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Abstract: Oil monitoring for wind turbine gearboxes can reflect wear and lubrication conditions,
and better identify pits on the tooth surface, fatigue wear, and other early faults. However, oil
monitoring with one or several single predicting models brings inaccuracy due to the intrinsic merits
and demerits of the models. In this work, oil monitoring and fault pre-warning of wind turbine
gearboxes were studied based on oil inspection data of three wind turbines that have been working
continuously for 3.5 years. The Grey Model (GM) and the Double Exponential Smoothing (DES)
were combined by a modified inverse-variance weighting method proposed in this work, which used
relative errors to calculate weight coefficients, reducing the errors and improving the accuracy as a
whole. The predicted data were compared with the measured data to verify the predicting accuracy.
Subsequently, a statistical method and linear regression method were adopted to jointly develop a
pre-warning threshold for the oil inspection data. Comparing the predicted data with the threshold,
the results showed that one of the wind turbines was in a warning state. The prediction was validated
by an endoscope inspection of the gearbox, which found that some parts were slightly worn.

Keywords: oil monitoring; combination prediction; Grey Model; double exponential smoothing

1. Introduction

Wind energy is a clean energy that has been increasingly utilized by many countries
to achieve carbon neutrality. Wind electricity generation reached a record of 273 TWh in
2021 with 17% growth, and the increasing trend continues [1]. A diagram of a wind turbine
gearbox is shown in Figure 1. The gearbox transmits mechanical energy generated by the
wind turbine blades to the generator for power generation. It is the core device for power
transmission in a wind turbine. Once the gearbox fails, the whole wind turbine will not
function properly because of a chain reaction [2]. It is estimated that 60% of mechanical
equipment failure or fault is related to gear failure [3]. Among all the typical wind turbine
faults, gearbox failure takes a proportion of 4% [4]. In addition, most wind turbines are built
in high mountains, wilderness, islands, offshore, and other harsh natural environments
where maintenance is extremely difficult [5]. Therefore, it is significant and necessary to
carry out state monitoring and fault warning of wind turbine gearboxes and to pay close
attention to their operating conditions.

Under such circumstances, many monitoring systems with diagnostic algorithms have
been developed, such as WP4086 developed by Denmark Mita-Teknik, which applied
frequency domain techniques to process the signals [6]. In comparison, SKF WindCon3.0
developed by Sweden SKF used both time and frequency domain signal processes to moni-
tor the conditions [7]. Some prediction methods can be applied to tell whether the gearbox
is in good condition. The method can be classified into four categories: physics-based
prognostic method, AI-based prognostic method, stochastic-based prognostic techniques,
and combined prognostic techniques [8]. The method can be also briefly categorized into
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model-based prognosis, data-driven prognosis, and hybrid prognosis [4]. Some research
cases with different methods are introduced in Table 1.
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 Peng et al. [16] 
Adaptive maximum mean variance 
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Figure 1. Gearbox of a wind turbine. (a) key parts of a wind turbine; (b) a wind turbine gearbox.

Table 1. Research cases with different methods on wind turbine gearbox prognosis.

Category Author Method Characteristics

Physics-based

Gray et al. [9] Mathematical Model
Gearbox damage calculation caused by
bearing high cycle fatigue due to edge

loading.

Breteler et al. [10] Generic physics-based model
Gearbox damage prediction caused by
helical gear tooth fault due to bending

fatigue during misalignment.

Zhu et al. [11,12] Physical models as functions of
temperature and particle contamination

Mathematical relationship between
lubrication oil deterioration and particle

contamination level for lubrication oil
remaining useful life prediction.

Pan et al. [13] Extreme learning machine optimized
by a fruit fly optimization algorithm

Less time-consuming with higher accuracy
to predict remaining useful life.

AI-Based

Teng et al. [14]
Artificial neural network to train

data-driven
models

Combined the time and frequency
Features.

Hussain et al. [15]
Adaptive neuro-fuzzy inference system

and nonlinear autoregressive model
with exogenous inputs

Predicted the wind turbine gearbox
health-related vibration-based index trend

with two different methods.

Peng et al. [16] Adaptive maximum mean variance and
a convolutional neural network

Assessed the health of offshore wind farm
comprehensively.

Stochastic-Based Fan et al. [17] Particle Filter model

A framework based on Particle Filter
determining posterior probability

distribution to predict remaining useful life
of gearbox.

Combined

Cheng et al. [18]
Combined adaptive neurofuzzy

inference systems and Particle Filter
model

Used current signal and obtained the state
transition function of extracted fault

features. Used Particle Filter model to
predict gearbox remaining useful life based

on the trained state transition function.

Ding et al. [19] Finite element stress analysis and
Bayesian inference

Gearbox fatigue cracks propagation and
remaining life. Improved prediction by

updating the distribution of the uncertain
material parameter in the crack

degradation process

Most of the above prognoses and predictions paid attention to the bearing of the
gearbox, which differs from the prediction of the gear’s condition. Offline detection and
analysis of the wind turbine gearbox oil is the main technical way to evaluate the current



Sustainability 2023, 15, 3802 3 of 16

lubrication and wear state of the gears in a gearbox. The operation of the wind turbine
gearbox has its own characteristics, namely the variable speed and variable load due to
the unstable wind [20]. In addition, the cost of a single wind turbine is less than thermal
power or hydropower units. The installation of an online monitor system needs to consider
and balance its performance, accuracy, and cost. In comparison, offline detection, such as
sampling oil detection, is not restricted by the space for monitoring system installation or
expensive online sensors [21,22].

As shown in Figure 2, two main types of gear failures, tooth fracture and pitting
erosion, can generate metal particles contaminating lubrication oil. At the same time,
the performance of the lubricating oil also directly affects the lubrication and wear state
of the gearbox. Therefore, regular sampling and analyzing the lubricating oil’s particle
concentration changing trend and physical and chemical performance can reflect the change
in the running conditions of the wind turbine gearbox. It is conducive to the early detection
of abnormal equipment operation.
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Figure 2. The failure of gears: (a) tooth fracture; (b) pitting erosion.

Oil analysis includes many aspects, such as physical properties, particle counting,
infrared analysis, spectral analysis, and ferrography analysis. The details of these aspects
are shown in Figure 3. Depending on the requirement, some aspects will be chosen to
conduct corresponding tests under test standards.
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With the test data, some prediction models can be applied to evaluate the gear condi-
tions. The first-order Grey Model of one variable (GM (1,1)) is one of the popular predicting
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methods with its ability to predict based on partially known parameters [23]. The Grey
Model, proposed by Deng [24], in 1982, is particularly suitable for short-term forecasting
uncertain problems with small samples. The GM (1,1) has been applied together with the
wavelet packet de-noising method to successfully predict the oil temperature of a wind
turbine gearbox [25]. The GM (1,1) was also combined with other predicting models by
variable weights to predict the oil temperature of a wind turbine gearbox [26].

In addition, the exponential smoothing method was also popular in prediction [27]. It
was successfully applied to wind speed forecasts in wind farms by importing an adaptive
dynamic cubic exponential smoothing model [28]. The proposed model was verified to
have more stability by comparing it with the traditional cubic exponential smoothing and
grey prediction model.

This work aims to predict the oil properties of wind turbine gearboxes and to pre-warn
the failure of gears. The combined method proposed by Bates and Granger [29] shows many
advantages and it was implemented in this study. The GM (1,1) and Double Exponential
Smoothing (DES) were combined by the reciprocal method of variance. Different from
other methods in calculating the weight of each prediction with absolute error, the relative
errors were applied to achieve more accuracy. Then, a statistical method and a linear
regression method were used to formulate the pre-warning threshold. The method was
applied for state monitoring and fault pre-warning on wind turbines in a wind farm. The
effectiveness and practicability were verified by successful fault pre-warning compared
with the endoscope inspection results of gears.

The paper was structured as follows. Firstly, the tested parameters for the gearbox oil
and their values were presented. Then, the critical parameters were chosen to carry out
prediction and pre-warming. With the chosen parameters, in the Section 3, the prediction
model and pre-warning model were developed. Subsequently, the prediction and pre-
warning results were demonstrated and validated. In the end, conclusions were made from
this study.

2. Materials and Data

This study chose oil sampled from 3 wind turbines with possible problematic situations
that have been operating for 3.5 consecutive years in an inland wilderness wind farm. The
oil was sampled every 6 months and the oil filter was replaced every 12 months. Each time
100 mL to 200 mL gearbox oil was sampled to test the viscosity, acid value, contamination
degree, and spectral elements, under the standards shown in Table 2.

Table 2. Test standards.

Test Items Viscosity Acid Value Contamination
Degree

Spectral
Elements

Standards GB/T
265–1988

GB/T
7304–2014 DL/T 432–2018 GB/T

17476–1998

The tested oil properties are shown in Figure 4. By measuring the size and quantity of
contamination particles in the oil, different sizes and quantity intervals were graded, and
the pollution was expressed as grades 1–15. The lower the pollution degree, the cleaner
the oil was. The fluctuation of the oil contamination degree can be found in Figure 4a.
This was caused by the produced particle contamination and filter replacement. During
the operation of the gearbox, contamination from the external environment entered the
gearbox. Additionally, wear of gears, bearings, and other mechanical components also
produced particle pollution. At the same time, replacing the filter element of the gearbox
filter brought out some pollutants and reduced the degree of pollution inside the gearbox.
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Figure 4b shows the viscosity is in a slow decline trend with a small fluctuation
amplitude. When the lubricating oil is oxidized or contaminated by external high-viscosity
substances, such as grease and high-viscosity oil, the viscosity will increase [30]. Whereas
when the internal macromolecular chain of the lubricating oil is broken or contaminated by
external low-viscosity substances, such as coolant, the viscosity will decrease. According
to the experience of the wind energy industry and the viscosity classification system, the
proper viscosity of lubricating oil should generally not exceed ±10% of the actual starting
viscosity [31]. The initial lubricating oil viscosity in this study was 320 mm2/s, which was
within the workable range.

The acid value can be found in Figure 4c. As the wind turbine running time increased,
the acid value was constantly declining. The oil acid value in operation should not exceed
2 mg KOH/g according to the experience of the wind power industry and test of oxidation
characteristics standard [32]. The acid values of the oil samples are lower than the warning
value, indicating that the oxidation degree is low.

Spectral elements were selected as two typical elements, iron (Fe) and molybdenum
(Mo). Iron elements can directly reflect the wear situation inside the gearbox. With
molybdenum, as the anti-wear additive of lubricating oil, the decreased content will
aggravate the wear of the tooth surface. These two elements changed significantly with the
running of the gearbox. The change in iron in an overall lifespan is normally a “bathtub
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curve”. It can be seen from Figure 4d that the iron and molybdenum concentrations of
gearbox 1 were different from the other two.

3. Methodology

Among these five oil properties, the contamination degree is largely affected by filter
replacement. In addition, the filter replacement maintained the gearbox in a workable
contamination degree. Therefore, this unpredictable disturbing factor is unsuitable to be
involved in the predicting model. The viscosity and acid value are also in the normal range
in all the samples. Such factors in a normal range are not included in the model since
whether they are normal values brings no indication, and abnormal values mean it is likely
too late for any prediction

3.1. Prediction Model

The combined GM (1,1) and double exponential smoothing model was established
by the modified inverse-variance weighting method. The separate models were estab-
lished first.

3.1.1. Establishment of GM (1,1)

For GM (1,1), the data series of Fe or Mo concentration can be represented as

x(0) =
[

x(0)(1), x(0)(2), . . . , x(0)(n)
]

(1)

Applying accumulated generating operator (1-AGO) obtains

x(1) =
[

x(1)(1), x(1)(2), . . . , x(1)(k), . . . , x(1)(n)
]

(2)

where
x(1)(k) = ∑k

r=1 x(0)(r) (3)

A dynamic model of the first-order differential equation (whitenization equation) can
be developed for the series x(1)

dx(1)

dt
+ ax(1) = b (4)

where a is the development coefficient representing the development trend of x(0), and b is
the grey action quantity reflecting the change relationship of x(0) [33]. Defining â = [a, b]T ,
which were estimated by the least squares method:

â =
(

BT B
)−1

BTYN (5)

where

B =


−z(1)(2) 1
−z(1)(3) 1
· · · · · ·

−z(1)(k) 1

, z(1)(k) = 0.5
[

x(1)(k) + x(1)(k− 1)
]

k = 2, 3, . . . , n (6)

YN =
[

x(0)(2) x(0)(3) x(0)(4) · · · x(0)(n)
]

(7)

Solving Equation (4), the discrete-time response function of GM (1,1) was obtained

x̂(1)(k + 1) =
[

x(0)(1)− b
a

]
e−ak +

b
a

k = 1, 2, . . . , n (8)
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Performed accumulated subtraction x̂(1)(k + 1) and obtained x̂(0)(k + 1), namely,

x̂(0)(1) = x(0)(1)
x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k)

(9)

3.1.2. Establishment of Double Exponential Smoothing Model

The Double Exponential Smoothing (DES) was conducted based on simple exponential
smoothing, and the DES formula was

S(2)
t = βS(1)

t + (1− β)S(2)
t−1 (10)

where S(2)
t and S(2)

t−1 represent the DES value in periods t and t−1; S(1)
t is the simple

exponential smoothing value in period t; β is smoothing coefficient (0 < β < 1).
The linear model prediction formula was

Yt+T = at + btT
at = 2S(1)

t − S(2)
t

bt =
β

1−β

(
S(1)

t − S(2)
t

) (11)

where Yt+T is the predicting value of period T.
The initial smoothing value can be determined by S(1)

0 = S(2)
0 = Y1.

The smoothing coefficient β represents the responding speed to time series changes,
determining the ability to predict and correct random errors. The determination of β should
meet the requirement of minimizing errors. Therefore, this work set a bunch of values for
the Fe and Mo concentration in each gearbox. Then, the best β value was chosen for the
combined model to avoid overfitting and underfitting.

3.1.3. Combined Model

A modified inverse-variance weighting method was developed where the relative
errors were used to calculate the variance. For the time series of Fe or Mo concentration
x(0), two independent predicting methods were used in this study. The GM (1,1) and DES
predicted series can be expressed by

{
x̂(0)1

}
and

{
x̂(0)2

}
, and the corresponding weights

were W1 and W2. Then, the combined prediction was

x̂(0) = W1 x̂(0)1 + W2 x̂(0)2 (12)

The corresponding weights W1 and W2 can be found by

W1 =
D−1

1
D−1

1 +D−1
2

W2 =
D−1

2
D−1

1 +D−1
2

(13)

where D1 and D2 are the average absolute value of the relative error for each predicted
sequence. They can be calculated by

D1 = 1
n

n
∑
i

∣∣∣[x̂(0)1 (i)− x(0)(i)]/x(0)(i)
∣∣∣

D2 = 1
n

n
∑
i

∣∣∣[x̂(0)2 (i)− x(0)(i)]/x(0)(i)
∣∣∣ (14)

3.2. Pre-Warning

To accurately diagnose the operation of the gearbox, the abnormal boundary value
of the monitoring parameters of the oil should be scientifically formulated based on the
prediction data. The statistical method and linear regression method showed great maneu-
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verability and reasonable accuracy so these two methods were applied to set the threshold
and discussed below.

3.2.1. Statistical Method

The Q-Q plot is shown in Figure 5 to verify the distribution type of Fe and Mo. The
R2 values indicate that Mo is close to normal distribution and Fe is close to lognormal
distribution.
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Therefore, the lognormal distribution can be transformed to normal distribution and
the confidence intervals can be applied to perform pre-warning. According to the normal
distribution properties, when the gearbox was under normal operation, the probability of
the tested value x(0) falling between x(0) ± 2σ and x(0) ± 3σ was 95.45% and 99.73%, respec-
tively. x(0) and σ are the mean value and standard deviation of Mo or lg(Fe) concentration
with n tests.

x(0) =
1
n ∑n

i=1 x(0)i (15)

σ =

√
1
n ∑n

i=1

(
x(0)i − x(0)

)2
(16)

With the "small-probability event" theory, x(0) ± 2σ can be set as the pre-warning
threshold, and x(0) ± 3σ can be set as the warning threshold. The detailed thresholds are
shown in Table 3.

Table 3. The threshold for normal, pre-warning, and warning conditions.

Conditions Threshold

Normal
(

x(0) − 2σ, x(0) + 2σ
)

Pre-warning
(

x(0) − 3σ, x(0) − 2σ] ∪ [x(0) + 2σ, x(0) + 3σ
)

Warning
(
−∞, x(0) − 3σ] ∪ [x(0) + 3σ,+∞

)
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3.2.2. Linear Regression Method

The linear regression method used tested values x(0) to fit a line x = A + Bt. The pre-
warning line and warning line can be created by x2 = A + Bt + 2S and x3 = A + Bt + 3S.
A and B can be estimated by the least square method. S can be found by

S =

√
∑n

i=1(xi − x)2 − B ∑n
i=1
(
ti − t

)
(xi − x)

n− 2
(17)

where x and t are the average of x and t.

4. Results and Discussion
4.1. Predicted Results and Discussion

The predicted results and their relative errors are shown in Figures 6 and 7 where
P1 is the inverse-variance weighting method using absolute errors and P2 is the modified
inverse-variance weighting method using relative errors in this study. Since the first two
values cannot be predicted by DES, all demonstrated values start from the third test. Table 4
gives the values of a and b for GM (1,1), smoothing coefficient β, and weights for P1 and P2.
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Figure 6. Comparison between tested and predicted results for Mo concentration, and their relative
errors. Concentration: (a) Gearbox 1; (b) Gearbox 2; (c) Gearbox 3. Relative error: (d) Gearbox 1;
(e) Gearbox 2; (f) Gearbox 3.

The GM (1,1) has practical meaning when the absolute value of the development
coefficient a is less than two. The model error increases rapidly with the development
coefficient increase.

For Mo concentration in gearbox 1, the average relative error of the DES prediction
model is the smallest, 8.098%, but there are a number of data points with obvious deviations,
and the maximum relative error is 35.67%. Whereas the maximum relative error of the
combined prediction model is smaller than other methods. The gearbox 2 prediction results
for Mo show that P1 has the smallest average relative error, 3.63%. The maximum relative
error is 9.36%. Results from P2 have a similar performance to P1. In gearbox 3 prediction,
the P2 demonstrates the best results. The average relative error is 1.375% and the maximum
relative error is 3.93%. P1 shows slightly lower accuracy than P2.
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Figure 7. Comparison between tested and predicted results for Fe concentration, and their relative
errors. Concentration: (a) Gearbox 1; (b) Gearbox 2; (c) Gearbox 3. Relative error: (d) Gearbox 1;
(e) Gearbox 2; (f) Gearbox 3.

Table 4. The coefficients and factors in predicted model.

Gearbox Item GM (1,1) β P1 P2

1
Mo a = 0.141; b = 1108.054 0.8 W1 = 0.434

W2 = 0.566
W1 = 0.354
W2 = 0.646

Fe a = −0.107; b = 19.047 0.9 W1 = 0.412
W2 = 0.588

W1 = 0.434
W2 = 0.566

2
Mo a = 0.105; b = 1059.818 0.55 W1 = 0.710

W2 = 0.290
W1 = 0.627
W2 = 0.373

Fe a = 242; b = 61.742 0.7 W1 = 0.752
W2 = 0.248

W1 = 0.616
W2 = 0.384

3
Mo a = 0.094; b = 1039.247 0.55 W1 = 0.479

W2 = 0.521
W1 = 0.461
W2 = 0.539

Fe a = 0.192; b = 43.501 0.75 W1 = 0.713
W2 = 0.287

W1 = 0.594
W2 = 0.406

For Fe concentration in gearbox 1, P1 and P2 predicted similar results. The average
relative error is about 15%, which is much better than GM (1,1) and DES. The maximum
relative error is about 30%, much smaller than the GM (1,1) and DES predicted results.
Similar predicting results can be found for gearbox 2. The average relative error of predicted
Fe concentration for P1 is the smallest and P2 shows close predicted values to P1. The
average relative error is also about 15%, much lower than the single predicting method.
Predictions for the gearbox 3 Fe concentration obtain the best accuracy. The P2 method
achieves a maximum relative error of 3.93% and an average relative error of 1.375%.

Generally, the combined prediction models perform much better than the single
prediction model in both single value and overall trend. P2 and P1 show similar predicted
results but P2 has slightly better accuracy than P1.

To further verify the combined predicting model, the model was applied to predict
the next value of Mo and Fe, and then compared with the results of test 9. The results are
shown in Figure 8. It can be seen that the predicted results with the proposed method
match well with the tested value.
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Figure 8. Comparison between tested and predicted results for test 9. (a) Concentration for Mo;
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4.2. Pre-Warning Results and Discussion

Based on the statistical method and linear regression method, tested data from eight
time periods were used to obtain the normal threshold, pre-warning, and warning threshold.
The lower threshold of the Fe concentration and the upper threshold of Mo are neglected in
the results below and discussion because these two thresholds cannot indicate oil properties.
Then, the test 9 data were used to compare with the threshold and forecast the working
conditions of gearboxes. The thresholds and comparisons are shown in Figures 9 and 10.
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The results indicate that for gearbox 1, the predicted Mo concentration is in the pre-
warning region, and Fe concentration is at the edge of the pre-warning region, with the
statistical method. The linear regression method also shows gearbox 1 is in the boundary
of the pre-warning condition. The combination of these two pre-warning results implies
gearbox 1 may not be in good condition. While for the prediction results for gearbox 2 and
gearbox 3, results show the gearboxes are in normal condition. To verify the prediction, an
endoscope inspection of gearbox 1 was performed and the inspection results are shown
in Appendix A. The endoscope inspection indicates some wear in the gears, particularly
the third-stage gear surface, which verifies the fault pre-warning method proposed in
this study.

5. Conclusions

This work studied gearbox oil monitoring and fault pre-warning of three wind turbines
operating in a wind farm for 3.5 consecutive years. A combined predicting method was
proposed in which GM (1,1) and DES were weighted by different weights, and the predicted
results were verified by the tested results. From the perspective of relative error, the
combined prediction model was improved to reduce the prediction error. The error was
reduced by 10% compared with the single prediction method. Additionally, the relative-
error-based combined predicting method was also a little more accurate than the absolute-
error-based combined method. Both the statistical method and linear regression method
were applied to build the pre-warning scheme. Through analyzing the oil inspection data of
wind turbines 1, 2, and 3, it was found that the data of wind turbine 1 were in the warning
range. Through the endoscope inspection of gearbox 1, the wear of some parts was found.
It showed slight scratches on the bearings of the second-stage planetary gear. Slight wear
also appeared on the front and rear bearings of the third-stage big gear, and on the front
bearings of the third-stage small gear. It was worth noting that apparent wear appeared on
the gear surface of the third-stage big gear, and small gear. These results of the endoscope
inspection validated the pre-warning model. The research outcomes provide a quick and
easy technique for wind turbine operation and maintenance.

The proposed method also has some drawbacks, such as the model can only predict the
next period of results, and could not accurately predict further results due to the limitations
of GM. Therefore, models with time series-based capabilities can be joined to make a
more powerful combined model, and this could be future work for offline monitoring
and prediction.
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Appendix A. The Endoscope Inspection Results 

The main shaft bearing (Normal) 

 
Bearings of the first-stage planetary gear (Normal) 

 

Bearings of the second-stage planetary gear (Slight scratch) 

  
Front bearings of the third-stage big gear (Slightly worn) 

Figure A1. Cont.



Sustainability 2023, 15, 3802 14 of 16Sustainability 2023, 15, x FOR PEER REVIEW 14 of 16 
 

  
Rear bearings of the third-stage big gear (Slightly worn) 

  
Front bearings of the third-stage small gear (Slightly worn) 

  
Rear bearings of the third-stage small gear (Normal) 
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