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Oil Palm Mapping Over Peninsular Malaysia using Google Earth Engine 

and Machine Learning Algorithms

Abstract

Oil palm plays a pivotal role in the ecosystem, environment, economy and without proper monitoring, 

uncontrolled oil palm activities could contribute to deforestation that can cause high negative impacts 

on the environment and therefore, proper management and monitoring of the oil palm industry are 

necessary. Mapping the distribution of oil palm is crucial in order to manage and plan the sustainable 

operations of oil palm plantations. Remote sensing provides a means to detect and map oil palm from 

space effectively. Recent advances in cloud computing and big data allow rapid mapping to be 

performed over large a geographical scale. In this study, 30 m Landsat 8 data were processed using a 

cloud computing platform of Google Earth Engine (GEE) in order to classify oil palm land cover 

using non-parametric machine learning algorithms such as Support Vector Machine (SVM), 

Classification and Regression Tree (CART) and Random Forest (RF) for the first time over 

Peninsular Malaysia. The hyperparameters were tuned, and the overall accuracy produced by the 

SVM, CART and RF were 93.16%, 80.08% and 86.50% respectively. Overall, the SVM classified the 

7 classes (water, built-up, bare soil, forest, oil palm, other vegetation and paddy) the best. However, 

RF extracted oil palm information better than the SVM. The algorithms were compared and the 

McNemar’s test showed significant values for comparisons between SVM and CART and RF and 

CART. On the other hand, the performance of SVM and RF are considered equally effective. Despite 

the challenges in implementing machine learning optimisation using GEE over a large area, this paper 

shows the efficiency of GEE as a cloud-based free platform to perform bioresource distributions 

mapping such as oil palm over a large area in Peninsular Malaysia.

Keywords: cloud computing; image classification; Landsat; machine learning; oil palm

1. Introduction

Malaysia is a Southeast Asian country sharing borders with Thailand, Indonesia and Brunei. 

Malaysia is a tropical country with two geographical regions: Peninsular Malaysia and 

Borneo (Sabah and Sarawak). It experiences a humid, hot and rainy climate throughout the 

year, experiencing temperature ranging between 23°C – 32°C throughout the country. This 
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allows Malaysia to generate income from agricultural crop activities such as paddy 

cultivation, rubber and oil palm planting (Fahmi et al. 2013; Nambiappan et al. 2018).Among 

the agricultural crops, oil palm produces the highest amount of biomass, and as one of the 

largest palm oil exporters in the world, the total number oil palms planted in Malaysia 

reached over 5 million hectares (ha) in 2017 (Ng et al. 2012).  Moreover, oil palm was the 

main contributor of agricultural crops to the country’s GDP in 2017 with a total contribution 

of 46.6% (Mahidin 2018). Despite its benefits, oil palm activities contributed to massive 

deforestation and caused negative impacts to the environment (Fitzherbert et al. 2008) and 

therefore, oil palm activities have been labelled as the main threat to the earth by contributing 

to the global warming and climate change (Shuit et al. 2009). Destroying wildlife habitats and 

forests for planting oil palm trees have worsened the negative implications. Even though 

palm oil can be used as a renewable energy source and help contribute to the 17 Sustainable 

Development Goals as presented by the United Nations, it is important to note that the 

environment will be in jeopardy without proper management and monitoring on the oil palm 

industry, which will in turn affect environmental sustainability. However, managing huge 

areas of oil palm plantations will be challenging. Furthermore, implementing ground surveys 

or other traditional survey methods will require a tremendous amount of time, effort and high 

cost. A number of people are required to execute data collection over a large area and 

therefore, high computational power will be essential to process such big data. Hence, the 

utilisation of remote sensing is a suitable and a cost-effective method for collecting data 

covering a huge area.

The use of remote sensing for oil palm applications can be found in many publications 

using a variety of sensors, platforms and algorithms. For example, Thenkabail et al. (2004) 

used four bands with 4 m of spatial resolution from IKONOS to carry out a study on oil palm 

biomass estimations and carbon stock calculations. Before implementing image 
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classification, the band was first masked by extracting the oil palm feature from non-oil 

palms. Next, Gutiérrez-Vélez and DeFries (2013) utilised MODIS data with 250 m of pixel 

size and successfully produced an oil palm map covering an area of 939,204 km2. Another 

similar study using MODIS data was conducted on a larger study area covering several 

regions in Southeast Asia including Peninsular Malaysia, Sumatra, Java, Borneo, Sulawesi 

and Mindanao. The study has successfully classified a total of 13 classes together with 

mangrove forests, rainforests and large-scale palm plantations (Miettinen et al. 2012). This 

indicated that studies using coarse spatial resolution can be implemented in oil palm studies. 

On the other hand, using higher spatial resolution data, analysis on oil palm studies can be 

improved and more information can be extracted. Jusoff and Pathan (2009) and Shafri and 

Hamdan (2009) used hyperspectral sensor to map individual oil palm trees. A more subtle 

analysis was conducted by Shafri et al. (2011) via Maximum Likelihood Classifier (MLC) 

and successfully detected Ganoderma disease infections in the plantations with an overall 

accuracy of 82%. More recently, the high spectral resolution as provided by hyperspectral 

data has allowed Camacho et al. (2019) to successfully produce an oil palm map 

distinguishing healthy from diseased palm trees.

In terms of classification algorithms, Morel et al. (2012) have successfully 

distinguished between forest and oil palm areas on Landsat data using k-means and MLC 

algorithms. Then, Glinskis and Gutiérrez-Vélez (2019) used MLC algorithm to classify oil 

palm and successfully categorised it into 3 stages (infant palm, juvenile palm and adult palm) 

via Sentinel 1 and 2 data. Studies using more advanced algorithms or approaches such as 

Support Vector Machine (SVM), Random Forest (RF), Deep Learning, Artificial Neural 

Network (ANN) and other machine learning algorithms to classify oil palm land cover tend to 

produce better results (Nooni et al. 2014; Li et al. 2015; Lee et al. 2016; Noi and Kappas 

2018). For example, Cheng et al. (2016) performed land cover classifications on Landsat and 
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ALOS-PALSAR remote sensing data via SVM and Minimum Distance algorithms. The 

classifications were applied on two different sites, and the overall accuracies produced by 

SVM were higher than Minimum Distance for both Landsat and ALOS-PALSAR data. 

Cheng et al. (2018) expanded the oil palm classification on larger areas covering Malaysia, 

Indonesia, Thailand, Nigeria and Ghana using ALOS-PALSAR data. The study achieved an 

overall accuracy of more than 94% for all the aforementioned countries. A review of studies 

on fusion techniques between optical and radar data to map land use was conducted by Joshi 

et al (2016) and it showed that fusion techniques are efficient for cloud issue. De Alban et al 

(2018) combined Landsat and L-band Synthetic Aperture Radar (SAR) data to carry out land 

use land cover change application in tropical landscapes. A machine learning RF algorithm 

was used to classify the land use and the accuracy obtained was 92.96% to 93.83%. However, 

fusion technique requires large amount of time and data to produce the cloud-free image.

As shown above, there have been several oil palm studies using various remote 

sensing data, however, most of the studies were limited to small areas (Li et al. 2016; Chong 

et al. 2017; Charters et al. 2019; Fawcett et al. 2019) and utilised personal computers, 

requiring the ability to store data and perform image processing using remote sensing 

software that were mostly commercial. Data obtained from the impacts of oil palm activities 

that were conducted on small areas are not suitable and insufficient to be used for measuring 

the sustainability level for a huge area, especially for the whole country. On the other hand, 

the utilisation of very high-resolution images on big areas will be costly in addition to 

requiring high computational power which will be essential to process the data. Even so, GEE 

cloud computing provides an alternative to process huge amount of geospatial data with zero 

cost and without the need to personally store the data on the personal computer. Sidhu et al. 

(2018) performed land cover change analysis in Singapore’s landmass via GEE and the result 

showed that the forest cover was affected by the monsoon cycles. Another study by Oliphant 
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et al. (2019) to map cropland over Southeast and Northeast Asia via Landsat was carried out 

using GEE, but no specific crops (e.g. oil palm, paddy and others) are mapped. In Malaysia, 

first ever effort to map oil palm over the Peninsular Malaysia using cloud computing platform 

was done using the Remote Ecosystem Monitoring Assessment Pipeline (REMAP) tool as 

conducted by Shaharum et al. (2019). However, it was limited to only the use of RF 

classifier, limiting the investigation of the performance of other machine learning algorithms. 

Furthermore, as the toolbox is not programmable, the parameters of the classifier cannot be 

optimized or tuned accordingly. In addition, the imagery data used in REMAP was fixed and 

cannot be filtered to produce the best cloud-free data. In addition, the GEE algorithms were 

run in code editor module, allowing more optimization parameters to be tested for 

classification. To the best of our knowledge, there has been no report on the utilisation of 

GEE for oil palm mapping over the entire Peninsular Malaysia. Hence, this study was 

conducted to test the capability of 30 m Landsat data using the GEE cloud computing 

platform and compare machine learning algorithms such as SVM, CART and RF to map oil 

palm land cover over Peninsular Malaysia covering an area of 132,265 km2. Even though 

there are many available remote sensing data and techniques available to classify the oil palm 

plantation, selecting the best technique will be vital.

2. Material and Methods

2.1 Study area

Malaysia is located between Thailand, Singapore and Indonesia. It comprises of two regions: 

Peninsular Malaysia and Borneo (Sabah and Sarawak). This study covers Peninsular 

Malaysia (N 4°00'0.00", E 102°29'59.99"; Fig 1) or West Malaysia with an approximate land 

area of 132,265 km2. Malaysia is a tropical country experiencing both hot and humid weather 
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throughout the year. The temperature ranges between 23°C – 32°C and during hot weather, 

the temperature can exceed over 40°C (Shahar 2016). 

[Figure 1 near here]

2.2 Google Earth Engine

Vast amount of the geospatial remote sensing data provided in the GEE has allowed the 

powerful cloud-based platform to be used in various studies involving deforestation, oil palm 

plantations, environmental assessment, change detection and urban classifications (Patel et al. 

2015; Dong et al. 2016; Goldblatt et al. 2016; Shelestov et al. 2017). GEE can be accessed 

either through Application Programming Interface (API) or web-based Interactive 

Development Environment (IDE) (Gorelick et al. 2017). The data catalog provided in the 

GEE houses a multi-petabyte accessible geospatial dataset that is made up of Earth-observing 

remote sensing images, including Landsat, MODIS, Sentinel-1 and Sentinel-2.

[Figure 2 near here]

Figure 2 shows the GEE platform via Javascript API and it allows the user to control the data 

through coding. The user can write the programs using client libraries in Python and 

Javascript (programming languages). Furthermore, the client libraries provide objects for 

Images, Collections and other data types. In fact, the user can perform various remote sensing 

analyses in the GEE API platform such as image classifications, multitemporal urban extents, 

post-processing and object detection. Enormous amount of Earth Engine public data catalog 

provided in the cloud-based GEE platform helps the user to process very large geospatial 
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datasets without having to suffer the information technology pains including the need of high 

computational power resources and huge amount of storage.

2.3 Data collection and pre-processing

The availability of 30 m Landsat 8 images for the study area were obtained from the United 

States Geological Survey through the GEE platform (Roy et al. 2014). The images were 

already being pre-processed and corrected at Top-Of-Atmosphere (TOA) reflectance as 

explained by Chander et al. (2009) by converting at sensor (spectral radiance) to 

exoatmospheric TOA reflectance. The benefits of using images that have been corrected at 

TOA reflectance are it compensates for different values of the exoatmospheric solar 

irradiance occur from spectral band differences and the TOA reflectance can eliminate the 

cosine effect of different solar zenith angles due to the time difference between data 

acquisitions.  Also, it corrects the dissimilarity in the Earth–Sun distance between different 

data acquisition dates.

[Table 1 near here]

This study utilised only 7 bands of Landsat 8 with 30 m spatial resolution (see Table 1). 

Landsat 8 data is obtained via passive remote sensing, and it is sensitive towards clouds. 

Several Landsat 8 images taken from year 2016 and 2017 were patched together to attain the 

missing information that were blocked by the clouds. The existence of clouds can affect the 

quality of the remote sensing data and furthermore, the information beneath the cloud will be 

unclassified. The utilisation of commercial remote sensing software to perform image 

patching on a huge area consumes significant resources and time (Gambo et al. 2018; 
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Shaharum et al. 2018). However, the GEE platform allows the user to perform data 

acquisition and image patching in a few seconds. Furthermore, it allows the user to set the 

percentage of the cloud cover and the desired date of the satellite data to be used. 

3. Methodology

Several geospatial datasets were utilised in this study to produce the oil palm land cover maps 

over Peninsular Malaysia: (i) 30 m Landsat 8 data from 2016 to 2017 (7 original bands) (ii) 

Shuttle Radar Topographic Mission (SRTM), Digital Elevation Model (DEM), (iii) 

Additional data including NDVI, Normalised Difference Water Index (NDWI) and others. 

The workflow adapted for this study is shown in Figure 3.

[Figure 3 near here]

This study compared 3 different machine learning algorithms (SVM, RF and CART), and a 

total of 7 classes including oil palm were classified. The importance of oil palm plantation 

has been discussed in the introduction and therefore, this study focuses on producing oil palm 

land cover map. Moreover, the land cover map produced can later be used in the next study to 

assess the impacts of oil palm plantation over Peninsular Malaysia. 

3.1 Data used for classification

As illustrated in Table 1, a total of 7 bands obtained from Landsat 8 images were used and 

these bands were used to generate additional data (see Table 2).  A number of equations were 

used to produce additional data that will be included together with the other 7 bands to be 

used in the image classification stage.

[Table 2 near here]
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The layers in Table 2 were stacked together with Landsat 8 bands (Table 1) to be used in the 

classification process.  These additional layers are capable of extracting a certain information 

in a more efficient way. For example, NDVI is derived from the ratio between Red and Near-

infrared (NIR) reflectance bands. Furthermore, NDVI is sensitive towards chlorophyll 

content and the green leaf density. The presence of chlorophyll in green vegetations absorbs 

in the red band. Hence, NDVI is useful to extract information of the green vegetations on the 

ground (Bro-Jørgensen et al. 2008).

3.2 Sampling

Samples were created in the GEE platform and a total of 7 classes were identified: water, 

built-up, bare soil, oil palm, forest, other vegetation and paddy. The samples were created 

using the point format for every state in Peninsular Malaysia, covering a total of 11 states via 

random sampling. The samples were created with the aid of land cover map provided by the 

Department of Agriculture (DOA) and high-resolution Google Earth images as shown in 

Figure 4(a). The samples were then divided into two components: training and testing. A total 

of 70% from the whole created samples (4307 points) were used to classify the Landsat 

images and the remaining 30% of the samples (1846 points) were used to validate and assess 

the accuracy of the algorithms used. The classification and validation were done in GEE and 

the accuracy assessment was calculated using the common confusion matrix method.

[Figure 4 near here]
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3.3 Supervised machine learning algorithms

3.3.1 Support Vector Machine

Supervised classification can be conducted using machine learning and non-machine learning 

algorithms. SVM is a type of supervised machine learning algorithm that works well in 

classification and regression. It uses a hyperplane (see Figure 5) to divide the support vectors 

to distinctly classify the data points, and there are many possible ways for the hyperplane to 

separate the support vectors in which, the main objective of SVM is to find the hyperplane 

that has the maximum margin (separate support vectors of both classes at a maximum 

distance) (Maxwell et al. 2018). 

[Figure 5 near here]

SVM comprises of several hyperparameters: kernel type, gamma and penalty value. These 

hyperparameters can be tuned and adjusted to improve the performance of SVM in image 

classification.

3.3.2 Classification and Regression Tree

The CART is similar to DT. CART, which is a type of supervised machine learning 

algorithm that forms a binary decision tree. It involves the identification and construction of 

the tree using the training samples for which the correct classification is unknown. The 

decision tree starts with a root node derived from any variable in the feature space and 

minimises a measure of the impurity of the two sibling nodes (see Figure 6). Then, the 

decision tree grows by means of the successive subdivisions until it reaches a stage where 
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there is no significant reduction in the measure of impurity when further division is 

implemented (Bittencourt and Clarke 2003; Jiang et al. 2010).

[Figure 6 near here]

The decision tree is made of multilevel and multi-leaf nodes and the decision tree will 

undergo a pruning process once it is constructed. The constructed trees are often over-fit 

because an excessive number of nodes and branches are often being created. Therefore, the 

tree can be pruned by controlling the parameters or thresholds for the new branches (Calbury 

2016).

3.3.3 Random Forest

RF or Random Decision Forest is a non-parametric machine learning algorithm that can be 

used in both classification and regression analysis. It is a type of ensemble learning algorithm 

that ensembles a number of decision trees and forms a forest (see Figure 7). This algorithm 

combines random features or a combination of features at each node to grow a tree. The 

bagging method is used in this algorithm to generate the training samples, and each selected 

feature is drawn randomly by the replacement of N (size of original training set) examples. 

The examples are classified based on the highest voted class produced from all the trees in 

the forest (Pal 2005).

[Figure 7 near here]

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708



One of the most frequently used attributes in the decision tree induction is the Gini Index. For 

a given training set T, selecting one case (pixel) at random and assuming that it belongs to 

some class Ci, the expression can be written as:∑ ∑𝑗 ≠ 𝑖(𝑓(𝐶𝑖,𝑇)/|𝑇|)((𝑓(𝐶𝑗,𝑇)/|𝑇|)
where f (Ci, T)/|T| is the probability that the selected case belongs to class Ci. Gini Index acts 

as an attribute selection measure in RF that measures the impurity of an attribute with respect 

to the classes. Since RF works by assembling a number of trees, whereby N is to form a 

forest, the value of N can be defined by the user to get the best output of the classification. 

The RF algorithm can use a large number of trees in the ensemble and as a result, it works 

well in high dimensional data (Gislason et al. 2006).

3.3.4 Hyperparameters optimisation

Every algorithm has its own built-in hyperparameters/parameters that can be adjusted and 

further tuned to improve its performance. A hyperparameter is a parameter which contains a 

value that is set or defined before performing any learning process, and different model 

training algorithms consist of different hyperparameters. In this study, the hyperparameters in 

SVM, CART and RF algorithms were optimised in GEE, and the involved hyperparameters 

were tabulated in Table 3.

[Table 3 near here]

These hyperparameters are tuneable and can directly affect the robustness of the learning 

models, thus optimisation of the hyperparameters is required to achieve the best performance 

level of the algorithms. The identification of the hyperplane in SVM can be due to the type of 

kernel, k: Linear, Radial basis function, Polynomial and Sigmoid.  Kernels are used to solve a 
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non-linear problem in a higher dimension and is usually referred to as kernel trick (Afonja 

2017).  Gamma, g is the hyperparameter in SVM that defines how far the influence of a 

single training example reaches. A high value of gamma considers only nearby points (near 

identified hyperplane) in the calculation. Conversely, low gamma considers far away points 

to be included in the calculation for the separation of the hyperplane (Patel 2017). As for the 

penalty or regularisation hyperparameter, C in SVM is to avoid misclassification in the 

learning model. A larger value of C tells SVM to produce a smaller-margin hyperplane and 

on the contrary, a small value of C enlarges the margin of the hyperplane.

[Figure 8 near here]

In this study, a total of four hyperparameters were fine-tuned in CART. Firstly, the cross-

validation factor, cv in CART partitions of the training samples were tuned into K (number of 

folds) equally sized subsamples. Assuming that the training samples were divided into 10 

folds of subsamples, 9 of the subsamples are used as training data and the other 1 subsample 

as validation as shown in Figure 8 (Ivanovic 2016). Then, max depth, d is used to determine 

the maximum of the tree depth in the model. The number of terminal nodes increases 

proportionally to the depth of the tree. For d equals to 1 will have 2 terminal nodes, and d 

equals to 2 will have a maximum of 4 nodes. The maximum of the nodes in a tree depends on 

the depth of the tree by implementing the rule of 2 to the power of d (Molnar 2016). 

Minimum leaf population is used to set the minimum number of samples for a terminal node 

(leaf) and minimum split population is set to define the minimum the number of sub-nodes to 

be divided by a node (Brid 2018). Finally, the average produced using the arithmetic mean 

and the class probabilities taken from the hyperparameter in RF, namely number of trees, t set 

in the model will be the final classification decision (Pal 2005; Belgiu and Drăguţ 2016).
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3.4 McNemar’s test

McNemar’s test is a statistical test that applies to 2 x 2 contingency table. Sometimes, it is 

known as McNemar’s Chi-Square test because it has a chi-square distribution. McNemar’s 

test is conducted to determine whether if there are differences on a dichotomous dependent 

variable between two related classifiers or groups (Pal et al. 2013). The McNemar’s test has 

been used by Yu et al. (2017) to determine the difference between classifications based on 

other pairs of features. Duro et al. (2012) performed McNemar’s test to compare the 

classification results between DT, RF and SVM via object-based and pixel-based techniques. 

The result showed that the p-value via object-based was statistically significant (p < 0.05) 

when comparing DT with either RF or SVM. On the other hand, no statistically significant 

difference (p > 0.05) was produced when comparing the results obtained from different 

algorithms via pixel-based technique.

4. Results and Discussion

4.1 Land cover classifications

This study was aimed to produce an oil palm land cover map over Peninsular Malaysia by 

comparing SVM, CART and RF machine learning algorithms in the GEE platform. A total of 

7 classes (water, built-up, bare soil, forest, oil palm, other vegetation and paddy) were 

classified. However, the classification output analysis emphasized only on oil palm because 

the produced oil palm map will later be used to evaluate the spatial distribution of oil palm in 

Peninsular Malaysia and will be included into a Geographic Information System (GIS) 

database for further analysis. The hyperparameters were optimised and classified maps 

produced by the algorithms are shown in Figure 9.
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[Figure 9 near here]

The hyperparameters optimisation was carried out in the GEE. A grid search method was 

implemented for each algorithm to find the best hyperparameters to be used for the 

classification (Gupta et al. 2018). Generally, the hyperparameters used to produce the outputs 

for each algorithm are as shown in Table 3. 

In this study, 7 classes were identified in which, water classified features with water elements 

such as lakes, sea, rivers and ponds. Built-up classified buildings, metals, concretes and 

roads. Then, bare soil classified features that are bare land, open areas and places full of sand 

or soil (such as construction site). Oil palm classified oil palm trees while other vegetation 

classified features other than oil palm and forests such as shrubs, other crops and plantations. 

Since the aim of this study was to test the performance of machine learning algorithms to 

extract oil palm plantation from 30 m Landsat 8 images in the cloud-based, GEE platform, 

additional information such as NDVI, NDWI and slope were included to enhance the 

classification, especially in distinguishing one class from another. The produced oil palm map 

provides the information on the oil palm distribution for 2017 and furthermore, the map can 

later be used in the future studies such as to evaluate the impact of oil palm land cover in 

detailed.

4.2 Overall accuracies and land cover maps comparison

A total of 30% of testing samples (water: 213, built-up: 311, bare soil: 126, forest: 470, oil 

palm: 331, other vegetation: 276 and paddy: 119) were used to validate the classified land 

cover maps, and the overall accuracies obtained for each state were calculated (see Table 4). 

The total area of oil palm in Peninsular Malaysia produced by CART, RF and SVM were 
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3005758 ha, 2795287 ha and 2924434 ha respectively. Table 4 indicates that SVM produced 

the highest overall accuracy with an average of 93.16%. That is followed by the overall 

accuracies produced by RF and CART with an average of 86.50% and 80.08% respectively. 

The overall accuracies produced were calculated via confusion matrix based on the 

accuracies of the 7 classified classes.
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[Table 4 near here]
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[Table 5 near here]
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By referring to the inventory provided by the Malaysia Palm Oil Board (MPOB), the area of 

oil palm plantations produced by SVM, CART and RF were compared for each state in 

Peninsular Malaysia. Table 5 shows the difference of oil palm area produced by SVM, CART 

and RF by comparing the generated results with the MPOB inventory. However, the 

limitation of 30 m coarse resolution data, RF, CART and SVM have overestimated the oil 

palm area and misclassified other classes as oil palm land cover. Based on the classified oil 

palm areas tabulated in Table 5, most of the states overestimated the oil palm areas. Kedah 

overestimated more than 60000 ha and followed by Selangor with an overestimation of more 

than 56000 ha of oil palm area. Then, the result showed that at least 1000 ha of land area was 

misclassified as oil palm in Perlis. This is because the misclassified pixels were due to the 

similarity of the reflectance value of the pixels. Therefore, the pixels that were misclassified 

as oil palms have contributed to the overestimation of the oil palm area for the 

aforementioned states. Conversely, all three algorithms underestimated the oil palm area for 

Melaka. Overall, all the machine learning algorithms, SVM, RF and CART overestimated the 

oil palm area for Peninsular Malaysia. Although SVM produced the highest overall accuracy, 

RF produced the least errors in comparison with the MPOB inventory in oil palm 

classification by producing an overall error of 0.03%, followed by SVM and CART with 

0.08% and 0.11% for the whole oil palm area of Peninsular Malaysia respectively. 

Furthermore, RF classified oil palm land cover and produced the nearest result (oil palm area) 

to the MPOB inventory for most of the states: Negeri Sembilan, Pulau Pinang, Kedah, 

Pahang, Perak, Perlis and Terengganu. Then, CART extracted the most accurate oil palm 

areas for Johor and Kelantan, and SVM extracted the best for Melaka.

This study had tested the performance of three algorithms (CART, RF and SVM) with 

fine-tuned hyperparameters on 30 m Landsat data, and managed to produce oil palm land 
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cover maps over Peninsular Malaysia using a cloud-based platform, GEE. The powerful 

cloud computing platform, GEE has made mapping oil palm land cover over Peninsular 

Malaysia using Landsat data possible. However, this study has confronted a few setbacks. 

Firstly, the utilisation of 30 m spatial resolution data might produce errors due to mixed 

pixels and furthermore, there might be more than one class in a single pixel. Then, the 

similarity of the reflectance between other vegetation and oil palm as well as between bare 

soil and built-up had caused confusion in the classification. Furthermore, the images used 

were the result from image patching, in which the product might contain errors in the pixels, 

hence reducing the quality of the image. Peninsular Malaysia is a huge area, and to obtain a 

single cloud-free image for a tropical region covering such huge area is merely impossible. 

Thus, image patching is one of the alternatives to obtain an almost cloud-free data. Therefore, 

it is challenging to ensure the quality of optical data, especially when it involves huge tropical 

area.

         

[Figure 10 near here]
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[Figure 11 near here]
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Figures 10 and 11 are the selected focused regions in Pulau Pinang and Selangor respectively 

that were classified by CART, RF and SVM. The feature (in the red box) showed in Figure 

10(a) is oil palm trees. Based on the classified images (Figures 10(b), 10(c) and 10(d)), the 

result showed that SVM misclassified most of the oil palm pixels as other vegetation. 

Furthermore, SVM misinterpreted the bare soil pixels with built-up in Selangor as shown in 

Figure 11(d). On the other hand, the oil palm and bare soil pixels for both areas (Selangor and 

Pulau Pinang) were found to be well classified by CART and RF. These findings showed that 

the utilisation of additional layers (NDVI, NDWI and others) in the tree methods 

implemented in RF and CART is more efficient. In addition, both tree-based algorithms (RF 

and CART) can classify the pixels better than the SVM that works via maximizing the 

hyperplane. Moreover, the failure of SVM algorithm in separating the support vectors had led 

to classification errors. As for RF and CART, the RF algorithm has improved the 

classification as the trees in the RF were ensembled into a forest, and finally the classes were 

defined based on the majority vote. Although Figures 10 and 11 showed that SVM 

misclassified oil palm and bare soil pixels, the best algorithm to classify all the 7 classes for 

the whole Peninsular Malaysia is SVM. However, by comparing all three machine learning 

algorithms, this study agreed that RF extracted oil palm class the best for the whole 

Peninsular Malaysia.

4.3 McNemar’s test

McNemar’s test has been carried out in this study to measure the significance between the 

classification of SVM and CART, SVM and RF and CART and RF. The 2 x 2 contingency 

table as tabulated in Table 6 was used to calculate the p-values.
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[Table 6 near here]

The null hypothesis of this test states that the probability of Test 1 being correctly classified 

is equal to the probability of Test 2 being correctly classified. Also, the probability of Test 1 

being incorrectly classified is equal to the probability of Test 2 being incorrectly classified. In 

other words, Pa + Pb = Pa + Pc or Pb + Pd = Pc + Pd, which leads to Pb = Pc.

Pa = Probability of Test 1 being positive and Test 2 being positive

Pb = Probability of Test 1 being positive and Test 2 being negative

Pc = Probability of Test 1 being negative and Test 2 being positive

Pd = Probability of Test 1 being negative and Test 2 being negative

The p-value will be calculated and the value of p < 0.05 is considered as a significant result, 

thus rejecting the null hypothesis. In this study, calculations of the p-value using the formula 

demonstrated by Foody (2004) were conducted for all the algorithms and the results are 

tabulated in Table 8. 

[Table 7 near here]

The p-value obtained when comparing between SVM and RF is 0.28 (p > 0.05), while the 

other two comparisons obtained values of p < 0.05. Due to the robustness and powerful 

machine learning algorithms, SVM and RF algorithms can classify the pixels well. Hence, the 

comparison between SVM and RF gave a non-significant p-value > 0.05 and thus, accepted 

the null hypothesis.

5. Conclusion

In this study, we utilised 30 m Landsat data in the GEE platform to produce oil palm land 

cover maps over Peninsular Malaysia. The GEE platform is controllable and it provides 
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options especially in selecting the processing methods, algorithms and data input. 

Furthermore, it allows users to design the workflow based on their needs. In this study, three 

machine learning algorithms were used and the hyperparameters were tuned. Accuracy 

assessments for the classified maps were conducted using high-resolution Google Earth 

images and the map provided by the DOA. The comparison of the classified oil palm areas 

with the inventory provided by MPOB has shown that there is a large uncertainty of oil palm 

land cover in Perlis, Kedah and Selangor. Overall, CART, SVM and RF were able to classify 

the land cover maps and produced acceptable results by producing an overall accuracy of 

80.08%, 93.16% and 86.50% respectively. Then, McNemar’s test was conducted and it 

showed that significant p-values were obtained when comparing CART to both SVM and RF. 

However, the test showed a non-significant value when comparing between RF and SVM. 

This shows that both methods can reliably be used to produce high accuracy maps in GEE 

and later be used to classify other crops. Moving on, such timely and high accuracy estimates 

of oil palm areas could be embedded with other ancillary GIS data for a variety of monitoring 

and decision-making applications, including yield prediction, supply-chain logistics, 

commodity markets, bioenergy estimation and more.

 

GEE provides various geospatial data including Sentinel 2, Sentinel 1 and MODIS. 

The utilisation of higher spatial resolution data such as Sentinel 2 with 20 m to 10 m of pixel 

size can be tested to improve the classification. Moreover, Sentinel 1 works with active 

sensors, and it is suitable to be used on tropical regions. The integration of Sentinel 1 data in 

the GEE platform can reduce the time needed to process huge amounts of radar data. On top 

of that, there are many more methods available in GEE to pre-process remote sensing data, in 

which some methods might produce good results and able to improve the accuracy of the 
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data. In addition, the programmable platform produces the possibilities for the cloud 

computing GEE to be integrated with the powerful deep learning methods.
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Figure 1. Location of the study area: Peninsular Malaysia.



Figure 2. The Earth Engine Javascript API.



Figure 3. Methodological steps conducted for this study.



Figure 4. (a) High-resolution Google Earth image, (b) Landsat 8 image.



Figure 5. Optimal hyperplane identification in SVM.



Figure 6. The division of the tree in CART.



Figure 7. Example of trees ensemble in the RF structure.



Figure 8. Subsamples in cross validation.



Figure 9. Classified oil palm land cover maps of Peninsular Malaysia, (a) CART, (b) RF and 

(c) SVM.
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Figure 10. (a) High-resolution Google Earth image, (b) CART, (c) RF and (d) SVM.
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Figure 11. (a) High-resolution Google Earth image, (b) CART, (c) RF and (d) SVM.
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Table 1. Information of the Landsat 8 bands.

Name Description Pixel size (m) Wavelength (μm)

Band 1 Coastal aerosol 30 0.435 - 0.451

Band 2 Blue 30 0.452 - 0.512

Band 3 Green 30 0.533 - 0.590

Band 4 Red 30 0.636 - 0.673

Band 5 Near Infrared 30 0.851 - 0.879

Band 6 Short-wave Infrared 1 30 1.566 - 1.651

Band 7 Short-wave Infrared 2 30 2.107 - 2.294



Table 2. Additional layer to be included for classification.

Name Formula Reference/Source

NDVI 𝑁𝐼𝑅 ‒ 𝑅𝑒𝑑𝑁𝐼𝑅+ 𝑅𝑒𝑑 (Bannari et al., 1995; 

Maselli, 2004)

NDWI 𝐺𝑟𝑒𝑒𝑛 ‒ 𝑁𝐼𝑅𝐺𝑟𝑒𝑒𝑛+ 𝑁𝐼𝑅 (Xu et al., 2010)

Blue Red 𝐵𝑙𝑢𝑒 ‒ 𝑅𝑒𝑑
Blue Green 𝐵𝑙𝑢𝑒 ‒ 𝐺𝑟𝑒𝑒𝑛 (Murray et al., 2018)



Table 3. Hyperparameters involved.

Algorithm Hyperparameter

SVM Kernel type = Radial Basis Function

Gamma = 0.7

Penalty value = 10

CART Cross validation factor = 5

Max depth = 10

Minimum leaf population = 5

Minimum split population = 10

RF Number of trees = 30



Table 4. Overall, producer’s and user’s accuracies for oil palm class of each state and Peninsular Malaysia.

State Johor Kedah Kelantan Melaka Negeri 

Sembilan

Pahang Pulau 

Pinang 

Perak Perlis Selangor Terengganu Peninsular 

Malaysia

OA (%) 89.23 87.85 86.06 85.16 77.57 80.84 89.74 91.30 86.75 89.88 87.10 86.50

PA (%) 84.62 100.00 89.66 92.00 68.75 80.49 93.10 81.82 85.71 92.45 87.50 86.92

R
F

UA (%) 89.19 84.44 86.67 74.19 75.86 70.21 96.43 90.00 75.00 87.50 80.77 82.75

OA (%) 82.74 86.74 73.94 87.50 78.04 76.64 80.13 82.61 69.88 78.75 83.87 80.08

PA (%) 84.62 92.11 75.86 96.00 71.88 85.37 65.52 81.82 85.71 73.58 91.67 82.19

C
A

R
T

UA (%) 76.74 85.37 73.33 80.00 58.97 70.00 65.52 81.82 50.00 88.64 59.46 71.82

OA (%) 89.38 97.35 98.18 88.28 88.32 81.28 96.15 97.10 97.59 97.62 93.55 93.16

PA (%) 89.74 97.22 100.00 92.00 87.50 89.19 96.55 90.91 100.00 98.11 87.50 93.52

S
V

M

UA (%) 85.37 97.22 93.55 82.14 80.00 76.74 96.55 90.91 100.00 96.30 91.30 90.01

Note: OA: Overall accuracy (7 classes); PA: Producer’s accuracy (oil palm); UA: User’s accuracy (oil palm)



Table 5. Oil palm area produced by RF, CART and SVM in comparison with MPOB.

Oil palm area (ha)

RF CART SVMState
MPOB

Classified Difference Classified Difference Classified Difference

Johor 748860 799142 50282 752133 3273 782282 33422

Kedah 87538 147744 60206 157801 70263 170060 82522

Kelantan 158310 126177 -32133 183388 25078 106969 -51341

Melaka 57372 45768 -11604 42186 -15186 46021 -11351

Negeri Sembilan 184815 184325 -490 195733 10918 194311 9496

Pahang 741495 720745 -20750 802325 60830 717739 -23756

Pulau Pinang 13563 13146 -417 16039 2476 16572 3009

Perak 406469 392518 -13951 445041 38572 528448 121979

Perlis 660 1779 1119 3760 3100 4789 4129

Selangor 137783 196807 59024 195375 57592 194506 56723

Terengganu 171548 167136 -4412 211977 40429 162737 -8811



Table 6. Contingency table.

Test 2 (positive) Test 2 (negative) Row total

Test 1 (positive) a b a + b

Test 1 (negative) c d c + d

Column total a + c b + d n



Table 7. McNemar’s test result.

Algorithm 1 Algorithm 2 p-value

SVM RF 0.28

SVM CART 0.00

RF CART 0.00
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With reference to the matter as stated above, I would like to submit a manuscript entitled 

“Oil Palm Mapping Over Peninsular Malaysia Using Google Earth Engine and 

Machine Learning Algorithms” for consideration of publication in the Remote Sensing 

Applications: Society and Environment Journal. This paper requires improvements after 

being revised with the decision of minor correction.
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