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Abstract

We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found
to date (q= 1.2–1.6× 10−5 at 1σ). Although there is substantial uncertainty in the satellite parallax measured by
Spitzer, the measurement of the annual parallax effect combined with the finite source effect allows us to determine
the mass of the host star (ML= 0.3–0.6 Me), the mass of its planet (mp= 1.4–3.1M⊕), the projected separation
between the host and planet (a⊥= 1.2–2.3 au), and the distance to the lens system (DL= 0.6–1.2 kpc). The lens is
plausibly the blend, which could be checked with adaptive optics observations. As the smallest planet clearly below
the break in the mass-ratio function, it demonstrates that current experiments are powerful enough to robustly
measure the slope of the mass-ratio function below that break. We find that the cross-section for detecting small
planets is maximized for planets with separations just outside of the boundary for resonant caustics and that
sensitivity to such planets can be maximized by intensively monitoring events whenever they are magnified by a
factor A> 5. Finally, an empirical investigation demonstrates that most planets showing a degeneracy between
(s> 1) and (s< 1) solutions are not in the regime ( slog 0∣ ∣  ) for which the “close”/“wide” degeneracy was
derived. This investigation suggests that there is a link between the “close”/“wide” and “inner/outer” degeneracies
and also that the symmetry in the lens equation goes much deeper than symmetries uncovered for the limiting cases.

Unified Astronomy Thesaurus concepts: Gravitational microlensing exoplanet detection (2147)

1. Introduction

Statistical studies of microlensing planets have shown that
while the mass-ratio function for giant planets increases with
decreasing mass ratio, q, there appears to be a break in the
mass-ratio function at small mass ratios. Suzuki et al. (2016)
presented the first study to fit a broken power law to the
microlensing planet distribution. They analyzed a sample of
1474 events with 23 planets from the Microlensing Observa-
tions in Astrophysics (MOA) survey. Combining their sample
with planets from other work (Gould et al. 2010; Cassan et al.
2012), they report a power-law slope for planets with q< qbr
of p= 0.6 in contrast to p=−0.93 for larger planets (for

µdN d q qlog p) for a fiducial break at qbr= 1.7× 10−4.
Independently, Udalski et al. (2018) later used a V Vmax

analysis and a complementary sample to confirm this turnover.
Jung et al. (2019) then suggested a much smaller
qbr= 0.55× 10−4 and a change in p above and below the
break of p(q< qbr)− p(q> qbr)> 3.3. While this qbr is
substantially smaller than that of Suzuki et al. (2016), it is
consistent within the uncertainty contours of Suzuki et al.
(2016; see their Figure 15). These studies strongly suggest that
Neptune/Sun mass-ratio planets are the most common planets
at separations of a few au around microlensing host stars.

However, the power-law slope of the mass-ratio distribution
below qbr and even the exact location of qbr are highly
uncertain, due to a lack of planet detections below this break. In
Suzuki et al. (2016), the smallest planet had q= 0.58× 10−4,
while in Jung et al. (2019), the smallest planet had
q= 0.46× 10−4. The analysis by Jung et al. (2019) is
consistent with a very sharp break at qbr, which suggests the
possibility that smaller planets might not exist. Hence,
depending on the strength of the break, it could be quite
difficult to find such planets and so measure their distribution.

Since that time, three planets have been discovered with
mass ratios q< 0.55× 10−4, largely due to the Korea
Microlensing Telescope Network (KMTNet; Kim et al.
2016). With its 4 deg2 field of view and telescopes at three
sites (CTIO, SAAO, SSO; i.e., KMTC, KMTS, KMTA),
KMTNet can achieve near-continuous observations of 92 deg2

of the bulge at a high cadence. (92, 84, 40, 12 deg2) are covered
at cadences of Γ � (0.2, 0.4, 1, 4) obs hr−1. This has led to the
discovery of KMT-2018-BLG-0029Lb (Gould et al. 2020) and
KMT-2019-BLG-0842Lb (Jung et al. 2020) with mass ratios
q= 0.18× 10−4 and q= 0.41× 10−4, respectively. A third
planet, in OGLE-2019-BLG-0960, is reported in this work and
was discovered through a combination of KMTNet observa-
tions and follow-up data.
While the KMTNet data were crucial to the discovery of the

planet in OGLE-2019-BLG-0960, the initial discovery of the
event by the Optical Gravitational Lens Experiment (OGLE) was
critical for identifying this event as a potential Spitzer target. The
early OGLE alert triggered reduction of KMTNet real-time data
almost three weeks before the event was discovered by
KMTNet. As a result, OGLE-2019-BLG-0960 was under
consideration as a potential Spitzer target prior to its discovery
by KMTNet. Later, this event was identified as high magnifica-
tion, which triggered additional follow-up observations.
A detailed timeline of the observations is given in Section 2.

The analysis of the light curve, including the parallax, is
described in Sections 3 and 4. We derive the properties of the
source and the physical parameters of the lens including the
planet in Section 5. Then, in Section 6 we consider whether or
not the planet was detectable in survey data alone (Section 6.1),
and we consider how the sample of small planets can be
increased to enable a precise measurement of qbr and p for
planets with q< qbr (Section 6.2). We also explore events with
both (s> 1) and (s< 1) solutions and the relationship to the
“close”/“wide” degeneracy of Griest & Safizadeh (1998;
Section 6.3). We conclude in Section 7.

2. Observations

2.1. Ground-based Survey Observations

OGLE-2019-BLG-0960 was alerted by the OGLE-IV Early
Warning System (Udalski 2003; Udalski et al. 2015) on 2019
June 23 at UT 21:04 (HJD′=HJD−2,450,000= 8658.38). Its
coordinates were R.A.= 18:16:03.43, decl.= −25:46:28.8
corresponding to (ℓ, b)= (6.10, −4.30). It is in OGLE-IV field
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BLG522, which was observed in the I band with a cadence of
Γ∼ 2 night−1. This event was independently discovered as
KMT-2019-BLG-1591 by KMTNet (Kim et al. 2018) on 2019
July 11 at UT 03:05 (HJD′= 8675.63) and as MOA-2019-
BLG-324 by Microlensing Observations in Astrophysics
(MOA; Bond et al. 2001) on 2019 July 17 at UT 16:07
(HJD′= 8682.17). This field is observed by KMTNet at a
cadence of Γ∼ 0.4 hr−1. Most of the KMTNet observations
were taken in the I band with about 10 in the V band for the
purpose of measuring colors. MOA observed the field
containing OGLE-2019-BLG-0960 using a custom R filter
(which covers standard R and I bands) at a nominal cadence of
Γ∼ 0.6 hr−1, but see below (Section 2.3).

2.2. Spitzer Observations

OGLE-2019-BLG-0960 was selected for Spitzer observations
and announced as a Spitzer target on HJD′= 8676.23 with the
condition that it must reach I< 17.45 prior to HJD′= 8679.5
(i.e., the decision point for the next Spitzer target upload). Thus, it
was initially selected as a “subjective, conditional” target, and
observations began at HJD′= 8685.21. The following week
HJD′∼ 8687, the event met the “objective” criteria for selecting
Spitzer targets. Thus, observations taken after HJD′= 8691.5
may be considered “objective.” See Yee et al. (2015) for a
detailed explanation of different types of selection, their
implications, and criteria.

2.3. Ground-based Follow-up Observations

Once OGLE-2019-BLG-0960 was selected for Spitzer
observations, we began to monitor it with the dual-channel
imager, ANDICAM (DePoy et al. 2003) on the SMARTS
1.3 m telescope at CTIO in Chile (CT13). Observations were
taken simultaneously in both the I and H bands for the purpose
of tracking its evolution and obtaining an I–H color for the
source. Starting at HJD′∼ 8683.5, we increased the cadence to
a few points per night to supplement the survey data in the

hopes of better characterizing any planetary perturbations. We
also began monitoring the event with the telescopes in the LCO
1m network at SAAO (South Africa; LCOS) and SSO
(Australia; LCOA01, LCOA02).
On 2019 July 20, the Spitzer team realized that the event was

consistent with high magnification (A> 100) and sent an alert
to the Microlensing Follow-Up Network (MicroFUN) at UT
13:06 (HJD′= 8685.05), encouraging dense follow-up obser-
vations to capture the peak of the event. Auckland, Farm Cove,
and Kumeu Observatories in New Zealand (AO, FCO, and
Kumeu, respectively) all responded to the alert and began
intensive observations of the event. MOA also increased its
cadence in response to the alert. At the same time, we
scheduled dense observations with CT13 and the LCO 1m
telescopes at SAAO and SSO. Two days later at
HJD′= 8687.05, we called off the alert because the event
was declining and no significant perturbations had been
observed over the peak. At this point, most follow-up
observations ceased. However, we continued to observe this
event at a cadence of a few per night with CT13, while Kumeu
Observatory took an additional hour of normalizing data, which
would prove crucial for recognizing and characterizing the
planetary perturbation.
On 2019 July 23 (HJD′= 8688.06), a routine inspection of

the CT13 data led to the discovery of a ∼0.5 mag outlier in the
light curve. The outlier was confirmed by a data point in the
KMTC light curve taken nearly simultaneously. This triggered
additional dense observations with the LCO network. We did not
realize the existence of Kumeu observations that characterized
the falling side of the perturbation until HJD′∼ 8689.05.

2.4. Data Reduction and Error Renormalization

The data were reduced by each collaboration and the
photometric error bars were renormalized according to the
prescription in Yee et al. (2012). Table 1 gives the specific
reduction method, the error renormalization factors, and other
properties for each data set. In the case of KMTNet data from

Table 1

Data with Corresponding Data Reduction Method and Rescaling Factors

Collaboration Site Filter Coverage ( ¢HJD ) Ndata Reduction Method k emin

OGLE I 7799.9–8763.6 488 Woźniak (2000) 1.27 0.000

OGLE V 7851.9–8723.6 26 Woźniak (2000) L L

MOA Red 8537.2–8785.9 341 Bond et al. (2001) 1.14 0.005

KMTNet SSO I 8682.0–8692.0 19 pySISa 0.80 0.000

CTIO I 8616.7–8777.6 312 pySIS 1.33 0.007

SAAO I 8616.4–8777.3 223 pySIS 1.46 0.000

LCO SSO01 i 8684.0–8690.2 147 ISISb 2.03 0.005

SSO02 i 8688.1–8691.9 46 ISIS 1.04 0.000

μFUN CTIO i 8684.6–8692.7 23 ISIS L L

μFUN SAAO i 8685.4–9690.2 91 ISIS 0.86 0.004

μFUN CT13 I 8678.5–8692.7 65 DoPHOT
c 1.12 0.000

μFUN CT13 H 8678.5–8692.7 343 DoPHOT L L

μFUN AO 540–700 nm 8685.9–8686.9 51 DoPHOT 1.29 0.000

μFUN FCO unfiltered 8685.9–8686.9 75 DoPHOT 0.82 0.000

μFUN Kumeu 540–700 nm 8685.9–8687.9 108 DoPHOT 1.29 0.000

Spitzer L 8685.2–8712.0 25 Calchi Novati et al. (2015) 1.98 0.000

Notes. ¢ =HJD HJD 2, 450, 000‐ . The right-most two columns give the error renormalization factors k and emin as described in Yee et al. (2012). CT13 H-band data

are only used to determine the source color. LCO CTIO data are not used for the analysis due to systematics in the data.
a
Albrow et al. (2009).

b
Alard & Lupton (1998), Alard (2000), Zang et al. (2018).

c
Schechter et al. (1993).
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CTIO and SAAO, we restricted the data to points taken after
HJD′= 8616 to control for possible effects of systematics on
the parallax measurement. Likewise, data from KMTA were
restricted to ±5 days from the peak of the event.

3. Ground-based Light-curve Analysis

The full light curve of this event is shown in Figure 1. With
the exception of a brief, 0.2 day, bump that occurs 1.4 days
after the peak, the light curve is well described by a standard

single-lens single-source (1L1S) Paczynski (1986) fit, which is

specified by three geometric parameters, the lens-source closest

approach t0, the impact parameter u0 (normalized to the

Einstein radius, θE), and the Einstein radius crossing time tE. In

principle, the bump could be explained by either an additional

lens (2L1S) or additional source (1L2S), but we begin by

focusing on the former. This requires three additional

parameters: the companion-host separation s (normalized to

θE), the companion-host mass ratio q, and the companion-host

orientation α (relative to the direction lens-source relative

Figure 1. Light curve of OGLE-2019-BLG-0960 with best-fit models. Although the primary evidence for the planet is a strong bump in the light curve at
HJD′ ∼ 8687.8, the points before and after the bump also show a negative deviation relative to the best-fit point-lens model (dashed-gray line), which contributes to
the detection. Note that KMTC and CT13 each have a data point at HJD′ = 8687.796. However, because they are contemporaneous, they do not appear as distinct
points on the plot. The two best-fit planetary models are shown as the solid black and cyan lines. Although one model has s > 1 and one has s < 1, this degeneracy is
far from the regime of the “close”/“wide” degeneracy identified by Griest & Safizadeh (1998, see Section 6.3).
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motion). Because the source transits (or comes very close to) a
caustic structure generated by the lens system, we must also
specify ρ≡ θ*/θE, where θ* is the angular radius of the source.

3.1. Static Analysis

We search for the best-fit models following the method of
Yang et al. (2020). In brief, we initially conduct a grid search
over ( s qlog , log ) to locate the solutions. For each set of
( s qlog , log ), we fix s qlog , log , and free t0, u0, tE, α and ρ. For
the initial values of t0, u0, and tE, we use the values from 1L1S
fitting to the light curve excluding the planetary anomaly. The
initial values of α and ρ are estimated from the 1L1S
parameters as follows:

a =
-

= 

=

- t

t t

t u t

tan 0.266 15 .2 ;

1

1 eff

0,anom 0

eff 0 E

( )

( )

where t0,anom= 8687.78. Using the method of Street et al.

(2016), ρ can be estimated by

r a~
-

´ = ´ -t t

t
sin 3.2 10 , 2

0,anom cc

E

4 ( )

where tcc∼ 8687.70 is the time of caustic entry. Then, we

search for the best-fit parameters using Markov chain Monte

Carlo (MCMC) χ2 minimization as implemented in the emcee

ensemble sampler (Foreman-Mackey et al. 2013). We use the

advanced contour integration code VBBinaryLensing

(Bozza 2010)41 to compute the binary-lens magnification. This

code uses multiple rings to account for the limb-darkening

effect and sets the number of rings automatically based on the

required light-curve precision. We use linear limb-darkening

coefficients for a Teff= 5250 K star: ΓI= 0.43, ΓR= 0.52,

ΓL= 0.15 (Claret & Bloemen 2011).
This grid search yields only two local minima (left-hand

panel of Figure 2). We then further refine these minima by
allowing all seven parameters to vary in an MCMC. The results
are shown in Table 2, and the caustics and source trajectories
are shown in Figure 3. As with many events, the two solutions

appear to be related by the famous s↔s−1
(a.k.a. “close”/

“wide”) degeneracy (Griest & Safizadeh 1998; Dominik 1999)
because one solution has s< 1 and the other s> 1. In fact, this
is not the case (as we discuss in Section 6.3).
Regardless, the two solutions are very similar in their

physical implications. First, the mass ratio is q= 1.27± 0.07 or
q= 1.45± 0.15× 10−5, making this the smallest mass-ratio
planet discovered by microlensing to date. Second, although
the two solutions are distinct, s is very close to 1, so the
separation of the planet from the host star is similar in the two
cases. Third, the relatively long Einstein timescale, tE∼ 62
days, suggests that it may be possible to measure the annual
parallax effect for this event.

3.2. Ground-based Parallax Analysis

Thus, we are immediately led to introduce two additional
parameters πE= (πE,N, πE,E); i.e., the north and east compo-
nents of the parallax vector (Gould 2004) in equatorial
coordinates. Because the effect of Earth’s motion can be
partially mimicked by lens orbital motion (Batista et al. 2011;
Skowron et al. 2011), we initially introduce two further
additional parameters γ= ((ds/dt)/s, dα/dt); i.e., the instanta-
neous angular velocity at t0. We find that γ is poorly
constrained, so we impose a limit on the ratio of projected
kinetic to potential energy (Dong et al. 2009)

b
k
p

p
q
g
p p q

= =
+

^

^

KE

PE

M syr

8
, 3

s

2

2

E

E

2

E E

3

⎜ ⎟
⎛
⎝

⎞
⎠

( )


where πs is the source parallax. We set a requirement that

β< 0.8 and do not accept trials with larger values.42 We find

that γ is neither significantly constrained in the fit nor

significantly correlated with πE, so we suppress these two

degrees of freedom.
The final parallax solutions are summarized in Table 2.

Figure 4 shows the cumulative Δχ2 diagram between the

Figure 2. Results of the s–q grid search for the best-fit solutions to the light curve of OGLE-2019-BLG-0960. Left-hand panel: the fits including all ground-based data
yield two distinct minima, one with s < 1 and one with s > 1, but not centered around s = 1. Right-hand panel: the fits to just the ground-based survey data (OGLE,
MOA, KMT) give an additional pair of minima because the caustic crossing is less well-characterized (see Section 6.1).

41
http://www.fisica.unisa.it/GravitationAstrophysics/VBBinaryLensing.htm

42
Strictly speaking, only β > 1 solutions are ruled out by the requirement

of a bound system. However, 0.8 < β < 1 would require a system with an
extremely high eccentricity that was observed at a rare epoch and in a rare
orientation. While the exact threshold is somewhat arbitrary, it serves as a
proxy for a full Bayesian prior in that it eliminates extremely unlikely solutions.
We use β < 0.8 following the typical convention in the literature.
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best-fit parallax and static solutions. All of the survey data sets
that span the event (OGLE, MOA, KMTC, KMTS) contribute
positively and consistently to the parallax signal. This meets
our expectation that a real parallax signal should affect data
from all observatories and makes it extremely unlikely that the
signal has a non-astrophysical origin.

In Figure 5, we show the χ2 contours projected on the πE

plane, which are in the form of an ellipse with a large axis ratio
a/b∼ 8. Such “1D parallax” measurements were predicted by
Gould et al. (1994) and explored in greater detail by Smith et al.
(2003) and Gould (2004) for moderately long microlensing
events. They arise because πE,P, the component of πE that is
parallel to the projected position the Sun at t0, is directly
constrained by the asymmetry in the light curve that is induced
by Earth’s instantaneous acceleration near the peak of the event.
The first clear example of this in a planetary event was OGLE-
2005-BLG-071 (Udalski et al. 2005; Dong et al. 2009). Indeed,
the orientations (north through east) of the short axes of the
ellipses for OGLE-2019-BLG-0960 are close to the projected
position of the Sun. Hence, πE,P is both relatively large and well
constrained from the ground-based photometry, even though
there are substantial uncertainties in the total value of πE.

3.3. Binary Source Models

In principle, a short duration bump on an otherwise point-
lens-like light curve can also be caused by a binary source with
a large flux ratio (Gaudi 1998). Hence, we also search for 1L2S
solutions. For this search, we introduce the additional
parameters t0,2 and u0,2 to describe the trajectory of the second
source and ρ2 for its radius. We also introduce qF,I, the flux
ratio between the two sources, as a fit parameter. The results of
these fits are given in Table 3 and show that such solutions are
disfavored by Δχ2

> 1000. Figure 6 shows that the best-fit
1L2S model fails to reproduce the decrease in magnification
(relative to a point lens) seen before and after the bump.

4. Spitzer Parallax Analysis

According to the original conception of Refsdal (1966), the
microlens parallax (πE in modern notation) could be
determined up to a four-fold degeneracy by combining

information from the ground-based and space-based Paczyński
parameters (t0, u0, tE) for the event,

p =
-

-
^

Å
Å

D

t t

t
u u

au
, , 4E

0,sat 0,

E
0,sat 0,⎜ ⎟⎛

⎝
⎞
⎠

( )

where D⊥ is the Earth-satellite separation projected on the

plane of the sky and tE is approximated as being the same for

both Earth and the satellite. The two terms in Equation (4) are

then the components of πE that are, respectively, parallel and

perpendicular to D⊥. A four-fold degeneracy arises because u0
is a signed quantity, but generally only its magnitude can be

determined from the light curve. See Figure 1 of Gould (1994).
Figure 7 shows the Spitzer light curve in instrumental-flux

units. Because the Spitzer observations cover the peak of the
event (which was very bright, I= 14.3), the lack of a strong
microlensing signal (i.e., a substantial change in the flux)
indicates a significant parallax effect. In fact, the Spitzer light
curve is rising throughout the observations, which begin
approximately at t0,⊕. Because Spitzer was almost due west of
Earth at these times, this rising light curve implies that πE,E< 0,
which is in good agreement with the ground-based results.
However, the total Spitzer flux variation of OGLE-2019-

BLG-0960 is extremely small (only 1.5 flux units). Recent
experience with KMT-2018-BLG-0029 (Gould et al. 2020),
OGLE-2017-BLG-0406 (Hirao et al. 2020), and OGLE-2018-
BLG-0799 (Zang et al. 2020) has shown that there can be
systematics in the Spitzer parallax measurements for Spitzer
light curves with weak signals. Hence, while the Spitzer light
curve for OGLE-2019-BLG-0960 shows a clear parallax
signal, we must be cautious in interpreting it.
We carry out a quantitative investigation of the Spitzer

parallax signal following the method described in Gould et al.
(2020). Spitzer-“only” light curves are obtained by fitting only
the Spitzer data, while fixing the non-parallax ground-based
parameters (t0, u0, tE, s, q, α, ρ) at their best-fit, ground-based
values. In particular, because Spitzer-“only” fits are used
primarily to analyze information flow rather than to obtain final
results, it is best to keep them as simple as possible without
tracking the finer details. In addition, one must specify the
Spitzer source flux (and error bar), both of which can be

Table 2

Parameters for 2L1S Models Using all Ground-based Data

Model χ2/dof t0 u0 tE s q α ρ πE,N πE,E fS,I fB,I
( ¢HJD ) (days) (× 10−5

) (rad) (×10−4
)

(s > 1) :

Static 2099.2/1935 8686.4484 0.0060 61.5 1.028 1.41 0.270 3.20 L L 0.1781 0.5391

0.0005 0.0001 1.4 0.001 0.14 0.001 0.17 L L 0.0042 0.0037

Parallax, 1934.1/1933 8686.4490 0.0061 61.8 1.028 1.43 0.273 3.23 0.395 −0.393 0.1773 0.5385

(u0 > 0) 0.0006 0.0001 1.4 0.001 0.14 0.001 0.18 0.155 0.039 0.0041 0.0036

Parallax, 1932.0/1933 8686.4496 −0.0061 61.4 1.029 1.48 −0.272 3.29 −0.351 −0.313 0.1784 0.5380

(u0 < 0) 0.0006 0.0001 1.4 0.001 0.14 0.001 0.16 0.173 0.027 0.0041 0.0036

(s < 1) :

Static 2101.2/1935 8686.4485 0.0060 61.9 0.997 1.23 0.269 2.97 L L 0.1769 0.5401

0.0005 0.0001 1.3 0.001 0.06 0.001 0.09 L L 0.0040 0.0040

Parallax, 1933.9/1933 8686.4487 0.0059 63.0 0.996 1.27 0.272 2.97 0.464 −0.405 0.1736 0.5418

(u0 > 0) 0.0005 0.0001 1.4 0.001 0.07 0.001 0.10 0.146 0.039 0.0042 0.0037

Parallax, 1933.0/1933 8686.4494 −0.0060 62.0 0.997 1.27 −0.271 3.01 −0.440 −0.304 0.1766 0.5397

(u0 < 0) 0.0005 0.0001 1.3 0.001 0.07 0.001 0.10 0.161 0.027 0.0039 0.0034

Note. Uncertainties for each parameter are given in the second line for each solution.
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derived from a Spitzer-ground color–color (e.g., IHL) relation
together with the I-band source flux.

For this color-constraint, we cross-match stars from the
6′× 6′ CT13 I-band field with VVV (Minniti et al. 2017) to
construct an I–H CMD. While the VVV H-band is calibrated,
CT13 is not; thus, the resulting colors are instrumental rather
than absolute. In this system, we find the source color is

ICT13−HVVV= 3.433± 0.013 (see Section 5.1). When cross-
matched to stars in the Spitzer field, this yields a color–color
relation:

- = I L 2.681 0.019. 5CT13 ( )

The resulting parallax contours are shown in Figure 5. This
figure shows that the ground-only and Spitzer-“only” contours

Figure 3. Caustics (red-dashed lines) and source trajectory (solid-black line and arrow) for the two degenerate solutions for OGLE-2019-BLG-0960. The top two
panels show the “s > 1” solution, and the bottom two panels show the “s < 1” solution. The top panel in each pair shows the full view of the caustic, while the bottom
panel in the pair shows a close up of the caustic crossing. The locations of the source at the times of the observations are indicated by the dots/circles; the size of each
circle is set by ρ.
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are inconsistent at the ∼3σ level. Furthermore, we will show in

Section 5.4 that the best-fit value for the Spitzer-“only” parallax,

πE= 0.25, is in tension with constraints on the lens due to the

blended light (unless the host is a stellar remnant). Note that the

sense of this tension (Spitzer suggests a smaller parallax than the

ground) is the opposite of the effect discussed in Koshimoto &

Bennett (2020), which suggested that Spitzer systematics tend to

cause over-estimates of the magnitude of πE.
Because of these tensions, for the remainder of this paper, we

focus on what can be derived from the ground-based data

alone. In the future, we will carry out a systematic study of

low-amplitude Spitzer light curves. Once the impact of

systematics on the Spitzer parallax measurements is better

understood, we can then reassess the constraints from the

Spitzer data on this event and assess whether or not it can be

included in the Spitzer statistical sample of planets. Ultimately,
these tensions can be resolved by separately resolving the
source and the lens (assuming that the lens is luminous). This
would allow both a measurement of the lens flux and a
measurement of the direction of the lens-source relative proper
motion (e.g., Batista et al. 2015; Bennett et al. 2015;
Bhattacharya et al. 2021; Vandorou et al. 2020). This would
both independently constrain the mass of the lens and the
direction of the parallax vector (because p mºE relˆ ˆ ).

5. Physical Properties

5.1. CMD and Source Properties

We measure the intrinsic color and magnitude of the source by
finding its location in a color–magnitude diagram (CMD)

Figure 4. Cumulative distribution of Δχ2 as a function of time between the best-fit parallax and static models. For clarity, we only show the Δχ2 contributions from
the survey data (and we exclude KMTA because only the data over the peak and anomaly are used in the modeling). The top panel shows the model light curve for
reference.
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relative to the red clump (Yoo et al. 2004). We do this in two
ways. We first use the OGLE-IV photometry to find (V− I,
I)S= (1.53, 19.81)± (0.04, 0.03), and we then find the centroid
of the red clump is (V− I, I)cl= (1.73, 15.24)± (0.02, 0.04)
(see Figure 8). The intrinsic color and magnitude of the red
clump along this line of sight is (V− I, I)0,cl= (1.06, 14.27)

(Bensby et al. 2011; Nataf et al. 2013). This implies that
AI= 0.97 and E(V− I)= 0.67 for this field. Hence, assuming
the source experiences the same reddening and extinction as the
clump, we find (V− I, I)0,S= (0.86, 18.84)± (0.05, 0.05). The
OGLE magnitudes reported here and elsewhere have all been
calibrated from the OGLE-IV system to the standard OGLE-III

Figure 5. (1, 2, 3, 4, 5, 6, 7)σ contours (black, red, yellow, green, cyan, blue, purple) for the parallax vector. The large ellipses in the top panels show the measurement
from the annual parallax effect in the ground-based data. These data give a strong constraint on πE,P, the component of the parallax parallel to the projected position of
the Sun, but a relatively weak constraint on πE,⊥, resulting in highly elliptical error contours. The arcs in the bottom panels are the constraint from the Spitzer-“only”
parallax analysis and are overlaid on the annual parallax contours. These show tension with the annual parallax measurement at the ∼3σ level; limits from the blended
light are also in tension with the Spitzer-“only” parallaxes. Together, these suggest that systematics in the Spitzer light curve may be affecting the parallax
measurement.
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Table 3

Parameters for 1L2S Models Using all Ground-based Data and Ground-based Survey Data

Model χ2/dof t0,1 t0,2 u0,1 u0,2 tE ρ1 ρ2 πE,N πE,E qF,I fS,I fB,I
( ¢HJD ) ( ¢HJD ) (days) ( × 10−4

) ( × 10−4
)

All, 2952.0/1931 8686.4425 8687.8064 0.0056 0.0003 66.1 9.5 3.1 0.341 −0.308 0.0054 0.1645 0.5501

(u0 > 0) 0.0005 0.0012 0.0004 0.0002 1.4 33.2 92.0 0.174 0.059 0.0028 0.0024 0.0028

All, 2951.4/1931 8686.4431 8687.8076 −0.0056 −0.0003 65.6 6.4 3.0 −0.234 −0.233 0.0053 0.1656 0.5499

(u0 < 0) 0.0005 0.0011 0.0004 0.0002 1.3 30.2 82.1 0.370 0.079 0.0025 0.0022 0.0026

Survey, 1616.0/1323 8686.4406 8687.7951 0.0065 0.0000 66.3 61.4 0.1 −0.051 −0.224 0.0001 0.1641 0.5510

(u0 > 0) 0.0017 0.0116 0.0003 0.3024 0.5 13.4 273.3 0.299 0.053 0.0009 0.0166 0.0172

Survey, 1614.9/1323 8686.4386 8687.7953 −0.0057 −0.0000 67.2 33.4 0.1 −0.622 −0.244 0.0001 0.1614 0.5545

(u0 < 0) 0.0018 0.0126 0.0003 0.3401 0.5 17.1 265.0 0.387 0.070 0.0008 0.0171 0.0180
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Johnson-Cousins system. Using the color/surface-brightness
relation of Adams et al. (2018), we obtain θ*= 0.628±

0.040 μas.
As a check, we also derive the (V− I) color from the KMTC

data. We obtain (V− I)0,S= 0.81, which is in good agreement

with the OGLE-IV color.
We also construct an I–H versus I CMD by cross-matching

the CT13 I-band and the VVV H-band stars within a 4′× 4′

square centered on the event (see Figure 8). We measure the

centroid of the red giant clump as (I−H, I)cl= (3.81± 0.01,

17.04± 0.03), and find the intrinsic centroid of the red giant

clump to be (I−H, I)0,cl= (1.30, 14.27) (Nataf et al.

2013, 2016). For the source color, which is independent of

any model, we first get (I−H) CT13,S=− 1.766± 0.012 by

regression of CT13 H versus I flux as the source magnification

changes. We then measure the offset between CT13 H-band

stars and VVV stars to be HCT13–HVVV= 5.199± 0.004,

yielding (I−H)S= 3.433± 0.013. Therefore, we obtain the

intrinsic color and brightness of the source (I−H,

I)0,S= (0.92± 0.03, 18.85± 0.05). Then, from Adams et al.

(2018), we obtain θ*= 0.623± 0.037 μas.
As our final value, we adopt the weighted mean of the OGLE

and CT13 measurements, θ*,0= 0.625± 0.028. For the source

apparent brightness, we note that the source magnitude depends

on the model. For simplicity, we have explicitly derived results

for I OGLE,S= 19.81. Then, for different source magnitudes,

one can derive θ* of a solution with a particular IS by

q q= ´ - -10 I
,0

0.2 19.81S

* *
( ). We use this formula to account for

slight variations in f IS, OGLE
for different degenerate solutions.

Finally, the measured value of ρ implies θE= 1.9− 2.1 mas,
depending on the solution (see Table 4).

5.2. Lens Constraints from Blend and Baseline Object

Independent of any other constraints, the observed flux
constrains the mass of the lens (unless the lens is a stellar
remnant). First, there is a constraint from the blend flux.
Because the blend consists of light from stars other than the
lensed source (i.e., the lens and any other stars blended into the
PSF), the lens cannot be brighter than the blend. In principle,
because the background in the bulge consists of unresolved
stars rather than blank sky, OGLE-2019-BLG-0960 could be
sitting on a “hole” in the background (Park et al. 2004) and,
therefore, the blend could be slightly brighter than measured.
To place a 3σ upper limit on the flux from the lens, we take
account of this effect in addition to the ordinary photon-based
error in the measurement of the flux from the baseline object.
These must be handled separately because the photon noise is
Gaussian but the effect of the mottled background, including a
possible “hole,” is highly non-Gaussian.
For the photon noise, we estimate the photometric error in

the baseline object to be 0.020 mag. Subtracting the measured
source flux (taking account of its very small error), and
propagating the errors, we find that this term contributes 0.0285
mag at 1σ and so 0.085 mag at 3σ.

Figure 6. OGLE-2019-BLG-0960 cannot be explained by a point-lens, binary-source (1L2S) model, which is shown in two different bands (R, red line, corresponding
to the Kumeu Observatory data; I, black line, corresponding to CT13 and KMT data). The dotted-gray line shows the best-fit point-source/point-lens model.
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Figure 7. Spitzer light curve (red points) in instrumental-flux units, together with the best-fit Spitzer-“only” model in black. The fact that the event is clearly faint from
Spitzer indicates a significant parallax effect. A rising light curve is also consistent with the annual parallax measurement; i.e., πE,E < 0 implies that the event should
peak later as seen from Spitzer, which lay to the west of Earth.

Figure 8. Left-hand panel: OGLE CMD (calibrated to OGLE-III) of a 120″ square centered on OGLE-2019-BLG-0960. Right: CT13-VVV CMD of a 240″ square
centered on the event. In each panel, the red asterisk and blue dot show the centroid of the red clump and the position of the microlens source, respectively. In the left-
hand plot, the green and magenta dots show the positions of the blend and the baseline object, respectively. The cyan lines show a naive estimate (see Section 5.4) for
the lens color and magnitude calculated for θE ± 1σ (solid and dashed lines, respectively); the cyan dot shows the position for ML = 0.5Me.
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To account for the mottled background, we follow the

method of Gould et al. (2020). We model the bulge stellar

distribution using the Holtzman et al. (1998) luminosity

function, scaled down by a factor 0.50 according to the bulge

projected clump-star density map of Nataf et al. (2013) and D.

Nataf (2019, private communication). We estimate that OGLE-

IV imaging captures field stars I< 20 but leaves fainter stars

unresolved, and that this map is constructed from

FWHM∼ 0 9 images. We then evaluate the impact of random

field stars on the baseline-object (hence, blend) photometry by

Monte Carlo. We find that at (1, 2, 3)σ [i.e., (84.1, 97.7, 99.9)

percentiles], the blend could be brighter than its naive value by

(0.08, 0.12, 0.13) mag. Hence, the combined three sigma limit

due to both photon noise and mottled background is 0.16 mag.

Hence, the 3σ limit on the brightness of the lens is IL> 18.38.
Figure 9 shows the resulting limits on the lens mass and

distance. For this figure, we have converted the limit on IL to a

limit on ML using Pecaut & Mamajek (2013). To show the

effect of dust, we have calculated these limits for both

I= 18.38 and I0= I− AI= 17.41.

Second, the color of the baseline object provides an

additional constraint on the lens. The baseline object (measured

when the source is unmagnified) consists of light from the

source, the lens, companions to those stars, and ambient stars

blended into the PSF. We have measured the astrometric offset

between the baseline object in higher-resolution CFHT imaging

and the KMTNet microlensing event. We findΔθCFHT= (23.1,

7.6)± (12.2, 18.4)mas, which is consistent with zero offset.

Hence, all or most of the light from the baseline object (and

blend) is likely to be associated with the event as either the

source, the lens, or a companion to one or both of them.
In this case, the baseline object in OGLE is very red:

(V− I)base= 2.18± 0.13. In the KMTC pyDIA CMD, the

baseline object is the same, very red, color within errors.

Because the source is blue relative to the clump, this

necessarily implies that the blended light is at least as red or

even redder than the baseline object. Hence, either the lens is

also very red or it is much fainter than the blend. Even if the

lens is behind all of the dust, this implies (V− I)0,L> 1.12

at 3σ, assuming E(V− I)= 0.67. Then, using Pecaut &

Table 4

Physical Parameters

Model θE πE μrel ML DL mp a⊥
(mas) (mas yr−1

) (Me) (kpc) (M⊕) (AU)

(s > 1) :

(u0 > 0) 1.93 ± 0.13 0.557 ± 0.125 11.4 ± 0.8 0.43 ± 0.10 0.83 ± 0.17 2.0 ± 0.5 1.65 ± 0.35

(u0 < 0) 1.90 ± 0.12 0.470 ± 0.114 11.3 ± 0.8 0.50 ± 0.12 0.98 ± 0.21 2.5 ± 0.6 1.90 ± 0.43

(s < 1) :

(u0 > 0) 2.09 ± 0.11 0.616 ± 0.126 12.1 ± 0.7 0.42 ± 0.09 0.70 ± 0.13 1.8 ± 0.4 1.45 ± 0.28

(u0 < 0) 2.07 ± 0.11 0.535 ± 0.121 12.2 ± 0.7 0.48 ± 0.11 0.81 ± 0.17 2.0 ± 0.5 1.67 ± 0.37

Figure 9. Constraints on the lens mass and distance. Magenta lines show the mass–distance relation calculated from θE (solid) with the 1σ limits (dotted) for the
(s > 1, u0 < 0). Blue lines show the mass–distance relation and 1σ limits from the ground-based parallax for that solution (solid and dotted, respectively). Red, dashed
line shows the mass–distance relation for πE = 0.25, i.e., the best-fit value for the Spitzer-“only” parallax. The black lines are the 3σ upper limits derived from the
blended light in I band. The cyan lines are the 3σ limits derived from the color of the baseline object. These give upper limits on the lens mass if it is behind all of the
dust (solid) or in front (dotted–dashed). Lenses below these lines are allowed.
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Mamajek (2013) to convert this color to a mass limit gives a
limit of ML 0.73Me. This limit is shown in Figure 9 as is the
limit for (V− I)L> 1.79, which would imply the lens is in front
of all of the dust.

5.3. Tension with Spitzer-“only” Parallax

If we combine the flux constraints on the mass of the lens
with the measurement of θE, we can then place a constraint on
the microlens parallax and the distance to the lens:
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M D D
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where we assume that the source is at the mean distance to

the red clump; i.e., DS= 7.56 kpc. Given that θ*,0; 0.625 μas,

the Einstein radius is quite large θE= θ*/ρ; 1.9 mas. Hence,

a mass limit of ML< 0.73Me (from (V− I)base) implies

πE> 0.32 and DL< 1.35 kpc. However, this estimate is not

fully self-consistent because, even if the lens were behind all of

the dust, a 0.73Me star at 1.35 kpc would be brighter than the

observed blend (i.e., in Figure 9 the intersection of the cyan and

magenta lines is above the black lines). Combining the blended

light constraint with the θE measurement results in an upper

limit on the lens mass of ∼0.55Me, so πE> 0.42 and DL 1

kpc (intersection of the black and magenta lines in Figure 9).
From the ground-based parallax alone, we have a robust

measurement of πE,P. This gives a lower limit on the microlens
parallax of πE 0.3. Combined with θE, πE,P alone implies
ML 0.78Me. These limits are consistent with our expecta-
tions based on θE and the blended light. The mass–distance
relation calculated from the full ground-based πE for the (s> 1,
u0< 0) solution is shown in Figure 9 with 1σ limits. This
shows that there are regions of overlap between this relation
and the θE relation that are consistent with the constraints from
the blended light.

However, the constraints from the blend and baseline object
support the conclusion that the low-amplitude signal in the
Spitzer light curve should be treated with caution. The
preferred value of the Spitzer-“only” parallax gives πE= 0.25
(red line in Figure 9). This value is in tension with the ground-
based parallax values at ∼3σ but, when combined with θE, it
also impliesML; 0.93Me, which is too blue and too bright for
the blended light.43 At the same time, the full 7σ arc from the
Spitzer-“only” parallaxes includes regions that overlap with the
ground-based parallax contours at <2σ (see Figure 5) and
which is also more compatible with the blended light. Thus,
this tension may be resolved in the future once the constraints
from the Spitzer light curve are better understood.

5.4. Physical Properties of the Lens

For now, we focus on constraints on the lens properties that
may be derived from the ground-based analysis. Table 4 gives
the physical properties of the lens derived from each solution to
the microlensing light curve.

These values are both consistent with the constraints
from the blended light and baseline object and suggest that
the lens is responsible for most of the blend. For example, for
the (s> 1), (u0< 0) solution, we have ML= 0.50± 0.12Me

and DL= 0.98± 0.2 kpc. For a 0.5 Me star, Pecaut &
Mamajek (2013) give MI= 7.6 and (V− I)0= 2.0. Hence, for
a lens at 0.98 kpc,

= +I A f17.6 , 7IL dust ( )

- = + -V I E V I f2.0 , 8L dust( ) ( ) ( )

where fdust is the fraction of the dust in front of the lens. We

make the naive assumption that the dust follows an exponential

profile such that = - -f D1 exp 1.334 kpcdust L( ( )). Then,

this yields IL= 18.07 and (V− I)L= 2.35, which is shown as the

cyan point (“naive lens”) in Figure 8. The solid cyan line shows

the values of IL and (V− I)L calculated for θE= 1.90mas for the

1σ ranges for πE. The dotted lines show the results evaluated at

θE± 1σ. Because of the simplified assumption about the dust,

these calculations are simply meant to be illustrative. Never-

theless, they indicate that, within the uncertainties, the lens mass

and distance are consistent with the blended light constraints

within 1σ and suggest that the lens could be responsible for most

or all of the blended light.
The hypothesis that the blend is the lens could be tested

immediately with adaptive optics observations. These observa-
tions could give a stronger constraint associating the blended
light with the event, as well as a more precise measurement of
that light by resolving out unrelated stars. Given the high lens-
source relative proper motion (μrel= 11.4± 0.8 mas yr−1 or
μrel= 12.2± 0.7 mas yr−1

), it will be possible by ∼2025 to
separately resolve the source and lens (e.g., Terry et al. 2021),
provided that the lens is responsible for a substantial fraction of
the blended light. Such observations would confirm that the
blended light is moving with the lens; i.e., that the separation
matches the expectations from the lens-source relative proper
motion given in Table 4. As discussed in Section 4, this would
also give an independent measurement of the direction of that
motion, which could be compared to the constraints from the
parallax.

6. Discussion

OGLE-2019-BLG-0960 Lb is the smallest mass-ratio
microlensing planet ever found. With its discovery, there are
now 19 known planets with mass ratios below the fiducial
break proposed by Suzuki et al. (2016), and four planets with
mass ratios below the break found by Jung et al. (2019).
Measuring the slope of the mass-ratio distribution below qbr
requires a statistically robust sample. While the current sample
does not meet that criterion, it does offer insight into how such
a sample might be obtained.
First, in Section 6.1, we consider whether or not the

planetary perturbation can be characterized with only the
survey data. Then, we note in Section 6.2 that most of the
known microlensing planets with q< 10−4 have s∼ 1. We
explore the implications of this for designing a search strategy
for such planets, such as in existing data or with targeted
follow-up observations. Finally, we discuss in Section 6.3 the
fact that s∼ 1 is far from the regime for which the s→ 1/s
degeneracy was derived, how the persistence of an (s< 1)
versus (s> 1) degeneracy suggests a deeper symmetry in the
lens equation, and how the departure from the original ideal
affects our ability to measure and interpret the mass-ratio
function.

43
One exception to this limit would be if the lens were a white dwarf and the

blend were instead a lower-mass companion to that lens.
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6.1. Characterization with Survey Data

Naively, we would not expect such a small mass-ratio planet
to be found in such a low-cadence survey field unless, as in this
case, there are additional follow-up observations. Such
planetary perturbations would typically last
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By contrast, all of the surveys observe this field at a cadence of

less than one observation per hour (see Section 2). The highest

survey cadence is for the MOA survey at 0.6 hr−1, which was

not able to observe the night of the anomaly. Hence, the mass

ratio of this planet is an order of magnitude smaller than the

expected minimum mass ratio for this field if we require three

observations during the anomaly. Indeed, there is only a single

survey observation over the main bump caused by the planet.

However, because we know that the planet is real, we can ask

whether this planet can be recovered and characterized with the

sparse survey data (Yee et al. 2012). Then, we can consider

whether or not this is evidence that short duration signals with

only one to a few observations during the anomaly (which is

the most likely case for the smallest planets) in general can be

reliably and meaningfully recovered from sparse survey fields.
Therefore, we repeat the search for solutions using only the

survey data (i.e., the data from OGLE, MOA, and KMTNet).
The grid search over s, q, and α finds the previous two
solutions but also a second pair of degenerate solutions (see
Table 5 and Figure 2). The new set of solutions corresponds to
the case in which the source is much smaller than the caustic
and the single KMTC data point at 8687.796 falls in the trough
between two caustic crossings (see Figure 10). Hence, this is an
observational degeneracy that could be resolved with the
addition of more data. Nevertheless, all four solutions lead to
the same conclusions regarding the planetary parameters: the
planetary perturbation is created by an extremely small mass-
ratio planet at s∼ 1. We also find that the 1L2S solution is still
strongly ruled out (by Δχ2

∼ 300, see Table 3).
In some ways, it is not surprising that the planet parameters

are so well constrained. Because observations are taken every
∼2.5 hr, the maximum duration of the bump is ∼5 hr. Then,
given Equation (9) and tE∼ 62 days, we would expect
q 1.2× 10−5. Furthermore, the fact that the event does not
produce a perturbation over the peak, despite the extremely

high magnification, suggests a planetary caustic-like perturba-
tion. At the same time, the perturbation occurs only 1.4 days
after the peak, which places the “planetary” caustic very close
to the central caustic (i.e., in a resonant or close-to-resonant
configuration).
However, if the planetary perturbation were found and

characterized based on a single outlier, then this would raise
substantial questions as to the believability (or publishability)
of the planet. In this case, we are fortunate to have extensive
follow-up data, so the existence of the perturbation is well-
supported. However, the detection of this planet in the survey
data is strengthened by several other factors. First, this event
has a longer timescale than average (tE= 62 days), which
enhances the duration of the perturbation via Equation (9), and
hence the likelihood of obtaining observations during the
anomaly. Second, similar to KMT-2019-BLG-0842 (Jung et al.
2020), the source trajectory passes at an oblique angle with
respect to the binary axis, which further lengthens the duration
of the perturbation. As a result, we see from Figure 10 that
there are five additional points that are significantly demagni-
fied relative to the point-lens light curve. Hence, the
perturbation lasts for almost a day and the detection does not,
in fact, rely solely on a single outlier.
In terms of the broader implications for characterizing

planetary perturbations based on sparse survey data, it is
interesting to compare this event to other cases. The first such
case was described in Dominik & Hirshfeld (1996), who
showed that a number of different 2L1S models could explain
two outliers in MACHO-LMC-001. Another case was
described in Gaudi & Han (2004), who found multiple 2L1S
models that fit a single outlier in OGLE-2002-BLG-055. One
major contrast between these two events and OGLE-2019-
BLG-0960 is the cadence of observations relative to the
Einstein timescale. In both MACHO-LMC-001 and OGLE-
2002-BLG-055, observations were only obtained once per few
days during the perturbation, which allows for a much broader
range of potential models. For example, the perturbation could
always be much shorter, resulting in a relatively weak
constraint on q using Equation (9). Hence, even though the
survey observations of OGLE-2019-BLG-0960 were relatively
sparse compared to the duration of the perturbation, they are
dense compared to tE, leading to good constraints on the planet.
However, further investigation of short and sparsely observed
perturbations (but which might have well-constrained models)
is needed to determine whether or not they are publishable in
general.

Table 5

Best-fit Parameters for the Four Solutions Using Only Ground-based Survey Data

Model χ2/dof t0 u0 tE s q α ρ πE,N πE,E fS,I fB,I
( ¢HJD ) (days) ( × 10−5

) (rad) ( × 10−4
)

(s > 1) :

Single 1325.3/1324 8686.4504 0.0059 62.6 1.027 1.41 0.271 3.12 0.093 −0.352 0.1747 0.5408

0.0022 0.0002 1.5 0.007 0.16 0.002 0.28 0.288 0.046 0.0043 0.0037

Double 1323.8/1324 8686.4513 0.0060 62.0 1.028 1.69 0.269 1.75 0.032 −0.334 0.1767 0.5390

0.0021 0.0002 1.1 0.004 0.32 0.003 0.63 0.293 0.047 0.0033 0.0030

(s < 1) :

Single 1325.2/1324 8686.4506 0.0059 62.6 0.994 1.43 0.269 3.26 0.081 −0.351 0.1748 0.5407

0.0016 0.0002 1.4 0.007 0.20 0.002 0.25 0.351 0.042 0.0042 0.0037

Double 1323.3/1324 8686.4522 0.0060 61.3 0.994 1.89 0.264 0.78 0.077 −0.332 0.1787 0.5373

0.0027 0.0001 1.1 0.007 0.37 0.004 0.30 0.301 0.046 0.0031 0.0028
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6.2. Finding Small Mass–Ratio Planets

Given that there appear to be a number of factors that make
this planetary perturbation “special,” we now consider how
detections of small planets in general can be enhanced.

Previously, Abe et al. (2013) had suggested that the sensitivity
of microlensing events to small planets was enhanced for moderate
magnification events (A> 50). Indeed, examining the published
microlensing planets44 with q< qbr= 1.7× 10−4 supports this
conclusion. Here, we include events with multiple degenerate
solutions if all solutions are planetary and at least one solution
has q< qbr. Seven out of 19 planets with q< qbr have been in
events with u0� 0.02 (i.e., A� 50). Another seven are found in
events with 0.02< u0� 0.1 and two more in events with
0.1< u0� 0.2. The remaining three planets were all found in
“Hollywood” events, in which the source was a giant.

The second thing to notice about the known small planets (see
Figure 11) is that about half of them are found in events with
resonant caustics and many of the others have separations that
are close to resonance. On the one hand, resonant caustics are
larger than planetary caustics (the size of the resonant caustic
scales as q1/3 whereas the size of the planetary caustic scales as
q1/2; Dominik 1998; Han 2006), which enhances the probability

that the images of the source are perturbed. On the other hand,

resonant caustics are generally expected to produce weaker

perturbations (Gaudi 2012), which might not be significant

enough to be detected. Empirically, Figure 11 shows that the

majority of the detected planets are in resonant or near-resonant

configurations, which suggests that the enhanced cross-section is

the dominant effect and extends to configurations outside of

resonance. It also suggests that the “enhancement” for detect-

ability extends to planets with separations s that are well outside

the formal range for resonant caustics.
The enhanced cross-section for a perturbation for caustics

close to, but outside of resonance, comes about because the

perturbed magnification pattern extends out from and stretches

all the way between the planetary and central caustics.

Figure 12 compares the width of the caustics and the width

of the region for which the magnification of a star+planet lens

deviates by at least 10% compared to the star alone. For this

exercise, we choose a 10% deviation as a reasonable threshold

for producing a detectable perturbation. The “width of the

caustics” is measured as the horizontal extent of the caustics

(i.e., measured along the binary axis) and, if the caustic is not

resonant, is the sum of the widths of the planetary and central

caustics. The width of the deviation from a point lens is

measured horizontally along a slice through the binary axis.

Figure 10. Zoom of the planetary perturbation for best-fit models to only the ground-based survey data. We recover the two solutions found when including all the
data (“s > 1, Single” and “s < 1, Single,” black and cyan, respectively). However, the sparseness of the data allows two additional solutions to the light curve, with a
much smaller source and two distinct caustic crossings (“s > 1, Double” and “s < 1, Double,” yellow and magenta, respectively). Nevertheless, the mass ratio of the
planet remains small for these solutions. The 1L2S solution (dashed-red line) is still strongly ruled out by the survey data that are demagnified relative to the 1L1S
model (gray-dashed line).

44
NASA Exoplanet Archive, accessed 10/27/20.
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We usually think of the cross-section for detecting planetary
perturbations as being equal to (or proportional to) the size of
the caustics. However, Figure 12 shows that when measured in
terms of a 10% deviation, the horizontal cross-section is largest
for separations just outside of resonance and is significantly
larger at that boundary than one would expect from strict
proportionality. The decreased width of the 10% perturbation
region for =slog 0 reflects the relative “weakness” of true
resonant caustics.45 The maximum horizontal extent of a 10%

deviation for fixed q peaks at ∼ s3 log resonant for s< 1 and
∼ s1.8 log resonant for s> 1, where sresonant is the boundary
between resonant and non-resonant caustics (i.e., Equations
(57) and (58) from Dominik 1998). Even though caustics in
this region are not formally resonant, they are clearly
influencing each other. Thus, we refer to caustics in this range
as “semi-resonant.”
Abe et al. (2013) noted this effect for caustic structures with

s< 1 and referred to it as a “cooperative effect.” For such
caustics, there is an extended “trough” (negative magnification
deviation) along the binary axis connecting the planetary and
central caustics (bottom panel of Figure 13). However, we also
see this effect for s> 1 caustics but in the form of a narrow

Figure 11. Known microlensing planets with q < 10−3
(NASA Exoplanet Archive, accessed 10/27/20). Solid points show planets with a single solution. Planets with

multiple degenerate solutions are shown as open circles (one for each solution) connected by dotted lines. The two degenerate solutions for OGLE-2019-BLG-0960
Lb are shown as the red stars. The gray lines show the fiducial qbr = 1.7 × 10−4 as proposed by Suzuki et al. (2016; dotted) and the value proposed by Jung et al.
(2019; solid). Black-solid lines show the boundary between resonant and non-resonant caustics, and the dashed lines show s3, 1.8 log resonant( ) for (s < 1) and (s > 1)
caustic structures. The vast majority of planets are found between the dashed lines (so in resonant or close-to-resonant caustics, see Figure 12), and two are found at

~slog 0.2 in Hollywood events.

Figure 12. Left-hand panel: the horizontal extent of the caustics; for non-resonant caustics, the extent is the sum of the horizontal widths of the planetary and central
caustics. Center panel: the total horizontal extent of the region(s) along the binary axis that is perturbed by at least 10% relative to a point lens. The horizontal extents
are measured as fractions of an Einstein ring. Right-hand panel: ratio of the 10% width to the caustic width. The black lines are as in Figure 11. The dashed lines were
chosen to roughly correspond to the value of s for which the extent of the 10% region is maximized at fixed q (they are the same as those in Figure 11). The range of s
over which the source plane is significantly perturbed by the planet is substantially larger than the range of s for which the caustic size is maximized. Thus, the cross-
section for a planetary perturbation to occur is substantially enhanced over the raw size of the caustics.

45
The form of the right-hand panel in Figure 12 also has a similarity to the

detection sensitivity diagram for OGLE-2008-BLG-279 (see Figure 7 of Yee
et al. 2009) arising from the same effect.
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“ridge” (positive magnification deviation) connecting the

planetary and central caustics (top panel of Figure 13). These

effects can also be seen in Figure 10 of Gaudi (2010). In terms

of detectability, it may be that s< 1 caustic perturbations are
easier to detect because the vertical extent of the 10% deviation

region is larger,46 and thus a typical perturbation will last

longer. Empirically, we do see that there are more s< 1 planets
than s> 1 planets for q< 1.7× 10−4, but the total numbers are
still too small for this to be a statistically meaningful result. By
contrast, Jung et al. (2020) noted that published perturbations
crossing “ridges” found in s> 1 events tend to have source
trajectories with oblique angles. Such trajectories will result in
proportionally longer perturbations, but represent only a small
fraction of possible trajectories. This suggests that many such
perturbations are missed due to insufficient cadence.

In terms of detection strategy, Figure 14 shows the

maximum value of u for which the magnification pattern due
to a planet is perturbed by at least 10% relative to a point lens.

Because the orientation of the caustic structure relative to the

source trajectory is random, this suggests that events should be

monitored continuously for τ≡ (t− t0)/tE∼± u to probe this

full structure. In the case of OGLE-2019-BLG-0960, we called

off the alert at τ∼+0.01, and thus the planet was nearly
missed. This investigation suggests that to search for planets

with < -qlog 4.5, events should be densely monitored for

τ=±0.2, i.e., A> 5. Indeed, Han et al. (2021) report the

detection of a planet in KMT-2018-BLG-1025 with q∼ 10−4

in which the perturbation occurred at τ∼ 0.05.

6.3. “Close”/“Wide” Degeneracy for Semi-resonant Caustics?

Figure 11 also shows that many planets have multiple,

degenerate solutions. These degenerate solutions usually have

one solution with s< 1 and another with s> 1, and are often

referred to as arising from the “close”/“wide” degeneracy.

However, we will see that this degeneracy is more complex
than the degeneracy that was first described by Griest &

Safizadeh (1998), and expanded upon by Dominik (1998) and

An (2005).

As an example, the two solutions for OGLE-2019-BLG-
0960 nominally have the hallmarks of the “close”/“wide”
degeneracy for central caustics. First, the event is in the “high-
magnification” regime (u0< 0.01). Second, one of the solutions
has s< 1 while the other has s> 1. However, the two solutions
are not centered around =slog 0, i.e., ¹ -s sclose wide

1 . Further-
more, the “close”/“wide” degeneracy was derived by Griest &
Safizadeh (1998) and Dominik (1998) from the lensing
equation in the regime where slog∣ ∣ is large; i.e., the regime
in which the central and planetary caustics are well-separated
from each other. Griest & Safizadeh (1998) even state, “We
expect the formula to break down when q→ 1 or xp→ 1”
(where they use xp in place of s). OGLE-2019-BLG-0960 is
clearly not in this regime: in both solutions, s∼ 1 and the
caustic structure is resonant. Thus, it is interesting to consider
whether this is in fact a case of the “close”/“wide” degeneracy.
Because the two solutions are not centered around =slog 0,

they may in fact be more analogous to the “inner”/“outer”
degeneracy described by Calchi Novati et al. (2019) in which
the source trajectory may pass either inside or outside the
planetary caustic relative to the central caustic. An examination
of the caustic structures for OGLE-2019-BLG-0960 (see
Figure 3), shows that the “close” solution passes to the outside
of the caustic, whereas the “wide” solution passes over the
bridge in the resonant caustic created in between what would be
the central and planetary caustics. Two other small planets,
OGLE-2016-BLG-1195Lb and KMT-2019-BLG-0842Lb, also
show this degeneracy (Bond et al. 2017; Shvartzvald et al.
2017; Jung et al. 2020), and it also arises in the cases of MOA-
2016-BLG-319 (Han et al. 2018) and OGLE-2016-BLG-1227
(Han et al. 2020).
The “inner”/“outer” degeneracy in these six events appears

to result from the planetary caustic degeneracy that was first
derived in the Chang–Refsdal limit (Chang & Refsdal 1979) by
Gaudi & Gould (1997). This degeneracy is intrinsic, i.e., rooted
in mathematical symmetries in the lens equation rather than
“accidental,” which refers to degeneracies arising due to
insufficient observational coverage of the perturbation. How-
ever, it was again derived in the limit that slog∣ ∣ was large, and
it was expected to break down as slog 0∣ ∣ . None of these
events is in the limit that slog∣ ∣ is large, yet a degeneracy
persists. This suggests that while the “close”/“wide” degen-
eracy of Griest & Safizadeh (1998) and the “inner”/“outer”

Figure 13. Maps showing the difference between the planetary magnification and the magnification of a point lens: = -qlog 4.85 and
= =s slog 1.8 log 0.0278resonant,wide (top) and = = -s slog 3 log 0.0238resonant,close (bottom). Planets just outside of resonance produce significant deviations to

the point-lens magnification extending between the two caustic structures (magenta), which may be either positive (white) or negative (black).

46
Compared to Figure 13, the separation between the planetary caustics for

s < 1 will grow much faster with q than the height of the planetary caustic for
s > 1 (Han 2006).
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degeneracy of Gaudi & Gould (1997) were derived in the limit
that slog∣ ∣ is large, as slog 0∣ ∣ , instead of breaking down,
the two degeneracies merge.

To investigate this possibility in more detail, we review the
known microlensing planets with two degenerate “geometric”
solutions. These may refer to either two distinct caustic
topologies or two distinct source trajectories relative to the

caustic. As shown in Figure 15, very few of the planets with
one s< 1 and one s> 1 solution can be described as having
well-separated caustics; i.e., are in the “close”/“wide” regime
as described by Griest & Safizadeh (1998). The vast majority of
planets with degenerate solutions are either in the resonant or
semi-resonant regime, similar to OGLE-2019-BLG-0960. This
suggests that some events referred to in the literature as

Figure 14. Black (dashed, solid): maximum radial extent “max u” of the (s < 1) and (s > 1) resonant caustic structures for a given value of qlog . Blue: maximum
value of |x| (which we use as a proxy for u) along the binary axis for which the magnification pattern is perturbed by at least 10% relative to a point lens. The value of s
is chosen such that the extent of the region is maximized for a given q (see text, Figure 12). Magenta: same as blue but for a 20% perturbation. Gray lines as in
Figure 11. Fully probing the region perturbed by the planet requires continuously monitoring the light curve through ± “max u.”

Figure 15. Left-hand panel: pairs of degenerate solutions for microlensing planets (NASA Exoplanet Archive, accessed 10/27/20). Dotted line at =slog 0, solid and
dashed lines as in Figures 11 and 12. Points are colored by impact parameters, u0, and the symbol types indicate whether the caustics are near-resonant/resonant
(triangles) or non-resonant (circles); i.e., inside or outside the dashed lines. OGLE-2019-BLG-0960 is marked by black stars. Right-hand panel: difference from a
“true” “close”/“wide” degeneracy. Events with a perfect s↔ s−1 degeneracy should have mean slog 0( ) . By contrast, most of the events shown, including OGLE-
2019-BLG-0960, have resonant or semi-resonant caustics (triangles), i.e., are not in the slog 0∣ ∣  regime, and many do not have mean slog 0( ) . For these events,
the different degenerate solutions can have significant fractional deviations in q, in contrast to the expectation that q is invariant to the “close”/“wide” degeneracy for
the limit as slog 0∣ ∣  .
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exhibiting the “close”/“wide” degeneracy may be better
classified as having the “inner”/“outer” degeneracy. At the
same time, the continuum of solutions suggests that the two
types of solutions may be part of a continuous degeneracy. We
note that subsequent to the initial submission of this paper, and
based partly upon it, Hwang et al. (2021) introduced
“s±= s†±Δs” notation that both quantifies this continuum
and would allow one to specify distinct inner/outer versus
close/wide regimes within this continuum. Also subsequent to
our original submission, An (2021) carried out an analytic
investigation into this question.

Events in the resonant or semi-resonant regime share the
characteristics that the degenerate solutions tend not to be
perfectly symmetric about =slog 0∣ ∣ . Also, in contrast to the
Griest & Safizadeh (1998) limit, the degenerate solutions tend
to have slightly different values of q. This is especially true for
events in the moderate magnification regime (0.01< u0< 0.1),
which is precisely the region where we expect the smallest
planets to be found. Fortunately, because slog∣ ∣ is very close to
0 in both cases, this degeneracy does not meaningfully affect
the interpretation of the projected separation between the planet
and its host star. However, the small differences in q will have
to be taken into account when interpreting statistical samples of
such planets.

7. Conclusions

With a mass ratio of q∼ 1.27± 0.07 or∼1.45± 0.15× 10−5,
OGLE-2019-BLG-0960 Lb is the smallest mass-ratio microlen-
sing planet ever found. The annual parallax effect combined with
the finite source effect indicate that the host star is an M-dwarf at
DL 1 kpc with a super-Earth planet orbiting between 1 and
2 au (see Table 4 for exact values for each solution). The lens is
plausibly responsible for all or most of the blended light. This
hypothesis that can be tested immediately by taking adaptive
optics or HST observations to determine whether the blend is
associated with the event.

OGLE-2019-BLG-0960 Lb is the 19th microlensing planet
with a mass ratio below the fiducial power-law break in the
mass-ratio distribution, qbr= 1.7× 10−4, posited by Suzuki
et al. (2016). It is the fourth planet below the revised break of
qbr= 0.55× 10−4 from Jung et al. (2019). The three smallest
planets (including this one) have all been discovered since the
advent of continuous survey observations from KMTNet. This
indicates that the current generation of microlensing experi-
ments is now capable of measuring both the precise location of
qbr and the power-law slope, p, of the mass-ratio distribution
below qbr.

By comparing OGLE-2019-BLG-0960 with other published
planets below qbr (Section 6.2), we show that they are
primarily found in moderate magnification and “Hollywood”
(Gould 1997) events. Moderate magnification events are the
primary source of small planets because the cross-section for a
planetary perturbation is largest when the planetary caustics are
near resonance. In fact, the planet sensitivity is maximized for
planets just outside resonance ( >s slog log resonant∣ ∣ ∣ ∣) because
significant perturbations to the magnification field extend well
beyond the caustic structures. However, the planet sensitivity
decreases rapidly for s slog few log resonant∣ ∣ ∣ ∣.

Three of the 19 planets with mass ratios smaller than
q= 1.7× 10−4 were found in “Hollywood” events, for which
the cross-section for light-curve anomalies is set by the source
size rather than the caustic size. For these planets, s? sresonant.

The expected yield for such events is likely to be much lower
than for moderate magnification events. Typical source sizes
are ρ∼ 0.01, and thus the cross-section is a factor of ∼10
smaller than for moderate magnification events. At the same
time, events with giant sources represent only a fraction of all
microlensing events, making intensive work on such events
tractable.
Hence, the focus for discovering planets with log q−4

should be on moderate magnification events and events with
giant sources. This search could be conducted within existing
survey data or be supplemented by a follow-up campaign. Even
though OGLE-2019-BLG-0960 Lb could be recovered from
survey data alone (Section 6.1), this recovery was aided by the
special geometry of the light curve (Jung et al. 2020) and
suggests that similar, but shorter and potentially more
numerous, perturbations would be missed in the low-cadence
survey fields. For follow-up observations, Abe et al. (2013)
previously suggested that the focus for small planets should be
events with < <A50 200max . Our investigation shows that
events should be monitored for the full time that they have
A> 5, which suggests this focus should be extended to events
with peak magnification >A 10max or even smaller. If
additional resources are available, then follow-up observations
could be further extended to include events with giant sources.
This strategy will maximize the number of small planets found
and enable a robust measurement of the mass-ratio distribution
of microlensing planets with q< qbr.
Finally, OGLE-2019-BLG-0960 and many of the other

planets in moderate magnification events suffer from a
degeneracy that results in two solutions for the light curve:
one with s> 1 and one with s< 1. For this event (and most
small planets), such degeneracies have little effect on the
interpretation of the separation of the planet from the host star
because s∼ 1. However, we showed in Section 6.3 that it does
have some effect on the value of q. This is contrary to the
expectation of Griest & Safizadeh (1998) that q should be very
similar under the “close”/“wide” degeneracy, likely because
s∼ 1 is very far from the regime in which this degeneracy was
derived. It seems likely that the origin of these degenerate
solutions arises from some previously undiscovered symmetry
in the lens equation of which the classical “close”/“wide”
degeneracy may be a limiting case. However, truly under-
standing this symmetry requires going beyond the purely
empirical investigation carried out in this paper.
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