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Abstract

We report a planet in a binary that was discovered from the analysis of the microlensing event OGLE-2018-BLG-
1700. We identify the triple nature of the lens from the fact that the anomaly pattern can be decomposed into two
parts produced by two binary-lens events, in which one binary pair has a mass ratio of ∼0.01 between the lens
components and the other pair has a mass ratio of ∼0.3. We find two sets of degenerate solutions, in which one
solution has a projected separation between the primary and its stellar companion less than the angular Einstein
radius qE (close solution), while the other solution has a separation greater than qE (wide solution). From the
Bayesian analysis with the constraints of the event timescale and angular Einstein radius, we find that the planet

has a mass of -
+ M4.4 2.0
3.0

J and the stellar binary components have masses of -
+ M0.42 0.19
0.29 and -

+ M0.12 0.05
0.08 ,

respectively, and the distance to the lens is = -
+D 7.6 kpcL 0.9
1.2 . The planet is a circumstellar planet according to the
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wide solution, while it is a circumbinary planet according to the close solution.

Unified Astronomy Thesaurus concepts: Exoplanet systems (484); Binary stars (154)

1. Introduction

Since the first-generation microlensing experiments con-
ducted in the early 1990s, e.g., the massive astrophysical
compact halo object (MACHO; Alcock et al. 1993), Expérience
pour la Recherche d’Objets Sombres (EROS; Aubourg et al.
1993), and Optical Gravitational Lensing Experiment I (OGLE-I;
Udalski et al. 1994), the detection rate of microlensing events
has dramatically increased. Compared to the rate of several
dozens per year in the early stage, current lensing experiments,
OGLE-IV (Udalski et al. 2015), Microlensing Observations in
Astrophysics (MOA; Bond et al. 2001), and Korea Microlen-
sing Telescope Network (KMTNet; Kim et al. 2016), annually
report more than 3000 events. The greatly enhanced detection
rate has become possible thanks to the increased monitoring
cadence with the use of multiple telescopes equipped with
large-format cameras.

With the increase of the event rate, the number of anomalous
events, which exhibit deviations in lensing light curves from
the standard form of a single-lens (1L) single-source (1S)

event, has also increased. The most common case of anomalous
events is binary-lens events, in which a single source is
gravitationally lensed by a binary lens composed of two masses
(2L1S). Binary-lens events are produced by various combina-
tions of astronomical objects. As expected from the high stellar
binary rate, the majority of 2L1S events are produced by
binaries that are composed of two stars with similar masses.
Binary-lens events are also produced by the star–planet
combination, and this makes microlensing an important tool
to detect extrasolar planets (Mao & Paczyński 1991; Gould &
Loeb 1992), especially those located around and beyond the
snow lines of faint M-dwarfs.

Although not very common, the number of events produced
by triple lenses (3L1S events) is also increasing. By the time of
writing this paper, there are nine published 3L1S events.
Among them, five events were produced by multiplanet
systems, including OGLE-2006-BLG-109 (Gaudi et al. 2008;
Bennett et al. 2010), OGLE-2012-BLG-0026 (Han et al. 2013;
Beaulieu et al. 2016), OGLE-2014-BLG-1722 (Suzuki et al.
2018), OGLE-2018-BLG-0532 (Ryu et al. 2019), and OGLE-
2018-BLG-1011 (Han et al. 2019a).32 We note that all of these
microlensing multiplanetary systems were detected through the
channel of central perturbations, in which the source passes
close to the central magnification region around the host star of
the planets (Griest & Safizadeh 1998). The high detection
efficiency of this channel originates in the properties of lensing
caustics induced by planetary companions. A planetary
companion located around the Einstein ring of the host induces
two sets of caustics, in which one set is located close to the host
(central caustic) and the other set is positioned away from the
host (planetary caustic). If a lens contains multiple planets, the
individual planets induce central caustics in the common central
region and affect the magnification pattern of the region. Then, the
chance to detect multiple planets is high for high-magnification

events produced by the source approach close to the host of the
planet (Gaudi et al. 1998).
Another population of the known triple-lens events are those

produced by planets in binaries. These events include OGLE-
2007-BLG-349 (Bennett et al. 2016), OGLE-2008-BLG-092
(Poleski et al. 2014), OGLE-2013-BLG-0341 (Gould et al.
2014), and OGLE-2016-BLG-0613 (Han et al. 2017). For
OGLE-2008-BLG-092 and OGLE-2013-BLG-0341, the pla-
nets were identified by their own independent signals. Besides
this independent channel, planets in binary systems can also be
found through the central perturbation channel. This is possible
because both planet and binary companions can induce caustics
in a common region, which is the region around the planet-
hosting binary star for a S-type planet (circumstellar planet)
orbiting around one of the two widely separated binary stars
and the region around the barycenter of the binary for a P-type
planet (circumbinary planet) orbiting around the center of mass
of the closely located binary stars. The microlensing planets
OGLE-2007-BLG-349L(AB)c and OGLE-2016-BLG-0613L
(AB)c were detected through this central perturbation channel.
Besides multiplanetary systems and planetary systems in

binaries, triple lensing can also provide channels to probe various
types of astronomical systems, such as triple stars and stars with a
planet and a moon (Han & Han 2002; Han 2008; Liebig &
Wambsganss 2010). From the analysis of the lensing event
OGLE-2015-BLG-1459, Hwang et al. (2018) pointed out the
possibility that the lens of the event was composed of a brown
dwarf host, a Neptune-class planet, and a third body being a
Mars-class object that could have been a moon of the planet.
Despite the usefulness in studying various astronomical

objects, application of triple lensing is often hindered by the
difficulty of analyzing events. This difficulty arises because
triple-lens systems exhibit very complex caustic patterns such
as nested and self-intersected caustics, and this results in
lensing light curves of great diversity. Theoretically, the ranges
of the critical curve topology and the caustic structure have not
yet been fully explored, and thus the understanding about the
lensing behavior of triple-lens systems is still incomplete
(Rhie 2002; Daněk & Heyrovský 2015, 2019).
Fortunately, triple-lensing events can be readily analyzed for

events produced by some specific cases of lens systems. These
are the cases in which the 3L1S anomaly in the lensing light
curve can be approximated by the superposition of the
anomalies produced by two 2L1S events. Bozza (1999) and
Han et al. (2001) pointed out that this superposition
approximation could be used to analyze central perturbations
induced by multiple planets. Lee et al. (2008) indicated that the
approximation could also be applied for the detections and
characterizations of planets in binary systems.
In this paper, we report the discovery of a new planet that

belongs to a stellar binary system. The planetary system was
found from the analysis of the microlensing event OGLE-2018-
BLG-1700. The light curve of the event exhibits a complex
pattern with multiple anomaly features. We identify the triple
nature of the lens from the fact that the anomaly pattern can be
decomposed into two parts produced by two 2L1S events.
The paper is organized as follows. In Section 2, we mention

the acquisition and processing of data used in the analysis. In

32
We note that the signals of two planets are securely detected for events

OGLE-2006-BLG-109, OGLE-2012-BLG-0026, and OGLE-2018-BLG-1011.
However, the signals of the second planets for the events OGLE-2014-BLG-
1722 and OGLE-2018-BLG-0532 are rather less secure.
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Section 3, we describe the analysis process that leads to the
identification of the planet in a binary. We also present local
solutions resulting from degeneracies. In Section 4, we
characterize the source from its color and brightness. In
Section 5, we estimate the physical lens parameters including
the mass and distance to the lens. We summarize results and
conclude in Section 6.

2. Observation and Data

The source star of the lensing event OGLE-2018-BLG-1700
is located toward the Galactic bulge field with the equatorial
coordinates (RA, decl.)=(17:59:49.45, −28:31:43.1). The
corresponding Galactic coordinates of the source are
( ) ( )=  - l b, 1 .93, 2 .47 . The apparent baseline magnitude of
the source is Ibase=17.65, but as we will show in Section 4,
the source is heavily blended and it comprises only ∼9% of the
baseline flux.

The lensing event was first found by the Optical Gravitational
Microlensing Experiment (OGLE; Udalski et al. 2015) survey on
2018 September 15 ( ‐¢ º ~HJD HJD 2450,000 8376), which
corresponded to the early stage of the source-flux brightening.
The OGLE survey was conducted using the 1.3m Warsaw
Telescope located at the Las Campanas Observatory in Chile.
OGLE observations of the event were done with a cadence of
∼2–3/nights using I- and V-band filters.

The event was also observed by the KMTNet (Kim et al.
2016) survey. The KMTNet survey was conducted utilizing
three identical 1.6m telescopes at the Siding Spring Observa-
tory, Australia, Cerro Tololo Interamerican Observatory, Chile,
and the South African Astronomical Observatory, South
Africa. Hereafter, we refer to the individual KMTNet
telescopes as KMTA, KMTC, and KMTS, respectively. The
event was independently found from the analysis of the 2018
data conducted after the season (Kim et al. 2018) and it was
designated as KMT-2018-BLG-2330. KMTNet observations of
the event were carried out mostly in the I band with a 15 minute
cadence for each telescope. Some V-band data were obtained
mainly for the purpose of measuring the source color, but in
our analysis, we include them in the analysis to maximize the
coverage of the light curve. The KMTNet V-band data were
obtained with a cadence corresponding to ∼1/10 of the I-band
cadence.

There exist additional data from the MOA (Bond et al. 2001;
Sumi et al. 2003) survey. The event was not alerted by the
MOA survey but it was located in the middle of the their high-
cadence fields. The MOA data were produced from the post-
season photometry conducted for the source star found by other
surveys. The MOA survey was done in a customized broad R
band utilizing the 1.8m telescope of the Mt.John Observatory
in New Zealand.

Data used in the analysis are processed using the photometry
codes developed based on the difference imaging technique
(Alard & Lupton 1998) and customized by the individual
survey groups: Woźniak (2000; OGLE), Albrow (2017;
KMTNet), and Bond et al. (2001; MOA). We normalize the
error bars of the individual data sets using the method of Yee
et al. (2012). For a subset of KMTNet data (KMTC), we
conduct additional photometry using the pyDIA photometry
code (Albrow 2017) to measure the source color.

In Figure 1, we present the light curve of the event
constructed with the combined data. The curve superposed on

the data points in the lower panel shows the 1L1S model
obtained by fitting the data excluding the data points around the
anomaly peak at HJD′∼8388. The light curve shows a
complex pattern of deviation from the 1L1S model. The
deviation is characterized by three peaks that are centered at
HJD′∼8388.2 (t1), 8390.9 (t2), and 8401.2 (t3). We mark the
individual peaks with arrows. In the upper two panels, we
present the enlarged views of the peaks. The peaks at t2 and t3
together with the U-shape trough region between the peaks
indicate that these peaks are produced by caustic crossings, in
which the former and latter peaks occur when the source enters
and exits the closed curve of a binary caustic, respectively. The
peak at t1, on the other hand, does not show a counterpart peak
of the caustic-crossing pair. This suggests that the peak is likely
to be produced by the source approach close to the cusp of a
caustic.

3. Light Curve Modeling

3.1. 2L1S Analysis

Because the anomaly features in the light curve are likely to
be involved with caustics, we start the modeling of the
observed light curve with a model, in which a single source is
lensed by a binary lens (2L1S). In 2L1S modeling, a basic
description of the lensing light curve requires seven lensing
parameters, including t0, u0, tE, s, q, α, and ρ. The first three
parameters (t0, u0, tE) represent the time of the closest approach
of the source to a reference position of the lens, the source-
reference separation at that time, and the event timescale,
respectively. We use the center of mass as a reference position

Figure 1. Light curve of the microlensing event OGLE-2018-BLG-1700. The
lower panel shows the whole view of the event and the upper panels show
zooms of the regions around the three peaks at the times marked by t1, t2, and
t3. The colors of the labels for the telescopes used for observations match those
of the data points. The curve superposed on the data points is the model
obtained from single-lens and single-source (1L1S) fitting of the data excluding
the data points around the anomaly peak at t1.

3
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of the lens. The parameters (s, q) denote the projected binary
separation and the companion/primary mass ratio, respec-
tively, and α represents the angle between the source trajectory
and the binary-lens axis. We note that the lengths of u0 and s
are normalized to the angular Einstein radius qE. The last
parameter ρ indicates the ratio of the angular source radius q

*
to

qE, i.e., r q q= E*
(normalized source radius). The normalized

source radius is needed to describe the caustic-crossing parts,
during which the lensing magnifications are affected by finite-
source effects.

Binary-lens modeling is conducted in two steps. In the first
step, we conduct a grid search for the parameters s and q, while
the other parameters are searched for using a downhill
approach based on the Markov Chain Monte Carlo (MCMC)

algorithm. Once a plausible local solution is found from this
first-round search, we then refine the solution by allowing all
lensing parameters to vary.

We find that 2L1S modeling does not yield a model
explaining all the anomaly features despite repeated modeling
runs with various combinations of the initial lensing para-
meters. In order to check the possibility that the anomaly could
be described with higher-order effects, we consider two higher-
order effects, including the microlens-lens parallax and the
lens-orbital effects. The former effects occur due to the orbital
motion of Earth (observer) around the Sun (Gould 1992) and
the latter effects arise due to the orbital motion of the binary
lens (Dominik 1998). Consideration of the microlens-parallax
effect requires the inclusion of two additional lensing
parameters of p NE, and p EE, , which are the north and east
components of the projected microlens-parallax vector, pE, in
the equatorial coordinates, respectively. Consideration of the
lens-orbital effects also requires the inclusion of two additional
parameters of ds/dt and dα/dt, which denote the instantaneous
change rates (at t1) of the binary separation and source
trajectory angle, respectively. From these additional modeling
runs, it is found that the anomaly features cannot be explained
even with these higher-order effects.

3.2. 3L1S Analysis

Not being able to explain the light curve with 2L1S models,
we then consider models, in which the lens is composed of
three masses (3L). With the introduction of a third body M3 in
addition to the binary-lens components of M1 and M2, one
needs to include additional lensing parameters. These para-
meters are the separation of the third body from the primary
M1, s3, the mass ratio q3=M3/M1, and the orientation angle of
M3 as measured from the M1–M2 axis, ψ. We use the notations
s2 and q2 to denote the M1–M2 separation and M2/M1 mass
ratio, respectively.

Due to the large number of the 3L1S lensing parameters,
which reaches 10, i.e., ( )a y rt u t s q s q, , , , , , , , ,0 0 E 2 2 3 3 , not
even considering higher-order effects, it is difficult to explore
all of the parameter space. We, therefore, check the possibility
of using the binary superposition approximation, in which the
anomalies in the triple-lensing light curve are approximated by
the superposition of the anomalies produced by the two
hypothetical binary lensing events that would be produced by
the M1–M2 and M1–M3 pairs. Under this approximation, we
conduct 2L1S modeling for two sets of data, for each of which
a part of the data is excluded. In the first data set, we exclude
the data in the region 8387.0<HJD′<8389.5, which
corresponds to the region around the first anomaly centered at

t1. In the second data set, we exclude the data in the region
8389.5<HJD′<8405.0, within which the pair of the caustic-
crossing peaks at t2 and t3 are included.
In Figure 2, we present the two model light curves obtained

from 2L1S fitting to the two separate data sets. The blue curve
represents the model obtained from 2L1S fitting to the data set
excluding the region around the peak at t1, and the red curve is
the model obtained from fitting to the data set excluding the
caustic-crossing spikes at t2 and t3. We find that the anomalies
are decomposed into two parts produced by the two 2L1S
events, in which the blue model curve well describes the
anomalies in the region including t2 and t3, while the red model
curve explains the peak at t1. This indicates that the event is
produced by a lens with triple components and the anomaly in
the lensing light curve can be well described by the binary
superposition approximation. The binary parameters corresp-
onding to the blue model curve are (s, q)∼(1.1, 0.01),
indicating that the companion M2 is a planetary mass object
located near the Einstein radius of the primary-lens component
M1. For the model of the red curve, on the other hand, the mass
ratio of the companion to the primary is q∼0.3, indicating that
the third body M3 is a stellar companion to the primary. We
refer to the individual binary solutions as planetary and binary
solutions, respectively. For the M1–M3 binary pair we find two
solutions, in which one solution has a separation between the
binary components much smaller than the Einstein radius
(s=1.0) and the other solution has a separation much greater
than the Einstein radius (s?1.0).
In the two upper panels of Figure 2, we present the lens

system configurations of the planetary and binary 2L1S
solutions. In each panel, the closed figure composed of

Figure 2. Decomposition of the anomaly into two parts produced by two
binary-lens single-source (2L1S) events. The blue and red curves are the
models of the 2L1S solutions obtained by fitting two sets of data, for each of
which a part of the data is excluded. For the first data set, the data in the region

‐< ¢ º <8387.0 HJD HJD 2450,000 8395.5 are excluded, while for the second
set, the data in the region 8389.5<HJD′<8405.0 are excluded. The 2L1S fit
to the first data set results in a 2L1S solution (blue curve) with a very low mass
ratio of q∼0.01, and thus we designate the model as planetary. The fit to the
second data set (red curve), on the other hand, results in q∼0.3, and thus the
solution is designated as binary. The upper panels show the lens system
configurations of the planetary (left panel) and binary (right panel) solutions.
For each panel, the closed concave curve represents the caustic and the line
with an arrow indicates the source trajectory.

4
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concave curves represents the caustic and the line with an
arrow represents the source trajectory. The caustics of the
planetary solution form a single resonant hexalateral curve
produced by a planetary companion. On the other hand, the
caustics of the binary solution form a concave quadrilateral
curve.

Using the lensing parameters of the two 2L1S solutions as
initial parameters, we then conduct 3L1S modeling. In
Figure 3, we present the best-fit 3L1S model curve superposed
on the observed data points. It is found that the 3L1S solution
well describes all the anomaly features. In Table 1, we present
the lensing parameters of the 3L1S solution. We find that there
exist two solutions resulting from the close/wide degeneracy in
the M1–M3 separation, i.e., s3, but we note that there is no
close/wide degeneracy in the M1–M2 separation, i.e., s2,
because s2∼1.0 and thus the M1–M2 binary pair forms a
resonant caustic. We note that the corresponding lensing
parameters of the pair of degenerate solutions are similar
to each other except that ~s s13,close 3,wide. Hereafter, we
designate the solutions with s3>1.0 and s3<1.0 as wide and
close solutions, respectively. The degeneracy between the two
solutions is relatively severe, with Δχ2=2.7.

In Figure 4, we present the lens system configurations of the
3L1S solutions, in which the upper and lower panels are for
the wide and close solutions, respectively. For each of the
solutions, the left panel shows the central magnification region,
while the right panel shows the whole view including the
locations of all the lens components. As expected from the

severe degeneracy between the wide and close solutions, the
lens system configurations in the central region of the two
solutions are very similar to each other. From the investigation
of the configurations, it is found that the overall pattern of the
central caustic is similar to the resonant caustic produced by
theM1–M2 pair of the 2L1S planetary solution, presented in the
upper left panel of Figure 2. The source passes the caustic
diagonally, crossing the upper left and lower right folds of the
caustic, thereby producing the peaks at t2 and t3. The difference
of the triple-lens caustic from that of the planetary 2L1S
solution is that there exists a triangular-shape caustic in the
central region near the location of the primary lens. We note

Figure 3.Model curve of the 3L1S solution. The upper panels show the enlarged views of the peak regions. The presented model is for the wide solution, in which the
separation between M1 and M3 is greater than the Einstein radius, i.e., s3>1.0. We note that the model curve of the close solution with s3<1.0 is almost identical to
the presented model curve of the wide solution.

Table 1

Best-fit Lensing Parameters

Parameter Wide (s3>1.0) Close (s3<1.0)

t0 (HJD′) 8386.152±0.040 8385.827±0.065

u0 (10−3
) 5.88±0.66 6.70±0.87

tE (days) 43.12±0.74 41.91±0.82

s2 1.019±0.003 1.184±0.003

q2 0.010±0.001 0.010±0.001

α (rad) 3.432±0.007 3.368±0.007

s3 3.823±0.022 0.274±0.003

q3 0.274±0.010 0.297±0.009

ψ (rad) 5.525±0.014 5.625±0.015

ρ (10−3
) 1.00±0.07 0.95±0.07

Note. HJD′=HJD-2450,000.
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that this caustic is nested and self-intersecting, and thus it
appears to be different from the quadrilateral caustic of the
binary 2L1S solution. The source approached close to one of
the cusps of this central caustic, producing the peak that
occurred at t1. In the left panels of the figure, we mark three
positions of the source, marked by t1, t2, and t3, corresponding
to the times of the three peaks in the light curve marked in
Figure 1.

3.3. Higher-order Effects

We check the higher-order effects in the lensing light curve.
Considering these effects is important not only for precisely
describing the light curve but also for constraining the physical
lens parameters because the mass and distance to the lens are
related to the microlens parallax. In the modeling, we
simultaneously consider both the microlens-parallax and lens-
orbital effects because these effects can result in qualitatively
similar deviations in lensing light curves (Batista et al. 2011;
Skowron et al. 2011; Han et al. 2016). To consider the lens-
orbital motion of the close solution, we use the approximation
that the M1–M3 binary pair is orbiting around their center of
mass and the planetary companion M2 is orbiting around M1.
For the wide solution for which the binary companion, M3, is
located at a considerable distance from the primary, M1, we
consider only the orbital motion of the planetary companion
around the primary-lens component, M1.

In the lower panel of Figure 5, we present the cumulative
distributions of the χ2 difference between the two models
obtained with and without considering the higher-order effects.
The black curve is for the total data. The other curves are for
the individual data sets, and the colors of the individual curves
match those of the labels in the legend. We note that the data
taken from each KMTNet telescope are composed of two sets
because the source is located in the two overlapping fields
(BLG03 and BLG43 fields) that are directed with a slight offset
to fill the gaps between the chips of the camera. We also note
that the MOA data set is not used for the higher-order modeling

because of its relatively large photometric uncertainties. The
presented model is for the close solution with s3<1.0 and
u0>0.0. It is found that the consideration of the higher-order
effects improves the fit by Δχ2∼38. We note that the other
degenerate solutions result in similar fit improvement. In the
upper panel, we also present the model light curves obtained
with (red curve) and without (blue curve) considering the
higher-order effects. In the inset of the upper panel, we present
a zoomed-in view of the region of ¢ 8392 HJD 8400,
during which a major fit improvement occurs.
We find that it is difficult to securely measure the higher-order

effects. The main reason for the difficulty is caused by the
subtlety of the deviation induced by the effects. This can be seen
from the comparison of models with and without the effects
presented in the upper panel of Figure 5, which shows that the
two models result in very similar light curves. Due to the subtle
deviation, the uncertainties of the measured higher-order lensing

parameters are very large. In Figure 6, we present the Δχ2

distributions of MCMC points in the p EE, –p NE, plane for the
close (with u0>0.0, left panel) and wide (u0>0.0, right panel)
solutions. The measured microlens-parallax parameters and
their uncertainties are ( )p p,N EE, E, =(0.18±0.54, 0.23±0.14),
( ) ( )p p = -  , 0.12 0.34, 0.11 0.12N EE, E, for the close and
wide solutions, respectively. As we will discuss in Section 5, these
error bars are far larger than the constraints of the Bayesian
analysis.

3.4. 2L2S Analysis

We additionally check solutions in which both the lens and
source are binaries (2L2S). In this modeling, we hold the

Figure 4. Lens system configurations of the 3L1S solutions. The upper and
lower panels are for the wide (s3>1.0) and close (s3<1.0) solutions,
respectively. For each solution, the left panel shows the central magnification
region, while the right panel shows the whole view including the locations of
all lens components, marked by M1, M2, and M3. The positions on the source
trajectory marked by t1, t2, and t3 represent the source locations at the times of
the three peaks in the lensing light curve marked in Figure 1. The dotted circle
in each of the right panels represents the Einstein ring.

Figure 5. Comparison of models with and without the consideration of higher-
order effects. The model curves of the two solutions are presented in the upper
panel, in which the red and blue curves are for the solutions with and without
higher-order effects, respectively. The lower panel shows the cumulative

distributions of cD 2 between the two solutions. The inset in the upper panel
shows the zoomed-in region of ¢ º - 8392 HJD HJD 2450,000 8400,
during which a major fit improvement occurs. The presented model light curves
are for the solutions with s3<1.0 and u0>0.0.
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trajectory of one source as that of the planetary 2L1S solution,
which explains the peaks at t2 and t3, and test various
trajectories of the other source to explain the peak at t1. We find
that the 2L2S modeling does not yield a solution that can
explain the other peak at t1, indicating that the 2L2S model
cannot explain all the anomalous features in the observed
lensing light curve.

4. Source Star

We characterize the source star by estimating its dereddened
color, (V−I)0, and brightness, I0. The dereddened color and
brightness are estimated from the instrumental values using the
centroid of the red giant clump (RGC), for which its
dereddened color, ( )-V I RGC,0, and brightness, IRGC,0, are
known, in the color–magnitude diagram (CMD) as a reference
(Yoo et al. 2004).

In Figure 7, we mark the position of the source in the
instrumental CMD constructed based on the pyDIA photometry
of the KMTC I- and V-band data. We note that the instrumental V
and I magnitudes are estimated using the regression of the data.
The instrumental color and brightness of the source are
( ) ( )- =  V I I, 2.31 0.03, 21.08 0.01 compared to the
RGC centroid values of ( ) ( )- =V I I, 2.89, 16.29RGC . From
the offsets in color and brightness between the source and RGC
centroid together with the known dereddened values
( ) ( )- =V I I, 1.06, 14.35RGC,0 of the RGC centroid (Bensby
et al. 2013; Nataf et al. 2013), the dereddened (calibrated) color
and brightness of the source are estimated as

( ) ( ) ( )- =  V I I, 0.47 0.03, 18.96 0.01 . 10

The color and brightness indicate that the source is an F-type

main-sequence star. We note that the source color and

brightness are subject to additional uncertainty caused by the

uncertainty in determining the RGC centroid and the differ-

ential reddening of the field. Bensby et al. (2013) showed that

for Galactic lensing events detected toward the bulge fields

with well-defined RGCs, the typical error in the source color

estimation is ∼0.07mag. We consider this additional error by

adding a 7% error in quadrature when we estimate the angular

source radius θ*.
We determine the angular Einstein radius qE and the relative

lens-source proper motion μ from the angular source radius θ*
that is estimated from the measured source color. For this, we
first convert the measured V−I color of the source into V−K
color using the color–color relation of Bessell & Brett (1988),
and then estimate θ* using the Kervella et al. (2004) relation
between V−K and θ*. The estimated angular source radius is

( )q m= 0.37 0.03 as. 2
*

With the measured value of θ*, the angular Einstein radius and

the relative lens-source proper motions are estimated by

( )q
q
r

= = 0.37 0.04 mas 3E *

and

( )m
q

= =  -

t
3.13 0.30 mas yr , 4

E

E

1

respectively.
We find that the source star is unlikely to be located in the

bulge and, instead, it is most likely to be located in the far disk
behind the bulge. According to the dereddened color,
( )- ~V I 0.470 , the source is an F-type star, but there are
essentially no such bluish stars in the bulge. This indicates that
the source is unlikely to be in the bulge and it should be located
in the disk. A mid to late F-type star would be ∼3–4 mag
fainter than the clump giant if the source were located at the
same distance as the clump giant. Considering that the source is
∼4.8 mag fainter than the clump, it is likely that the source is
located in the far disk behind the bulge. The Galactic latitude of
the source is = - b 2 .47. Hence, the line of sight passes about

Figure 6. Distribution of Δχ2 of MCMC points in the p EE, –p NE, plane for the
close (with u0>0.0, left panel) and wide (u0>0.0, right panel) solutions. The
color coding is set to represent points within 1σ (red), 2σ (yellow), 3σ (green),
4σ (cyan), 5σ (blue), and 6σ (purple). In each panel, the point with error bars
represents the ranges of the microlens-parallax parameters estimated from the
Bayesian analysis.

Figure 7. Positions of the source and blend with respect to the centroid of the
red giant clump (RGC) in the instrumental color–magnitude diagram
constructed based on the pyDIA photometry of the KMTNet BLG03 I- and
V-band data.
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415pc below the disk plane at a source distance of
~D 10 kpcS . Considering that the disk scale height is

∼300pc, there would be some disk stars at this height,
although the density is reduced.

Also marked in Figure 7 is the location of the blend. The
blend is ∼2.5 mag brighter than the source. We check the
possibility of the lens being the blend itself as in the case of
OGLE-2018-BLG-0740 (Han et al. 2019b). For this, we
measure the astrometric offset between the position of the
baseline object, measured in the image obtained by combining
72 KMTC images taken before lensing magnification, and the
position of the source, measured in the difference image
obtained by combining 47 difference images taken during
the lensing magnification. The measured offset is 0.60 pixels in
the chip of the KMTNet camera, which corresponds to 0 22. This
offset is much bigger than the astrometric errors in either the
position of the baseline object (0.04 pixels) or the difference
image (0.03 pixels). Therefore, the blend must be due at least in
part to an unrelated star or stars.

5. Lens System

For the unique determinations of the mass, M, and distance,
DL, to the lens, it is required to measure both the microlens
parallax, pE, and the angular Einstein radius, qE, which are
related to M and DL by

( )
q
kp p q p

= =
+

M D;
au

, 5
E

E
L

E E S

where ( )k = G c4 au2 and p = DauS S is the parallax to the

source, and DS denotes the distance to the source. In the case

of OGLE-2018-BLG-1700, the angular Einstein radius is

measured, but the microlens parallax is not securely measured.

We, therefore, estimate the physical lens parameters by

conducting a Bayesian analysis of the event based on the

constraints of the measured event timescale and angular

Einstein radius together with the constraint of the source

location, i.e., far disk behind the bulge.
We conduct the Bayesian analysis using the prior models of

the lens mass function and the physical and dynamical
distributions of stars in the Galaxy. Based on these models,
we produce numerous artificial lensing events by conducting a
Monte Carlo simulation and construct the probability distribu-
tions of the lens mass and distance. In the analysis, we use the
Chabrier (2003) model for the mass function of stars and the
Gould (2000) model for the mass function of stellar remnants.
For the physical and dynamical distributions of matter, we use
the Han & Gould (2003) and Han & Gould (1995) models,
respectively. Among the produced events, the probability
distributions are constructed for events with timescales and
angular Einstein radii lying within the uncertainty ranges of the
measured tE and qE, with disk source stars lying at distances of
D 8 kpcS . From the constructed probability distributions, we

then choose the physical parameters as the median values and
the uncertainties are estimated as the 68% ranges of the
distributions.

In the Monte Carlo simulation, we model the lens
distribution as that of the bulge. Because the source lies in
the far disk, the lens could in principle lie in either the far disk,
the bulge, or the near disk. However, the observed proper
motion of m =  -3.1 0.3 mas yrrel

1 virtually rules out near-

disk lenses for which the expected mean proper motion would
be ( )má ñ  -v v D2 9.3 mas yrrel rot rot

2
S

1 in the direction of
Galactic rotation. Only improbably large peculiar motions of
the lens or source (relative to the mean circular motion of the
Galactic disk) could then bring mrel within the observed range.
While far-disk lenses could in principle satisfy the proper-
motion constraint, the physical matter distribution along the
line of sight (and beyond the near disk) is completely
dominated by the bulge. We therefore model the lens
distribution as that of the bulge.
In Figure 8, we present the probability distributions of the

primary-lens mass, M1, distance to the lens, DL, and distance to
the source, DS, obtained from the Bayesian analysis. In Table 2,
we summarize the physical lens parameters, including the
masses of the individual lens components (M1, M2, and M3),
distances to the lens and source (DL and DS), and the projected
physical separations of M2 and M3 measured from the position
of M1 ( –â ,1 2 and –â ,1 2).
We find that the result from the Bayesian analysis is

consistent with the microlens-parallax measurement. For the
comparison of the parallax distributions, we compute the north
and east components of the microlens-parallax vectors πE of
events produced by the Bayesian analysis as

( )

p p g p g
p p g p g

= +
=- +

cos sin ,

sin cos , 6

N b l

E b l

E, E, E,

E, E, E,

respectively. Here g = 60 .3 represents the angle between arcs

of constant Galactic latitude (b) and constant equatorial decl.

(δ). The microlens-parallax components along the galactic

longitude (l) and latitude (b) directions are computed from the

Figure 8. Probability distributions of the primary-lens mass, M1 (top panel),
distance to the lens, DL (middle panel), and the distance to the source, DS

(bottom panel), obtained from the Bayesian analysis. For each distribution, the
solid vertical line represents the median value and the two dotted lines
represent the 68% range of the distribution. The distributions are for the wide
solution and the close solution results in nearly identical distributions.
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relative lens-source transverse velocity vectorv=(vl, vb) by

( )

( ) ( )

p p
p p

=
=

v v

v v

,

. 7

l l

b b

E, E

E, E

In Figure 6, we mark the ranges of p NE, and p EE, estimated from

the Bayesian analysis as a dot with error bars superposed on the

Δχ2 distribution of MCMC points obtained from light curve

fitting. It is found that the Bayesian result is consistent with the

microlens-parallax measurement, although the measurement

uncertainty of pE is large.
The interpretation of the planetary orbit varies depending on

the solutions. According to the wide solution with s3>1.0, the
planet has an S-type orbit, in which the planet orbits around
one of the two stellar binary stars, i.e., circumstellar planet.
According to the close solution, on the other hand, the planet
has a P-type orbit, in which the planet orbits around the
barycenter of the close binary stars, i.e., circumbinary planet.
We note that both the circumstellar and circumbinary planetary
solutions result in similar ratios of the planet–host separation to
the host–companion separation, i.e., ∼0.27 for the circumstellar
solution and ∼0.23 for the circumbinary solution. Furthermore,
the estimated separations are projected ones at the times of
lensing magnifications. Therefore, it is difficult to conclude
which solution is preferred based on the argument on the
stability of planet orbit.

The planet is a super-Jupiter with a mass of

( )= -
+M M4.40 , 82 2.00
3.04

J

and the stellar binary components are early and late M-type

dwarfs with masses of

( )= -
+M M0.42 91 0.19
0.29

and

( )= -
+M M0.12 , 103 0.05
0.08

respectively. The projected M1–M2 separation is

( )=^ - -
+a 2.8 au 11,1 2 2.5
3.2

for both the close and wide solutions. However, the projected

M1–M3 separation estimated from the close solution,

( ) ( )=^ - -
+a 0.75 au close , 12,1 3 0.66
0.87

is greatly different from the separation of

( ) ( )=^ - -
+a 10.5 au wide 13,1 3 9.2
12.1

estimated from the wide solution. The distance to the lens is

( )= -
+D 7.6 kpc, 14L 0.9
1.2

and the source is estimated to be in the far disk at a distance of

( )= -
+D 10.7 kpc. 15S 1.5
2.2

We note that it will be difficult to identify the lens by
resolving the lens and source from high-resolution follow-up
observations. This difficulty arises due to the combination of
the slow relative lens-source proper motion, μ∼3.1 mas yr−1,
and the faintness of the lens. Considering the mass,
M1∼0.42Me, distance, DL∼7.6 kpc, and extinction toward
the field AI∼1.3, the apparent brightness of the lens is
I∼23.8, which is too faint to be detected as a flux excess.

6. Summary and Conclusion

We found a planet belonging to a stellar binary system from
the analysis of the microlensing event OGLE-2018-BLG-1700.
We identified the triple nature of the lens from the fact that the
complex anomaly pattern could be decomposed into two parts
produced by two binary-lens events, in which one binary pair had
a very low mass ratio between the lens components and the other
pair had similar masses. We found two sets of degenerate
solutions, in which one solution had a projected separation
between the stellar lens components less than the angular Einstein
radius qE, while the other solution had a separation greater than
qE. In order to estimate the physical lens parameters, we
conducted a Bayesian analysis with the constraints of the
measured event timescale and angular Einstein radius together
with the location of the source lying in the far disk behind the
bulge. From this, we found that the planet was a super-Jupiter
with a mass of -

+ M4.4 2.0
3.0

J, and the stellar binary components were

early and late M-type dwarfs with masses of -
+ M0.42 0.19
0.29 and

-
+ M0.12 0.05
0.08 , respectively. The interpretation of the planetary

orbit varied depending on the solutions and the planet was a
circumstellar planet orbiting around one of the two binary stars
according to the wide solution, while it was a circumbinary planet
orbiting around the center of mass of the binary stars according to
the close solution.
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Best-fit Lensing Parameters

Parameter Wide (s3>1.0) Close (s3<1.0)
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M1 (Me) -
+0.42 0.19
0.29

←

M2 (MJ) -
+4.40 2.00
3.04

←

M3 (Me) -
+0.12 0.05
0.08

←

DL (kpc) -
+7.6 0.9
1.2

←

DS (kpc) -
+10.7 1.5
2.2

←

a⊥,1–2 (au) -
+2.8 2.5
3.2

←

^ -a ,1 3 (au) -
+10.5 9.2
12.1

-
+0.75 0.66
0.87

Note. M1, M2, and M3 represent the masses of the individual triple-lens

components, DL and DS denote the distances to the lens and source,

respectively, and –â ,1 2 and –â ,1 3 represent the projected physical separations

of between M1–M2 and M1–M3 pairs, respectively. The “←” symbols for the

close solution imply that the values are the same as for the wide solution.

9

The Astronomical Journal, 159:48 (10pp), 2020 February Han et al.



supported by an appointment to the NASA Postdoctoral Program
at the Goddard Space Flight Center, administered by USRA
through a contract with NASA. N.J.R. is a Royal Society of New
Zealand Rutherford Discovery Fellow. We acknowledge the high-
speed Internet service (KREONET) provided by Korea Institute of
Science and Technology Information (KISTI).

ORCID iDs

Cheongho Han https://orcid.org/0000-0002-2641-9964
Sun-Ju Chung https://orcid.org/0000-0001-6285-4528
Kyu-Ha Hwang https://orcid.org/0000-0002-9241-4117
Yoon-Hyun Ryu https://orcid.org/0000-0001-9823-2907
In-Gu Shin https://orcid.org/0000-0002-4355-9838
Yossi Shvartzvald https://orcid.org/0000-0003-1525-5041
Jennifer C. Yee https://orcid.org/0000-0001-9481-7123
Weicheng Zang https://orcid.org/0000-0001-6000-3463
Richard W. Pogge https://orcid.org/0000-0003-1435-3053
Jan Skowron https://orcid.org/0000-0002-2335-1730
Paweł Pietrukowicz https://orcid.org/0000-0002-2339-5899
Krzysztof Ulaczyk https://orcid.org/0000-0001-6364-408X
Patryk Iwanek https://orcid.org/0000-0002-6212-7221
Akihiko Fukui https://orcid.org/0000-0002-4909-5763
Yoshitaka Itow https://orcid.org/0000-0002-8198-1968
Iona Kondo https://orcid.org/0000-0002-3401-1029
Naoki Koshimoto https://orcid.org/0000-0003-2302-9562
Shota Miyazaki https://orcid.org/0000-0001-9818-1513
Nicholas J. Rattenbury https://orcid.org/0000-0001-
5069-319X
Daisuke Suzuki https://orcid.org/0000-0002-5843-9433

References

Alard, C., & Lupton, R. H. 1998, ApJ, 503, 325
Albrow, M. 2017, MichaelDAlbrow/pyDIA: Initial Release on Github,

doi:10.5281/zenodo.268049
Alcock, C., Akerlof, C. W., Allsman, R. A., et al. 1993, Natur, 365, 621
Aubourg, E., Bareyre, P., Bréhin, S., et al. 1993, Natur, 365, 623
Batista, V., Gould, A., Dieters, S., et al. 2011, A&A, 529, 102
Beaulieu, J.-P., Bennett, D. P., Batista, V., et al. 2016, ApJ, 824, 83

Bennett, D. P., Rhie, S. H., Nikolaev, S., et al. 2010, ApJ, 713, 837
Bennett, D. P., Rhie, S. H., Udalski, A., et al. 2016, AJ, 152, 125
Bensby, T., Yee, J. C., Feltzing, S., et al. 2013, A&A, 549, 147
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Bond, I. A., Abe, F., Dodd, R. J., et al. 2001, MNRAS, 327, 868
Bozza, V. 1999, A&A, 348, 311
Chabrier, G. 2003, ApJL, 586, L133
Daněk, K., & Heyrovský, D. 2015, ApJ, 806, 99
Daněk, K., & Heyrovský, D. 2019, ApJ, 880, 72
Dominik, M. 1998, A&A, 329, 36
Gaudi, B. S., Bennett, D. P., Udalski, A., et al. 2008, Sci, 319, 927
Gaudi, B. S., Naber, R. M., & Sackett, P. D. 1998, ApJL, 502, L33
Gould, A. 1992, ApJ, 392, 442
Gould, A. 2000, ApJ, 535, 928
Gould, A., & Loeb, A. 1992, ApJ, 396, 10
Gould, A., Udalski, A., Shin, I.-G., et al. 2014, Sci, 345, 46
Griest, K., & Safizadeh, N. 1998, ApJ, 500, 37
Han, C. 2008, ApJ, 684, 684
Han, C., Bennett, D. P., Udalski, A., et al. 2019a, AJ, 158, 114
Han, C., Chang, H.-Y., An, J. H., & Chang, K. 2001, MNRAS, 328, 986
Han, C., & Gould, A. 1995, ApJ, 447, 53
Han, C., & Gould, A. 2003, ApJ, 592, 172
Han, C., & Han, W. 2002, ApJ, 580, 490
Han, C., Udalski, A., Choi, J.-Y., et al. 2013, ApJL, 762, L28
Han, C., Udalski, A., Gould, A., et al. 2017, AJ, 154, 223
Han, C., Udalski, A., Lee, C.-U., et al. 2016, ApJ, 827, 11
Han, C., Yee, J. C., Udalski, A., et al. 2019b, AJ, 158, 102
Hwang, K.-H., Udalski, A., Bond, I. A., et al. 2018, AJ, 155, 259
Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, A&A, 426,

29
Kim, D.-J., Kim, H.-W., Hwang, K.-H., et al. 2018, AJ, 155, 76
Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, JKAS, 49, 37
Lee, D.-W., Lee, C.-U., Park, B.-G., et al. 2008, ApJ, 672, 623
Liebig, C., & Wambsganss, J. 2010, A&A, 520, 68
Mao, S., & Paczyński, B. 1991, ApJL, 374, L37
Nataf, D. M., Gould, A., Fouqué, P., et al. 2013, ApJ, 769, 88
Poleski, R., Skowron, J., Udalski, A., et al. 2014, ApJ, 795, 42
Rhie, S. H. 2002, arXiv:astro-ph/0202294
Ryu, Y.-H., et al. 2019, ApJ, submitted
Skowron, J., Udalski, A., Gould, A., et al. 2011, ApJ, 738, 87
Sumi, T., Abe, F., Bond, I. A., et al. 2003, ApJ, 591, 20
Suzuki, D., Bennett, D. P., Udalski, A., et al. 2018, AJ, 155, 263
Udalski, A., Szymański, J., Kalużny, J., et al. 1994, ApJL, 426, L69
Udalski, A., Szymański, M. K., & Szymański, G. 2015, AcA, 65, 1
Woźniak, P. R. 2000, AcA, 50, 421
Yee, J. C., Shvartzvald, Y., Gal-Yam, A., et al. 2012, ApJ, 755, 102
Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, ApJ, 603, 139

10

The Astronomical Journal, 159:48 (10pp), 2020 February Han et al.

https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0002-2641-9964
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0001-6285-4528
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0002-9241-4117
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0001-9823-2907
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0002-4355-9838
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0003-1525-5041
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-9481-7123
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0001-6000-3463
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0003-1435-3053
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2335-1730
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0002-2339-5899
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0001-6364-408X
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-6212-7221
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-4909-5763
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-8198-1968
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0002-3401-1029
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0003-2302-9562
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-9818-1513
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0001-5069-319X
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://orcid.org/0000-0002-5843-9433
https://doi.org/10.1086/305984
https://ui.adsabs.harvard.edu/abs/1998ApJ...503..325A/abstract
https://doi.org/10.5281/zenodo.268049
https://doi.org/10.1038/365621a0
https://ui.adsabs.harvard.edu/abs/1993Natur.365..621A/abstract
https://doi.org/10.1038/365623a0
https://ui.adsabs.harvard.edu/abs/1993Natur.365..623A/abstract
https://doi.org/10.1051/0004-6361/201016111
https://ui.adsabs.harvard.edu/abs/2011A&A...529A.102B/abstract
https://doi.org/10.3847/0004-637X/824/2/83
https://ui.adsabs.harvard.edu/abs/2016ApJ...824...83B/abstract
https://doi.org/10.1088/0004-637X/713/2/837
https://ui.adsabs.harvard.edu/abs/2010ApJ...713..837B/abstract
https://doi.org/10.3847/0004-6256/152/5/125
https://ui.adsabs.harvard.edu/abs/2016AJ....152..125B/abstract
https://doi.org/10.1051/0004-6361/201220678
https://ui.adsabs.harvard.edu/abs/2013A&A...549A.147B/abstract
https://doi.org/10.1086/132281
https://ui.adsabs.harvard.edu/abs/1988PASP..100.1134B/abstract
https://doi.org/10.1046/j.1365-8711.2001.04776.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.327..868B/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...348..311B/abstract
https://doi.org/10.1086/374879
https://ui.adsabs.harvard.edu/abs/2003ApJ...586L.133C/abstract
https://doi.org/10.1088/0004-637X/806/1/99
https://ui.adsabs.harvard.edu/abs/2015ApJ...806...99D/abstract
https://doi.org/10.3847/1538-4357/ab2982
https://ui.adsabs.harvard.edu/abs/2019ApJ...880...72D/abstract
https://ui.adsabs.harvard.edu/abs/1998A&A...329..361D/abstract
https://doi.org/10.1126/science.1151947
https://ui.adsabs.harvard.edu/abs/2008Sci...319..927G/abstract
https://doi.org/10.1086/311480
https://ui.adsabs.harvard.edu/abs/1998ApJ...502L..33G/abstract
https://doi.org/10.1086/171443
https://ui.adsabs.harvard.edu/abs/1992ApJ...392..442G/abstract
https://doi.org/10.1086/308865
https://ui.adsabs.harvard.edu/abs/2000ApJ...535..928G/abstract
https://doi.org/10.1086/171700
https://ui.adsabs.harvard.edu/abs/1992ApJ...396..104G/abstract
https://doi.org/10.1126/science.1251527
https://ui.adsabs.harvard.edu/abs/2014Sci...345...46G/abstract
https://doi.org/10.1086/305729
https://ui.adsabs.harvard.edu/abs/1998ApJ...500...37G/abstract
https://doi.org/10.1086/590331
https://ui.adsabs.harvard.edu/abs/2008ApJ...684..684H/abstract
https://doi.org/10.3847/1538-3881/ab2f74
https://ui.adsabs.harvard.edu/abs/2019AJ....158..114H/abstract
https://doi.org/10.1046/j.1365-8711.2001.04973.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.328..986H/abstract
https://doi.org/10.1086/175856
https://ui.adsabs.harvard.edu/abs/1995ApJ...447...53H/abstract
https://doi.org/10.1086/375706
https://ui.adsabs.harvard.edu/abs/2003ApJ...592..172H/abstract
https://doi.org/10.1086/343082
https://ui.adsabs.harvard.edu/abs/2002ApJ...580..490H/abstract
https://doi.org/10.1088/2041-8205/762/2/L28
https://ui.adsabs.harvard.edu/abs/2013ApJ...762L..28H/abstract
https://doi.org/10.3847/1538-3881/aa9179
https://ui.adsabs.harvard.edu/abs/2017AJ....154..223H/abstract
https://doi.org/10.3847/0004-637X/827/1/11
https://ui.adsabs.harvard.edu/abs/2016ApJ...827...11H/abstract
https://doi.org/10.3847/1538-3881/ab2df4
https://ui.adsabs.harvard.edu/abs/2019AJ....158..102H/abstract
https://doi.org/10.3847/1538-3881/aac2cb
https://ui.adsabs.harvard.edu/abs/2018AJ....155..259H/abstract
https://doi.org/10.1051/0004-6361:20035930
https://ui.adsabs.harvard.edu/abs/2004A&A...426..297K/abstract
https://ui.adsabs.harvard.edu/abs/2004A&A...426..297K/abstract
https://doi.org/10.3847/1538-3881/aaa47b
https://ui.adsabs.harvard.edu/abs/2018AJ....155...76K/abstract
https://doi.org/10.5303/JKAS.2016.49.1.037
https://ui.adsabs.harvard.edu/abs/2016JKAS...49...37K/abstract
https://doi.org/10.1086/523662
https://ui.adsabs.harvard.edu/abs/2008ApJ...672..623L/abstract
https://doi.org/10.1051/0004-6361/200913844
https://ui.adsabs.harvard.edu/abs/2010A&A...520A..68L/abstract
https://doi.org/10.1086/186066
https://ui.adsabs.harvard.edu/abs/1991ApJ...374L..37M/abstract
https://doi.org/10.1088/0004-637X/769/2/88
https://ui.adsabs.harvard.edu/abs/2013ApJ...769...88N/abstract
https://doi.org/10.1088/0004-637X/795/1/42
https://ui.adsabs.harvard.edu/abs/2014ApJ...795...42P/abstract
http://arxiv.org/abs/astro-ph/0202294
https://doi.org/10.1088/0004-637X/738/1/87
https://ui.adsabs.harvard.edu/abs/2011ApJ...738...87S/abstract
https://doi.org/10.1086/375212
https://ui.adsabs.harvard.edu/abs/2003ApJ...591..204S/abstract
https://doi.org/10.3847/1538-3881/aabd7a
https://ui.adsabs.harvard.edu/abs/2018AJ....155..263S/abstract
https://doi.org/10.1086/187342
https://ui.adsabs.harvard.edu/abs/1994ApJ...426L..69U/abstract
https://ui.adsabs.harvard.edu/abs/2015AcA....65....1U/abstract
https://ui.adsabs.harvard.edu/abs/2000AcA....50..421W/abstract
https://doi.org/10.1088/0004-637X/755/2/102
https://ui.adsabs.harvard.edu/abs/2012ApJ...755..102Y/abstract
https://doi.org/10.1086/381241
https://ui.adsabs.harvard.edu/abs/2004ApJ...603..139Y/abstract

	1. Introduction
	2. Observation and Data
	3. Light Curve Modeling
	3.1.2L1S Analysis
	3.2.3L1S Analysis
	3.3. Higher-order Effects
	3.4.2L2S Analysis

	4. Source Star
	5. Lens System
	6. Summary and Conclusion
	References

