
 Open access  Posted Content  DOI:10.1101/546408

Ohana: detecting selection in multiple populations by modelling ancestral
admixture components — Source link 

Jade Yu Cheng, Fernando Racimo, Rasmus Nielsen

Institutions: University of California, Berkeley, University of Copenhagen

Published on: 14 Feb 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Eye pigmentation and Allele frequency

Related papers:

 Detecting selection in multiple populations by modelling ancestral admixture components.

 A global reference for human genetic variation.

 Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude

 Genetic signatures of strong recent positive selection at the lactase gene.

 A Map of Recent Positive Selection in the Human Genome

Share this paper:    

View more about this paper here: https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-
18ig50ezw1

https://typeset.io/
https://www.doi.org/10.1101/546408
https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-18ig50ezw1
https://typeset.io/authors/jade-yu-cheng-5032zm8wkd
https://typeset.io/authors/fernando-racimo-okwhkbug6j
https://typeset.io/authors/rasmus-nielsen-4dndtuavzl
https://typeset.io/institutions/university-of-california-berkeley-24veh4gb
https://typeset.io/institutions/university-of-copenhagen-9wj8wm2p
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/eye-pigmentation-l9rtwhau
https://typeset.io/topics/allele-frequency-2qeffxnh
https://typeset.io/papers/detecting-selection-in-multiple-populations-by-modelling-11s1w4q5ub
https://typeset.io/papers/a-global-reference-for-human-genetic-variation-r5kuvopi7k
https://typeset.io/papers/sequencing-of-50-human-exomes-reveals-adaptation-to-high-2lpuj4obi1
https://typeset.io/papers/genetic-signatures-of-strong-recent-positive-selection-at-2cnih38wg5
https://typeset.io/papers/a-map-of-recent-positive-selection-in-the-human-genome-3zhnj1vtki
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-18ig50ezw1
https://twitter.com/intent/tweet?text=Ohana:%20detecting%20selection%20in%20multiple%20populations%20by%20modelling%20ancestral%20admixture%20components&url=https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-18ig50ezw1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-18ig50ezw1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-18ig50ezw1
https://typeset.io/papers/ohana-detecting-selection-in-multiple-populations-by-18ig50ezw1


“output” — 2019/2/14 — 3:53 — page 1 — #1
✐

✐

✐

✐

✐

✐

✐

✐

Ohana: detecting selection in multiple populations by
modelling ancestral admixture components

Jade Yu Cheng,∗,1,2 Fernando Racimo,1 Rasmus Nielsen,1,2

1Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7,

Copenhagen 1350 Denmark
2Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
∗Corresponding author: E-mail: xxx@xxx.

Associate Editor: xxx

The xxx data were obtained from xxx (accession no. xxxx).

Abstract

One of the most powerful and commonly used methods for detecting local adaptation in the genome is

the identification of extreme allele frequency differences between populations. In this paper, we present a

new maximum likelihood method for finding regions under positive selection. The method is based on a

Gaussian approximation to allele frequency changes and it incorporates admixture between populations.

The method can analyze multiple populations simultaneously and retains power to detect selection

signatures specific to ancestry components that are not representative of any extant populations. We

evaluate the method using simulated data and compare it to related methods based on summary statistics.

We also apply it to human genomic data and identify loci with extreme genetic differentiation between

major geographic groups. Many of the genes identified are previously known selected loci relating to

hair pigmentation and morphology, skin and eye pigmentation. We also identify new candidate regions,

including various selected loci in the Native American component of admixed Mexican-Americans.

These involve diverse biological functions, like immunity, fat distribution, food intake, vision and hair

development.

Key words: Positive selection, admixture, population structure, human evolution, selective sweeps

Introduction

The emergence of population genomic data has

facilitated fine-scale detection of regions under

recent positive selection in humans and other

species. There are multiple different methods for

carrying out such selection scans. Some of these

methods rely on patterns of long-range linkage-

disequilibrium (Sabeti et al., 2007;Voight et al.,

2006), one of the characteristic genomic footprints

left by a selective sweep (Kim and Stephan ,

2002;Kim and Nielsen , 2004;McVean , 2007).

However, this pattern fades rapidly over time,

and these methods are, consequently, best suited

for detecting very recent selective sweeps from

de novo mutations. Other methods, based on

distortions in the allele frequency spectrum caused

by positive selection, can allow for the detection

of more ancient events, but are generally only
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applicable one population at a time (Tajima ,

1989;Fu and Li , 1993;Fay and Wu , 2000;Nielsen

, 2005;Huber et al., 2016;DeGiorgio et al., 2016).

A different class of methods for detecting

selection analyses patterns of allele frequency

differentiation between populations. These

methods proceed, for example, by computing

Wright’s fixation index (FST ) locally across

different regions of a genome(Beaumont and

Nichols , 1996;Akey et al., 2002;Beaumont and

Balding , 2004). The basic idea is that regions that

have experienced episodes of positive selection

will display frequency differences between

populations that are stronger than what would

be expected under pure genetic drift. Population

differentiation methods can detect more ancient

selective events than linkage disequilibrium-based

methods (Sabeti et al., 2006), and are sensitive

to different types of positive selection events,

including sweeps from a de novo mutation, sweeps

from standing variation, incomplete sweeps, and

adaptive introgression (Yi et al., 2010;Bonhomme

et al., 2010;Fumagalli et al., 2015;Racimo et al.,

2016). Recent methods have allowed researchers

to detect excess local differentiation on particular

branches of a 3-population tree (Yi et al.,

2010;Racimo , 2016), a 4-population tree (Cheng

et al., 2017) or an abitrarily large tree (Librado

and Orlando , 2018), albeit without modeling

post-split admixture events.

A generalization of these methods was

developed by (Gnther and Coop , 2013;Gautier

, 2015;Coop et al., 2010). Their method can

handle an arbitrary number of populations

and detects positive selection as a genomically

local distortions from a genome-wide covariance

matrix, which is used as a neutral baseline. Similar

methods have used hierarchical Bayesian models

(Foll and Gaggiotti, 2008;Foll et al., 2014) or

principal component analysis (Duforet-Frebourg

et al., 2015) to model patterns of population

differentiation to identify local distortions across

the genome. Another method ((Fariello et al.,

2013)) extended single-locus differentiation-

based methods to the analysis of haplotype

differentiation. More recently, Mathieson et al.

(2015) developed an admixture-aware selection

test based on a linear model and applied it to

human data. The analysis took advantage of

the fact that present-day European populations

could be modeled as a mixture of three highly

differentiated ancestral components. Regions

of the genome that exhibited strong deviations

from the genome-wide mixture proportions were

therefore strong candidates for positive selection.

Finally, Refoyo-Martinez et al. (2018) developed

a method to test for selection on an admixture

graph, which represents the history of divergence

and admixture events among populations.

Although useful for detecting selection in the

presence of admixture, it still requires the user

to specify which individuals belong to which

populations, and to infer the graph in advance.
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Here, we introduce a new selection detection

framework that can explicitly model admixture

and detect selection from populations of admixed

ancestries. It can simultaneously compare

arbitrarily many populations and ancestry

components and is encoded in a flexible

framework for testing selection on a specific

lineage or set of lineages. The method allows the

user to identify signals of positive selection via

population differentiation, without relying on

self-reported ancestry or admixture correction to

group individuals into populations. The method

can also determine if a selective event is specific to

a particular population or shared among different

populations.

Unlike previous methods, we fully take

advantage of admixed populations, and we do not

require the user to a priori categorize samples

into populations, or to correct allele frequencies to

account for recent admixture. Thus, the selection

scan does not rely on user-supplied sample

labels or ancestry compositions. The methods

identifies positive selection by searching for loci

showing distortions in the population covariance

matrix, relative to the genome-wide baseline.

It provides a flexible framework to specifically

test for selection on individual components or

sets of components. This functionality allows

researchers to accommodate specific evolutionary

scenarios into the range of testable hypotheses,

including local adaptation, adaptive introgression,

and convergent selection. The method first co-

estimates the population structure of the input

panel and the allele frequencies of the ancestral

admixture compomnents through an unsupervised

learning process (Cheng et al., 2017), before

testing for selection on the ancestral components

themselves. Researchers can also use the method

to examine estimated population structure

and visualize trees connecting the ancestral

components using plotting functionalities

provided by our software package, Ohana,

as part of the analysis pipeline.

Methods

Basic model

The new method is based on the Ohana

inference framework (Cheng et al., 2017), which

works with both genotype calls and genotype

likelihoods. In brief, the classical Structure

model (Pritchard et al., 2000) is used to

infer allele frequencies, ancestry components,

and admixture proportions using maximum

likelihood (ML). Then a covariance matrix among

components is inferred using a multivariate

Gaussian distribution while enforcing constraints

imposed by the assumption of a tree structure.

This system is underdetermined (see e.g.,

Felsenstein (1985)), i.e. multiple covariance

matrices induce the same probability distribution

on the allele frequencies. To circumvent this

issue, we root the tree in one of the ancestry

components. This corresponds to conditioning on

the allele frequencies in one of the components
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when calculating the joint distribution of allele

frequencies in the other components. This idea

is similar to Felsenstein’s restricted maximum

likelihood approach (Felsenstein , 1985). We

emphasize that the rooting is arbitrary but that

it does not imply any assumptions about this

component actually being ancestral.

Through ML estimation we obtain the

covariance matrix Ω′, which has size

(K−1)×(K−1) and a joint density shown

in Eq. 1, where fkj is the estimated allele

frequency for ancestry component k at SNP j

and µj is the sample allele frequency for SNP j,

obtained either by counting alleles in the case of

called genotypes or by EM estimation in the case

of genotype likelihoods (Cheng et al., 2017).

ln[P2 (F )]=ln
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f
′

j =fj−fj0 .

(1)

Following the structure analysis and component

tree inference, a natural extension of this

framework is to detect SNPs that deviate strongly

from the globally estimated covariance structure.

The idea of testing for deviations from a Gaussian

distribution follows (Gnther and Coop , 2013),

but differs in the use of an enforced tree-

structure, an ML inference framework and fast

optimization algorithms, thereby avoiding some

of the computational challenges associated with

Markov Chain Monte Carlo (MCMC). We also

incorporate admixture into our model, thereby

enabling the possibility to test for positive

selection acting on the ancestral components of

a panel, before more recent admixture occurred

between the ancestors of the sampled individuals

Selection model

The test for selection is based on a likelihood ratio

test that identifies SNPs with allele frequency

patterns that are poorly described by the

genome-wide covariance pattern. A genome-wide

covariance matrix is estimated from all SNPs

jointly. Each SNP is then independently tested for

deviations from this model, using a scalar factor

introduced to certain elements of the covariance

matrix. This scalar factor can be introduced

in different ways depending on which selection

hypotheses are tested. In our analyses, we chose

to scale the covariance matrix such that one

of its diagonal values is multiplied by a scalar,

α, corresponding to strong differences in allele

frequency in one of the ancestry components

relative to the rest:

P (fj |Ω, µj)∼N









µj , µj (1−µj)









Ω0,0 ··· Ω0,k−1

.

.

.
.
.
.

Ωk−1,0 ··· α ·Ω0,k−1

















(2)

The value of α is then estimated using ML

and a likelihood ratio is formed by testing the

hypothesis of α=1 against the alternative of α>

1 . A high likelihood ratio indicates a larger

deviation in allele frequency in a focal component
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FIG. 1. Selection hypotheses and their encodings as covariance matrices. In this example, the ancestry component E is
assumed to be the potential target of selection. The entry E:E in the covariance matrix is therefore allowed to deviate from
the globally estimated value.

than expected under the globally estimated null-

model. Figure 1 shows an example. This test

can also be implemented to test selection on

ancestral non-terminal lineages by multiplying the

corresponding values in the covariance matrix by

a scaling factor.

Under the null-hypothesis, the likelihood ratio

test statistic is expected to follow a 50:50 mixture

between a χ2
1-distribution and a point mass at zero

(Self and Liang , 1987).

In summary, we estimate a scaling factor

for one or more components of the covariance

matrix in a multivariate normal model of allele

frequency distribution among populations. For

each candidate SNP, we then compare the

estimated covariance matrix to that obtained

genome-wide, using a likelihood ratio test.

Optimization

For ML-based population structure inference,

we use an optimization algorithm based on an

Active Set method (Murty and Yu , 1988)

to solve the sequential quadratic programming

problem. This method was previously shown

to have better computational performance than

competing methods (Cheng et al., 2017). For the

ML-based ancestry covariance estimates, we use

the Nelder-Mead simplex method (Nelder and

Mead , 1965). It uses Cholesky decomposition

(Cholesky , 1910) to determine the positive semi-

definiteness of a matrix and to compute matrix

inverses and determinants. For identifying the

best local covariance structure during a selection

scan, we use a simple Golden-section search

algorithm (Kiefer , 1953) to find the solution

for the single scalar multiplier associated with a

specific selection hypothesis.

Simulations

To evaluate the performance of the methods,

we generate simulations using msms (Ewing and

Hermisson , 2010) under specific demographic

models and specific tree structures (Figure 2).

We focus on multi-population demographics that

are simulated in a tree-like fashion with positive

selection events occurring in either all or some of

the branches leading to present-day samples.

Specifically, we simulate an effective population

size Ne of 10,000 for all populations, and obtain

20 chromosomes for each population. We use a
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population-scaled mutation rate θ=4Neµ of 100,

a recombination rate ρ=4Ner of 100, with an

finite cut site model as implemented in MSMS.

We simulate 4 populations with population splits

at 0.02, 0.05, and 0.12 coalescent units in the past

(in units of 4Ne). This is illustrated in Figure 2.

We assessed the power of our selection test using

simulations. We simulated 1,200 bp sequences

where a single beneficial SNP located in the

middle of the sequence is under direct positive

selection. We also simulated 1,200 bp neutral

sequences. We set the start of selection 0.02

coalescent units ago, and set the initial frequency

of the beneficial allele at 0 (i.e. we simulate

a de novo mutation). We assumed an additive

model of fitness with scaled selection coefficient

2Nes ranging from 200 to 1000 for alleles in the

homozygous state. In our model, the fitness of the

heterozygote is 1+s/2 and the two homozygous

fitnesses are 1 and and 1+s. We set the forward

mutation rate, 4Neµ
′, to 0.1 for the selected allele

for mutations from the wild type to the selected

type (the backwards mutation rate to the wild

type is 0). In the simulations used for Figure 5, we

combined 2 neutral sequences flanking a selected

sequence. In the simulations used for Figure 4,

we placed 10 neutral sequences flanking a selected

sequence on either side.

A population can then be purely formed by one

ancestry component, or as a mixture of several

components. We generate un-admixed or admixed

genotypic data by simulating the ancestry

FIG. 2. Trees used for simulations. We simulated selection
only on the yellow branch (left) and also simulated neutral
segments according to the same tree but with no selection
on any branches (right).

proportions, Q , for each individual (Figure 3).

For un-admixed samples, we simply assign them

to have 100% ancestry from one population. For

admixed samples, we simulate equal admixture

(in expectation) using the Dirichlet distribution,

Dir(α), where α=(1.0,··· ,1.0). Figure 3 illustrates

these two admixture setups. In the mixed case,

each population is (in expectation) an equal

mixture of three of the ancestry components, i.e.

each population lacks one of the four components.

We then sampled genotype observations under

the assumption of independence, i.e. pAA
ij =

f2
ij, p

Aa
ij =2fij(1−fij), p

aa
ij =(1−fij)

2, where fij=

∑
kQikFkj is the allele frequency in locus j for

individual i, Qik is the ancestry proportion of

component k in individual i, Fkj is the allele

frequency in ancestry component k in locus j,

and pAA, pAa and paa are the probabilities of

observing major-major, major-minor, or minor-

minor genotypes for the locus, respectively. F has

dimensionality K×J and Q has dimensionality

I×K, where K is the number of ancestry

components, I is the number of samples, and J

is the number of SNPs.
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FIG. 3. Simulated admixture proportions for either un-
admixed individuals (top) or equal admixture from three
out of four ancestry components (bottom). In both
scenarios, we simulated 4 populations of 20 individuals per
population.

Results

Simulations

We first evaluated the efficacy of the method

for fine-mapping the true selected allele.

We simulated 1000 replicates of 4 admixed

populations and scanned the simulated genomes

using our likelihood ratio test. As a measure

of accuracy, we used the distance between the

SNP with the highest likelihood ratio and the

SNP under selection in the simulations. In the

majority of simulations, the distance between the

true and the inferred SNP is small, i.e. <10%

of sequence length, suggesting a generally high

accuracy for fine-mapping.

We then measured the excess of false positive

results under the null hypothesis of no selection

(Figure 4). To do so, we first generated simulations

under the null scenario (no selection, Figure 4-

top) and a scenario of positive selection affecting

a particular ancestry branch (Figure 4-bottom).

We also simulated 2 types of samples: un-admixed

(left) and admixed (right). We computed per-

SNP likelihood ratios along the simulated genomes

using the correct selection model and converted

them to p-values. We then compared these p-

values in a quantile-quantile (QQ) plots against

FIG. 4. Test for excess of false positive. We simulate 4
different scenarios: no selection (top) and selection on a
single branch (bottom), assuming the input populations
are un-admixed (left) and admixed (right). Statistically
significant outliers are detected only when the data were
simulated under the scenarios with selection.

a 50:50 mixture of values equal to 1 and random

values sampled from a uniform distribution

between 0 and 1. This mixture corresponds to

the expected distribution of P-values of our

statistic under the null model. In simulations with

selection, deviations from the neutral expectation

are visible (Figure 4-bottom), while no excess of

false positives (elevated Type I errors) are present

when populations are simulated without selection

(Figure 4-top).

We then compared our method to three

summary statistics: FST (Wright et al., 1949;Weir

et al., 2005), PBS (Yi et al., 2010), and FLK

(Bonhomme et al., 2010) (Figure 5). As before,

we generated simulations under 2 types of sample

admixture, and simulated positive selection on the

yellow component only. We tested for selection

using 9 methods: Ohana, 2 FST -based tests

statistics, 2 PBS-based tests, and 4 FLK-based

tests. The Ohana method was run so as to test
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FIG. 5. Comparison of performance of selection tests. We simulated individuals that were either admixed (row 1) or un-
admixed (row 2), as described in Figure 3. We then simulated selection on a single branch (yellow). We simulated the
SNP in the midpoint location to be under direct selection, with a selection strength of 2Nes=600 for the homozygote and
2Nes=300 for the heterozygote. We then scanned for selection signals using Ohana (first column). We calculated the FST
statistics in 2 ways: FST between two population (one with the yellow component one without), and FST among all four
populations. We also calculated the PBS statistics in 2 ways: yellow-specific or green-specific. Finally, we calculated the FLK
statistics in 4 ways by specifying each of the 4 populations as the outgroup. In admixed simulations, Ohana outperforms
the rest of the tests by achieving a higher proportion of simulations in which the simulated SNP under selection is <120bp
(10% of total sequence length) from the SNP with the highest test score.

specifically for selection on the yellow-branch. In

one of the FST -based tests, we calculated pairwise

FST between 2 populations: one containing the

yellow component and one not containing it. In the

second FST -based test, we calculated FST among

all 4 populations. In the 2 PBS-based tests, we

tested for selection focusing on either the yellow

or the green component as the “target” branch. In

the 4 FLK-based tests, we specified each of the 4

populations as the outgroup in turn.

The performance of the methods was measured

by the percentage of runs in which the simulated

and detected SNP are within 10% of the total

sequence length. In admixed samples, our method

achieves the best outcome when the proper model

is specified (Figure 5 row 1). When analyzing

purely un-admixed samples, our method is on-par

with the best method among all FST , PBS, and

FLK tests (Figure 5 row 2).

We then compared all methods in Figure 5

using 2 measures: the percentage of times that the

selection method identifies the simulated causal

SNP as the top SNP (Table 1) and the mean

distance in bp between the simulated causal SNP

and the top SNP identified by the selection

method (Table 1 and 2).

For all methods, scenarios with admixed

samples lead to weaker performance than in their

un-admixed counterparts. In un-admixed cases,

our method performs equally or better than

summary statistics. In admixed cases, our method

reaches higher accuracy than other methods. For

example, in the admixed yellow-branch simulation

when 2Ns=600, Ohana identifies the selected

allele 21.57% of the time, while this value is

14.95% for pairwise FST , 8.09% for global FST ,

18.63% for PBS, and 7.11% for FLK.

Analysis of real data

We identified regions in the genome that are

likely to have been under the influence of positive

selection using a merged dataset containing

several population panels from phase 3 of the
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1000 Genomes Project (1000 Genomes Project

Consortium , 2015). We randomly selected 64

genomes from each of 4 populations from the

1000 Genomes project: the British from Great

Britain (GBR), the Han Chinese from Beijing

(CHB), the Yoruba Africans (YRI) and the

admixed Mexican-Americans from Los Angeles

(MXL) (the number 64 was chosen because it was

the size of the smallest panel). We only included

variable sites with no missing data and a minimum

allele frequency of 0.05 across the entire merged

panel. In total, we analyzed 5,601,710 variable

sites across the autosomal genome. We inferred

genome-wide allele frequencies and covariances for

the latent ancestry components as described in

the Methods section, using K=4. To scan for

covariance outliers, we performed four hypothesis-

driven scans, in which we specifically searched for

selection separately in each of the four inferred

ancestry components in our dataset (Table 3).

After running these scans, we queried the

CADD server (Rentzsch et al., 2018) to

obtain functional, conservation and regulatory

annotations for the top candidate SNPs, including

SIFT (Sim et al., 2012), PolyPhen (Adzhubei

et al., 2013), GERP (Davydov et al., 2010),

PhastCons (Siepel et al., 2005), PhyloP (Pollard

et al., 2010) and Segway (Hoffman et al., 2012)

annotations, so as to find the changes most

likely to be disruptive. We discuss some of these

below. We also queried the GTEx cis-eQTL

database (Lonsdale et al., 2013), the UK Biobank

GeneATLAS (Canela-Xandri et al., 2018), and the

GWAS catalog (MacArthur et al., 2017), to look

for trait-associated SNPs. We particularly focus

on SNPs that have both high log-likelihood ratios

in favor of positive selection (LLRS>15) and high

CADD scores in favor of functional disruption

(>10).

Below, we describe some of the top SNPs with

high LLRS and their surrounding regions, for

those cases in which available genic, expression

or regulatory information can provide us some

clue as to the possible organismal function that

may have been affected by the selective event.

We particularly focus on the Native American

ancestry scan (Table S4, Figure 6), as few selection

scans have been performed in this population, but

also briefly summarize the results from the other

scans.

European ancestry scan

Results for the top 30 loci in the European

ancestry scan are presented in Table S1. Most

loci have been previously shown to be under

selection in Europeans populations, including

SLC45A2, SLC24A5, BNC2, the OCA2/HERC2

region, the LCT/MCM6 region and the TLR

region (Mathieson et al., 2015;Bersaglieri

et al., 2004;Voight et al., 2006;Vernot et al.,

2014;Barreiro et al., 2009). We notice that, in

several cases, the presumed causal SNP previously

identified in the literature coincides with the SNP

with the strongest selection signal. This is the

case, for example, for rs1426654 (SLC24A5)
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(Kimura et al., 2009;Lamason et al., 2005) and

for rs16891982 (SLC45A2) (Branicki et al., 2008).

This suggest that the top SNPs for other loci, for

which the causal SNPs are not yet known, may

be good candidates for further tests of functional

effects.

East Asian ancestry scan

We also performed a scan where we sought to

recover SNPs that were candidates for selection in

the ancestry component that is prevalent among

our East Asian samples. Results for the top 30

loci in this scan are in Table S2. Here, we also

recover several candidate regions that have been

previously reported in East Asian selection scans,

including ABCC11, POU2F3, ADH1B, FADS1

and TARBP1 (Vernot et al., 2014;Liu et al.,

2018;Ohashi et al., 2011;Peng et al., 2010;Refoyo-

Martinez et al., 2018). Here, as in the previous

scan, the top-scoring SNPs also tend to have the

strongest phenotypic associations. For example,

the highest scoring SNP (rs17822931) is the

well-known missense variant in ABCC11, which

is involved in sweat and earwax production

(Yoshiura et al., 2006).

Yoruba / ancestral non-African ancestry scan

Because our algorithm relies on an unrooted

ancestry tree, we cannot distinguish between

SNPs under positive selection in the terminal

branch leading to the Yoruba / Sub-Saharan

Africans and the ancestral non-African branch

(Table S3). Nevertheless, more careful study of

the allele frequencies of these SNPs in other

populations may serve to distinguish among these

scenarios in the future. As in the the other

ancestry scans, we also retrieve several genes that

have been previously reported in positive selection

studies. For example, the highest-scoring SNP is

a missense variant in SLC39A4 (rs1871534) that

has been reported to be under selection in Sub-

Saharan Africa and to be causal for zinc deficiency

(Engelken et al., 2014).

Native American ancestry scan

The Native American ancestry scan yielded

several novel candidates for positive selection

(Table S4). As this ancestry has been less studied

than the other aforementioned populations in

the selection scan literature, we decided to

extensively describe the top 30 candidates in the

Supplementary Notes. We also highlight some of

the more interesting regions here.

The top SNP (rs140736443) is located in an

intron of LINC00871. This SNP does not have a

high CADD score (= 1.125), but is very close to

a SNP (rs10133371) with a very high LLRS (=

16.54) and CADD score (= 15.99). This SNP is

also intronic but is highly conserved in primates

(PhastCons = 0.972) and is located in a GERP

conserved element (P = 1.92e-21). LINC00871

is a long non-coding RNA gene that has been

associated with number of children born (Barban

et al., 2016), although the specific trait-associated

SNP in that study does not have a high LLRS.

This gene also contains a suggestive association to

longevity in females (Zeng et al., 2018), although
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this study was under-powered to retrieve genome-

wide significant associations.

The third top SNP (rs2316155) has a low

CADD score (= 0.633) but is located near two

SNPs with high LLRS (rs1466182, rs1466183) that

overlap a regulatory region (ENSR00000088366)

and have high CADD scores (= 16.8 and 19.5,

respectively). Both of these SNPs have high

PhastCons conservation scores across primates,

mammals and vertebrates, and both overlap a

GERP conserved element.

The sixth top SNP (rs10508343) has a low

CADD score but lies very close to another SNP

(rs17143255) with a high LLRS and a very high

CADD score (= 14.16). The latter is an intergenic

SNP overlapping a GERP conserved element

between LINC00708 and GATA3, which has been

shown to lead to abnormal hair shape and growth

in mice when mutated (Kaufman et al., 2003).

Interestingly, SNPs overlapping LINC00708 have

been recently associated with hair shape in a

GWAS of admixed Latin Americans (Adhikari

et al. 2016). There is also a high-LLRS SNP in

this region that is significantly associated with

the response to treatment for acute lymphoblastic

leukemia (rs10508343) (Yang et al., 2009).

The seventh top SNP (rs16959274) is a GTEx

eQTL for GOLGA8A for tibial artery and skeletal

muscle, and for GOLGA8B in pancreas. These two

genes are members of the same gene family, and

code for an auto-antigen localized in the surface

of the Golgi complex (Eystathioy et al., 2000).

The tenth top SNP (rs12580697) is a GTEx

eQTL for TMTC1 in whole blood and has

a moderately high CADD score (= 8.676).

TMTC1 codes for an endoplasmic reticulum

transmembrane protein that is involved in calcium

homeostasis (Sunryd et al., 2014).

The eleventh top SNP (rs75607199) has a low

CADD score but lies near three other SNPs

(rs41325445, rs4901738 and rs59250732) with

almost equally high LLRS and high CADD

scores (= 13.49, 19.7 and 12.67, respectively).

All of these SNPs are intronic and overlap

OTX2-AS1, a long non-coding RNA gene. The

SNP with the highest CADD score (rs4901738)

is located in a GERP conserved element and

has high PhastCons conservation scores across

primates and mammals (>0.98). They all lie

upstream of OTX2, coding for a developmental

transcription factor implicated in microphtalmia

(Ragge et al., 2005), retinal dystrophy (Vincent

et al., 2014) and pituitary hormone deficiency

(Diaczok et al., 2008). In mice, this gene has

been found to be involved in the embryonic

development of the brain (Boncinelli et al., 1993),

photoreceptor development (Nishida et al., 2003)

and susceptibility to stress (Peña et al., 2017).

The fourteenth top SNP (rs78441257) has a

fairly high CADD score (= 12.72) and lies in a

GERP conserved element of the 3’ UTR of LRAT.

This gene is implicated in retinal dystrophy

(Thompson et al., 2001) and retinitis pigmentosa

(Sénéchal et al., 2006).
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The fifteenth top SNP (rs1919550) is a GTEx

eQTL for FBXO40 in whole blood, but does not

have a high CADD score. However, it lies near a

SNP (rs9813391) with a high LLRS that leads to

a nonsynonymous change (R145Q) in ARGFX -

a homeobox gene - and another SNP (rs4676737)

with both a high LLRS and high CADD score (=

14.07) overlapping a repressor region in an intron

of FBXO40. The latter SNP is a GTEx eQTL

for IQCB1 in fibroblasts, muscular esophagus and

thyroid. IQCB1 is associated with Senor-Loken

syndrome (Otto et al., 2005), a ciliopathic eye

disorder.

The twenty-second top SNP (rs4946567) is

an eQTL of TBC1D32 in cerebellar brain.

This SNP has a high CADD score (= 11.02)

and is conserved across vertebrates (vertebrate

PhyloP = 0.916, vertebrate PhastCons = 0.747).

Interestingly, the region in which it is located

also harbors signature of selection in Yucatan

miniature pigs (Kim et al., 2015;Kwon et al.,

2018). TBC1D32 plays a role in cilia assembly (Ko

et al., 2010) and may be involved in ciliopathic

congenital abnormalities, including midline cleft,

microcephaly, and microphthalmia (Adly et al.,

2014).

The twenty-third and twenty-fourth top SNPs

(rs5758430, rs4822061) are close to each other and

lie in a large region with several high-LLRS SNPs.

They are both linked GTEx eQTLs to several

genes in a variety of different tissues. They are also

both significantly associated with several traits

related to body fat, food intake and white blood

cells in the UK Biobank GeneATLAS (P <10−8,

see Supplementary Notes). Although these SNPs

do not have particularly high CADD scores, there

are several neighboring linked high-LLRS, high-

CADD SNPs with significant associations to the

same traits, including splice site and missense

mutations (Supplementary Notes). We also find

two significantly-associated SNPs in the GWAS

catalog in this region (P <10−8): rs4822024 is

associated with Vitiligo (Jin et al., 2012) and

rs13054099 is associated with neuroticism (Nagel

et al., 2018).

Discussion

We describe a new modeling framework that can

detect signals of positive selection on ancestry

components, using allele frequency patterns

across admixed populations. It models admixture

explicitly and works with an arbitrary number of

populations with or without admixed ancestries.

It also does not rely on labeling of samples

into particular populations, and allows for testing

of different positive selection models reflecting

different historical adaptive hypotheses.

The run-time complexity of our method is

linear in the number of markers, but we still

recommend a high-performance cluster to be used

in a typical genomic analysis. With parallelization,

a selection scan takes <10 minutes to analyze a 6

Mbp genome for <10 ancestry components using

100 cores. An example of how to perform this
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parallelization can be found on the project’s wiki

page on GitHub.

Our method works by testing for selection in

specific components of the ancestry covariance

matrix. We also explored what would occur if we

used a likelihood model in which the ancestry

covariance matrix was multiplied by a scalar,

so as to find “global” candidates for selection

rather than testing for selection in particular

ancestries. We found however, that this was

not an optimal way to detect candidates for

selection, as it is biased towards finding many

variants in highly drifted populations, likely

because the excess variance in the Wright-Fisher

process is not well modelled by the multivariate

Gaussian assumption, especially at the boundaries

of fixation and extinction.

When specifically testing for candidates for

selection in Europeans, East Asians and Sub-

Saharan Africans we identified several well-known

candidates under positive selection, including

OCA2, SLC24A5, SLC45A2, ABCC1 and

SLC39A4. Many of our top scoring SNPs were

also previously known to be causal for particular

traits, as in the case of rs17822931 in ABCC11

in East Asians, rs16891982 in SLC45A2 in

Europeans, rs1426654 in SLC24A5 in Europeans

and rs1871534 in SLC39A4 in Sub-Saharan

Africans.

Our scan for positive selection in the Native

American ancestry component of Latin Americans

yielded several novel candidates for adaptation in

the human past. We found signatures of selection

near genes involved in fertility (LINC00871),

hair shape and growth (LINC00708), immunity

(GOLGA8A / GOLGA8B and IRAK4), vision

(OTX2 and LRAT), the nervous system

(MDGA2) and various ciliopathies (IQCB1

and TBC1D32). Several of the highest-scoring

SNPs in the candidate regions are known to be

cis-eQTLs to their nearby genes, as is the case

for rs12580697 / TMTC1 (involved in calcium

homestasis) and rs4676737 / IQCB1 (involved in

ciliopathies). We also found individual SNPs with

high likelihood ratio scores in favor of selection

that are associated with a variety of phenotypes,

including rs12426688 (fat percentage), rs10508343

(response to leukemia treatment), rs34670506

(insomnia), and the cluster of high-scoring SNPs

that include rs5758430 and rs4822061, among

other SNPs. This particular cluster is especially

interesting, as the SNPs in the region are

associated with a variety of traits related to body

fat distribution, food intake and white blood

cells, suggesting a possible underlying phenotype

related to these traits that may have driven an

adaptive event.

We provide a list of functional annotations for

all the SNPs with high LLRS (>15) within a 2Mb

region surrounding each of the top genome-wide

SNPs, including CADD, conservation, regulatory

and protein deleteriousness scores, which we hope

will guide future functional validation studies in

these regions of the genome (Table S5).
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In conclusion, Ohana provides a fast and

flexible selection-detection and hypothesis-testing

framework. It is easy to use and has in-built

visualization functionalities to explore patterns on

a genome-wide and locus-specific scale. We believe

it will be a useful tool for biologists aiming to

study positive selection and understanding the

genomic basis of adaptation, particularly in cases

where demographic histories are complex or not

well characterized.
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Table 1. We compared the new method with the FST , PBS, and FLK statistics. The data simulation and selection detection
are as described in Figure 5. We quantify selection strength using the percentage of simulations among a total of 500 where
the selection method accurately identifies the simulated causal SNP as the top SNP.

sample 2Ns for the Ohana FST FST PBS PBS FLK
admixing homozygote yellow 2pop all focus3 focus4 correct-outgroup

admixed

200 0.00 0.00 0.00 0.00 0.00 0.00

300 0.00 0.00 0.00 0.00 0.00 0.00

400 0.00 4.76 0.00 0.00 0.00 0.00

500 4.76 0.00 4.76 9.52 0.00 9.52

600 23.81 19.05 0.00 14.29 0.00 19.05

700 27.27 18.18 4.55 31.82 0.00 13.64

800 25.00 15.00 5.00 10.00 0.00 15.00

900 18.18 13.64 4.55 13.64 0.00 13.64

1000 24.00 16.00 8.00 20.00 0.00 12.00

un-admixed

200 0.00 0.00 0.00 0.00 0.00 0.00

300 0.00 0.00 0.00 0.00 0.00 0.00

400 4.55 4.55 4.55 4.55 0.00 0.00

500 22.73 18.18 13.64 18.18 0.00 0.00

600 22.73 18.18 18.18 13.64 0.00 4.55

700 18.18 13.64 13.64 9.09 4.55 0.00

800 22.73 18.18 9.09 13.64 0.00 4.55

900 23.08 26.92 19.23 23.08 3.85 0.00

1000 31.82 31.82 31.82 31.82 0.00 22.73

Table 2. Mean distance between the top-scoring SNP and the simulated beneficial SNP. We compare the new method with
the FST , PBS and FLK statistics. The data simulation and selection detection methods are as described in Figure 5.

sample 2Ns for the Ohana FST FST PBS PBS FLK
admixing homozygote yellow 2pop all focus3 focus4 correct-outgroup

admixed

200 2454.57 2066.76 1286.48 1768.67 1994.33 2024.95

300 1680.86 1978.95 1925.18 1760.95 2076.32 2540.00

400 1691.57 1923.48 2131.57 1925.10 2083.62 1934.52

500 1835.90 1626.48 1606.24 1567.19 2060.81 1591.05

600 772.00 1189.62 1411.52 837.90 2117.86 1232.62

700 430.55 674.73 1483.50 700.18 1746.05 1006.91

800 873.25 1028.75 980.00 1123.05 1458.15 901.25

900 1067.09 903.73 1305.77 1145.05 1869.27 1435.09

1000 810.32 579.48 1118.32 572.92 2065.40 1158.68

un-admixed

200 2590.77 2272.14 2292.73 1642.50 2318.05 2315.73

300 2052.14 1763.05 2119.59 2142.18 1866.73 1781.64

400 1465.95 2031.00 2248.68 1369.36 2297.82 2401.82

500 1398.27 1386.36 1513.50 1211.09 1909.05 1768.45

600 1669.77 1585.18 1541.36 1750.05 1795.41 1999.09

700 1191.82 1300.77 1325.23 1083.45 1934.05 1376.14

800 650.36 755.36 1022.95 652.82 1238.73 1087.50

900 558.62 602.88 710.69 576.65 1315.54 1566.38

1000 463.14 668.27 610.68 620.14 1405.14 1207.77
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FIG. 6. Top 5 annotated peaks in each of the ancestry-specific selection studies. MXL-specific = scan for selection in
Native American ancestry of MXL. GBR-specific = scan for selection in European ancestry of GBR. CHB-specific = scan
for selection in East Asian ancestry of CHB. YRI-specific = scan for selection in Yoruba African ancestry or ancestral
non-African ancestry. We analyzed 5,601,710 variable sites across the autosomal genomes. We inferred genome-wide allele
frequencies and covariances as described in the Methods section. We applied a likelihood model for each SNP by rescaling
all variances and covariances by a scalar multiplier α. Descriptions of each candidate region are in Table 3.
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Table 3. Top 10 most differentiated SNPs from each of the ancestry-specific scans. LLRS = log-likelihood ratio score for
positive selection.

chr pos rsid LLRS target ancestry nearest gene

5 33951693 rs16891982 22.085902 European SLC45A2
15 48426484 rs1426654 19.707464 European SLC24A5

15 28356859 rs1129038 19.290553 European HERC2

15 28495956 rs12912427 18.270213 European HERC2

9 16792200 rs10962596 15.819739 European BNC2

1 1385211 rs1312568 15.066101 European ATAD3C

2 136407479 rs1446585 14.957582 European R3HDM1

2 136616754 rs182549 14.629386 European MCM6

1 204784969 rs3940119 14.393216 European NFASC

4 38798648 rs5743618 14.38681 European TLR1

16 48258198 rs17822931 23.271759 East Asian ABCC11
16 48375777 rs6500380 22.474103 East Asian LONP2

1 234635790 rs2175591 20.95541 East Asian TARBP1

4 100142780 rs75721934 20.453247 East Asian LOC100507053

11 61579427 rs72643557 20.114033 East Asian FADS1

11 120154631 rs12224052 19.696284 East Asian POU2F3

21 43974948 rs228088 19.518001 East Asian SLC37A1

11 133043841 rs79802711 19.157192 East Asian OPCML

5 128016573 rs79478220 18.476104 East Asian FBN2

19 51441759 rs11084040 18.158963 East Asian KLK5

14 46745012 rs140736443 32.730697 Native American LINC00871
9 82968379 rs6559543 27.584847 Native American LINC01507

16 80619307 rs2316155 27.399123 Native American LINC01227

14 21647765 rs77549780 27.355769 Native American LINC00641

12 14189549 rs12425115 25.867367 Native American GRIN2B

10 8150713 rs10508343 25.609772 Native American GATA3

15 34936250 rs16959274 25.424824 Native American GOLGA8B

8 4490837 rs71523639 24.59957 Native American CSMD1

1 14301862 rs72640512 24.455822 Native American PRDM2

12 29817716 rs12580697 23.967094 Native American TMTC1

14 57318110 rs75607199 23.959875 Native American OTX2-AS1

8 145639681 rs1871534 11.906794 Yoruba / Ancestral Non-African SLC39A4

5 178626609 rs6869589 11.541667 Yoruba / Ancestral Non-African ADAMTS2

15 29427400 rs10152250 11.48232 Yoruba / Ancestral Non-African FAM189A1

1 1106112 rs6670693 11.447873 Yoruba / Ancestral Non-African TTLL10

4 3666494 rs58827274 11.341367 Yoruba / Ancestral Non-African LOC100133461

17 2631985 rs4790359 11.118134 Yoruba / Ancestral Non-African PAFAH1B1

9 136769888 rs2789823 11.031687 Yoruba / Ancestral Non-African VAV2

6 169656029 rs6930377 10.824098 Yoruba / Ancestral Non-African THBS2

17 29350769 rs8073072 10.794224 Yoruba / Ancestral Non-African RNF135

5 173642871 rs10067518 10.787147 Yoruba / Ancestral Non-African HMP19

17

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 18 — #18
✐

✐

✐

✐

✐

✐

✐

✐

Cheng et al. · doi:10.1093/molbev/mst012 MBE

Acknowledgments

The authors gratefully acknowledge Thomas

Mailund, Mikkel Schierup, Christian Storm

Pedersen, and the GenomeDK staff for their

support during the course of this research. FR

thanks the Villum Foundation for their support.

References

Voight, B.F., Kudaravalli, S., Wen, X. and

Pritchard, J.K., 2006. A map of recent positive

selection in the human genome. PLoS biology,

4(3), p.e72.

Sabeti, P.C., Varilly, P., Fry, B., Lohmueller,

J., Hostetter, E., Cotsapas, C., Xie, X.,

Byrne, E.H., McCarroll, S.A., Gaudet, R. and

Schaffner, S.F., 2007. Genome-wide detection

and characterization of positive selection in

human populations. Nature, 449(7164), p.913.

Wright, Sewall. The genetical structure of

populations. Annals of eugenics 15(1), 323-354.

Weir, Bruce S., et al. Measures of human

population structure show heterogeneity among

genomic regions. Genome research 15(11), 1468-

1476.

Kim, Y. and Stephan, W., 2002. Detecting a

local signature of genetic hitchhiking along

a recombining chromosome. Genetics, 160(2),

pp.765-777.

Kim, Y. and Nielsen, R., 2004. Linkage

disequilibrium as a signature of selective sweeps.

Genetics, 167(3), pp.1513-1524.

McVean, G., 2007. The structure of linkage

disequilibrium around a selective sweep.

Genetics, 175(3), pp.1395-1406.

Tajima, F., 1989. Statistical method for testing

the neutral mutation hypothesis by DNA

polymorphism. Genetics, 123(3), pp.585-595.

Fu, Y.X. and Li, W.H., 1993. Statistical tests

of neutrality of mutations. Genetics, 133(3),

pp.693-709.

Fay, J.C. and Wu, C.I., 2000. Hitchhiking under

positive Darwinian selection. Genetics, 155(3),

pp.1405-1413.

Nielsen, R., 2005. Molecular signatures of natural

selection. Annu. Rev. Genet., 39, pp.197-218.

Beaumont, M.A. and Nichols, R.A., 1996.

Evaluating loci for use in the genetic analysis

of population structure. Proc. R. Soc. Lond. B,

263(1377), pp.1619-1626.

Akey, J.M., Zhang, G., Zhang, K., Jin, L. and

Shriver, M.D., 2002. Interrogating a high-

density SNP map for signatures of natural

selection. Genome research, 12(12), pp.1805-

1814.

Beaumont, M.A. and Balding, D.J., 2004.

Identifying adaptive genetic divergence among

populations from genome scans. Molecular

ecology, 13(4), pp.969-980.

Yi, X., Liang, Y., Huerta-Sanchez, E., Jin,

X., Cuo, Z.X.P., Pool, J.E., Xu, X., Jiang,

18

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 19 — #19
✐

✐

✐

✐

✐

✐

✐

✐

Ohana · doi:10.1093/molbev/mst012 MBE

H., Vinckenbosch, N., Korneliussen, T.S. and

Zheng, H., 2010. Sequencing of 50 human

exomes reveals adaptation to high altitude.

Science, 329(5987), pp.75-78.

Bonhomme, M., Chevalet, C., Servin, B., Boitard,

S., Abdallah, J.M., Blott, S. and San Cristobal,

M., 2010. Detecting selection in population

trees: the Lewontin and Krakauer test extended.

Genetics.

Fumagalli, M., Moltke, I., Grarup, N., Racimo, F.,

Bjerregaard, P., Jrgensen, M.E., Korneliussen,

T.S., Gerbault, P., Skotte, L., Linneberg, A.

and Christensen, C., 2015. Greenlandic Inuit

show genetic signatures of diet and climate

adaptation. Science, 349(6254), pp.1343-1347.

Racimo, F., Marnetto, D. and Huerta-

Sanchez, E., 2016. Signatures of archaic

adaptive introgression in present-day human

populations. Molecular biology and evolution,

34(2), pp.296-317.

Racimo, F., 2016. Testing for ancient selection

using cross-population allele frequency

differentiation. Genetics, 202(2), pp.733-750.

Cheng, X., Xu, C. and DeGiorgio, M., 2017.

Fast and robust detection of ancestral selective

sweeps. Molecular ecology, 26(24), pp.6871-

6891.

Librado, P. and Orlando, L., 2018. Detecting

signatures of positive selection along defined

branches of a population tree using LSD.

Molecular biology and evolution, 35(6),

pp.1520-1535.

Gnther, T. and Coop, G., 2013. Robust

identification of local adaptation from allele

frequencies. Genetics, pp.genetics-113.

Gautier, M., 2015. Genome-wide scan for adaptive

divergence and association with population-

specific covariates. Genetics, pp.genetics-115.

Fariello, M.I., Boitard, S., Naya, H., San

Cristobal, M. and Servin, B., 2013. Detecting

signatures of selection through haplotype

differentiation among hierarchically structured

populations. Genetics, pp.genetics-112.

Huber, C.D., DeGiorgio, M., Hellmann, I. and

Nielsen, R., 2016. Detecting recent selective

sweeps while controlling for mutation rate and

background selection. Molecular ecology, 25(1),

pp.142-156.

Foll, M. and Gaggiotti, O.E., 2008. A genome scan

method to identify selected loci appropriate

for both dominant and codominant markers: a

Bayesian perspective. Genetics.

Foll, M., Gaggiotti, O.E., Daub, J.T., Vatsiou, A.

and Excoffier, L., 2014. Widespread signals of

convergent adaptation to high altitude in Asia

and America. The American Journal of Human

Genetics, 95(4), pp.394-407.

Mathieson, I., Lazaridis, I., Rohland, N., Mallick,

S., Patterson, N., Roodenberg, S.A., Harney,

19

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 20 — #20
✐

✐

✐

✐

✐

✐

✐

✐

Cheng et al. · doi:10.1093/molbev/mst012 MBE

E., Stewardson, K., Fernandes, D., Novak, M.

and Sirak, K., 2015. Genome-wide patterns

of selection in 230 ancient Eurasians. Nature,

528(7583), p.499.

Cheng, J.Y., Mailund, T. and Nielsen, R.,

2017. Fast admixture analysis and population

tree estimation for SNP and NGS data.

Bioinformatics, 33(14), pp.2148-2155.

Skotte, L., Korneliussen, T.S. and Albrechtsen,

A., 2013. Estimating individual admixture

proportions from next generation sequencing

data. Genetics, pp.genetics-113.

Felsenstein, J., 1985. Phylogenies and the

comparative method. The American Naturalist,

125(1), pp.1-15.

Ewing, G. and Hermisson, J., 2010. MSMS:

a coalescent simulation program including

recombination, demographic structure and

selection at a single locus. Bioinformatics,

26(16), pp.2064-2065.

Rentzsch, Philipp, et al., 2018. CADD: predicting

the deleteriousness of variants throughout the

human genome. Nucleic acids research 47(D1),

D886-D894.

Adzhubei, I., Jordan, D.M. and Sunyaev, S.R.,

2013. Predicting functional effect of human

missense mutations using PolyPhen2. Current

protocols in human genetics, 76(1), pp.7-20.

Sim, N.L., Kumar, P., Hu, J., Henikoff, S.,

Schneider, G. and Ng, P.C., 2012. SIFT

web server: predicting effects of amino acid

substitutions on proteins. Nucleic acids

research, 40(W1), pp.W452-W457.

Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs,

A.S., Hou, M., Rosenbloom, K., Clawson,

H., Spieth, J., Hillier, L.W., Richards, S.

and Weinstock, G.M., 2005. Evolutionarily

conserved elements in vertebrate, insect, worm,

and yeast genomes. Genome research, 15(8),

pp.1034-1050.

Sato, H., Miyamoto, T., Yogev, L., Namiki, M.,

Koh, E., Hayashi, H., Sasaki, Y., Ishikawa, M.,

Lamb, D.J., Matsumoto, N. and Birk, O.S.,

2006. Polymorphic alleles of the human MEI1

gene are associated with human azoospermia

by meiotic arrest. Journal of human genetics,

51(6), pp.533-540.

Lappalainen, T., Sammeth, M., Friedlnder, M.R.,

ACt Hoen, P., Monlong, J., Rivas, M.A.,

Gonzalez-Porta, M., Kurbatova, N., Griebel,

T., Ferreira, P.G. and Barann, M., 2013.

Transcriptome and genome sequencing uncovers

functional variation in humans. Nature,

501(7468), p.506.

Lonsdale, J., Thomas, J., Salvatore, M., Phillips,

R., Lo, E., Shad, S., Hasz, R., Walters,

G., Garcia, F., Young, N. and Foster, B.,

2013. The genotype-tissue expression (GTEx)

project. Nature genetics, 45(6), p.580.

20

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 21 — #21
✐

✐

✐

✐

✐

✐

✐

✐

Ohana · doi:10.1093/molbev/mst012 MBE

MacArthur, J., Bowler, E., Cerezo, M., Gil, L.,

Hall, P., Hastings, E., Junkins, H., McMahon,

A., Milano, A., Morales, J. and Pendlington,

Z.M., 2017. The new NHGRI-EBI Catalog

of published genome-wide association studies

(GWAS Catalog). Nucleic acids research,

45(D1), pp.D896-D901.

Pritchard, J.K., Stephens, M. and Donnelly, P.,

2000. Inference of population structure using

multilocus genotype data. Genetics, 155(2),

pp.945-959.

Alexander, D.H., Novembre, J. and Lange, K.,

2009. Fast model-based estimation of ancestry

in unrelated individuals. Genome research.

Pickrell, J.K. and Pritchard, J.K., 2012. Inference

of population splits and mixtures from genome-

wide allele frequency data. PLoS genetics,

8(11), p.e1002967.

Murty, K.G. and Yu, F.T., 1988. Linear

complementarity, linear and nonlinear

programming (Vol. 3, pp. 447-448). Berlin:

Heldermann.

Nelder, J.A. and Mead, R., 1965. A simplex

method for function minimization. The

computer journal, 7(4), pp.308-313.

Kiefer, J., 1953. Sequential minimax search for

a maximum. Proceedings of the American

mathematical society, 4(3), pp.502-506.

Coop, G., Witonsky, D., Di Rienzo, A. and

Pritchard, J.K., 2010. Using environmental

correlations to identify loci underlying local

adaptation. Genetics.

Cholesky, A.L., 1910. Sur la rsolution numrique

des systmes dquations linaires. Bulletin de la

Sabix. Socit des amis de la Bibliothque et de

l’Histoire de l’cole polytechnique, (39), pp.81-

95.

Self, S.G. and Liang, K.Y., 1987. Asymptotic

properties of maximum likelihood estimators

and likelihood ratio tests under nonstandard

conditions. Journal of the American Statistical

Association, 82(398), pp.605-610.

1000 Genomes Project Consortium, 2015. A global

reference for human genetic variation. Nature,

526(7571), p.68.

DeGiorgio, M., Huber, C.D., Hubisz, M.J.,

Hellmann, I. and Nielsen, R., 2016.

SweepFinder2: increased sensitivity, robustness

and flexibility. Bioinformatics, 32(12),

pp.1895-1897.

Sabeti, P.C., Schaffner, S.F., Fry, B., Lohmueller,

J., Varilly, P., Shamovsky, O., Palma, A.,

Mikkelsen, T.S., Altshuler, D. and Lander, E.S.,

2006. Positive natural selection in the human

lineage. science, 312(5780), pp.1614-1620.

Duforet-Frebourg, N., Luu, K., Laval, G.,

Bazin, E. and Blum, M.G., 2015. Detecting

genomic signatures of natural selection with

principal component analysis: application to

21

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 22 — #22
✐

✐

✐

✐

✐

✐

✐

✐

Cheng et al. · doi:10.1093/molbev/mst012 MBE

the 1000 Genomes data. Molecular biology and

evolution, 33(4), pp.1082-1093.

Branicki, W., Brudnik, U., Draus-Barini,

J., Kupiec, T. and Wojas-Pelc, A., 2008.

Association of the SLC45A2 gene with

physiological human hair colour variation.

Journal of human genetics, 53(11-12), p.966.

Kimura, R., Yamaguchi, T., Takeda, M., Kondo,

O., Toma, T., Haneji, K., Hanihara, T.,

Matsukusa, H., Kawamura, S., Maki, K. and

Osawa, M., 2009. A common variation in

EDAR is a genetic determinant of shovel-shaped

incisors. The American Journal of Human

Genetics, 85(4), pp.528-535.

Lamason, R.L., Mohideen, M.A.P., Mest, J.R.,

Wong, A.C., Norton, H.L., Aros, M.C., Jurynec,

M.J., Mao, X., Humphreville, V.R., Humbert,

J.E. and Sinha, S., 2005. SLC24A5, a

putative cation exchanger, affects pigmentation

in zebrafish and humans. Science, 310(5755),

pp.1782-1786.

Sidiropoulos, N., Sohi, S.H., Pedersen, T.L.,

Porse, B.T., Winther, O., Rapin, N. and Bagger,

F.O., 2018. SinaPlot: an enhanced chart for

simple and truthful representation of single

observations over multiple classes. Journal of

Computational and Graphical Statistics, pp.1-

4.

Hoffman, M.M., Buske, O.J., Wang, J.,

Weng, Z., Bilmes, J.A. and Noble, W.S.,

2012. Unsupervised pattern discovery in

human chromatin structure through genomic

segmentation. Nature methods, 9(5), p.473.

Canela-Xandri, O., Rawlik, K. and Tenesa, A.,

2018. An atlas of genetic associations in UK

Biobank. Nature Genetics, 50(11), p.1593.

Davydov, E.V., Goode, D.L., Sirota, M., Cooper,

G.M., Sidow, A. and Batzoglou, S., 2010.

Identifying a high fraction of the human

genome to be under selective constraint using

GERP++. PLoS computational biology, 6(12),

p.e1001025.

Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs,

A.S., Hou, M., Rosenbloom, K., Clawson,

H., Spieth, J., Hillier, L.W., Richards, S.

and Weinstock, G.M., 2005. Evolutionarily

conserved elements in vertebrate, insect, worm,

and yeast genomes. Genome research, 15(8),

pp.1034-1050.

Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R.

and Siepel, A., 2010. Detection of nonneutral

substitution rates on mammalian phylogenies.

Genome research, 20(1), pp.110-121.

Mathieson, I., Lazaridis, I., Rohland, N., Mallick,

S., Patterson, N., Roodenberg, S.A., Harney,

E., Stewardson, K., Fernandes, D., Novak, M.

and Sirak, K., 2015. Genome-wide patterns

of selection in 230 ancient Eurasians. Nature,

528(7583), p.499.

22

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 23 — #23
✐

✐

✐

✐

✐

✐

✐

✐

Ohana · doi:10.1093/molbev/mst012 MBE

Bersaglieri, T., Sabeti, P.C., Patterson, N.,

Vanderploeg, T., Schaffner, S.F., Drake, J.A.,

Rhodes, M., Reich, D.E. and Hirschhorn, J.N.,

2004. Genetic signatures of strong recent

positive selection at the lactase gene. The

American Journal of Human Genetics, 74(6),

pp.1111-1120.

Voight, B.F., Kudaravalli, S., Wen, X. and

Pritchard, J.K., 2006. A map of recent positive

selection in the human genome. PLoS biology,

4(3), p.e72.

Vernot, B. and Akey, J.M., 2014. Resurrecting

surviving Neandertal lineages from modern

human genomes. Science, p.1245938.

Barreiro, L.B., Ben-Ali, M., Quach, H., Laval, G.,

Patin, E., Pickrell, J.K., Bouchier, C., Tichit,

M., Neyrolles, O., Gicquel, B. and Kidd, J.R.,

2009. Evolutionary dynamics of human Toll-like

receptors and their different contributions to

host defense. PLoS genetics, 5(7), p.e1000562.

Liu, S., Huang, S., Chen, F., Zhao, L., Yuan,

Y., Francis, S.S., Fang, L., Li, Z., Lin,

L., Liu, R. and Zhang, Y., 2018. Genomic

analyses from non-invasive prenatal testing

reveal genetic associations, patterns of viral

infections, and Chinese population history. Cell,

175(2), pp.347-359.

Refoyo-Martnez, A., da Fonseca, R.R.,

Halldrsdttir, K., rnason, E., Mailund, T.

and Racimo, F., 2018. Identifying loci under

positive selection in complex population

histories. bioRxiv, p.453092.

Ohashi, J., Naka, I., Tsuchiya, N., 2011. The

impact of natural selection on an ABCC11 SNP

determining earwax type. Mol. Biol. Evol. 28,

849-857

Peng, Y., Shi, H., Qi, X.B., Xiao, C.J., Zhong,

H., Run-lin, Z.M. and Su, B., 2010. The

ADH1B Arg47His polymorphism in East Asian

populations and expansion of rice domestication

in history. BMC evolutionary biology, 10(1),

p.15.

Refoyo-Mart́ınez, Alba, et al., 2018. Identifying

loci under positive selection in complex

population histories. bioRxiv, 453092.

Endo, Chihiro, et al., 2018. Genome-wide

association study in Japanese females identifies

fifteen novel skin-related trait associations.

Scientific reports 8.

Engelken, J., Carnero-Montoro, E., Pybus, M.,

Andrews, G.K., Lalueza-Fox, C., Comas, D.,

Sekler, I., de la Rasilla, M., Rosas, A.,

Stoneking, M. and Valverde, M.A., 2014.

Extreme population differences in the human

zinc transporter ZIP4 (SLC39A4) are explained

by positive selection in Sub-Saharan Africa.

PLoS genetics, 10(2), p.e1004128.

Barban, N., Jansen, R., De Vlaming, R.,

Vaez, A., Mandemakers, J.J., Tropf, F.C.,

Shen, X., Wilson, J.F., Chasman, D.I., Nolte,

23

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 24 — #24
✐

✐

✐

✐

✐

✐

✐

✐

Cheng et al. · doi:10.1093/molbev/mst012 MBE

I.M. and Tragante, V., 2016. Genome-wide

analysis identifies 12 loci influencing human

reproductive behavior. Nature genetics, 48(12),

p.1462.

Zeng, Y., Nie, C., Min, J., Chen, H., Liu, X., Ye,

R., Chen, Z., Bai, C., Xie, E., Yin, Z. and Lv,

Y., 2018. Sex differences in genetic associations

with longevity. JAMA network open, 1(4),

pp.e181670-e181670.

Kaufman, C.K., Zhou, P., Pasolli, H.A.,

Rendl, M., Bolotin, D., Lim, K.C., Dai,

X., Alegre, M.L. and Fuchs, E., 2003. GATA-

3: an unexpected regulator of cell lineage

determination in skin. Genes development,

17(17), pp.2108-2122.

Yang, J.J., Cheng, C., Yang, W., Pei, D., Cao, X.,

Fan, Y., Pounds, S.B., Neale, G., Trevio, L.R.,

French, D. and Campana, D., 2009. Genome-

wide interrogation of germline genetic variation

associated with treatment response in childhood

acute lymphoblastic leukemia. Jama, 301(4),

pp.393-403.

Eystathioy, T., Jakymiw, A., Fujita, D.J.,

Fritzler, M.J. and Chan, E.K., 2000. Human

autoantibodies to a novel Golgi protein golgin-

67: high similarity with golgin-95/gm 130

autoantigen. Journal of autoimmunity, 14(2),

pp.179-187.

Sunryd, J.C., Cheon, B., Graham, J.B., Giorda,

K.M., Fissore, R.A. and Hebert, D.N., 2014.

TMTC1 and TMTC2 are novel endoplasmic

reticulum TPR-containing adapter proteins

involved in calcium homeostasis. Journal of

Biological Chemistry, pp.jbc-M114.

Ragge, N.K., Brown, A.G., Poloschek, C.M.,

Lorenz, B., Henderson, R.A., Clarke, M.P.,

Russell-Eggitt, I., Fielder, A., Gerrelli, D.,

Martinez-Barbera, J.P. and Ruddle, P., 2005.

Heterozygous mutations of OTX2 cause severe

ocular malformations. The American Journal of

Human Genetics, 76(6), pp.1008-1022.

Vincent, A., Forster, N., Maynes, J.T., Paton,

T.A., Billingsley, G., Roslin, N.M., Ali, A.,

Sutherland, J., Wright, T., Westall, C.A. and

Paterson, A.D., 2014. OTX2 mutations cause

autosomal dominant pattern dystrophy of the

retinal pigment epithelium. Journal of medical

genetics, 51(12), pp.797-805.

Diaczok, D., Romero, C., Zunich, J., Marshall,

I. and Radovick, S., 2008. A novel dominant

negative mutation of OTX2 associated with

combined pituitary hormone deficiency. The

Journal of Clinical Endocrinology Metabolism,

93(11), pp.4351-4359.

Boncinelli, E., Gulisano, M. and Broccoli, V.,

1993. Emx and Otx homeobox genes in

the developing mouse brain. Journal of

neurobiology, 24(10), pp.1356-1366.

Nishida, A., Furukawa, A., Koike, C., Tano,

Y., Aizawa, S., Matsuo, I. and Furukawa,

24

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 25 — #25
✐

✐

✐

✐

✐

✐

✐

✐

Ohana · doi:10.1093/molbev/mst012 MBE

T., 2003. Otx2 homeobox gene controls

retinal photoreceptor cell fate and pineal

gland development. Nature neuroscience, 6(12),

p.1255.

Peña, C.J., Kronman, H.G., Walker, D.M., Cates,

H.M., Bagot, R.C., Purushothaman, I., Issler,

O., Loh, Y.H.E., Leong, T., Kiraly, D.D. and

Goodman, E., 2017. Early life stress confers

lifelong stress susceptibility in mice via ventral

tegmental area OTX2. Science, 356(6343),

pp.1185-1188.

Sénéchal, A., Humbert, G., Surget, M.O.,

Bazalgette, C., Bazalgette, C., Arnaud, B.,

Arndt, C., Laurent, E., Brabet, P. and Hamel,

C.P., 2006. Screening genes of the retinoid

metabolism: novel LRAT mutation in leber

congenital amaurosis. American journal of

ophthalmology, 142(4), pp.702-704.

Thompson, D.A., Li, Y., McHenry, C.L., Carlson,

T.J., Ding, X., Sieving, P.A., Apfelstedt-Sylla,

E. and Gal, A., 2001. Mutations in the

gene encoding lecithin retinol acyltransferase

are associated with early-onset severe retinal

dystrophy. Nature genetics, 28(2), p.123.

Otto, E.A., Loeys, B., Khanna, H., Hellemans,

J., Sudbrak, R., Fan, S., Muerb, U., O’Toole,

J.F., Helou, J., Attanasio, M. and Utsch, B.,

2005. Nephrocystin-5, a ciliary IQ domain

protein, is mutated in Senior-Loken syndrome

and interacts with RPGR and calmodulin.

Nature genetics, 37(3), p.282.

Kim, H., Song, K.D., Kim, H.J., Park, W., Kim,

J., Lee, T., Shin, D.H., Kwak, W., Kwon,

Y.J., Sung, S. and Moon, S., 2015. Exploring

the genetic signature of body size in Yucatan

miniature pig. PloS one, 10(4), p.e0121732.

Kwon, D.J., Lee, Y.S., Shin, D., Won, K.H. and

Song, K.D., 2018. Genome analysis of Yucatan

miniature pigs to assess their potential as

biomedical model animals. Asian-Australasian

journal of animal sciences, 32(2), pp.290-296.

Adly, N., Alhashem, A., Ammari, A. and

Alkuraya, F.S., 2014. Ciliary Genes TBC 1

D 32/C6orf170 and SCLT 1 are Mutated in

Patients with OFD Type IX. Human mutation,

35(1), pp.36-40.

Ko, H.W., Norman, R.X., Tran, J., Fuller,

K.P., Fukuda, M. and Eggenschwiler, J.T.,

2010. Broad-minded links cell cycle-related

kinase to cilia assembly and hedgehog signal

transduction. Developmental cell, 18(2),

pp.237-247.

Jin, Y., Birlea, S.A., Fain, P.R., Ferrara,

T.M., Ben, S., Riccardi, S.L., Cole, J.B.,

Gowan, K., Holland, P.J., Bennett, D.C. and

Luiten, R.M., 2012. Genome-wide association

analyses identify 13 new susceptibility loci for

generalized vitiligo. Nature genetics, 44(6),

p.676.

Nagel, M., Jansen, P.R., Stringer, S., Watanabe,

K., de Leeuw, C.A., Bryois, J., Savage, J.E.,

25

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/


“output” — 2019/2/14 — 3:53 — page 26 — #26
✐

✐

✐

✐

✐

✐

✐

✐

Cheng et al. · doi:10.1093/molbev/mst012 MBE

Hammerschlag, A.R., Skene, N.G., Muoz-

Manchado, A.B. and White, T., 2018. Meta-

analysis of genome-wide association studies for

neuroticism in 449,484 individuals identifies

novel genetic loci and pathways. Nature

Genetics, 50(7), p.920.

Yoshiura, Koh-ichiro, et al. A SNP in the ABCC11

gene is the determinant of human earwax type.

Nature genetics 38(3), 324.

26

.CC-BY-NC 4.0 International licenseis the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review)this version posted February 14, 2019. ; https://doi.org/10.1101/546408doi: bioRxiv preprint 

https://doi.org/10.1101/546408
http://creativecommons.org/licenses/by-nc/4.0/



