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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 

issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 

names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 

of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 

its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 6603

This paper investigates the adverse effects of oil price 

volatility on economic activity and the extent to which 

countries can hedge against such effects by using 

renewable energy. By considering the Realized Volatility 

of oil prices, rather than following the standard approach 

of considering oil price shocks in levels, the effects 

of factor price uncertainty on economic activity are 

analyzed. Sample countries represent developed and 

developing, oil importing and exporting and service/

industry-based economies (United States, Japan, 

Germany, South Korea, India, and Malaysia) and thus 

complement the standard literature’s analysis of Western 

OECD countries. In a vector auto-regressive setting, 

Granger causality tests, impulse response functions, and 

variance decompositions show that oil price volatility 

has more-adverse effects in all sample countries than 

oil price shocks alone can explain. The paper finds 

This paper is a product of the Office of the Chief Economist, Sustainable Development Network. It is part of a larger 

effort by the World Bank to provide open access to its research and make a contribution to development policy discussions 

around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The author 

may be contacted at contact@junrentschler.com.  

that the sensitivity to oil price volatility varies widely 

across countries and discusses various factors which 

may determine the level of sensitivity (such as sectoral 

composition and the energy mix). This implies that 

the standard approach of solely considering net oil 

importer-exporter status is not sufficient. Simulations 

of volatility shocks in hypothetical energy mixes (with 

increased renewable shares) illustrate the potential 

economic benefits resulting from efforts to disconnect 

the macroeconomy from volatile commodity markets. 

It is concluded that expanding renewable energy can 

in principle reduce an economy’s vulnerability to oil 

price volatility, but a country-specific analysis would be 

necessary to identify concrete policy measures. Overall, 

the paper provides an additional rationale for reducing 

exposure and vulnerability to oil price volatility for the 

sake of economic growth.
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1. Introduction 

As crude oil arguably constitutes one of the single most important driving forces of the global economy, oil 
price fluctuations are bound to have significant effects on economic growth and welfare. Indeed, the level of oil 
dependency of industrialized economies became particularly clear in the 1970s and 1980s, when a series of 
political incidents in the Middle East disrupted the security of supply and had severe effects on the global price 
of oil. Since then oil price shocks have continuously increased in size and frequency. While demand for oil is 
likely to remain relatively slow moving, mainly driven by economic growth and to some extent climate policies, 
supply will remain highly uncertain, not least considering persistent instability in exporting countries and the 
uncertainty regarding the discovery of new resources. As a result of such uncertainties, and in the context of 
today’s tightly traded markets, future oil prices are also expected to undergo (increasingly) drastic fluctuations.  

Theoretically, an oil price shock can be transmitted into the macro-economy via various channels. Principally, a 
positive oil price shock will increase production costs and hence restrict output (henceforth denoted as ‘input 
channel’) (Barro, 1984). Energy intensive industrial production will be more affected than service based 
industries. A prolonged oil price increase will necessitate costly structural changes to production processes with 
potentially adverse employment effects. However, it is crucial to note that the frequency of oil price shocks 
(both positive and negative) increases perceived price uncertainty. According to Bernanke (1983), such oil 
price volatility will reduce planning horizons and cause firms to postpone irreversible business investments 
(‘uncertainty channel’).  

Due to countless possible exogenous supply shocks, oil prices are subject to uncertainty at any point in time. 
Even when prices remain relatively stable over an extended period of time, a sudden exogenous event could 
disrupt the balance independently of previous events and cause significant upward or downward price changes 
(e.g. a large earthquake may reduce economic activity and the demand for crude oil accordingly, hence 
reducing prices). When prices are stable, economic agents (incl. households, firms and governments) tend to 
overlook the ubiquitous, permanent underlying uncertainty, when making economic decisions. However, in an 
environment of already volatile prices, agents are more likely to take future price uncertainty into account when 
making investment decisions. Overall, oil price volatility typically results in an increased sense of economic 
uncertainty, whereas the absence of volatility may instill a false sense of stability. They are however not 
interchangeable terms, as uncertainty can exist in the absence of volatility.  

In order to hedge against negative effects of oil price volatility, it is of utmost importance for policy makers to 
understand how significant the potential dimensions of negative effects are, and which factors determine the 
level of vulnerability. While there exists significant literature establishing a negative and asymmetric 
relationship between oil price shocks and macro-economic indicators, research has focused on actual oil price 
shocks rather than price volatility (and accordingly uncertainty) directly. Furthermore, emerging economies and 
their country specific parameters have largely been overlooked. Little has been said about why sensitivity 
differs across countries, and why some net exporters benefit from oil price fluctuations, while others suffer. 
This paper addresses these shortcomings. Like the vast majority of literature on this topic, this paper considers 
real, exchange rate adjusted oil prices and does not take into account taxation.  
 

2. The Oil-GDP Literature – Review of Empirical Evidence 

Given the crucial role of crude oil in the global economy, the relationship between oil prices and economic 
activity has received considerable attention by economists since the early 1980s.  Hamilton (1983) notes that 
seven of eight recessions in the period 1948 to 1980 were preceded by significant oil price increases and hence 
establishes a causal oil-price-GDP link for the USA. Subsequently these findings were confirmed by Burbidge 
and Harrison (1984), Gisser and Goodwin (1986), Mork (1989), Ferderer (1996) and others. Corresponding 
studies for other major OECD countries by Mork et al. (1994), Papapetrou (2001), Jiménez-Rodríguez and 
Sanchez (2005) and Lardic and Mignon (2006) revealed that the negative oil-price-GDP effect prevails in 
virtually all industrialized economies. Furthermore, oil price volatility has also been shown to have significant 
impacts on stock market returns (Filis et al., 2011), and bilateral trade (Chen and Hsu, 2013). Findings are 
surprisingly similar across developed countries and extend to both net importers and exporters (e.g. UK) of oil 
(Mork et al. 1994). Blanchard and Gali (2007) also recognize the economic sensitivity to oil shocks, but suggest 
that industrialized countries have become less sensitive since the 1970s for various reasons, including reduced 
reliance on oil as an input factor to industrial production. 
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Due to limited availability of data, the majority of existing literature analyzes the oil-price-GDP relationship in 
major OECD economies. However, Japan and the emerging economies in South East Asia have been largely 
omitted from the discussion. Notable exceptions are Lee et al. (2001) who study the impact of oil price shocks 
on Japanese monetary policy and macro-economy; as well as Cunado and Gracia (2005) who conduct 
cointegration and Granger causality tests for six Asian economies3. They find that there exists no long-run 
cointegrating relationship between oil prices and economic growth, but oil prices indeed Granger cause 
economic growth in the short-run. With these results Cunado and Gracia (2005) verify the existence of a 
significant negative oil-GDP relationship in Asian developing countries – including Malaysia, a net oil exporter. 
 
Notably, Guo and Kliesen (2005) differ from the existing literature by constructing the ‘Realized Volatility’ 
(RV) variable suggested by Andersen et al. (2004), rather than employing the standard method of considering 
oil price shocks directly. This allows them to account for the input channel as well as the uncertainty channel 
(cf. Section 1). Using the same realized volatility measure, Rafiq et al. (2009) extend Cunado and Gracia’s 
(2005) study by analyzing the effects of oil price volatility for various macro-indicators in the Thai economy. In 
a vector auto-regression (VAR) and vector error correction model, they show that the realized volatility of oil 
prices Granger causes GDP growth, investment, unemployment and inflation. Impulse response functions 
confirm that impacts of realized volatility are most distinct in the short-run, particularly for GDP. This result, 
together with the variance decomposition, supports Bernanke’s (1983) theoretical explanation of postponed 
investments due to expected oil price volatility and the associated uncertainty. 

To understand the nature of the oil-GDP relationship, it is crucial to consider the existence of asymmetry, i.e. 
adverse effects of oil price increases exceed stimulating effects of oil price decreases. However, the empirical 
evidence for the nature of this asymmetry is ambiguous. While it is generally agreed that increases have 
adverse effects, evidence for the effects of decreases is far from conclusive. Mork (1989) distinguishes between 
positive and negative oil price shocks and finds that oil price increases reduce GDP while decreases have 
hardly any impact. However, Mork et al. (1994) find that oil price increases and decreases both have negative 
consequences for the US economy, while results for the UK, Japan, France, Norway, Germany and Canada are 
inconclusive. Mory (1993) and Lee et al. (1995) find that oil price decreases have no impact on the US 
economy. Lardic and Mignon (2006) show that standard cointegration is rejected for most of the twelve 
European sample countries, while asymmetric cointegration is determined to be of major relevance in 
explaining the impact of oil price shocks. The underlying reasoning is that asymmetry is caused by asymmetric 
monetary policy, i.e. more drastic policy measures in response to oil price increases, than to decreases 
(Hamilton and Herrera, 2004). Ferderer (1996) indeed confirms a strong link between oil price shocks and 
monetary policy responses, but nevertheless argues that oil prices Granger cause GDP directly. Hence he 
concludes that asymmetric monetary policy alone is not sufficient to account for the asymmetric oil-GDP 
relationship. In addition to monetary policy, downward stickiness of wages and prices due to, e.g. institutional 
regulation or contractual commitments, is a standard explanation for asymmetric effects. For the purposes of 
this study asymmetry is of major importance: While in a symmetric scenario a positive and a negative oil price 
shock would cancel each other, in an asymmetric setting the presence of price movements (i.e. volatility) per se 
will impact on economic indicators.  

3. Methodology and Empirical Evidence 

3.1. Data  

The selected sample represents developed/developing, oil importing/exporting and service/industry based 
economies. The USA is the by far largest consumer of petroleum and at the same time has considerable 
domestic production. The third and fourth largest economies, Japan (JPN) and Germany (GER), have had (at 
least until recently) strong surplus economies, led by exports and industrial production. This industry structure, 
as well as negligible domestic oil production make Japan and Germany highly dependent on petroleum imports.  
Furthermore, a set of ‘leaping’ economies is selected, namely India (IND), South Korea (KOR) and Malaysia 
(MYS), as they have experienced immense economic growth throughout the considered data period (1983-
2011). As numerous developing countries are resource rich oil exporters, it is of particular importance to 
include Malaysia, a net oil exporter.  

                                                           

3
 Japan, Malaysia, Philippines, Singapore, South Korea and Thailand 
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For the purposes of this study, economic activity constitutes the dependent variable and oil price volatility the 
key regressor. While the overwhelming majority of literature in this field uses quarterly data, this study uses 
monthly data, in order to capture intra-quarter volatility. Monthly industrial production (IP) is used as a proxy 
for economic activity, as it is particularly sensitive to changes in input prices (such as oil). Industrial production 
series and consumer price indices are obtained from the IMF Intl. Finance Statistics database and seasonally 

adjusted
4
. A ‘global oil price’ is obtained by deflating an average of the WTI and Brent spot market prices (in 

USD/barrel) using a price index for non-fuel primary commodities. To obtain a more accurate measure of the 
domestically ‘perceived’ oil price, the global oil price is adjusted for the respective country’s daily $-exchange 
rate and inflation. Hence, for each country a time series of continuous daily oil prices  𝜋𝑑  is obtained, 
with 𝑑 𝜖 𝑇𝑑, where 𝑇𝑑 = [June, 1. ,1983; June, 2. ,1983; . . . , ; Jan. ,31. ,2011]; i.e. 7017 observations. It should 
be noted that adjusting global oil prices for domestic exchange rate and inflation effects is common practice in 
this literature (see for instance Mork et al., 1994 and Abeysinghe, 2001) – however it should also be pointed out 
that such domestic oil prices reflect the perceived prices before any kind of policy intervention. In practice oil 
prices tend to be distorted further through fiscal policies, such as taxes or subsidies (for a detailed discussion of 
fuel pricing see Kojima, 2013). 

     

    
Figure 1. Domestic real oil prices (left axis) in domestic currency per barrel (e.g. EUR/BBL) and global real oil 

price (right axis, in USD/BBL). 

Figure 1 illustrates that oil prices have undergone considerable fluctuations in the period 1983-2011, with the 
global nominal oil price varying between US$ 145.7 (03/07/2008) and US$ 8.7 (25/07/1986) with a standard 

deviation of US$ 25.7 
5
. Evidently, there exists a strong correlation between all six domestic pre-tax oil prices, 

as well as between domestic and global oil prices (cf. Table 1.). This confirms that most of the variation in 
‘perceived’ oil prices is indeed due to global oil price shocks, even though domestic effects can play a 
significant role. The correlation between post-tax oil prices is likely to differ, particularly for countries such as 
Malaysia with significant fuel subsidy schemes in place. 

 

 

                                                           

4
 Seasonal adjustment using the X-12 method. 

5
 In real terms: max. US$ 86.3 (03/07/2008), min. US$ 11.1 (25/07/1986), S.D. US$ 14.6 
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  World USA JPN GER IND KOR MYS 

World 1 0.941 0.841 0.876 0.965 0.919 0.979 
USA 

 
1 0.960 0.958 0.929 0.971 0.946 

JPN 
  

1 0.964 0.858 0.941 0.874 
GER 

   
1 0.887 0.965 0.907 

IND 
    

1 0.899 0.978 
KOR 

     
1 0.927 

MYS 
      

1 

Table 1. Correlation coefficients between domestic and global oil prices  

Following the above notation the daily change in the price of crude oil is denoted  𝜌𝑑, where 𝜌𝑑 =  
𝜋𝑑 −  𝜋𝑑−1𝜋𝑑−1 . 

Computing daily changes for all six countries respectively reveals a pattern similar to the daily changes in the 
global oil price, depicted in Figure 3. The mean daily oil price change is not found to be significantly different 
from zero. Following Hamilton (1983), the oil price 𝜋𝑑 can be modeled as a random walk process,  𝜋𝑑 = 𝑐 +  𝜋𝑑−1 +  𝑢𝑑 

where the innovation 𝑢𝑑 =  𝜎𝜀𝑑, with 𝜀𝑑~ iid 𝒩(0,1). The Ljung-Box test for squared residuals, confirms all 
six oil price return series to be following an autoregressive conditional heteroskedasticity (ARCH) process. 
This is graphically confirmed by Figure 3, in which distinct high volatility clusters are evident (e.g. 1986, 1990, 
2008). 

  
 

 

 

3.2. Realized Volatility 

From 1947 to 1986, oil prices remained (relatively) stable, whereby shocks were almost exclusively positive 
and moderate in size. However, since the mid-1980s, oil prices have undergone substantial positive and 
negative shocks. The classical approach, such as by Mork (1989), which considers oil price innovations in 
levels, fails to remain statistically significant in subsequent sample periods. Subsequently, various studies 
(Hamilton, 1996, 2003; Hooker, 1996) found direct measures of volatility to be more powerful in explaining 
the oil-GDP relationship than oil prices in levels. Based on this, this study employs the Realized Volatility (RV) 
measure as suggested by Andersen et al. (2003). Drawing on conventional finance literature, a price process  𝜋𝑡 
is expressed as a stochastic differential equation: 𝑑log (𝜋𝑡) = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝒲𝑡 
where 𝜇𝑡  denotes a predictable drift term with finite variance, 𝜎𝑡  corresponds to volatility and 𝒲𝑡  denotes 
standard Brownian Motion. The continuously compounded price change  𝑟𝑡 in the unit time interval is denoted 

𝑟𝑡 ≡ log (𝜋𝑡)− log (𝜋𝑡−1) = � 𝜇𝑢𝑑𝑢𝑡
𝑡−1 + � 𝜎𝑢𝑑𝒲𝑢𝑡

𝑡−1  
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Figure 3. Daily global oil price changes 1983-
2011 – similar patterns for all countries. 

Figure 2. Percentage change in the quarterly price 
of crude oil (Source: Dow Jones & Co., Thomson 
Reuters) 
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where 𝑡 − 1 ≤ 𝑢 ≤ 𝑡. First and second moments are obtained, based on the assumption that  𝑑𝜎𝑢 and 𝑑𝒲𝑢 are 
uncorrelated (no leverage effect). Since standard Brownian Motion has increments distributed according to 𝑊𝑡 −𝑊𝑠 ~ 𝒩(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 ≤ 𝑡, the mean of 𝑟𝑡 conditional on information set  Ω 𝑡−1 is given by 

𝔼{𝑟𝑡|Ωt−1} = � 𝜇𝑢𝑑𝑢𝑡
𝑡−1 . 

Accordingly, conditional variance, or Integrated Volatility 𝐼𝑉𝑡 , is given by  

𝑉𝑎𝑟{𝑟𝑡|Ωt−1} ≡ 𝐼𝑉𝑡 =  � 𝜎𝑢2𝑑𝑢.
𝑡
𝑡−1  

Of course, return and volatility computations in practice are restricted to discrete time intervals, hence 𝐼𝑉𝑡 is 
latent and can only be approximated. As parametric models of estimating 𝐼𝑉𝑡 are prone to misspecification, an 

elegant non-parametric method is to estimate volatility of daily changes by a monthly realized volatility series
6
. 

Realized volatility is defined as the summation of squared daily changes over the period from the first to the 
last day (𝐷𝑚) of a given month: 

𝑅𝑉𝑚(𝜌𝑑) = � 𝜌𝑑2 =
𝐷𝑚𝑑=1 � �𝜋𝑑 −  𝜋𝑑−1𝜋𝑑−1 �2𝐷𝑚𝑑=1 , 

where 𝑅𝑉𝑚(𝜌𝑑) denotes the monthly realized volatility of daily changes 𝜌𝑑. Crucially, based on the quadratic 

variation theory, Andersen et al. (2004) demonstrate that a volatility measure 𝑅𝑉𝑝(𝑥) converges uniformly in 

probability to 𝐼𝑉𝑡  as  𝑝 → 0; and hence is an unbiased and efficient estimator
7
. In practice, increasing the 

sampling frequency of intra-period changes will yield a more accurate non-parametric estimator of 𝐼𝑉𝑡. This 
study will therefore be based on monthly data, unlike Guo and Kliesen (2005) and Rafiq et al. (2009), who 
measure oil price variance only at quarterly frequency, and hence ‘aggregate away’ potentially valuable 
information on intra-quarter volatility. 

 

 
Figure 4. Monthly Realized Volatility (1983 – 2011). Distinct clusters of high volatility are evident, even though their 
extent varies across countries due to exchange rate and inflation effects. 

                                                           
6 While a RV estimate of higher frequency (e.g. daily RV based on intraday price returns) would capture volatility more 

accurately, this could not reasonably be analysed against lower frequency macro data. In practice, monthly Industrial 
Production data is the highest frequency proxy for economic growth.  
7
 Note that Andersen et al. (2004) denote the h-period volatility at date t as  𝑅𝑉𝑡(ℎ), while in this study 𝑅𝑉𝑚(𝜌𝑑) denotes 

the monthly volatility in month m, based on daily returns 𝜌𝑑. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

USA 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

Germany 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

Japan 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

Malaysia 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

India 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

S.Korea 



 

7 

 

3.3. Modeling the Volatility-GDP Relationship 

To investigate the order of integration, the standard Augmented-Dickey-Fuller (ADF) test is complemented by 
the Kwiatkowaski-Philips-Schmidt-Shin (KPSS) stationarity test. Due to opposed null hypotheses, the 
inference from any one test is far more significant if confirmed by the other. Unit root test statistics for realized 
volatility (Table 2, left panel) unanimously confirm stationarity at the 5% and 1% significance level. This is not 
surprising, considering that realized volatility is calculated from daily changes 𝜌𝑑 and is thus a function of first 
differences of oil prices. Contrarily, industrial production series exhibit a clear time trend. Table 2 (right panel) 
presents test statistics for Industrial Production in levels, and first and second differences, while the test in 
levels allows for a linear time trend and intercept. In levels most national industrial production series possess a 
unit root, whereas Germany and Japan are found to be trend-stationary. In accordance with these results, further 
analysis is based on the original realized volatility and once differenced industrial production series (denoted 𝑅𝑉𝑚 and 𝐼𝑃𝑚) in order to enable meaningful regression results. 

The RV-IP relationship is modeled as a bivariate vector autoregressive process, which describes the dynamic 
evolution of industrial production and realized volatility as a function of their common history. The VAR 
requires no distinction between endogenous and exogenous variables, no arbitrary identification restrictions or 
any other theoretical a priori assumptions about the nature of the economic relationship. Thus it yields a 
powerful alternative to a structural simultaneous equation model. As realized volatility and industrial 
production have roots inside the unit circle, the VAR is stable (stationary). 

  Realized Volatility   Industrial Production 

 
ADF KPSS 

 
ADF 

 
KPSS 

    
Levels 1st diff. 2nd diff.  Levels 1st diff. 2nd diff. 

USA -6.327 0.050 
 

-1.145* -19.619 -9.430 
 

0.191* 0.117 0.031 
JPN -5.439 0.057 

 
-3.683 -4.959 -11.831 

 
0.123 0.030 0.046 

GER -5.364 0.051 
 

-4.564 -4.240 -13.006 
 

0.073 0.025 0.046 
KOR -6.086 0.063 

 
-1.464* -26.603 -11.123 

 
0.198* 0.032 0.034 

IND -5.374 0.047 
 

-0.300* -18.753 -12.643 
 

0.151* 0.067 0.020 
MYS -5.416 0.046 

 
-2.798* -29.174 -10.496 

 
0.100 0.034 0.023 

 
Crit. values Crit. values Critical values 

 
Critical values 

1%  -3.450 0.739 
  

-3.987 
   

0.216 
 5%  -2.870 0.463 

  
-3.424 

   
0.146 

 10% -2.571 0.347 
  

-3.135 
   

0.119 
  

 

 

The vector of exogenous variables 𝑋𝑚  is modelled as a linear function of its own lags and has following 
reduced form  𝑉𝐴𝑅(𝑞) representation: 

𝑋𝑚 = 𝐶 + � Φi𝑞𝑖=1 𝑋𝑚−𝑖 +  𝜀𝑚, 

where  𝑋𝑚 = [𝐼𝑃𝑚  𝑅𝑉𝑚]′ , 𝐶 is a vector of constants, Φi  is a  matrix of coefficients and  𝜀𝑚 a  vector of white 
noise error terms with covariance matrix  Σ. Furthermore, subscripts  𝑚 denote the respective month and  𝑞 
denotes optimal lag length. 

Optimal Lag Length 𝒒 

  USA JPN GER KOR IND MYS 

AIC 12 13 15 5 24 5 
BIC 2 2 2 1 13 2 

Optimal lag length is determined by the Akaike or Bayesian Information Criterion, AIC and BIC respectively.  
The BIC determines the optimal model which minimizes the log mean squared error plus a log penalty term, 
which increases in the number of regressors K; and hence  

Table 2.  Left panel: Augmented-Dickey-Fuller (ADF) and Kwiatkowaski-Philips-Schmidt-Shin (KPSS) test statistics 
for RV in respective countries Right panel: ADF and KPSS test statistics for IP in levels (allowing for a linear time 
trend), first and second differences. IP series which are suggested to be non-stationary at the 5% significance level are 
marked with an asterisk (*). 

Table 3. Optimal lag length 𝑞 for the 𝑉𝐴𝑅(𝑞)  processes, 
determined by AIC and BIC. 
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𝐵𝐼𝐶 = 𝑙𝑜𝑔 1𝑁� 𝑒𝑖2 +
𝐾𝑁 𝑙𝑜𝑔𝑁𝑁𝑖=1  

Due to the log penalty term, the Bayesian Information Criterion tends to select more parsimonious models than 

the AIC (penalty term 2𝐾 𝑁� ), hence avoiding overfitting. Accordingly the 𝑉𝐴𝑅(𝑞) in matrix notation follows 

the respective country’s lag length 𝑞 as determined by BIC: 

� 𝐼𝑃𝑚𝑅𝑉𝑚� =  �𝑐1𝑐2�+ � �𝜙𝑖,1,1 𝜙𝑖,1,2𝜙𝑖,2,1 𝜙𝑖,2,2�𝑞𝑖=0 � 𝐼𝑃𝑚−𝑖𝑅𝑉𝑚−𝑖� + �𝜀𝑚,1𝜀𝑚,2�, 
Due to the evidence from Section 3.1. for an autoregressive conditional heteroskedasticity process for returns  𝜌𝑑, the coefficient  𝜙𝑖,2,2 is expected to be significantly different from zero. Indeed, VAR estimates confirm 

that realized volatility is significantly (and positively) autocorrelated in all sample countries.  

Crucial for the purposes of this study is that indeed lagged oil price volatility is found to be significant in 
explaining current Industrial Production. In other words, oil price volatility has a negative impact on economic 
growth in all sample countries. Furthermore, it is striking to which extent these elasticity measures vary 
significantly across countries: E.g. the elasticity of economic activity to a volatility shock in the previous 
period is estimated to be -0.211 in Malaysia, i.e. 6.6 times larger than in the USA (-0.032). The corresponding 
estimates (i.e. for 𝜙𝑖,1,2) are presented in the lower panel of Table 4. 

 
           VAR Output     

  Realized Volatility (RV) 

  USA JPN GER IND KOR MYS 

IP(-1) 0.103 0.021 -0.111 0.016 0.081 -0.563 
   S.E. -0.078 -0.066 -0.081 -0.064 -0.147 -0.483 
   t-stat [1.314] [ 0.315] [-1.375] [ 0.256] [ 0.550] [-1.165] 

IP(-2) -0.177 0.014 -0.09 0.08 -- -0.009 
   S.E. -0.147 -0.066 -0.11 -0.063 -- -0.023 
   t-stat [-1.203] [ 0.215] [-0.820] [ 1.258] -- [-0.406] 

  Economic Activity (IP) 

  USA JPN GER IND KOR MYS 

RV(-1) -0.032* -0.085** -0.103* -0.058** -0.152* -0.211* 
   S.E. -0.01 -0.036 -0.037 -0.024 -0.047 -0.066 
   t-stat [-3.109] [-2.339] [-2.759] [-2.396] [-3.252] [-3.214] 

RV(-2) -0.029* -0.063** -0.079** -0.031 -- -0.074 
   S.E. -0.011 -0.027 -0.038 -0.026 -- -0.066 
   t-stat [-2.723] [-2.365] [-2.079] [ -1.192] -- [-1.115] 

Table 4. VAR estimates for first and second lags. Degrees of freedom are based on 332 observations and 
respective lag length (selected by BIC). Coefficients which are significant at the 1%, 5% or 10% levels are 

marked by asterisks (*, ** and *** respectively).
8
 

3.4. Granger Causality 

In order to determine whether the estimated coefficients represent a causal relationship between 𝐼𝑃𝑚 and 𝑅𝑉𝑚,  
a Granger causality test is applied. As both variables have been found to be stationary, the test is based on the 
standard  𝑉𝐴𝑅(𝑞), with 𝑞 selected according to the Bayesian Information Criterion. Granger’s (1969) causality 
test investigates whether lags of 𝑅𝑉𝑚 have explanatory power in forecasting  𝐼𝑃𝑚 (and vice versa), i.e. whether 𝜙𝑖,1,2 (or  𝜙𝑖,2,1) is significantly different from zero. Thus the first null-hypothesis is formulated as Η0: “IP does 

not Granger-cause RV”; i.e. Η0: 𝜙𝑖,2,1
= 0. Table 5 shows that this null cannot be rejected in any of the 

countries in the given sample period, i.e. supporting earlier results that industrial production has no causal 
influence on realized volatility. 

More interesting is the second null-hypothesis Η0′ : “RV does not Granger-cause IP”; i.e. Η0′ :  𝜙𝑖,1,2
= 0 , 

meaning that realized volatility has no causal effect on industrial production. However, as the right panel of 
Table 6. shows, this null hypothesis must be rejected for all countries except the USA at a 5% significance level. 

                                                           

8
 Intuitively, the upper panel of Table 4 demonstrates that past industrial production is insignificant in explaining current 

oil price volatility. Rafiq et al. (2009) confirm that other macro indicators also fail to predict oil price variability. 
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This means that there is statistically significant evidence that oil price volatility RV has a causal impact on 
economic activity, i.e. contemporary RV is useful in forecasting future industrial production. With respect to 
the USA it should be noted that the p-value 0.059 is only marginally excessive of the 0.05 significance level. At 
a 10% (or in fact 6%) significance level the null of ‘no Granger causality’ would also be rejected for the USA. 

Granger Causality 

 
Η0: “IP does not Granger cause RV” 

 
Η0′ :  “RV does not Granger cause IP” 

 
F-statistic p-value 

 
F-statistic p-value 

USA 0.977 0.480 
 

1.589 0.059 
JPN 0.829 0.620 

 
2.492 0.004 

GER 0.632 0.814 
 

2.053 0.020 
KOR 0.230 0.875 

 
2.329 0.009 

IND 0.499 0.751 
 

1.565 0.048 
MYS 0.499 0.683   6.554 0.001 

Table 5. Results for Granger Causality Tests: investigating the causal relationship between Industrial 
Production and Realized Volatility in both directions.  

3.5. Impulse Response Functions 

To understand the nature of the IP-RV relationship, it is crucial to analyze how a volatility shock transmits to 
industrial production through the dynamic lag structure of the VAR process. Impulse response functions (IRF) 
trace out the effect of a realized volatility shock to industrial production over time – and can yield interesting 
insight for policy makers. While VAR coefficients and Granger causality inform about the sign, extent and 
causal direction, impulse response functions inform about the persistence and dynamics of the oil-GDP 
relationship. To find the impulse response function, the previous VAR is transformed into its ‘Wold 

representation’, i.e. an infinite vector moving average process 𝑉𝑀𝐴�∞�, which expresses exogenous variables 

as a function of all past shocks. The previous 𝑉𝐴𝑅(𝑞) can be rewritten using Lag-operators 𝐿, such that 𝑋𝑚 = 𝐶 +  Φ1𝐿𝑋𝑚 +  Φ2𝐿2𝑋𝑚 +  … +  Φq𝐿𝑞𝑋𝑚 + 𝜀𝑚. 

By defining the matrix lag polynomial 

Φ(𝐿) = 𝐼2 − Φ1𝐿 − Φ2𝐿2 −  …−  Φq𝐿𝑞 , 

where 𝐼2 is a  2 × 2  identity matrix, the original 𝑉𝐴𝑅(𝑞) can be expressed as  

Φ(𝐿) 𝑋𝑚 = 𝐶 + 𝜀𝑚. 

This VAR process can be rewritten as an infinite vector moving average process. To do so, a necessary 
condition is invertibility of the Φ(1) matrix. Since 𝑋𝑚 = [𝐼𝑃𝑚  𝑅𝑉𝑚]′  is stationary, invertibility can easily be 
shown: For the unconditional expectation of 𝑋𝑚 (defined 𝜇 ≡  𝔼{𝑋𝑚}) it must hold that 𝔼{𝑋𝑚} = 𝐶 +  Φ1𝔼{𝑋𝑚} +  Φ2𝔼{𝑋𝑚} + … +   Φq𝔼{𝑋𝑚} = Φ(1)−1𝐶. 

The VAR process can thus be expressed as a vector moving average process by pre-multiplying with  Φ(𝐿)−1: 𝑋𝑚 = Φ(1)−1𝐶 + Φ(𝐿)−1𝜀𝑚 

While the first term is equivalent to 𝜇, the second term can be expressed as a weighted sum of past and current 

innovations by defining Φ(𝐿)−1 = 𝐼2 + 𝐴1𝐿 + 𝐴2𝐿 +  … : 

𝑋𝑚 = 𝜇 + � 𝐴𝑖𝜀𝑚−𝑖∞𝑖=0  

where  As is a matrix of coefficients, given by  

As =
∂𝑋𝑚+𝑠∂ ε𝑚′ . 
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Each (i, j) element of As measures the respective effect of an one-unit increase of  𝜀𝑚,𝑗  on 𝑋𝑗,𝑚+𝑠  , where 𝑖, 𝑗 𝜖{1, 2} in this case. For example, assuming there is a shock to 𝜀𝑚,1 (the first element of 𝜀𝑚), the effect on 

the jth variable is given by the first column and jth element of 𝐼2, 𝐴1, 𝐴2, etc. An impulse response function 

hence plots the dynamic response of 𝑋𝑗,𝑚+𝑠 to an impulse in 𝑋1,𝑚. Crucially, here these can be interpreted as 

orthogonalized impulse response functions, since the covariance matrices  Σ  for all countries have zero off-

diagonals, i.e. error terms are contemporaneously uncorrelated. Thus any given shock to an error term  𝜀𝑚,𝑗 
does not have a simultaneous effect on other error terms.  In the context of this study, the impulse response 
functions plot the dynamic response of industrial production to a one-unit realized volatility shock (Figure 5). 

Following Enders (2010), for clarity of interpretation the impulse response functions are displayed for levels
9
. 

Strikingly, in all countries industrial production responds negatively to an unexpected positive volatility shock 
(ceteris paribus). Notably, this includes both net oil importers and exporters. The negative effects on economic 
activity are the strongest in the second month after the shock – with the exception of Malaysia (first month). 
These impulse responses are found to be statistically significant. However, positive rebound effects (third 
month) in Germany, S.Korea and India are associated with low t-ratios. Overall it is confirmed that effects on 
economic activity do not persist: the system absorbs a realized volatility shock within twelve months. This also 
implies that the VAR-processes meet the stability condition. 

 

 
Figure 5. Impulse Response Functions for IP. An ‘Impulse’ is defined as Cholesky one S.D. innovation in RV of 
domestic oil prices. Dotted lines indicate the ±2 S.E. interval, based on standard errors of the estimated model. 

Following Lee et al. (1995) and Jones et al. (2004), it is possible to approximate the total impulse response of 
industrial production to a realized volatility shock, with the accumulated impulse response over twelve months 
(cf. Table 6.). As Awerbuch and Sauter (2005) summarize, standard literature estimates the US economy to 
contract by approximately 0.5% following a 10% oil price increase. The accumulated IRF however suggests a 
mere 0.021% contraction following a 10% increase in oil price volatility. This discrepancy is best understood 
by considering a specific example: From 2008m01 to 2008m7 the US real oil price increased by 30.1% from 
$86.3 to $123.5. This corresponds to a 1.5% GDP contraction according to standard literature. However, in the 
same period the realized volatility measure increased by a factor 15, which would be associated with a 3.2% 
contraction of US Industrial Production according to the accumulated impulse response functions. In Malaysia 
realized volatility increased by a factor 12.5 in the same period – implying a 10.1% contraction of industrial 
production. In light of this drastic contraction, it is important to bear in mind that national output in Malaysia 
depends strongly on oil revenues: the state owned oil and gas company Petronas accounted for 40% of 
government revue in 2008 (CIA, 2011).  

 

                                                           

9
 Furthermore, all series are normalized by dividing them through their respective standard errors. 
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-0.24

-0.21

-0.18

-0.15

-0.12
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-0.06

-0.03

0.00

-0.010

-0.008

-0.006

-0.004

-0.002

0.000
USA JPN GER IND KOR MYS

Accumulated Impulse Responses

VAR elasticities

Accumulated Impulse Responses 

 
6 months 12 months 

USA -0.002 -0.0021 

JPN -0.0042 -0.0047 

GER -0.0044 -0.0047 

IND -0.0042 -0.0038 

KOR -0.0054 -0.0057 

MYS -0.0077 -0.0082 

 

Table 6. Six and twelve months accumulated impulse response functions of IP to a RV shock; Figure 6. Accumulated 12 
months Impulse Responses (left axis) in comparison with estimated VAR elasticities (right axis). Both estimation methods 
suggest similar levels of sensitivity across sample countries. 
 

3.6. Variance Decomposition 

Enders (2010) advocates forecast error variance decomposition to confirm the results from the above impulse 
response analysis. Variance decomposition allows distinguishing between respective shocks to the elements of 
a VAR, in order to explain variation in an endogenous variable. Hence, it investigates the relative importance of 
each random shock in affecting variables of a VAR. For the purposes of this study it is essential to investigate 

to which extent shocks to realized volatility explain the 𝜏-step-ahead IP forecast error variance 𝜎𝑰𝑷(𝜏)2. The 𝜏-
steps-ahead conditional mean forecast of the infinite vector moving average process from Section 3.6. is  𝔼{𝑋𝑚+𝜏|Ω𝑚} = 𝜇 + � 𝐴𝑖∞𝑖=𝜏 𝜀𝑚+𝜏−𝑖. 
Accordingly, the 𝜏-period forecast error  𝑒𝑚+𝜏 is given by 𝑒𝑚+𝜏  ≡  𝑋𝑚+𝜏 − 𝔼{𝑋𝑚+𝜏|Ω𝑚} = � 𝐴𝑖𝜏−1𝑖=0 𝜀𝑚+𝜏−𝑖. 
As 𝑋𝑚 = [𝐼𝑃𝑚  𝑅𝑉𝑚]′, the 𝜏-period forecast error  𝑒𝐼𝑃,𝑚+𝜏  for the  𝐼𝑃𝑚  sequence alone is  

𝑒𝐼𝑃,𝑚+𝜏  = � 𝐴1,1(𝑖)𝜏−1𝑖=0 𝜀𝐼𝑃,𝑚+𝜏−𝑖  + � 𝐴1,2(𝑖)𝜏−1𝑖=0 𝜀𝑅𝑉,𝑚+𝜏−𝑖. 
The 𝜏-step-ahead forecast error variance of  𝐼𝑃𝑚+𝜏  is then denoted as  𝜎𝐼𝑃(𝜏)2: 𝜎𝐼𝑃(𝜏)2 = 𝜎𝐼𝑃2 � 𝐴1,1(𝑖)2𝜏−1𝑖=0 + 𝜎𝑅𝑉2 � 𝐴1,2(𝑖)2𝜏−1𝑖=0  

Note that 𝜎𝐼𝑃(𝜏)2 increases in the forecast horizon  𝜏, since 𝐴1,1(𝑖)2  and 𝐴1,2(𝑖)2 are nonnegative. Furthermore, 𝜎𝐼𝑃(𝜏)2  can now be decomposed into the proportions which are due to shocks in the �𝜀𝐼𝑃,𝑚� and �𝜀𝑅𝑉,𝑚� 
sequences respectively, 

1𝜎𝐼𝑃(𝜏)2  𝜎𝐼𝑃2 � 𝐴1,1(𝑖)2,
𝜏−1𝑖=0  𝑎𝑛𝑑   

1𝜎𝐼𝑃(𝜏)2  𝜎𝑅𝑉2 � 𝐴1,2(𝑖)2𝜏−1𝑖=0 .  

This decomposition states the extent to which movements in industrial production are due to its own shocks, as 

opposed to shocks to realized volatility. The results confirm that, as expected, shocks in the �𝜀𝑰𝑷,𝑚� sequence 

explain most of the forecast error variance for the industrial production sequence – however  𝜀𝑹𝑽,𝑚  shocks are 

also found to explain between 2% and 5.6% of the variation in the first one to five periods. On the contrary, 𝜀𝑰𝑷,𝑚 shocks explain none of the forecast error variance in the realized volatility sequence. These results are 

supportive of the findings from the analysis in previous sections, particularly the impulse response functions 
(Section 3.6). 
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4. Discussion - The Level of Sensitivity 

In the empirical analysis of Section 3, two estimates for the responsiveness of industrial production to an 
realized volatility shock were obtained: (i) VAR coefficients, and (ii) accumulated impulse responses. Both 
suggest that economic activity in all sample countries responds negatively to increased oil price volatility, while 
the level of sensitivity varies widely across countries.  

In the literature (e.g. Cunado and Garcia, 2004) it is suggested that the 
sectoral composition of an economy is one critical factor determining 
how sensitive an economy is to oil prices. This is based on the 
reasoning that industrial production is particularly energy and 
commodity reliant, and will thus be more strongly affected by oil prices. 
Blanchard and Gali (2007) for instance show that relying less on oil in 
industrial production processes has reduced sensitivity in developed 
countries. In addition, developed economies are typically more service 
intensive, while their industrial sector often benefits from efficient 
technology making it less energy intensive. However, in the developing 
world the industrial share of GDP tends to be particularly large, causing 
these countries to be particularly exposed to commodity price effects.  

However, it appears that factors other than the sectoral composition also influence a country’s sensitivity. For 
instance, Figure 8 suggests that domestic oil consumption-production ratios may also play a role in 
determining the level of sensitivity. For instance, the USA and India have had significant domestic oil 
production, which accounted for 46.8% and 38.6% respectively of domestic consumption throughout the 
sample period. This implies that these countries could cater for a significant percentage of consumption 
domestically, rather than relying on volatile external markets. Contrarily, in Japan, Germany and S.Korea 
domestic production is negligible relative to consumption. Accordingly these countries rely heavily on imports 
from international markets and thus expose themselves to global market volatility.  

Figure 7 also shows that Malaysia’s domestic production has significantly exceeded consumption throughout 
the sample period. The fact that Malaysia has been estimated to be most sensitive to oil price volatility hence 
appears to contradict the logic that domestic oil production can reduce sensitivity to oil price uncertainty. 
However, the domestic consumption-production ratio may translate into the import-export ratio in different 
ways – domestically produced oil is not necessarily directly consumed domestically, if for instance refining 
capacities are insufficient. In this case even oil producing countries may need to export large quantities of 
domestically produced unrefined fuel, and in return import refined oil from international markets, thus exposing 
themselves to market volatility. 

Figure 7 also shows that in the USA and India, which both have significant domestic oil production, exports 
were negligible relative to imports. Malaysia however, despite significant domestic production, has 
considerable imports, servicing close to 40% of domestic demand in 2007, and as such is the third largest oil 

importer among all net oil exporters
10

. Under these conditions a global oil price increase raises export revenues, 

but also raises import costs. An increase in oil price volatility however is likely to have negative effects on both 
export revenues and consumption. Therefore, it is possible that even net exporters can suffer from positive oil 
price shocks, if imports are of significant size, and negative effects offset increased export revenue. In Malaysia 
this effect is likely to have been re-enforced by its sectoral composition, as well as a technological lack of 
alternative energies: The Malaysian energy portfolio consists of 96.6% fossil fuels.  

In this context, it may be useful to compare Malaysia to the case of Norway, which is often regarded as a 
special case with respect to its energy sources. Like Malaysia, Norway is to be classified as a net oil exporter, 
whereas the relative dimensions of oil consumption, production, imports and exports require a clear distinction 
between the two. In Norway 91% of domestic production is exported and imports are less than 5% the size of 
exports. Furthermore, 60% of its energy demand is serviced by renewable energies, while the remainder is 
accounted for by domestic fossil fuel production; i.e. largely independently of global oil markets. Thus, a given 
global oil price increase is less likely to harm the Norwegian economy, but may increase its revenues from oil 

                                                           

10
 Countries with expensive or limited refining capacities often export domestically produced non-refined oil, and import 

refined oil.  

GDP sectoral composition 

 

Industry Services Agriculture 

USA 21.9 76.9 1.2 

JPN 22.8 75.7 1.5 

GER 27.9 71.3 0.8 

IND 28.6 55.3 16.1 

KOR 39.4 57.6 3.0 

MYS 42.3 47.6 1.0 

Table 7. 2009 sectoral GDP 
contribution in % (CIA, 2010). 
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exports. This is in line with results by Mork et al. (1994), who estimate an oil price increase to have a positive 
effect on Norwegian GDP. 

However, running similar time series analysis as for the countries in our original sample, results suggest that 
Norway’s economic activity does suffer from increased oil price volatility: The Granger-causality test confirms 
that oil price volatility has a causal impact on economic activity. The accumulated impulse response of 
industrial production to a realized volatility shock amounts to -0.0037 (similar to India). Intuitively, Norway’s 
economy is bound to be sensitive to oil price volatility, as the petroleum industry accounts for 48% of all 
exports and 33% of government revenue. This illustrates that countries can indeed benefit from an oil price 
increase under certain conditions, but not from increased price volatility. The comparison of Malaysia and 
Norway illustrates how oil price uncertainty may negatively affect an economy through its international trading 
activities, as these cause consumption or revenue uncertainty respectively. While on the demand-side Norway 
is largely decoupled from global oil market fluctuations, its export revenues are highly exposed. Similarly, 
Malaysia is exposed to uncertainty due to significant oil imports and exports. Overall this supports the claim 
that merely considering net-oil-exporter/importer status is not sufficient, and that country-specific transmission 
channels of oil price volatility need to be investigated.  
 

 

 
Figure 7. Rows 1 and 2: Domestic oil consumption (blue solid line), production (red dotted line). Rows 3 and 4: Crude oil 
imports (green solid line) and exports (purple dotted line) in 1000’s BBL/day (source: OECD IEA database.). 
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To further understand a country’s level of exposure to oil price uncertainty, we consider its energy generating 

portfolios (‘energy mix’), which contain elements of higher and lower price volatility. Broadly speaking, all 
fossil fuels (mainly coal, natural gas, crude oil) are highly price volatile, as they are sensitive to exogenous 

supply shocks. As most countries strongly rely on fossil fuels as their main energy source
11

 (globally 87%), 

they are thought to ‘import’ this uncertainty from global markets into their national generating portfolios. As 
fossil fuels are highly cross-correlated (cf. Table 8), reducing the percentage of oil in the overall energy mix is 
unlikely to reduce the effects of price uncertainty, if the overall percentage of fossil fuels remains constant. To 
reduce the overall exposure to volatility, it is necessary to increase the elements of lower price volatility in 
energy generating portfolios. In this sense, the main alternatives to fossil fuels (nuclear and renewable energies), 
both classify as ‘low volatility’ assets, as they are sourced independently of volatile global fossil markets (i.e. 
domestically). While this study focuses on renewable energies, nuclear energy is also argued to be an important 
carbon-free source of energy with various benefits such as being non-location specific and scalable (see 
Kessides, 2010, for an evaluation). 

 

 

 

Table 8. Correlation between monthly prices of Coal, Natural Gas and 
Crude Oil from 1983-2011 (Source: IMF Int. Financial Statistics) 
 

Another useful special case to consider in this context is Iceland: Similar to the previous example of Norway it 
has large share of renewable energy (73%), and meets its energy needs largely through geothermal power. 
However, while Norway relies heavily on revenues from oil exports, Iceland’s trading activities with crude oil 
are insignificant. Thus, Iceland has little exposure to global oil price fluctuations and is largely de-coupled from 

global oil markets. Indeed, for Iceland the null hypothesis Η0′ :“RV does not Granger Cause IP” cannot be 
rejected at 5% (nor 10%) significance – hence oil price volatility cannot be confirmed to have a causal effect on 
industrial production. Furthermore, in a vector autoregressive setting lagged realized volatility is found to have 
no significant explanatory power for current industrial production. This suggests that Iceland may have 
successfully reduced its sensitivity to oil price volatility by increasing the low-variance, renewable share in the 
generating portfolio.  

In practice the above discussion of determinants of sensitivity is by no means exhaustive. Depending on 
country circumstances, further factors, such as labor market regulation or monetary policy (Blanchard and Gali, 
2007), may also play a significant role in determining sensitivity. Similarly, in specific countries the structure 
of energy provision, price determination or subsidies is also likely to have a significant influence on the link 
between oil price volatility, uncertainty and economic growth. Nevertheless it is evident that the standard 
argument of simply considering net importer/exporter status is not sufficient for understanding the level of 
sensitivity, and that country-specific transmission channels of oil price volatility need to be investigated. 

5. Simulating Volatility Shocks in ‘Greener’ Energy Portfolios 

Using estimated elasticities and percentage shares of the energy mix, we illustrate the effect of an oil price 
volatility shock in scenarios with different levels of renewable energy deployment. For this purpose the 2008 
spike in oil price volatility is considered: Table 9 presents the effects of the realized volatility increase from 
2008m01 to 2008m12 for the given sample. Column Δ𝑅𝑉 indicates by which factor the domestic realized 
volatility measure increased in this period. Based on the accumulated IRF the total percentage effect on 
economic activity is given under 𝑇𝐸𝑅𝑉(%). The corresponding economic loss, based on 2008 annual GDP 
figures is given in the ‘$-Loss’ column. It is evident that the 2008 increase in oil price volatility has caused 
large GDP losses in all sample countries. Could such losses have been avoided if the renewable energy shares 
in generating portfolios had been larger?  

 

                                                           

11
 In the sample fossil fuels constitute between 62.4% (S. Korea) and 96.6% (Malaysia) of energy portfolios. 

Correlation of Fossil Fuels  

 

Coal N.Gas Cr. Oil 

Coal 1 0.899 0.909 
N. Gas 

 
1 0.864 

Cr. Oil 

  

1 
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Table 9. Observed effects of the 2008 increase 
in oil price volatility (RV). The 2008/2009 
share of fossil fuels in the overall energy mix 
are given under ‘FF(%)’. Note: ‘$-Loss’ in 
millions of US$. 

Considering a linear case, the total effect 𝑇𝐸 of a price shock is the weighted sum of all component shocks due 
to respective elements of the generating portfolio; i.e. has a proportional impact. E.g. the total effect of a fiscal 
policy, which increases taxes on fossil, nuclear and renewable energies at different rates, is the weighted sum of 
the component effects. Formally, for country c with an energy mix consisting of a fossil share 𝛼1,𝑐, a nuclear 

share 𝛼2,𝑐 and a renewable share 𝛼3,𝑐, the total effect is given by: 𝑇𝐸𝑐 = 𝛼1,𝑐𝑠1 + 𝛼2,𝑐𝑠2 + 𝛼3,𝑐𝑠3, 

where 𝑠𝑖 denotes the component shock which is due to each energy type. In the case of an oil price volatility 
shock, component shocks 𝑠2  and 𝑠3  associated with nuclear and renewable power are zero. As generating 
technologies are non-compatible, countries cannot substitute energy sources in the short term. Hence, a positive 

oil price volatility shock is transmitted exclusively through the fossil fuel share 𝛼1,𝑐 of the generating portfolio: 𝛼1,𝑐𝑠1 = 𝑇𝐸𝑐,𝑅𝑉 

Since 𝛼1,𝑐 and 𝑇𝐸𝑅𝑉 are known for 2008, 𝑠1 can be obtained arithmetically for each country (cf. Table 10). In a 

scenario (denoted FF100) in which fossil fuels constitute 100% of a country’s energy mix, 𝑠1 can be interpreted 
as the total effect of a realized volatility shock, i.e.  𝑇𝐸𝑅𝑉𝐹𝐹100(%) = 𝑠1 . As expected, the adverse effects of the 
2008 oil price volatility increase would have been more drastic if countries had fully relied on fossil fuels (with 
the exception of Malaysia, where the fossil fuel share was 96.6% in 2008/2009).  

    

  
.  

In the same way the 2008 oil price volatility increase is simulated in two further scenarios (denoted RE+10, and 
RE+20), in which the share of fossil fuels is 10%, and 20% lower than the actual 2008 share, while the 
renewable energy (RE) share is increased accordingly. In Table 11 the column FF(%) indicates the 
hypothesized share of fossil fuels. The 𝑇𝐸𝑅𝑉(%) column presents the effect on economic activity that the 2008 
oil price volatility increase would have had in the given scenario, while the corresponding GDP loss is stated in 
the ‘$-Loss’ column. The GDP loss which could have been avoided in 2008 if only the hypothesiszd renewable 
energy share had been in place, is stated in the last column (Av. $-Loss). 

 

 

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%
USA JAP GER IND KOR MAS

FF100

Obs2008

RE+10

RE+20

Effect of the 2008 RV shock 

  Acc. IRF ΔRV  FF(%) TERV(%) $-Loss (mil’s) 

USA -0.0021 15 70.9 -3.15 461,989 
JPN -0.0047 9.7 84 -4.56 234,505 
GER -0.0047 12.1 79.7 -5.69 220,262 
IND -0.0038 14.7 64.7 -5.59 72,033 
KOR -0.0057 11.2 62.4 -6.38 63,360 
MYS -0.0082 12.5 96.6 -10.25 22,262 

 2008 RV shock in FF100 scenario 

 FF(%) 𝑇𝐸𝑅𝑉𝐹𝐹100(%) $-Loss (mil’s) 

USA 100 -4.44 659,975 

JPN 100 -5.43 281,880 

GER 100 -7.14 280,865 

IND 100 -8.64 115,139 

KOR 100 -10.22 105,765 
MYS 100 -10.61 23,136 

Table 10. Simulating the effect of the 2008 
RV increase in sample countries, if they had 
relied entirely on fossil fuels (ceteris paribus)  

Figure 8. Percentage contraction of economic activity 
due to the oil price volatility shock in 2008; simulated 
for different scenarios. The second (orange) bar 
indicates the effect observed in 2008. 
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        2008 RV in RE+ Scenarios     

   RE+10 Scenario    RE+20 Scenario 

  FF(%) TERV(%) 
$-Loss 
(mil’s) 

Av. $-Loss 
(mil’s) 

  
FF(%) TERV(%)  

$-Loss 
(mil’s) 

Av. $-Loss 
(mil’s) 

USA 60.9 -2.70 394,753 67,236   50.9 -2.26 328,434 133,555 
JPN 74.0 -4.02 205,523 28,982   64.0 -3.48 176,749 57,756 
GER 69.7 -4.98 191,306 28,956   59.7 -4.26 162,637 57,625 
IND 54.7 -4.73 60,394 11,639   44.7 -3.86 48,909 23,124 
KOR 52.4 -5.36 52,572 10,788   42.4 -4.33 42,085 21,275 
MYS 86.6 -9.19 19,725 2,539   76.6 -8.13 17,244 5,018 

Table 11. The simulated effects of the 2008 RV increase in a scenario with a 10%, and 20% 
higher renewable energy share in the generating portfolio (RE+10, and RE+20). 

This illustration suggests that the GDP loss which was incurred due to the increase in oil price volatility in 2008 
could have been significantly reduced, if the share of renewable energy had been larger. In general it can be 
stated that the avoided GDP-losses, even in the RE+10 scenario, are of significant size and it is imperative to 
incorporate such figures in project appraisals of renewable energy investments. Figure 8. presents a summary of 
the simulated scenarios. It is important to note that the above simulations merely consider a 12 months period – 
however investments in renewable energies will strengthen the hedging mechanism and avoid GDP losses over 
many decades. The discounted future stream of avoided GDP losses is hence bound to be much higher than in 
the above illustration.   

In practice it is important to note that above simulations do not advocate simply increasing renewable energy 
capacities for achieving stability. Renewable energy sources may themselves be subject to other forms of 
‘volatility’, which may also affect its price stability. Hydropower for instance, as the most common form of 
renewable energy, may be influenced heavily by changing precipitation patterns due to climate change and 
erosion and sedimentation processes due to environmental degradation. Instead, the above simulations 
demonstrate the potential dimensions of economic benefits which may result from disconnecting the 
macroeconomy from volatile global oil markets. 

 

6. Summary and Conclusions 

While the standard literature typically considers oil price shocks directly, this study investigates the effect of oil 
price volatility on economic activity by using the Realized Volatility measure by Andersen et al. (2001). This 
paper extends the analysis in the standard literature to emerging economies in Asia. Evidence from Granger 
causality tests, VAR estimation, Impulse Response Functions and Variance Decomposition suggests that 
increased oil price volatility has significant negative effects on economic growth in all sample countries, 
including net oil exporter Malaysia. These effects are found to be more adverse than those in the common 
‘price shock’ literature – presumably because a persistent volatility increase has fundamental effects on 
expectations by increasing uncertainty and shortening planning horizons. However, in line with the literature it 
is found that the effect of a given volatility shock is limited to the short-run and becomes more significant when 
domestic inflation and exchange rate fluctuations are accounted for. This paper, however, does not explicitly 
account for the potential impacts from taxation at the individual country level. 

Moreover, it is found that elasticities vary widely across countries. While standard literature merely 
distinguishes between net oil importers and exporters, this paper discusses further parameters which may 
determine the responsiveness of a country to oil price volatility: (i) the domestic oil production-consumption 
ratio, (ii) the oil import-export ratio, (iii) sectoral composition of GDP and (iv) the energy mix. Thus, when 
investigating the effects of oil price volatility, the status of net importer or exporter only yields limited insight. 
However, analyzing (i) and (ii) can inform about the extent to which countries are exposed to price volatility in 
global energy markets. Moreover, (iii) and (iv) can indicate how sensitive an economy is to a given level of 
exposure.  

Out of these parameters, the energy mix is considered as a policy instrument in hedging against the negative 
effects of oil price volatility. We assume that only the fossil fuel element of the energy mix is directly exposed 
to global commodity market price volatility, and thus it is in principle possible to reduce overall portfolio 
volatility by increasing the renewable energy share (assuming it is price stable). In illustrative simulations it is 
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shown that avoided GDP-losses, which result from an increased renewable energy share, could considerably 
offset the installation costs of new renewable energy capacities. These figures serve as a stylized illustration of 
the inverse relationship, suggesting that lowering the fossil share in the energy mix will in principle increase the 
resilience of an economy to oil price volatility (i.e. reduce its exposure and vulnerability). However, in practice 
oil prices can still have a significant impact on energy prices, even if the fossil share is small, for instance if 
national energy prices are determined by marginal prices. This implies that renewable energies can indeed play 
a significant role in hedging against oil price volatility, but need to be part of a broader policy strategy to 
manage the risks from oil price volatility. 

Overall, this paper offers further rationale for implementing policy measures which disconnect a country’s 
macroeconomy from volatile oil markets. Concrete policy measures will need to be defined based on an in-
depth country specific analysis, which is beyond the scope of this paper. Generally, long term measures need to 
aim at transforming and reforming economic structures in order to reduce the level of dependency on 
international fossil commodity markets, e.g. by decreasing the fossil fuel share in the national energy portfolio, 
or making production processes less fossil fuel intensive.  
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