe
microlens parallax vector Ep from the difference in the light
curves as seen from the two observatories,
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Here t0 is the time of the closest source approach to the lens (peak
time of the event) and u0 is the separation between the lens and the
source at time t0 (impact parameter). The subscripts“sat” and “⊕”

indicate the parameters as measured from the satellite and Earth,
respectively. Thus, tD and bD represent the difference in t0 and
u0 as measured from the two observatories. Parallax measure-
ments made by such comparisons between the light curves are
subject to a well-known four-fold degeneracy, which comes from
four possible values of bD including ( u u,0,sat 0,+  Å) and
( u u,0,sat 0,-  Å). However, there is only a two-fold degeneracy in
the amplitude of Ep because b bD = -D-- ++ and
b bD = -D-+ +-. The only exception to the four-fold degen-

eracy would be if one of the two observatories hadu0 consistent
with zero, while the other hadu0 inconsistent with zero. In this
case, the four-fold degeneracy reduces to a two-fold degeneracy.
For example, if u 00,sat = (within errors), then

, , 0,b b bD = D  D+ + - + + (and similarly for 0,bD -). Then,
since 0, 0,b bD = -D- +, there is no degeneracy in the mass (see,
e.g., Gould & Yee 2012). This case is very important for point-
lens mass measurements since the lens always passes very close to
or overthe source as seen by one observatory, so u 00  ,
regardless ofwhetherit is strictly consistent with zero.
Here we report the fifth isolated-star measurement derived from

microlensing measurements of ρ and Ep . In contrast to the
previous four measurements, this one has a discrete degeneracy in
ρ and therefore in mass. We trace the origin of this degeneracy to
the fact that only a single point is affected by finite-source effects,
and we argue that it may occur frequently in future space-based
microlensing mass measurements, including BDs. We show how
this degeneracy can be broken by future high-resolution imaging,
regardless of whether the lens is dark or luminous. This paper is
organized as follows. In Section 2the observation of the event
OGLE-2015-BLG-1482 is summarized, and we describe the
analysis of the light curve in Section 3. With the results of
Section 3, we derive physical properties of the source and lens in
Section 4 and then we discuss the results in Section 5. Finally, we
conclude in Section 6.
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2. Observations

2.1. Ground-based Observations

The gravitational microlensing event OGLE-2015-BLG-1482
was discovered by the Optical Gravitational Lensing Experiment
(OGLE; Udalski 2003), and it was also observed by Spitzer and
theKorea Microlensing Telescope Network (KMTNet; Kim
et al. 2016). The microlensed source star of the event is located
at (α, δ)=(17 50 31. 33, 30 53 19. 3h m s -  ¢  ) in equatorial coordi-
nates and (l, b)=(358°.88, −1°.92) in Galactic coordinates.

OGLE observations were carried out using the1.3 m
Warsaw telescope with a field of view of 1.4 square degrees
at the Las Campanas Observatory in Chile. The event lies in the
OGLE field BLG534 with a cadence of about 0.3 hr 1- in I
band. The Einstein timescale is quite short, t 4E ~ days, and
the OGLE baseline of this event is slightly variable on long
timescales at about the 0.02 mag level. Thus, we used only
2015 season data for light curve modeling.

KMTNet observations were conducted using 1.6m telescopes
with fields of view of 4.0 square degrees at each of three different
sites, Cerro Tololo Inter-American Observatory (CTIO) in Chile,
the South African Astronomical Observatory (SAAO) in South
Africa, and Siding Spring Observatory (SSO) in Australia. The
scientific observations at the CTIO, SAAO, and SSO were
initiated on 2015 February 3, 19, and June 6, respectively. OGLE-
2015-BLG-1482 was observed with 10–12minute cadence at the
three sites, and the exposure time was 60 s. The CTIO, SAAO,
and SSO observations were made in I-band filter, and for
determining the color of the source star, the CTIO observations
with a typical good seeing were also made in V-band filter. Thus,
the light curve of the event was well covered by the three
KMTNet observation data sets. The KMTNet data were reduced
by the Difference Image Analysis (DIA) photometry pipeline
(Alard & Lupton 1998; Albrow et al. 2009).

2.2. Spitzer Observations

Spitzer observations in 2015 were carried out under an 832 hr
program whose principal scientific goal was to measure the
Galactic distribution of planets (Gould et al. 2014). The event
selection and observational cadences were decided strictly by
the protocols of Yee et al. (2015a), according to which events
could be selected either “subjectively” or “objectively.” Events
that meet specified objective criteria must be observed
according to a specified cadence. In this case, all planets
discovered, whether before or after Spitzer observations are
triggered(as well as all planet sensitivity), can be included in
the analysis. Events that do not meet these criteria can still be
chosen “subjectively.” In this case, planets (and planet
sensitivity) can only be included in the Galactic-distribution
analysis based on data that become available after the decision.
Like objective events, events selected subjectively must
continue to be observed according to the specified cadence
and stopping criteria (although those may be specified as
different from the standardobjective values at the time of
selection).

Because the current paper is not about planets or planet
sensitivities, the above considerations play no direct role.
However, they play a crucial indirect role. Figure 1 shows that
despite thevery short timescale t 4E ~ days of the eventand
althoughit peaked as seen from Spitzer slightly before it peaked
from Earth, observations began about oneday beforethe peak.
This is remarkable becauseas discussed in detail by Udalski et al.

(2015) (see their Figure 1), there is a delay between the selection
of a target and the start of the Spitzer observations. Targets can
only be uploaded to the spacecraft once per week, and it takes
some time to prepare the target uploads. Therefore, Spitzer
observations begin at leastthree days after the final decision is
made to observe the event with Spitzer, and thisdecision is
generally based on data taken the night before, i.e., about four
days beforethe first Spitzer observations. Hence, at the time that
the decision was made to observe OGLE-2015-BLG-1482, the
source was significantly outside the Einstein ring. It is notoriously
difficult to predict the future course of such events. Therefore,
such events cannot meet objective criteria that far from the peak,
but selecting them “subjectively”would require a commitment to
continue observing them for several more weeks of the campaign,
which risks wasting a large number of observations if the event
turns out to be very low-magnification with almost zero planet
sensitivity (the most likely scenario). At the same time, if the
event timescale is short, it could be over before the next
opportunity to start observations with Spitzer (10 days later).
Hence, Yee et al. (2015a) also specified the possibility of so-

called “secret alerts.” For these, an observational sequence would
be uploaded to Spitzer for a given week, but no announcement
would be made. If the event looked promising later (after upload),
then it could be chosen subjectively. In this case, Spitzer data taken
after the public alert could be included in the parallax measurement
(needed to enter the Galactic-distribution sample), but Spitzer data
taken before this date could not. If the event was subsequently
regarded as unpromising, it would not be subjectively alerted, in
which case the observations could be halted the next week without
violating the Yee et al. (2015a) protocols.
This was exactly the case for OGLE-2015-BLG-1482 (see

Figure 1). It was secretlyalerted at the upload for observations to
begin at HJD′=HJD-2450000=7206.73. It was only because of
this secret alert that an observation was made near peak, which
became the basis for the current paper. In fact, its subsequent rise
was so fast (because ofits short timescale) that it was subjectively
alerted just beforethe near-peak Spitzer observation. At the next
week’s upload, it met the objective criteria. Note, however, that if
we had waited for the event to become objective before triggering
observations, we would not have been able to make the mass
measurement reported here, even though the planet sensitivity
analysis would have been almost identically the same (provided
that parallax could still be measured with the remaining Spitzer
observations). This is the first Spitzermicrolensing event for which
a secret alertplayed a crucial role.
Spitzer observations were made in the 3.6 mm channel on the

IRAC camera from HJD′=HJD–2450000=7206.73 to
7221.04. The data were reduced using specialized software
developed specifically for this program (Calchi Novati
et al. 2015). Even though the Spitzer data are relatively sparse,
there is one point near the peak thatproves to be essential
indeterminingthe normalized source radius ρ.

3. Light Curve Analysis

Event OGLE-2015-BLG-1482 was denselyand almost con-
tinuously covered by ground-based data, but showed no significant
anomalies (see Figure 1). This has two very important implica-
tions. First, it means that the ground-based light curve can be
analyzed as a point lens. Second, it implies that it is very likely (but
not absolutely guaranteed) that the Spitzer light curve can likewise
be analyzed as a point lens. The reason that the latter conclusion is
not absolutely secure is that the Spitzer and ground-based light

3
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curves are separated in the Einstein ring by 0.15bD ~ . Thus,
even though we can be quite certain that the ground-based source
trajectory did not go through (or even near) any caustics of
significant size, it is still possible that the source as seen from
Spitzer did pass through a significant caustic, but that this caustic
was just too small to affect the ground-based light curve.

Nevertheless, since the closest Spitzer point to peak has
animpact parameter u 0.06spitzer ~ and it is quite rare for events
to show caustic anomalies at such separations when there are no
anomalies seen in densely sampled data u 0.15> , we proceed
under the assumption that the event can be analyzed as a point lens
from both Earth and Spitzer. Thus, we conduct the single-lens
modeling of the observed light curve by minimizing 2c over
theparameter space. For the 2c minimization, we use the Markov
Chain Monte Carlo (MCMC) method. Thanks to the simultaneous
observation from the Earth and satellite, we are able to measure the
microlens parallax E E,N

2
E,E
2 1 2p p p= +( ) , which are the north

and east components of the parallax vector Ep , respectively. The
Spitzer light curve has a point near the peak of the light curve, and
thus we can also measure the normalized source radius ρ. Hence,
we usethree single-lensing parameters of t0, u0, and tE, the parallax
parameters of E,Np and E,Ep , and the normalized source radius ρ as
free parameters in the modeling. In addition, there are two flux
parameters for each of the fiveobservatories (Spitzer, OGLE,

KMT CTIO, KMT SAAO, andKMT SSO). One represents the
source flux fs i, as seen from the ith observatory, while the other,
fb i, ,is the blended flux within the aperture that does not participate
in the event. That is, the five observed fluxes F ti j( ) at epochs tj are
simultaneously modeled by

F t f A t t u t f; , , , , , 6i j s i i j b i, 0 0 E E ,pr= +( ) ( ) ( )

where Ai(t) is the magnification as a function of time at the ith
observatory. In principle, these magnifications may differ because
the observatories are at different locations. However, in this event
the separations of the observatories on Earth are so small compared
to the projected size of the Einstein ring that we ignore them and
consider all Earth-based observations as being made from the
center of Earth. That is, we ignore theso-called terrestrial
parallax.At the same time, the distance between the Earth and
Spitzer remains highly significant, so ASpitzer(t) is different from
A tEarth ( ). As is customary (e.g., Dong et al. 2007; Udalski
et al. 2015; Yee et al. 2015b), we determine the parameters in the
geocentricframe at the peak of the event as observed from Earth
(Gould 2004), and welikewise adopt the sign conventions shown
in Figure 4 of Gould (2004).
In addition, we conduct the modeling for the point-source/

point-lens, because only a single point of Spitzer contributes to the

Figure 1. Light curves of the best-fit single-lens model for OGLE-2015-BLG-1482. The light curves of the best-fit binary-lens model are also shown in the figure, and
they are drawn by a dark gray dotted line. The finite-source effect is constrained by only one single Spitzer data point, which leads to two models with different ρ
values. The gray vertical lines represent the times when secret,subjective,and objective alerts were issued.

4
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finite-source effect. We find that the 2cD between the best-fit
models of the point- and finite-sources is 31.472cD = . Hence,
OGLE-2015-BLG-1482 strongly favors the finite-source model.

3.1. Limb Darkening

As we show below, the lens either transits or passes very
close to the source as seen by Spitzer, which induces finite-
source effects near the peak of the Spitzer light curve. To
account for this, we adopt a limb-darkened brightness profile
for the source star of the form

S S 1 1
3

2
cos , 7q q= - G -l l ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ¯ ( )

where S FS,
2
pqºl l¯ ( ) is the mean surface brightness of the

source, FS,l is the total flux at wavelength λ, Γ is the limb-
darkening coefficient, and θ is the angle between the normal to
the surface of the source star and the line of sight (An
et al. 2002). Based on the estimated color and magnitude of the
source, which is discussed in Section 4, assuming an effective
temperature T 4500 Keff = , solar metallicity, surface gravity

glog 0.0= , and microturbulent velocity v 2 km st
1= - , we

adopt 0.1783.6 mG =m from Claret & Bloemen (2011).

3.2. (2×2)=4 Highly Degenerate Solutions

As discussed in Section 1, space-based parallax measurements
for point lenses generically give rise to four solutions, which can
be highly degenerate. However, in cases for which one of two
observations has u 00  , while the other has u 00 ¹ , the four
solutions reduce to two solutions. Since for event OGLE-2015-
BLG-1482, Spitzer has u 00,sat  , we expect the event to have two
degenerate solutions, u 00, >Å and u 00, <Å . However, what we
see in Table 1 is not two degenerate solutions, but four. For each of
the two expected degenerate solutions , 0 , , 0+ -[( ) ( )], there are
two solutions with different values of ρ ( 0.06r  and 0.09r  ).
Figure 1 shows the best-fit light curve of the event OGLE-2015-
BLG-1482 with the OGLE, KMT, and Spitzer data sets. The best-
fit solution is the (+, 0) solution for 0.06r  , which means
u 00, >Å and u 00,sat  . The largest 2cD between the four
solutions is 0.52cD  .

We should expect the two-fold parallax to be very severe in
this case. This two-fold degeneracy would be exact in the
approximations that (1) Earth and Spitzer are in rectilinear
motion and (2) they have zero relative projected velocity
(Gould 1995). For events that are very short compared to a year
(like this one), the approximation of rectilinear motion is
excellent. And while Earth and Spitzer had relative projected
motion on theorder ofv 30 km s 1~Å

- , this must be compared
to the lens-source projected velocity ṽ,

v
t

au
3050 km s . 8

E E

1

p
º -˜ ( )

Hence, these two solutions are almost perfectly degenerate. On the
other hand, the ρ degeneracy was completely unexpected. It is also
very severe. The origins of the ρ degeneracy are discussed in
Section 5. To illustrate the ρ degeneracy, the light curve of the
best-fit model (+, 0) for 0.09r  is also presented in Figure 1. In
Table 1we present the parameters of all the four solutions.

4. Physical Properties

4.1. Source Properties

The color and magnitude of the source are estimated from the
observed V I-( ) source color and best-fit modeling of the light
curve, but they are affected by extinction and reddening due to the
interstellar dust along the line of sight. The dereddened color and
magnitude of the source can be determined by comparing themto
the color and magnitude of the red clump giant (RC) under the
assumption that the source and RC experience the same amount of
reddening and extinction (Yoo et al. 2004). Figure 2 shows the
instrumental KMT CTIO color-magnitude diagram (CMD) of stars
in the observed field. The color and magnitude of the RC are
obtained from the position of the RC on the CMD, which
correspond to V I I, 1.67, 17.15RC- =[( ) ] [ ]. We adopt the
intrinsic color and magnitude of the RC with V I 1.06RC,0- =( )
(Bensby et al. 2011) and I 14.50RC,0 = (Nataf et al. 2013). The
instrumental source color obtained from a regression is
V I 1.74s- =( ) and the magnitude of the source obtained from
the best-fit model is I 17.37s = . The measured offset between the
source and the RC is V I I, 0.07, 0.22D - D =[ ( ) ] [ ]. Here we
note that there exists an offset between the instrumental
magnitudes of OGLE and KMTNet as I Ikmt ogle- =
0.045 mag. Thus, we should consider the offset when we estimate
the dereddened magnitude of the source. As a result, we find the
dereddened color and magnitude of the source V I I, s,0- =[( ) ]
1.13, 14.76[ ]. The dereddened V K-( ) source color by using the
color-color relation of Bessell & Brett (1988) is
V K 2.61s,0- =( ) . Then adopting V K s,0-( ) to the the color-
surface brightness relation of Kervella et al. (2004), we determine
the source angular radius 5.79 0.39 asq m=  . The estimated
color and magnitude of the source suggest that the source is a K-
type giant. The error in q includes the uncertainty in the source
flux, the uncertainty in the conversion from the observed V I-( )
color to the surface brightness, and the uncertainty of centroiding
the RC. The uncertainty in the source flux is about 1% and the
uncertainty of the microlensing color is 0.02 mag, which
contributes 1.6% error in q measurement. The scatter of the
source angular radius relation in V K s,0-( ) is 5% (Kervella &
Fouqué 2008), and centroiding the RC contributes 4% to the radius
uncertainty (Shin et al. 2016).
As mentioned above, since the degeneracy between two

different ρ solutions is very severe as 0.32 cD , we should
consider both ρ solutions. The two ρ values yield two different
Einstein radii,

0.104 0.022 mas for 0.06
0.063 0.006 mas for 0.09.

9E q q r
r
r

= =






⎧⎨⎩ ( )

Because of the two different Einstein radii, all the physical
parameters related to the lens take on two discrete values. The
relative proper motions of the lens and source are

t
8.96 1.88 mas yr for 0.06

5.48 0.48 mas yr for 0.09.
10rel E E
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4.2. Lens Properties

The mass and distance of the lens can be obtained from the
measured Einstein radius Eq and microlens parallax Ep . As
discussed in the introduction, the four-fold degeneracy in Ep
usually leads to a two-fold degeneracy in its amplitude Ep .
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Table 1
Best-fit Parameters

Fit Parameters

Solutions dof2c t HJD0 ¢( ) u0 tE (days) 10 2r -( ) E,Np E,Ep fs,ogle fb,ogle

, 0+( ) 8360.63/8367 7207.893±0.001 0.160±0.002 4.265±0.021 5.55±1.10 −0.1288±0.0169 0.0346±0.0016 1.790±0.015 −0.004±0.015
8360.92/8367 7207.893±0.001 0.165±0.002 4.258±0.022 9.16±0.60 −0.1342±0.0189 0.0349±0.0017 1.794±0.015 −0.009±0.015

, 0-( ) 8360.95/8367 7207.893±0.001 −0.160±0.002 4.265±0.021 5.55±1.08 0.1309±0.0163 0.0159±0.0017 1.790±0.015 −0.005±0.015
8361.15/8367 7207.893±0.001 −0.164±0.002 4.262±0.022 9.10±0.59 0.1342±0.0188 0.0155±0.0018 1.791±0.015 −0.005±0.015

Note. (+, 0) indicates u 00, >Å and u 00,sat  . HJD¢ is HJD 2450000- .
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However, in the case of events that are much higher magnification
(much lower u0), as seen from one observatory compard tothe
other, the two-fold degeneracy collapses as well. This is
becauseunder these conditions, b bD D  ∣ ∣ ∣ ∣. The present
case is consistent with the lens passing exactly overthe center of
the source as seen by Spitzer (to our ability to measure it). Then,
according to Equation (1), we measure the lens mass,

M
M
M

0.096 0.023 for 0.06
0.055 0.009 for 0.09.

E

E

q
kp

r
r

= =










⎧⎨⎩
The lens-source relative parallax for the two cases is

0.014 0.003 mas for 0.06
0.009 0.001 mas for 0.09.

11rel E Ep q p
r
r

= =






⎧⎨⎩ ( )

These values of relp are very small compared to the source
parallax of 0.12sp ~ mas. This implies that the distance between
the lens and the source is determined much more precisely than
the distance to the lens or the source separately. That is,

D D D D D
au

12LS S L
rel

S L
p

º - = ( )

0.80 0.19 kpc for 0.06
0.54 0.08 kpc for 0.09.

r
r








⎧⎨⎩
Since the source is almost certainly a bulge clump star (from

its position on the CMD)and the lens is 1 kpc from the
source, it is likewise almost certainly in the bulge. Thus, this is

the first isolated low-mass object that has been determined to
lie in the Galactic bulge.

5. Discussion

5.1. Future Resolution of the r Degeneracy
Using Adaptive Optics

Event OGLE-2015-BLG-1482 has a very severe two-fold
degeneracy in ρ, in which the 2cD between the two solutions
( 0.06r  and 0.09r  ) is 0.32cD ~ . For the solutions with
u 00, >Å and u 00, <Å , the microlens parallax vectors Ep are
different from one another, but they have almost the same
amplitude Ep . Therefore, the two solutions yield almost the same
physical parameters of the lens. However, each of the two
solutions also has two degenerate ρ solutions: 0.06r  and

0.09r  . Each ρ solution yields different physical parameters of
the lens, in particular the lens mass. For 0.06r  , the lens is a
very low-mass star, while for 0.09r  it is a brown dwarf. The
degeneracy of the lens mass that isdue to the two ρ can be
resolved fromdirect-lens imaging by using instruments with high
spatial resolution (Han & Chang 2003; Henderson et al. 2014),
such as the VisAO camera of the 6.5m Magellan telescope with
the resolution 0. 04~  in the J band (Close et al. 2013)20 and the
GMTIFS of the 24.5m Giant Magellan Telescope (GMT) with

Figure 2. Color-magnitude diagramof stars in the observed field. The field stars are taken from KMTNet CTIO data. We note that there exists an offset between the
instrumental magnitudes of OGLE and KMTNet ofI I 0.045 magkmt ogle- = . The red and blue circles mark the centroid of the red clump giant and the microlensed
source star, respectively.

20 Close et al. (2013) have obtained a diffraction limited FWHM in ground-
based 6 m R-band images, which gives hope for optical AO. However, it is
premature to claim that this technique can be applied to faint stars in the
Galactic bulge.
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resolution 0. 01~  in the near-infrared (NIR;McGregor
et al. 2012). In general, direct imaging requires 1) that the lens
be luminous, and 2) that it be sufficiently far from the source to be
separately resolved. In the present case, (1) clearly fails for the
BD solution. Hence, the way that high-resolution imaging would
resolve the degeneracy is to look for the luminous (but faint)
M dwarf predicted by the other solution at its predicted
orientation (either almost due north or due south of the source—
since E,N E,Ep p∣ ∣ ∣ ∣) and with its predicted separation
t 2015 9 mas yrAO

1- ´ -( ) ( ). If the M dwarf fails to appear at
one of these two expected positions, the BD solution is correct.
Since the source is a clump giantand hence roughly 104 times
brighter than the M dwarf, it is likely that the two cannot be
separately resolved until they are separated by at least 2.5 FWHM.
This requires waiting until 2015 2.5 40 9 2026+ ´ =( ) for
Magellan or 2015 2.5 10 9 2018+ ´ =( ) for GMT.

5.2. Origin of the ρ Degeneracy

The degeneracy in ρ was completely unexpected. Indeed, we
discovered it accidentally because ρ had one value in one of
two degenerate parallax solutions and the other value in another
solution. Originally, this led us to think that it was somehow
connected to the parallax degeneracy. However, by seeding
both solutions with the twovalues of ρ, we discovered that it
was completely independent of the parallax degeneracy.

In retrospect, the reason for this degeneracy is obvious.There
is only a single point that is strongly impacted by the finite size
of the source. The value of u at this time is well predicted by the
rest of the light curve, in particular because Spitzer data begin
before thepeak (see Section 2),

u u
t t

t
where . 132

0
2 0,sat

E
t t= + =

-( ) ( )

Hence, the magnification (for point-lens/point-source geome-
try in a high-magnification event) is also known A u1ps  .
Moreover, both fs and fb for Spitzer are also well measured, so
that the measured flux at the near-peak point F directly yields
an empirical magnification A F f fb sobs = -( ) (i.e., the magni-
fication in the presence of finite-source effects). Following
Gould (1994a), the ratio of Aobs and Aps can therefore be
derived directly from the light curve

B z
A

A
A u z u. . 14obs

ps
obs rº º( ) ( ) ( )

As shown by Figure 1 of Gould (1994a), B(z) reaches a peak
at z 0.91 , with B=1.34.21 Therefore, if one inverts a
measurement of B(z) to infer a value of z, there areone, two,
and zero solutions for B 1obs < , B1 1.34obs< < , and
B 1.34obs > , respectively.
Since this event is a high-magnification event only for Spitzer,

i.e., the finite-source effect is only seen by Spitzer, only the
trajectory of Spitzer is considered. Figure 3 (adapted from Gould
1994a) shows the finite-source effect function B(z) as a function of
z. For this event, B z A u 19.14 0.06 1.15obs= = ´ =( ) at the
nearest point to the peak, which is indicated by the horizontal
dotted line in the figure. As shown in Figure 3, the function
B z 1.15=( ) is satisfied at two different values of z=0.64 and

z=1.12, which implies (as outlined above) that there are two ρ
values. The two z values yield two normalized source radii of

0.094r = (for z=0.64) and 0.054r = (for z=1.12). These
two derived ρ values are almost the same as those obtained
numerically from the best-fit solutions. Because high-magnification
events can be alerted in real time, the high-magnification events
observed from Earth are often well covered around the peak by
intensive follow-up observations, and thus ρ is almost always well
measured if there are significant finite-source effects (i.e., B 1¹
for some points). This means that the ρ degeneracy will often be
resolved in high-magnification events observed from the ground.
On the other hand, since the observation cadence of Spitzer is
much lower than those of ground-based observations, the ρ
degeneracy can occur frequently in high-magnification events
observed by Spitzer. Note thatin contrast to Figure 1 of Gould
(1994a), our Figure 3 shows B(z) with and without the effects of
limb darkening. The effect is hardly distinguishable by eye, in
particular because limb darkening at 3.6 mm is very weak.
Nevertheless, this effect should be included.
If finite-source effects are reliably detected from a single

measurement near thepeak, how often will ρ be ambiguous,
and if it is ambiguous, how often will the value fall in the upper
versus lower allowed ranges? We might judge there to be a
reliable detectionof finite-source effects from a single point if
B X1- >∣ ∣ , where X might be taken as 5%. For high-
magnification events including the limb-darkening effect, we
can Taylor expand B for z 1> (see the Appendix)

B z
z z

1
1

8
1

5

1 3

64
1

11

35

1
, 15

2 4
= + -

G
+ - G +¼⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( ) ( )

where Γ is the limb-darkening coefficient, as mentioned in
Section 3. Truncating at the second term, we have
B z z1 1 5 8 2+ - G( ) ( ) ( ). For Spitzer 5 1G  , so we
can ignore it. Then B z z1 1 8 2= +( ) ( ). Thus, B X1- = , i.e.,
B X1= + , implies z X1 8 1.61 2= ( ( )) (for X 5%= ). To
next order, z X4 3 1 12 1 1.6851 2= + - =-( ( )) ,which is
very close to the numerical value, 1.7. Hence, we have three ranges
of recognizable finite-source effects. The ranges are presented in
Table 3. Table 3 shows that 0.51 0.51 0.34 0.79 31%+ + =( )
of the finite-source effects will be unambiguous. And of the times
they are ambiguous, 0.34 0.34 0.79 30%+ =( ) will have the
higher value of ρ.
Figure 4 shows the 2c distribution of u0,sat versus ρ from the

MCMC chains of the four degenerate solutions in Table 1. The
figure shows that the distribution is centered on u 0.00,sat = and
thus the four solutions are consistent with u 0.00,sat = , although
there is scatter. Therefore, it is correct to label u0,sat as “0.” The
figure also shows that the nearest point to the peak of Spitzer light
curve favors u 00,sat = , but can accommodate other values of
u0,sat, up to about 0.03 at 2s< . In this case, the larger u0,sat makes
B(z) larger because B z uAobs=( ) , and so allowing values of z
between the two best-fit values. At the nearest point to the peak,

t t0,satt = -∣( )∣ t 7207.50 7207.76E = -∣( )∣ 4.26 0.06= .
Then,

B u

B u

u u

u u

0.03

0

0.03

0

0.06 0.03

0.06
1.12 16

0,sat

0,sat

0,sat

0,sat

2 2

2

=
=

=
=
=

=
+

=

( )
( )

( )
( )

( )21 While Figure 1 from Gould (1994a) shows the correct qualitative behavior,
it has a quantitative error in that the peak is at 1.25, rather than 1.34 (the
correct value).
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.Since B u 0 1.150,sat = =( ) from Figure 3, B u 0.030,sat = =( )
1.15 1.12 1.29´ = , and it is the maximum value allowed B, and
thus the maximum allowed u0,sat. The allowed maximum
B z 1.29=( ) yields z=0.79 and z=0.98 and hence two ρ

values, 0.085r = and 0.068r = . Thus, 0.09r  solutions
have the lower limit of 0.085r = , while 0.06r  solutions have
anupper limit of 0.068r = .

5.3. r Degeneracy of OGLE-2015-BLG-0763

OGLE-2015-BLG-0763 is the only other event with a single-
lens mass measurement based on finite-source effects observed
by Spitzer (Zhu et al. 2016). As with OGLE-2016-BLG-1482,
the Spitzer light curve shows only one point that is strongly
affected by finite-source effects (i.e., B 1¹ ). Zhu et al. (2016)
report 0.0218r = and t 33 daysE = , and their solution implies
t 7188.600,sat  and u 0.0120,sat = . Therefore, the three points
closest to thepeak (Calchi Novati et al. 2015) at t 7188.60- =

0.75, 0.36, 0.72 days-( ) have u 0.026, 0.016, 0.025= ( ),
respectively. Since the measurement was derived primarily
from the highest point, one may infer z u 0.73rº = .
Inspection of Figure 3 shows that this implies B z 1.25=( ) ,
which (since B 1> ) implies that there is another solution at
z=1.01 and therefore with 0.016r = . We can then derive for
the two solutions z 1.19, 0.73, 1.15= ( ) (adopted) and
z 1.62, 1.01, 1.57= ( ) (other). These yield values of B (from
Figure 3) of B z 1.13, 1.25, 1.14=( ) ( ) (adopted) and
B z 1.06, 1.25, 1.06=( ) ( ) (other). That is, for OGLE-2015-
BLG-0763, the two nearest points to the peak will both be

about 0.08 mag brighter in the adopted solution than in the
other solution. Since the Spitzer photometric errors are small
compared to these inferred differences (Figure 2 of Zhu et al.
2016), we expect thatin the case of OGLE-2015-BLG-0763
(and in contrast to OGLE-2015-BLG-1482), the near-peak
points resolve the degeneracy between the two solutions.
Armed with the above understanding, which was derived

without any detailed modeling, we reanalyze OGLE-2015-BLG-
0763 and find only an upper limit of 0.01 for the second ρ.
However, as discussed in Zhu et al. (2016), solutions of the second
ρ result in aninconsistency with observations, and thus they are
not physically correct. As a result, there is no ρ degeneracy for the
event OGLE-2015-BLG-0763. As mentioned before, this is
because of the near-peak points. This implies that although for
events in which the finite-source effect is seen only inSpitzer, the
ρ degeneracy can occur frequently as a result of thelow
observation cadence ofSpitzer, andit can be resolved by a few
data points near the peak.

5.4. Error Analysis in r Measurement

The error in the ρ measurement of the event OGLE-2015-BLG-
1482 is19.8% for 0.06r  and 6.6% for 0.09r  . These errors
are quite largerelative to measurements in high-magnification
events from the ground. We therefore study the source of these
errors in ρ both to determine why they are so different and to
ensure that weproperly incorporateall sources of error in this
measurement.
As outlined above, the train of information is basically captured

by u z Br = ( ),where z(B) is the inverse of B(z) and both u and B

Figure 3. Ratio between the actual magnification including finite-source effects to the magnification of a point source, B(z), as a function of z u rº , i.e., the ratio of
the lens-source projected separation to the source radius. In contrast to Gould (1994a), from which this figure is adapted, we show the magnification both with (solid)
and without (dashed) limb darkening. The horizontal dotted line indicates B z 1.15=( ) .
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can be regarded approximately as “measured” quantities. It is
instructive to further expand this expression

u

z A u
. 17

obs
r =

( )
( )

In this form, it is clear that the contribution from an error in
determining u tends to be suppressed if z dz dB 0¢ º > (i.e.,
z 0.91< , so 0.09r  in our case), and it tends to be enhanced if
z 0¢ < . Hence, this feature of Equation (17) goes in the direction
of explaining the larger error in the 0.06r  case. Second, if we
for the moment ignore the error in u, then Equation (17) implies

z z Aln obss r s= ¢( ) ∣ ∣ ( ). For the two cases, 0.09, 0.06r = ( ),
we have z 0.64, 1.12= ( ), z 0.85, 2.18¢ = -( ) and so
z z 1.33, 1.95¢ =∣ ∣ ( ). Hence, this aspect also favors larger errors
for the smaller ρ (larger z) solution. This is intuitively clear from
Figure 3: the shallow slope of B(z) toward large z makes it
difficult to estimate z from a measurement of B. Hence, the fact
that the fractional error in ρ is much larger for the large z (small ρ)
solution is well understood.

Ignoring blending, we can write A F fsobs = . The error in F
(i.e., the flux measurement at the high point) is uncorrelated
with any other error. Since in our case, u 0spitzer0,  , we can
write u t t t0 E= -( ) , and so

B A u
t t F

f t
. 18

s
obs

0

E
= =

-∣ ∣ ( )

Since t0 is known extremely welland t is known essentially
perfectly, there would appear to be essentially no error in

t t0-∣ ∣. The denominator is a near-invariant in high-magnifica-
tion events (Yee et al. 2012). That is, the errors in this product
are generally much smaller than the errors in either one
separately. This means that the error in B (and so z(B)) is
dominated by the flux measurement error of the single point
that is affected by finite-source effects.
Nevertheless, it is important to recognize that Yee et al. (2012)

derived their conclusion regarding the invariance of f ts E under
conditions that the error in fs is completely dominated by the
model, and not by the flux measurement errors. Indeed, as a rather
technicalbut very relevant point, it is customary practice to ignore
the role of flux measurement errors in the determination of fs. That
is, fs and fb are normally not included as chain variables when
modeling microlensing events. Instead, the magnification is
determined at each point along the light curve from microlens
parameters that are in the chain, and then the two flux parameters
(from each observatory) are determined from a linear fit. This is a
perfectly valid approach for the overwhelming majority of
microlensing events because the errors arising from this fit (which
are returned but usually not reported from the linear fit routine) are
normally tiny compared to the error in fs due to the model.
Moreover, there are usually many observatories contributing to the
light curve, and if all the flux parameters were incorporated in the
chain, it would increase the convergence time exponentially.
However, in the present case, tE is essentially determined from

ground-based data, which arenumerous and alsohavevery high
precision, while fs is determined from just 16 Spitzer points (i.e., all
the points save the one near peak). If the usual (linear fit) procedure
were applied, it would seriously underestimate the error in fs and so

Figure 4. 2c distribution of u0,sat vs. ρ from the MCMC chains of four degenerate solutions in Table 1.
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overestimate its degree anticorrelation with tE. We therefore include
f f,s b spitzer( ) as chain parameters and remodel this event. The result
of the remodeling is presented in Table 2. By comparing thisto
runs in which we treat these flux parameters in the usual way, we
find that including these parameters in the chain contributes about
41% to the ρ error compared to all other sources of ρ error
combined. That is, in the end, this does not dramatically increase
the final error, since 1 0.41 1.082 2 1 2+ =( ) . Nevertheless, it is
important to treat f f,s b spitzer( ) in a formally proper way since this
contribution could easily be the dominant one in other cases.

5.5. Impact of the r Degeneracy

The ρ degeneracy was not realized until now for several
reasons. First of all, although single-lens finite-source events have
been routinely detected from ground-based observations, they are
not scientifically very interesting without the measurement of Ep .
However, Ep measurements of single-lens events based on
ground-based data alone are intrinsically rare and technically
difficult (Gould & Yee 2013). Second, beforethe establishment of
second-generation microlensing surveys, observations of high-
magnification microlensing events were usually conducted under
the survey+follow-up mode, which was first suggested by Gould
& Loeb (1992). High-magnification events with their nearly 100%
sensitivity to planets (Griest & Safizadeh 1998) were therefore
often followed up with intensive (∼1-minutecadence) observa-
tions, which could easily resolve this ρ degeneracy, if it exists.

The ρ degeneracy is nevertheless important for the science of
second-generation ground-based and future space-based microlen-
sing surveys. The majority of events found by these surveys will
not be followed up at all, and thus the ρ degeneracy can appear
because the typical source radius crossing time, t, is comparable to
the observing cadences that these surveys adopt. Here

t 45 minutes
0.6 as 7 mas yr

, 19
rel

rel
1

1


 q

m
q
m

m
º =

-

-⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where 0.6 asm is the angular source size of a Sun-like star in the
bulge, and 7 mas yr 1- is the typical value for lens-source
relative proper motion of disk lenses. For second-generation
microlensing surveys like OGLE-IV and KMTNet, although a
few fields are observed once every 20 minutes< , the majority
of fields are observed at 1 hr> cadences. Therefore, the single-
lens finite-source events in these relatively low-cadence fields
are likely to have one single data point probing the finite-source
effect, and thus the ρ degeneracy appears.

Fortunately, however, the result of event OGLE-2015-BLG-
0763 showed that a few additional data points (before/after
crossing the source) around the peak play a crucial role in resolving
the ρ degeneracy. When we observe typical microlensing events
with a cadence of 1 hr, we can obtain twomore data points right
before and after crossing the source, except one source-crossing
data point. In this case, the ρ degeneracy will be resolved as in the
event OGLE-2015-BLG-0763. This implies that 1 hr is the upper
limit of the observing cadence to resolve the ρ degeneracy in
typical single-lens events to be observed from the second-
generation ground-based surveys, whereas for events with high

relm , such as events caused by a fast-moving lens object or a high-
velocity source star, it is not enough to resolve the ρ degeneracy.

Since about half of KMTNet fields have 1 hr cadences and
these fields have a higher probability of detecting events than the
other fields with cadences of 2.5 hr , the ρ degeneracy will be
resolved in the majority of single high-magnification events to be

observed by KMTNet. Although Ep is still intrinsically hard to
measure even with second-generation surveys, the fraction of
events with finite-source effects can be used as an indicator of the
properties of the lens population, which is especially important for
validating the short-timescale events such as the population of
free-floating planets (FFPs) (Sumi et al. 2011).
The Wide-Field InfraRed Survey Telescope (WFIRST) is likely

to have six microlensing campaigns, each with 72 days
observing a ∼3 deg2 microlensing field at a 15-minutecadence
(Spergel et al. 2015). WFIRST microlensing is expected to
detect thousands of bound planets and hundreds of FFPs. At
first sight, the 15-minutecadence that WFIRST microlensing is
currently adopting suggests that it will not be affected by the ρ
degeneracy. However, since WFIRST will reachmuch fainter
distances than ground-based surveys, most of the sources for
WFIRST events will be M dwarfs, which are a half or even a
quarter the size of Sun. Then the typical t for WFIRST events
is ∼15 minutes, which is the same as the adopted cadence.
Hence, as mentioned above, although the ρ degeneracy
canusually be resolved by obtaining more than twodata
points around the peak, it will be severe for a significant
fraction of events with high relm . What makes this ρ degeneracy
more important for WFIRST is that Ep can be measured
relatively easily once ground-based observations are taken
simultaneously (Yee 2013; Zhu & Gould 2016). Therefore, the
degeneracy in ρ will directly lead to a degeneracy in the mass
determination of isolated objects, including FFPs, BDs, and
stellar-mass black holes.

5.6. Potential for the Second Body

As discussed in Section 3, it is possible that the deviation of the
highly magnified Spitzer point might be caused by a caustic
structure rather than being entirely due to finite-source effects. It is
easy to show qualitatively that this could affect the exact nature of
the system, but is unlikely to significantly change the conclusion
that the lens is a low-mass object in the bulge. First, if there were a
caustic perturbation, there would be a second body in the lens
system. However, we do not see any evidence for the second body
in the ground-based light curve, and therefore the dominant lensing
effect still comes from a single star. Second, consider the effect on
the inferred physical properties of the lens (e.g., mass and distance).
If there were a caustic structure, then it is likely to be small since it
does not affected the ground-based data. In that case, ρ would be
smaller and therefore Eq would be larger. At the same time, tE is
clearly determined from the denseground-based observations, so if

Eq is larger, relm must also be larger. However, relm is already 9
mas yr 1- for the smaller ρ solution. Higher values of relm are
increasingly improbable and will eventually become unphysical.
Hence, OGLE-2015-BLG-1482 is likely an event caused by the
single-lens star.
However, since a binary-lens system could simultaneously

reproduce the single lens-like light curve from ground-based
observations and the poorly sampled light curve from Spitzer, we
conduct binary-lens modeling. As a result, we find that the best-fit
binary-lens solution is the BD binary-lens system composed of a
primary star M M0.06 0.01L,1 =   and a secondary star
M M0.05 0.01L,2 =   with their projected separation 19 au,
which correspond to lensing parameters of the mass ratio between
the binary components q=0.78 and the projected separation in
units of Eq of the lens system s=24. The estimated distance to the
BD binary is 7.5 kpc, and thus it is also located in the Galactic
bulge. Although the 2c of the binary-lens model is smaller than
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Table 2
Best-fit Parameters for Remodeling

Fit Parameters

Solutions dof2c t HJD0 ¢( ) u0 tE (days) 10 2r -( ) E,Np E,Ep fs,ogle fb,ogle

(+, 0) 8361.00/8367 7207.893±0.002 0.160±0.002 4.268±0.031 5.64±1.19 −0.1303±0.0179 0.0344±0.0021 1.787±0.022 −0.002±0.022
8361.20/8367 7207.893±0.002 0.165±0.002 4.259±0.032 9.10±0.68 −0.1356±0.0210 0.0345±0.0021 1.793±0.023 −0.008±0.023

, 0-( ) 8361.08/8367 7207.893±0.002 −0.160±0.002 4.264±0.032 5.77±1.13 0.1254±0.0167 0.0162±0.0023 1.790±0.022 −0.005±0.022
8361.27/8367 7207.893±0.002 −0.164±0.002 4.262±0.031 9.10±0.64 0.1382±0.0200 0.0153±0.0023 1.790±0.022 −0.005±0.022

Note. This is the result of remodeling that included f f,s b spitzer( ) as chain parameters.
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that of the single-lens model by 35, it is a very wide binary system
with large 0.066r = , and thus it is extremely closely related to (in
fact, a variety of) the single-lens solution with 0.06r  .

It is important to understand the reason for this close
relation. The key point is that the high point of Spitzer is
explained by finite-source effects on the tiny caustic of the very
wide BD binary that “replaces” the point caustic of the point
lens in the single-lens solution. The 2c improvement for the
binary solution comes entirely from ground-based data,
however,while the 2c of the Spitzer becomes slightly worse
than that of the single-lens model (see Figure 1). Thus, the
Spitzer high point is not caused by the binary, as we originally
sought to test. The 2c improvement could in principle be due to
a distant companion. However, low-level systematics can also
easily produce 352cD = improvements in microlensing light
curves, which could then mistakenly be attributed to planets,
binaries, etc. For this reason, Gaudi et al. (2002) and Albrow
et al. (2001) already set a threshold at 602 cD for the
detection of a planet based on experience with several dozen
carefully analyzed events. Thus, all we can say about OGLE-
2015-BLG-1482 is that the lens is consistent with being
isolated, but that we cannot rule out that it has a distant
companion. Furthermore,the “evidence” for such a companion
is consistent with the systematic effects often seen in
microlensing events.

In order to find out whether there is a binary solution for
which the high point of Spitzer is actually explained by the caustic
of a binary, we also conduct binary-lens modeling in which

0.0r ~ . From this, we find that there is no valid binary-lens
solution with small ρ. This is because although we find
two solutions with better 2c thanthe single-lens model, the best-
fit lens-source relative proper motions are 177 mas yrrel

1m = -

and 583 mas yrrel
1m = - for the 0.0086r = and 0.0018r =

solutions, respectively. These are very large (as anticipated in the
previous paragraph), to the extent that they are unphysical. One
of the two solutions (for 0.0086r = ) is abinary system composed
of a primary star M M1.69 9.17L,1 =   and a planet
M M1.21 6.54L,2 Jupiter=  with their projected separation
9.3 au, while for the other solution (for 0.0018r = ) it is abinary
system composed of a primary star M M5.55 11.26L,1 =   and
a planet M M5.00 10.15L,2 Jupiter=  with aseparation 14.7 au,
and these binaries arelocated at 3.7 kpc and 1.6 kpc, respectively.
The very large proper motion is due to large Eq , while tE is clearly
determined from dense ground-based observations, as mentioned in
the previous paragraph. Moreover, the 2c of the Spitzer data for the
two binary-lens models becomes worse.

6. Conclusion

We analyzed the single-lens event OGLE-2015-BLG-1482 that
wassimultaneously observed from two ground-based surveys and

from Spitzer. The Spitzer data exhibit the finite-source effect due to
the passage of the lens directly abovethe surface of the source star
as seen from Spitzer. Thanks to the finite-source effect and the
simultaneous observation from Earth and Spitzer, we were able to
measure the mass of the lens. From this analysis, we found that the
lens of OGLE-2015-BLG-1482 is a very low-mass star with
amass M0.10 0.02  or a brown dwarf with amass

M55 9 J , which arelocated at D 0.80 0.19 kpcLS =  and
D 0.54 0.08 kpcLS =  , respectively,and thus it is the first
isolated low-mass object located in the Galactic bulge. The
degeneracy between the two solutions is very severe ( 0.32cD = ).
The fundamental reason for the degeneracy is that the finite-

source effect is seen only in a single data point from Spitzer,
and this data point has afinite-source effect function
B z A u 1obs= >( ) , where z u r= . We showed that whenever
B z 1>( ) , there are two solutions for z and hence for u zr = .
Because the ρ degeneracy can onlybe resolvedby relatively
high-cadence observations around the peak, while the Spitzer
cadence is typically 1 day 1~ - , we expect that events where the
finite-source effect is seen only in the Spitzer data may
frequently exhibit the ρ degeneracy.
In the case of OGLE-2015-BLG-1482, the lens-source

relative proper motion for the low-mass star is relm =
9.0 1.9 mas yr 1 - , while for the brown dwarf it is
5.5 0.5 mas yr 1 - . Hence, the severe degeneracy can be
resolved within 10 yr~ from direct-lens imaging by using
next-generation instruments with high spatial resolution.
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photometric data over the past years.

Appendix
Finite-source Effects

In the high-magnification limit, the magnification of a point
source is A u1ps  . Considering the limb-darkening effect in
high-magnification events, the ratio between the magnifications
with and without the finite-source effect is expressed as

20

u n

B z

u
dr r d A r r1 1 1.5 1

,0 0

2
ps

2

2

ò ò q q r

pr

=

+ - G - -
r p

( )

( )

(∣ ˆ ( )∣)[ ( ( ) )]

where u is the normalized separation between the lens and the
center of the source, n cos , sinq q q=ˆ ( ) ( ), and r and θ are the
position vector and the position angle of a point on the source
surface with the respect to the source center, respectively (see
Gould 1994a, 2008). Changing variables to x r r= ,

Table 3
Ranges of Recognizable Finite-source Effects for a Single Data Point

Range (B) B0 0.95< < B1.05 1.34< < 1.34>Ba>1.05
Range (z) z0 0.51< < z0.57 0.91< < z0.91 1.70< <
Length (z) 0.51 0.34 0.79
ρ solution single two (higher ρ) two (lower ρ)

Note.
a The range B1.34 1.05> > represents the decreasing range of B(z) curve
(i.e., from B=1.34 (peak) to B=1.05), as shown in Figure 3.
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Here we change x z Q= and Taylor expand the first factor in
the integrand,

Q Q Q Q
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