Oka's inequality for currents and applications

John Erik Fornæss ${ }^{1}$, Nessim Sibony ${ }^{2}$
${ }^{1}$ Mathematics Department, The University of Michigan, Ann Arbor, MI 48104, USA
${ }^{2}$ Département de Mathématiques, Université Paris Sud, Bâtiment 425 F-91405 Orsay, France

Received: 5 June 1993/In revised form: 29 March 1994

1 Introduction

In a 1962 paper Oka [Ok] proved that given a family of varieties in an open set $\Omega \subset \mathbb{C}^{2}$ the set $G \subset \Omega$ where the family is normal is pseudoconvex in Ω. The proof is based on the following remarkable inequality.

Let

$$
H=\left\{(|z|<1,|w|<r) \cup\left(r_{1}<|z|<1,|w|<1\right) r_{1}, r<1\right\}
$$

and

$$
\Delta_{\rho}=\{|z|<\rho,|w|<\rho\}
$$

If V is a closed complex curve in Δ_{1}, then for any $\rho<1$ there exists C_{p} such that

$$
\begin{equation*}
\operatorname{vol}\left(V \cap \Delta_{\rho}\right) \leqq C_{\rho} \operatorname{vol}(V \cap H) \tag{*}
\end{equation*}
$$

Here C_{ρ} is independent of V.
The result was generalized to varieties of codimension 1 in $\Omega \subset \mathbb{C}^{n}$ by Fujita [Fu]. Riemenschneider [Ri] proved the analogue of inequality (*) for varieties of dimension p in $\Omega \subset \mathbb{C}^{n}$, in which case the standard Hartogs figure has to be replaced by the right analogue. It turns out that the domain G where a family of analytic varieties of dimension p, has locally bounded mass is p-pseudoconvex (see below for a precise definition) in Ω. This notion was introduced by Rothstein [Ro], see also [Siu2], and developed by Andreotti and Grauert [A-G]. Observe that when a sequence of analytic varieties has bounded volume, then any limit in the Hausdorff metric is an analytic variety, as follows from Bishop's theorem [Bi].

The second author has given in [Si] some estimates on currents from which it is easy to deduce an inequality generalizing (*) to closed positive currents of bidimension (p, p). The purpose in $[\mathrm{Si}]$ was to extend the domain of definition of the Monge Ampere operator $\left(d d^{c}\right)^{k}$ to some unbounded plurisubharmonic functions. It was not realized there that the given condition for defining ($\left.d d^{c} u\right)^{k}$
was that the set where u is locally unbounded is in the $n-k$ pseudoconvex envelope of its complement.

We start here by proving a version of Oka's inequality for currents of the form $u T$, where T is a positive closed current of bidimension (p, p) in Ω and u is a negative plurisubharmonic function in Ω. It follows from this inequality that $G:=\{z \in \Omega ; u T$ has bounded mass in a neighborhood of $z\}$ is p-pseudoconvex in Ω (usual pseudoconvexity coincides with $n-1$ pseudoconvexity). If the current ($u T$) has locally bounded mass in Ω one can define $d d^{c} u \wedge T:=d d^{c}(u T)$.

We then prove a convergence result for the operator $\left(u_{1}, \ldots, u_{q}\right) \mapsto d d^{c} u_{1} \wedge$ $\ldots \wedge d d^{c} u_{q} \wedge T$. The main idea is that if we control the mass or convergence on an open set, then we have the same type of control in the envelope of l-pseudoconvexity for the right l. When the $\left(u_{j}\right)$ are bounded, this operator was studied by Chern, Levine and Nirenberg [CLN] and Bedford and Taylor [BT]. The case where the $\left(u_{j}\right)$ are unbounded has been considered in Griffiths [Gr], Siu [Siul], Sibony [Si] and more recently by Demailly [De].

Under pseudoconvexity assumptions we can define $T \wedge R_{1} \wedge \ldots \wedge R_{q}$ where T is a current of bidegree $(n-p, n-p)$ and R_{j} are currents of bidegree (1,1). When the currents are in \mathbb{P}^{k} we prove a Bezout type theorem i.e. express the mass of $T \wedge \ldots \wedge R_{q}$ in terms of the mass of the factors.

Let T be a positive closed current in \mathbb{P}^{k} of bidegree $(1,1)$. So locally T can be written as $d d^{c} u$. Assuming that u is continuous, we show that support T^{l} is connected, provided $2 l \leqq k$.

In the last paragraph we apply the results on currents to holomorphic dynamics in \mathbb{P}^{k}. This was the main motivation to try to develop some tools in order to understand closed currents which are not analytic varieties. To a holomorphic surjective map $f: \mathbb{P}^{k} \mapsto \mathbb{P}^{k}$ of degree $d>1$, one associates a positive closed current T of bidegree (1,1). The support of $T^{l}:=T \wedge \ldots \wedge T$ (l factors) are of dynamical interest. In particular the support of T coincides with the Julia set J_{0} of f : the sequence $\left(f^{n}\right)$ is equicontinuous precisely on $\mathbb{P}^{k} \backslash J_{0}$. In this context we show that if $2 l \leqq k$, then support T^{l} is connected.

2 Oka's inequality

We first define the notion of k-pseudoconvexity, see [Ri]. Let $0<r_{1}^{\prime}<r^{\prime}$ and $0<r_{1}<r$.

Definition 2.1 $A n(\boldsymbol{n}-\boldsymbol{k}, \boldsymbol{k})$ Hartogs figure H is defined as

$$
\begin{aligned}
H=\{ & \left\{(z, w) ; z \in \mathbb{C}^{n-k}, w \in \mathbb{C}^{k},\|z\|<1,\|w\|<r\right\} \\
& \cup\left\{(z, w) ; z \in \mathbb{C}^{n-k}, w \in \mathbb{C}^{k}, r_{1}<\|z\|<1,\|w\|<1\right\}
\end{aligned}
$$

where $0<r_{1}, r<1$. We set

$$
\hat{H}=\left\{(z, w) ; z \in \mathbb{C}^{n-k}, w \in \mathbb{C}^{k},\|z\|<1,\|w\|<1\right\}=\Delta^{n}
$$

Here $\|z\|=\max \left|z_{j}\right|,\|w\|=\max \left|w_{j}\right|$.

Definition 2.2 (k-pseudoconvexity) Let $\Omega_{0} \subset \Omega$ be open subsets of $\mathbb{C}^{n}, 0<$ $k<n$. Then Ω_{0} is k-pseudoconvex in Ω if it satisfies the Kontinuitätssatz with respect to $(n-k)$ polydiscs. More precisely, whenever H is an $(n-k, k)$ Hartogs figure, $\Phi: \hat{H} \rightarrow \Omega$ is a $1-1$ holomorphic map and $\Phi(H) \subset \Omega_{0}$, then $\Phi(\hat{H}) \subset \Omega_{0}$.

Usual pseudoconvexity is the same as ($n-1$) pseudoconvexity.
For $\rho>0, \Delta_{\rho}$ will denote the polydisc of radius ρ.
Theorem 2.3 [Ri] Let X be a pure k-dimensional closed complex analytic subvariety of the unit polydisc $\Delta \subset \mathbb{C}^{n}, 0<k<n$. Then if $0<\rho<1$, and H is an $(n-k, k)$ Hartogs figure, $\operatorname{vol}\left(X \cap A_{\rho}\right) \leqq C_{\rho} \operatorname{vol}(X \cap H)$ for C_{ρ} independent of X.

It follows that if $\left(X_{i}\right)$ is a family of closed analytic varieties of pure dimension k in $\Omega \subset \mathbb{C}^{n}$, then if $\Omega^{\prime}:=\left\{z ; \exists \delta>0 ; \sup , \operatorname{vol}\left(X_{i} \cap B(z ; \delta)\right)<\infty\right\}$ then Ω^{\prime} is k-pseudoconvex in Ω.

We want to prove a version of the previous theorem for positive closed currents or even for currents of the form $u T$ where T is a positive closed current and u is a plurisubharmonic function.

For the fundamental results on currents we refer to [de Rh], [Lel] or [LG]. We recall a few facts.

Let Ω be an open set in \mathbb{C}^{n}. Denote by $D^{p, q}(\Omega)$ the space of smooth differential forms of bidegree (p, q) with compact support in Ω. The space of currents of bidimension (p, q), hence of bidegree $(n-p, n-q)$ is the dual space of $D^{p, q}(\Omega)$. A current T of bidimension (p, p) and bidegree ($n-p, n-$ $p)$ is positive if for all $\alpha_{1}, \ldots, \alpha_{p} \in D^{1,0}(\Omega)$ the current $T \wedge i \alpha_{1} \wedge \overline{\alpha_{1}} \wedge \ldots \wedge$ $i \alpha_{p} \wedge \overline{\alpha_{p}}$ is a positive distribution. A current U is negative if $-U$ is positive.

If α is a k-covector in $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}$, let $|\alpha|$ denote the usual Hilbertian norm of α. If T is a current of bidimension (p, p) of order zero, i.e. with measure coefficients, we define the measure $M_{V}[T]$ on Ω as follows. If V is open in Ω, let $M_{V}[T]=\sup \left\{|T(\Phi)| ; \Phi \in D^{p, p}(V),|\Phi(x)| \leqq 1, x \in V\right\}$. This is called the mass norm of T.

Let $d^{c}:=(i / 2 \pi)(\bar{\partial}-\hat{\partial})$, then $d d^{c}=(i / \pi) \partial \bar{\partial}$. Let $\beta:=d d^{c}|z|^{2}$. If T is a positive current of bidimension (p, p), then the trace measure σ_{T} is defined as $\sigma_{T}:=T \wedge \beta^{p} / p!$. It is easy to show that there exists a constant C, depending only on n and p such that for every open set $V \subset \Omega$,

$$
(1 / C) \sigma_{T}(V) \leqq M_{V}[T] \leqq \sigma_{T}(V)
$$

An upper semicontinuous function $u: \Omega \mapsto[-\infty, \infty)$ is plurisubharmonic if and only if $u \in L_{\mathrm{loc}}^{1}(\Omega)$ and $d d^{c} u \geqq 0$, for short we will say that u is p.s.h.
Theorem 2.4 Let H be an $(n-l, l)$ Hartogs figure. Assume $\hat{H}=\Delta$. For every $\rho<1$, there exists a constant C_{ρ} such that for every negative current U in a neighborhood of \bar{A}, of bidimension (l, l), such that $d d^{c} U \geqq 0$ we have

$$
M_{\Delta_{p}}[U]+M_{A_{p}}\left[d d^{c} U\right] \leqq C_{\rho} M_{H}[U]
$$

Proof. Let Ω be an open set in \mathbb{C}^{n}. Assume $\omega \Subset \tilde{\omega} \Subset \Omega$, and that $\omega=\{z ; z \in$ $\tilde{\omega}, \psi(z)<0, \nabla \psi \mid \partial \omega \neq 0\}$ for some smooth function ψ defined on $\tilde{\omega}$. Let M be a closed subset in Ω. Let $x \in M \cap \omega$ and let $\phi \in C^{\infty}(\Omega)$ such that
(i) $\phi(x)>0$
(ii) $\phi \equiv 0$ on a neighborhood V of $\partial \omega \cap M$.

Let h be a smooth function in $\Omega, 0 \leqq h \leqq 1, h=1$ in a neighborhood of ω.

We will need the following lemma. See also Lemma 4.1 in [Si].
Lemma 2.5 Let ω, Ω, ϕ, h be as defined above. Let S and U be currents with smooth coefficients in Ω. Assume S is closed of bidegree (p, p) and U is of bidegree (q, q) with $p+q=n-1$. Then we have

$$
\begin{equation*}
\int_{\omega} \phi(1-h) d d^{c} U \wedge S+\int_{\omega}(-U) \wedge d d^{c} \phi \wedge S=\int_{\omega}(-U) \wedge d d^{c}(\phi h) \wedge S \tag{1}
\end{equation*}
$$

If $U \leqq 0, d d^{c} U \geqq 0$ then relation (1) holds without smoothness assumption on U.

Proof. When χ is a smooth function with compact support then since S is closed

$$
\int \chi d d^{c} U \wedge S=\int d d^{c} \chi \wedge U \wedge S
$$

So we just apply the above formula with $\chi=\phi(1-h)$ which is of compact support since $h=1$ near $\partial \omega$.

If U is not smooth, let U_{ε} be regularized currents, U_{ε} is just convolution of U with an approximation of identity. Relation (1) holds for U_{ε}. We can just let $\varepsilon \mapsto 0$.

The formula of integration by part is written in the form (1) to emphasize that if $h=0$ near x and if $d d^{c} \phi \wedge S$ is positive then it is posible to control the mass of $d d^{c} U$ near x and of $(-U) \wedge d d^{c} \phi \wedge S$ by what happens near the support of $d d^{c}(\phi h)$.

We continue the proof of the Theorem. Let Ω be a neighborhood of $\vec{\Delta}$ where U is defined. Recall that $H=\left\{(z, w), z \in \mathbb{C}^{n-l}, w \in \mathbb{C}^{l},\|z\|<1,\|w\|<\right.$ $\left.r_{1}\right\} \cup\left\{r_{1}^{\prime}<\|z\|<1,\|w\|<1\right\}$. Let $M=\Delta \backslash H$. Let M_{1} be the set of points in $\Delta_{\rho_{1}} \backslash H$ for some $\rho<\rho_{1}<1$, such that exactly one of the w-coordinates is $\geqq r_{1}$. Let $x \in M_{1}$. For simplicity assume that $\left|x_{n-l+1}\right|=\left|w_{1}\right| \geqq r_{1}$ and $\left|x_{n-1+2}\right|$ $=\left|w_{2}\right|<r_{1}, \ldots,\left|x_{n}\right|=\left|w_{l}\right|<r_{1}$. Let $\phi=1 /\left|w_{1}\right|^{2}$. Let H_{1} be the $(n-l, 1)$ Hartogs figure obtained by fixing the coordinates $w_{2}=x_{n-l+2}, \ldots, w_{l}=x_{n}$, with the same numbers r_{1}, r_{1}^{\prime}. We can construct an open set ω_{1} in \mathbb{C}^{n-l+1} such that $\phi(x)>\max _{\tilde{c})_{1} \cap\left[\hat{H}_{1} \backslash H_{1}\right]} \phi$. Fatten ω_{1} to obtain an open set ω in \mathbb{C}^{n} and extend ϕ to Φ_{1} such that $\Phi_{1}(x)>\max _{\text {co } \cap[\hat{H} \backslash H]} \Phi_{1}$, by adding to the trivial extension a function θ of w_{2}, \ldots, w_{n} only.

Let $\Phi_{2}:=\Phi_{1}+\delta|(z, w)|^{2}$. For $\delta>0$ small enough, $\Phi_{2}(x)>\sup _{\hat{c}(\theta) \cap M} \Phi_{2}$ $:=c$. But also $d d^{c} \Phi_{2} \wedge\left(d d^{c}\left|w^{\prime}\right|^{2}\right)^{l-1}>0$ where $w^{\prime}=\left(w_{2}, \ldots, w_{l}\right)$. This is
because the negativity in $d d^{c} \Phi_{2}$ introduced by the function $\theta\left(w^{\prime}\right)$ is cancelled by $\left(\left.d d^{c}\left|w^{\prime}\right|\right|^{2}\right)^{1-1}$.

Let λ be a smooth increasing convex function on [$0, \infty$), vanishing on a neighborhood of $[0, c]$ and then strictly increasing, we can assume that $\lambda\left(\Phi_{2}(x)\right)>0$. Let $\Phi=\lambda \circ \Phi_{2}$. We apply Lemma 2.5 with $S=\left(d d^{c}\left|w^{\prime}\right|^{2}\right)^{l-1}$ and $\phi=\Phi$ and h a function vanishing near x, h has value 1 near $\partial \omega$, but $M \cap$ support h is contained in ($\phi=0$).

Relation (1) in Lemma 2.5 gives an estimate of $d d^{c} U \wedge\left(d d^{c}\left|w^{\prime}\right|^{2}\right)^{l-1}$ and of $(-U) \wedge d d^{c} \phi \wedge S$ near x in terms of the mass of U on a compact set of H. If we apply the same argument to suitable perturbations of the coordinates w, we finally get an estimate of the mass of $(-U)$ and $d d^{c} U$ near x in terms of quantities supported in a compact set of H. We have proved the theorem for M_{1} instead of Δ_{ρ}. Let M_{j} be the set of points in $\Delta_{\rho j} \backslash H$ such that exactly j of the w-coordinates are $\geqq r_{1}$ where we have chosen $1>\rho_{1}>\cdots>\rho_{l}=\rho$. We will prove the theorem by induction in j. For simplicity of notation we prove it for $j=2$. Let $x \in M_{2}$. We can assume that $\left|x_{n-l+1}\right|=\left|w_{1}\right| \geqq r_{1}$ and $\left|x_{n-l+2}\right|=\left|w_{2}\right| \geqq r_{1}$ while $\left|w_{3}\right|<r_{1}, \ldots,\left|w_{l}\right|<r_{1}$.

Let $\phi_{2}=1 /\left|w_{2}\right|^{2}$. We can construct an open set ω_{2} in \mathbb{C}^{n-l+1} such that $\phi_{2}(x)>\max _{\tilde{c} \omega_{2} \cap\left[\hat{H}_{2} \backslash H_{2}\right]} \phi$. We fatten ω_{2} to obtain an open set ω in \mathbb{C}^{n} and proceed as above. We will obtain an estimate of the mass of U and $d d^{c} U$ near x in term of the mass in $H \cup M_{1}$ which in turn is controlled by the mass in H. So by induction we get the estimate in the theorem.

Corollary 2.6 Let $\left(U_{1}\right)$ be a sequence of negative currents of bidimension (p, p) in a complex manifold Ω. Assume for all $i, d d^{c} U_{1} \geqq 0$. Then the domain Ω_{0} on which the family has locally bounded mass is p-pseudoconvex. In particular, if U is a negative current of bidimension (p, p) in Ω, such that $d d^{c} U \geqq 0$, then $\Omega \backslash(\operatorname{supp} U)$ is p-pseudoconvex in Ω. If T is a positive closed current of bidimension (p, p) on Ω, then $\Omega \backslash \operatorname{supp} T$ is p pseudoconvex.

Proof. Let H be an $(n-p, p)$ Hartogs figure and $f: \hat{H} \mapsto \Omega$ be an injective holomorphic map. If $f(H) \subset \Omega_{0}$, Theorem 2.4 shows that $f(\hat{H}) \subset \Omega_{0}$. The estimate in the theorem is just given with $f=\mathrm{Id}$. So Ω_{0} is p-pseudoconvex in Ω. To show that $\Omega \backslash \operatorname{supp} U$ is p-pseudoconvex we just apply the first part of the corollary to the sequence of currents $U_{k}=k U, k \in \mathbb{N}$. If T is positive and closed, we apply the previous result to $U=-T$.

Let T be a positive closed current of bidimension (p, p) in Ω. Let u be a plurisubharmonic function on Ω. We consider the closed set $M(T, u)=\{q ; q \in$ $\Omega, u T$ is not of finite mass in any neighborhood of $q\}$. For simplicity, since the results are of semi local nature (in neighborhoods of compacts) we will assume that $u<0$.

Proposition 2.7 Let T, u, Ω be as above. Then $\Omega \backslash M(T, u)$ is p-pseudoconvex. And on $\Omega \backslash M(T, u)$ the current $u T$ is negative and satisfies $d d^{c}(u T) \geqq 0$.

Proof. Let H be an $(n-p, p)$ Hartogs figure, assume $\hat{H}=\Delta \Subset \Omega$. Let $u_{j} \searrow u$ be a decreasing sequence of smooth plurisubharmonic functions in a neighborhood of $\bar{\Delta}$. If $U_{j}:=u_{j} T$ we clearly have $U_{j} \leqq 0$ for large j and $d d^{c} U_{j} \geqq 0$. Theorem 2.4 implies that

$$
\int_{\Lambda_{\rho}}\left|u_{j}\right| \sigma_{T} \leqq C_{\rho} \int\left|u_{j}\right| \sigma_{T} \leqq C_{\rho} \int_{H}|u| \sigma_{T} .
$$

Here σ_{T} denotes the trace measure for the current T. Hence if $\int_{H}|u| \sigma_{T}<\infty$ we get that

$$
\int_{\Lambda_{\rho}}|u| \sigma_{T} \leqq C_{\rho} \int_{H}|u| \sigma_{T},
$$

by Lebesgue's dominated convergence theorem. The p-pseudoconvexity of $\Omega \backslash M(T, u)$ follows easily from the above estimate. Since locally in $\Omega \backslash M(T, u)$, $u_{j} T \mapsto u T$ in the sense of currents and since $d d^{c}\left(u_{j} T\right)=d d^{c} u_{j} \wedge T \geqq 0$ we get that $d d^{c}(u T) \geqq 0$.

3 The operator $\left(u_{1}, \ldots, u_{q}\right) \mapsto d d^{c} u_{1} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$

It is very useful, in many questions in Algebraic Geometry and Complex Analysis, to define an expression such that $d d^{c} u \wedge T$ where T is a closed (p, p) current and u is an unbounded plurisubharmonic function. The case where u is bounded is studied in [BT].

Here we want to extend the approach in [Si] to define

$$
d d^{c} u_{1} \wedge \ldots \wedge d d^{c} u_{k} \wedge T
$$

under quite general assumptions on u_{1}, \ldots, u_{k} and T.
Let Ω be an open subset in \mathbb{C}^{n}. If u is a plurisubharmonic function in Ω, define $M(u):=\{q ; q \in \Omega, u$ is unbounded in any neighborhood of $q\}$. Recall that if T is a positive closed (p, p) current we define $M(T, u):=\{z ; z \in \Omega, u$ is not σ_{T} integrable in a neighborhood of $\left.q\right\}$. In $\Omega \backslash M(T, u)$ we will define $d d^{c} u \wedge T:=d d^{c}(u T)$.

If X is a closed set in Ω, we say that X is in the envelope of p pseudoconvexity of $\Omega \backslash X$ with respect to Ω if all points in X can be reached by pushing polydiscs of dimension ($n-p$) using biholomorphic images of ($n-p, p$) Hartogs figures with hulls in Ω. So we use the same procedure as for obtaining the envelope of holomorphy by pushing one dimensional discs.

Proposition 3.1 Let u be a plurisubharmonic function in Ω. And let T be a positive closed bidimension (p, p) current on Ω. If $M(u) \cap \operatorname{supp} T:=X$ is in the envelope of p-pseudoconvexity of $\Omega \backslash X$ with respect to Ω, then u is locally σ_{T} integrable.

Proof. Without loss of generality we can assume $u<0$ on Ω. It is clear that $M(T, u) \subset M(u) \cap \operatorname{supp} T$. Since as proved in Proposition $2.7 \Omega \backslash M(T, u)$ is p-pseudoconvex it follows that $M(T, u)$ is empty.

Proposition 3.2 Let u_{j}, u be nonpositive plurisubharmonic functions in Ω. Let T_{j}, T be positive closed currents of bidimension (p, p) in Ω. Assume
(1) $T_{j} \mapsto T$,
(2) $\left(u_{j} T_{j}\right)$ has uniformly bounded mass on every compact,
(3) $u_{J} \mapsto u$ in L_{loc}^{1}.

If L is any weak limit of $u_{j} T_{j}$, then $L \leqq u T$. If $u_{j} \geqq u$ and $T_{j} \leqq T$, then $u_{j} T_{j} \mapsto u T$.

Proof. Let $\gamma \geqq 0$ be a smooth form with compact support $X \subset \Omega$ of bidegree (p, p). Let f be a continuous function on X such that $f \geqq u$ on X. By Hartogs lemma, see [H],

$$
\overline{\lim }_{j} \sup _{X}\left(u_{j}-f\right) \leqq \sup _{X}(u-f) \leqq 0 .
$$

Hence given $\varepsilon>0$, there is a j_{0} so that for $j \geqq j_{0}, u_{j} \leqq f+\varepsilon$. Since $\gamma \geqq 0$ and $T_{j} \geqq 0$ we have

$$
u_{j} T_{j} \wedge \gamma \leqq(f+\varepsilon) T_{j} \wedge \gamma
$$

Hence

$$
L \wedge \gamma \leqq(f+\varepsilon) T \wedge \gamma
$$

Since ε and f are arbitrary we get that $L \leqq u T$. If $u_{l} \geqq u$ and $T_{j} \leqq T$. we can assume using again Hartogs lemma that $u_{l} \leqq 0$ on support γ, we have

$$
\int u T \wedge \gamma \leqq \int u_{t} T \wedge \gamma \leqq \int u_{J} T_{l} \wedge \gamma \mapsto L \wedge \gamma .
$$

So $L=u T$.
Corollary 3.3 Let $u_{n} \leqq 0$ be plurisubharmonic in Ω and assume that $u_{n} \mapsto u$ in $L_{\text {loc }}^{1}$ and that $u_{n} \geqq u$. Then for any positive closed current of bidimension (p, p), we have in $\Omega \backslash M(T, u)$ that $u_{n} T \mapsto u T$ and that $d d^{c} u_{n} \wedge T \mapsto d d^{c} u \wedge T$.

Proof. Since $u_{j} \leqq 0,\left|u_{j}\right| \leqq|u|$ so given a compact K in $\Omega \backslash M(T, u)$,

$$
\int_{K}\left|u_{i}\right| d \sigma_{T} \leqq \int_{K}|u| d \sigma_{T} .
$$

Hence we can apply Proposition 3.2.
Let Λ^{x} denote the Hausdorff measure of dimension α. We have the following convergence result.
Corollary 3.4 Let $\left(u_{j}\right)$ be a sequence of plurisubharmonic functions in Ω. Assume $u_{j} \mapsto u$ in L_{loc}^{1} and $u_{j} \geqq u$. Let T be a positive, closed current of bidimension (p, p) in Ω. If $\Lambda^{2 p}(M(u) \cap \operatorname{supp} T)=0$, then $u_{I} T \mapsto u T$ in Ω.

Proof. We just have to check that $M(T, u)$ is empty. It is clear that $M(T, u) \subset$ $M(u) \cap \operatorname{Supp} T:=E$. The idea is to show that E is in the p envelope of the complement. By the results of Federer [Fe], for almost all $n-p$ planes say parallel to a given one the intersection with E is empty, hence we can construct Hartogs figures of the right type. More precisely, fix $x \in E$. Since
$\Lambda^{2 p}(E \backslash\{x\})=0$, almost every $n-p$ complex plane through x does not intersect $E \backslash\{x\}$. Assume that $x=0$ and let $L=\left\{w_{1}=\ldots w_{p}=0\right\}$ be such a plane. Let $\left(z_{1}, \ldots, z_{n-p}\right)$ be the coordinates in L. Fix a polydisc $4^{n-p} \Subset \Omega$ centered at the origin. Since $\partial \Delta^{n-p} \cap E=\varnothing$, we can find a polydisc Δ^{p} in the orthogonal complement L^{\perp} centered at the origin such that $\left(\partial \Delta^{n-p} \times \Delta^{p}\right) \cap E=\varnothing$. We can then complete the Hartogs figure $H \subset \Omega \backslash E$ such that $0 \in \hat{H}$.

Theorem 3.5 Let T be a closed positive current of bidimension (p, p) in $\Omega, 0<p<n$. Let u_{1}, \ldots, u_{q} be plurisubharmonic $\leqq 0$ functions in Ω. If for all $j_{1}, \ldots, j_{m}, M\left(u_{j_{1}}\right) \cap \ldots \cap M\left(u_{j_{m}}\right) \cap \operatorname{supp} T$ is in the $p-m+1$ envelope of pseudoconvexity of the complement, then $u_{1} d d^{c} u_{2} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$ has locally bounded mass in Ω and similarly for $d d^{c} u_{1} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$. Moreover the mass on a compact set of Ω is majorized by the mass on a compact where all the u_{j} are bounded. We also have $u_{1}^{j} d d^{c} u_{2}^{j} \wedge \ldots \wedge d d^{c} u_{q}^{j} \wedge T \mapsto$ $u_{1} d d^{c} u_{2} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$ provided $u_{k}^{j} \mapsto u_{k}$ in $L_{\text {loc }}^{1}$ and $u_{k}^{j} \geqq u_{k}$, moreover $d d^{c} u_{1}^{j} \wedge \ldots \wedge d d^{c} u_{q}^{j} \wedge T$ converge weakly to $d d^{c} u_{1} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$.

Proof. Case $q=1$. We assume $M(u) \cap \operatorname{supp} T$ is in the p-convex envelope of the complement relative to Ω. Then $u T$ is well defined in Ω and if L is a compact in Ω, Theorem 2.4 shows that

$$
\int_{L}|u| d \sigma_{T} \leqq c \int_{K}|u| d \sigma_{T}
$$

where K is a compact of $\Omega \backslash M(u)$. Let χ be a nonnegative test function with value 1 in a neighborhood of L. If $\beta=d d^{c}|z|^{2}$, then

$$
M_{L}\left[d d^{c} u \wedge T\right] \leqq \int \chi d d^{c} u \wedge T \wedge \beta^{s}=\int u T \wedge \beta^{s} \wedge d d^{c} \chi
$$

So we also get that $M_{L}\left[d d^{c} u \wedge T\right] \leqq c^{\prime} M_{K^{\prime}}[u T]$. For $q=1$ the convergence result is just Corollary 3.3.

So assume the theorem has been proved for $(q-1)$ functions $\left(v_{j}\right)$. Let $S=d d^{c} u_{2} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$ which is, by induction, a well defined current on Ω of bidimension $(p-q+1, p-q+1)$. We want to show that $\Omega \backslash M\left(u_{1}, S\right)$ contains the complement of $M\left(u_{1}\right) \cap \ldots \cap M\left(u_{q}\right) \cap \operatorname{supp} T$. Since $\Omega \backslash M\left(u_{1}, S\right)$ is $p-q+1$ pseudoconvex, the hypotheses of the theorem imply that $M\left(u_{1}, S\right)$ is empty.

Fix $z_{0} \notin M\left(u_{1}\right) \cap \ldots \cap M\left(u_{q}\right) \cap \operatorname{supp} T$. If u_{1} is bounded near z_{0} we are done. Assume $z_{0}=0$ and that u_{2} is bounded on a neighborhood of $\bar{B}:=\bar{B}(0, r)$. Replacing u_{2} by $\max \left(u(z), A\left(|z|^{2}-r^{2}\right)\right)$ we can assume that u_{2} is unchanged on $B_{1}=B(0, r / 4)$, and is equal to $A\left(|z|^{2}-r^{2}\right)$ in a neighborhood of ∂B. Let $T^{\prime}=d d^{c} u_{3} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$. We will show that

$$
\begin{equation*}
\int_{B}-u_{1} d d^{c} u_{2} \wedge T^{\prime} \wedge \beta^{s} \tag{*}
\end{equation*}
$$

is bounded by the mass of $u_{1} T^{\prime}$ on B.

Let h be a smooth function supported near ∂B with value 1 near ∂B. Let $v_{1}^{j} \searrow u_{1}, v_{1}^{j}$ smooth plurisubharmonic functions. We can apply Lemma 2.5 with $U=v_{1}^{j} d d^{c} u_{2} \wedge T^{\prime}$ and $S=\beta^{s-1}$ (in this case $\omega=B, \phi=|z|^{2}$ and M is empty). We have

$$
\begin{aligned}
& \int_{B} \phi(1-h) d d^{c} v_{1}^{\prime} \wedge d d^{c} u_{2} \wedge T^{\prime} \wedge \beta^{s-1} \\
&-\int_{B} v_{1}^{j} d d^{c} \phi \wedge d d^{c} u_{2} \wedge T^{\prime} \wedge \beta^{s-1} \\
&=-\int_{B} v_{1}^{j} d d^{c}(\phi h) \wedge d d^{c} u_{2} \wedge T^{\prime} \wedge \beta^{s-1}
\end{aligned}
$$

Observe that $-v_{1}^{J} \geqq 0$ and $-A^{\prime} \beta \leqq d d^{c}(\phi h) \leqq A^{\prime} \beta$ and that on the support of $h, d d^{c} u_{2}=A \beta$. So the last integral is smaller in absolute value than

$$
-A A^{\prime} \int_{B} v_{1}^{j} T^{\prime} \wedge \beta^{s+1}
$$

Using Fatou's lemma and the induction hypothesis we get

$$
\int_{B}\left|u_{1}\right| d d^{c} \phi \wedge d d^{c} u_{2} \wedge T^{\prime} \wedge \beta^{s-1} \leqq A A^{\prime} \int_{B}\left|u_{1}\right| T^{\prime} \wedge \beta^{s+1}
$$

Hence we have shown (${ }^{*}$). As a consequence, also the mass of $d d^{c} u_{1} \wedge$ $d d^{c} u_{2} \wedge T^{\prime}$ on B_{1} is bounded by the mass of $u_{1} T^{\prime}$ on B.

We now turn to the convergence question. Let $u_{1}^{J} \geqq u_{1}, \ldots, u_{q}^{l} \geqq u_{q}$. We know that if R is any limit point of $u_{1}^{\prime} d d^{c} u_{2}^{\prime} \wedge \ldots \wedge T$ then $R \leqq u_{1} d d^{c} u_{2} \wedge$ $\ldots \wedge T$ (by Proposition 3.2). In order to prove equality, it is enough to prove that for any x_{0} there exists an open set $\omega \Subset \Omega, x_{0} \in \omega$, a smooth function ϕ in a neighborhood of $\bar{\omega}$, a positive closed form γ such that $d d^{c} \phi \wedge \gamma$ is strictly positive in a neighborhood of x_{0} and $\int_{0} u_{1} d d^{c} u_{2} \ldots \wedge T \wedge \gamma \wedge d d^{c} \phi \leqq$ $\underline{\lim }, \int_{\omega} u_{1}^{J} d d^{c} u_{2}^{j} \wedge \ldots \wedge T \wedge \gamma \wedge d d^{c} \phi$.

If $x_{0} \notin \operatorname{supp} T$ this is clear. Assume $x_{0} \notin M\left(u_{1}\right) \cap \ldots \cap M\left(u_{q}\right)$. Then there exists a ball B such that $\left(u_{l}^{j}\right)$ is a bounded sequence in a neighborhood of \bar{B} for some $1 \leqq l \leqq q$. Let $B=\{\psi<0\}, \psi$ plurisubharmonic. Since the result we want is local we can assume that on a neighborhood ω_{1} of $\hat{\partial B, u_{l}^{j}=A \psi, ~}$ where A is a large constant. Let h be a function in $C_{0}^{\infty}\left(\omega_{1}\right)$ with value 1 in a neighborhood of ∂B. We are going to use repeatedly the identity of Lemma 2.5 with $\phi=|z|^{2}$ and M empty.

Assume that all the u_{k}^{\prime} s are smooth.
Let T^{\prime} denote $T \wedge \beta^{p-q}$, we have

$$
\begin{aligned}
& \int_{B} u_{1} d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \wedge d d^{c} \phi \\
\leqq & \int_{B} u_{1}^{\prime} d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \wedge d d^{c} \phi \\
= & \int_{B} \phi(1-h) d d^{c} u_{1}^{\prime} \wedge d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \\
& +\int_{B} u_{1}^{j} d d^{c}(\phi h) \wedge d d^{c} u_{2} \wedge \ldots \wedge T^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{B} u_{2} d d^{c} \phi \wedge d d^{c} u_{1}^{j} \wedge \ldots \wedge T^{\prime} \\
& -\int_{B} u_{2} d d^{c}(\phi h) \wedge d d^{c} u_{1}^{j} \wedge \ldots \wedge T^{\prime} \\
& +\int_{B} u_{1}^{j} d d^{c}(\phi h) \wedge d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \\
\leqq & \int_{B} u_{2}^{j} d d^{c} \phi \wedge d d^{c} u_{1}^{j} \wedge T^{\prime} \ldots \\
& -\int_{B} u_{2} d d^{c}(\phi h) \wedge d d^{c} u_{1}^{j} \wedge \ldots \wedge T^{\prime} \\
& +\int_{B} u_{1}^{j} d d^{c}(\phi h) \wedge d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \ldots=
\end{aligned}
$$

(where we do not write terms containing $\left.d d^{c}(\phi h)\right)$

$$
\begin{aligned}
= & \int_{B} \phi(1-h) d d^{c} u_{1}^{j} \wedge d d^{c} u_{2}^{j} \wedge d d^{c} u_{3} \wedge \ldots \\
& +\int_{B} u_{2}^{\prime} d d^{c}(\phi h) \wedge d d^{c} u_{1}^{j} \wedge \ldots T^{\prime}+\ldots \\
= & \int_{B} u_{1}^{j} d d^{c} u_{2}^{j} \wedge d d^{c} u_{3} \wedge \ldots \wedge T^{\prime} \wedge d d^{c} \phi \\
& -\int_{B} u_{1}^{j} d d^{c}(\phi h) \wedge d d^{c} u_{2}^{j} \wedge \ldots \wedge T^{\prime} \\
& +\int_{B} u_{2}^{J} d d^{c}(\phi h) \wedge d d^{c} u_{1}^{j} \wedge \ldots \wedge T^{\prime} \\
& -\int_{B} u_{2} d d^{c}(\phi h) \wedge d d^{c} u_{1}^{j} \wedge \ldots \wedge T^{\prime} \\
& +\int_{B} u_{1}^{j} d d^{c}(\phi h) \wedge d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \\
\leqq & \int_{B} u_{1}^{j} d d^{c} u_{2}^{j} \wedge \ldots \wedge d d^{c} u_{q}^{j} \wedge T \wedge d d^{c} \phi+
\end{aligned}
$$

sum of integrals involving $d d^{c}(\phi h)$.
Recall that if positive measures $\mu_{k} \mapsto \mu$ weakly on an open Ω set then $\overline{\lim }_{k \mapsto \infty} \mu_{k}(K) \leqq \mu(K)$ for each compact $K \subset \Omega$ and $\mu(V) \leqq \underline{\lim } \mu_{k}(V)$ for each open set. Hence, if V is an open set such that $\mu_{k}(\partial V)=\mu(\partial V)=0$ for all k, then $\mu(V)=\lim _{k} \mu_{k}(V)$. We can assume that all the measures, which are coefficients of the currents we work with, have no mass on ∂B.

On support of $d d^{c}(\phi h), u_{l}^{\prime}=A \psi$, so we have only $q-1$ nonconstant sequences (u_{m}^{J}) so for every integral involving $d d^{c}(\phi h)$ we have convergence, but as it is shown from the above development the limit of the sum of integrals involving $d d^{c}(\phi h)$ is zero, (observe that the manipulations are purely algebraic) so

$$
\int u_{1} d d^{c} u_{2} \wedge \ldots \wedge T^{\prime} \wedge d d^{c} \phi \leqq \underline{\lim }_{j} \int u_{1}^{j} d d^{c} u_{2}^{\prime} \wedge \ldots \wedge d d^{c} u_{q}^{j} \wedge T^{\prime} \wedge d d^{c} \phi
$$

Now assume $x \in M\left(u_{1}\right) \cap \ldots \cap M\left(u_{q}\right) \cap \operatorname{supp} T:=M$. Since this set is in the envelope of $p-q+1$ pseudoconvexity of the complement we can construct finitely many Hartogs figures to absorb successively all of M. Given a Hartogs
figure H and $x \in \hat{H} \cap M$, we can construct a smoothly bounded neighborhood $\omega \Subset \hat{H}$ of x and smooth functions $\left(\phi_{i}\right)_{i \leqq s}$ vanishing in a neighborhood of $\partial \omega \cap M$ such that $d d^{c} \phi_{1} \wedge \gamma_{1} \geqq 0$ and $\sum_{i}^{s} d d^{c} \phi_{1} \wedge \gamma_{1}>0$ in a neighborhood of x, where the $\gamma_{1}^{\prime} s$ are closed forms of bidegree $(p-q, p-q)$. We compute the integrals in the same way as above, where now T^{\prime} denotes $T \wedge \gamma_{1}$. Since the support of ϕh is contained in the set where we have already proved convergence, the sum of integrals involving $d d^{c}(\phi h)$ is going to converge to zero as $j \mapsto \infty$, and then we add up with respect to $1 \leqq i \leqq s$. Hence,

$$
\int u_{1} d d^{c} u_{2} \wedge \ldots \wedge \gamma_{1} \wedge d d^{c} \phi \leqq \underline{\lim } \int u_{1}^{j} d d^{c} u_{2}^{\prime} \wedge \ldots \wedge \gamma_{1} \wedge d d^{c} \phi .
$$

This finishes the convergence proof for general q. The last part follows immediately.

Corollary 3.6 Let $\Omega, T, u_{1}, \ldots, u_{q}$ and $u_{j} \geqq u_{k}$ be as in theorem. Assume that $A^{2(p-m+1)}\left(M\left(u_{j_{1}}\right) \cap \ldots \cap M\left(u_{j_{m}}\right) \cap \operatorname{supp} T\right)=0$ for all $j_{1}, \ldots, j_{m} \leqq q$. Then $u_{1} d d^{c} u_{2} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$ has locally bounded mass and $u_{1}^{\prime} d d^{c} u_{2}^{\prime} \wedge \ldots \wedge d d^{c} u_{q}^{j}$ $\wedge T \mapsto u_{1} d d^{c} u_{2} \wedge \ldots \wedge d d^{c} u_{q} \wedge T$ in Ω.

Proof. The assumption on the Hausdorff dimension of $X:=M\left(u_{j_{1}}\right) \cap \ldots$ 亿 $M\left(u_{l m}\right) \cap \operatorname{supp} T$, implies that X is in the envelope of $p-m+1$ pseudoconvexity of $\Omega \backslash X$, as in the proof of Corollary 3.4 so the result follows from Theorem 3.5.

A weaker form of the corollary was proved recently by Demailly [De]. He requires that $A^{2 p-2 m+1}\left(M\left(u_{j_{1}}\right) \cap \ldots \cap M\left(u_{j_{m}}\right) \cap \operatorname{supp} T\right)=0$. The case when $M\left(u_{j}\right)$ is empty, $1 \leqq j \leqq q$ is due to Bedford and Taylor [BT].

Remark 3.7 Theorem 3.5 gives a Thullen type extension for currents of type $u T$. More precisely, let T be a positive closed current in Ω, of bidimension (p, p). Let u be a plurisubharmonic function in Ω and V an analytic subvariety of dimension p in Ω. If $M(T, u)$ is contained in V and $\Omega \backslash M(T, u)$ intersects every irreducible branch of V then $M(T, u)=\varnothing$. The example of ShiffmanTaylor in [Siu] is a case where V is of codimension 1 in \mathbb{C}^{2} and $u d d^{c} u$ has locally bounded mass in $\mathbb{C}^{2} \backslash V$ and $M(T, u)=V$.

A natural question about the operator $\left(d d^{c}\right)^{k}$ is the following: Let $\left(u_{l}\right)$ be a sequence of plurisubharmonic functions in Ω. Find the right notion of convergence such that $u_{j} \mapsto u$ implies $\left(d d^{c} u_{j}\right)^{k} \mapsto\left(d d^{c} u\right)^{k}$ in the sense of currents. Cegrell [Ce] and Lelong [Le] observed that the convergence of $\left(u_{j}\right)$ to u in $L_{\mathrm{loc}}^{p}, p<\infty$, is not enough. We start with a refinement of their example.

Proposition 3.8 There exists a uniformly bounded sequence (v_{p}) of plurisubharmonic functions in the unit bidisc $\Delta \subset \mathbb{C}^{2}$ such that:
(i) $v_{p}(z) \mapsto v(z)$ for every $z \in \Delta$ except on a set of Hausdorff dimension 2.

More precisely, given any $\varepsilon>0$ and $\alpha>0$, there are balls $B\left(x_{t}, r_{i}\right)$ with $\sum r_{i}^{2+\varepsilon}<\infty$ such that for $p>p(\varepsilon), v_{p}>v-\varepsilon$ on $B \backslash \bigcup B\left(x_{i}, r_{i}\right)$.
(ii) $\left(d d^{c} v_{p}\right)^{2}$ does not converge to $\left(d d^{c} v\right)^{2}$.

Proof. Let $v_{p}(z, w):=\left|z^{2 p}+w^{2 p}\right|^{1 /(2 p)}$ and $v(z, w)=\max (|z|,|w|)$. Clearly $0 \leqq$ $v_{p} \leqq 2^{1 / p} v$. Let $\omega:=\{|z| \neq|w|\}$. We have uniform convergence on compact subsets of ω. Since through every point q in \mathbb{C}^{2} there exists a disc Δ_{q} on which v_{p} is harmonic, it follows that $\left(d d^{c} v_{p}\right)^{2}=0$, see [FS1, Lemma 6.9]. On the other hand one computes easily that $\left(d d^{c} v\right)^{2} \neq 0$ since $v=1$ on the boundary of the unit polydisc but we do not have that $1 \leqq v$ as should be the case by maximum principle if $\left(d d^{c} v\right)^{2}=0$, see $[\mathrm{BT}]$.

We now study for which points $w=z e^{i \theta}, v_{p}(z, w)$ does not converge to $v(z, w)$. We have $v_{p}\left(z, e^{i \theta} z\right)=|z|\left|1+e^{21 p \theta}\right|^{1 /(2 p)}=2^{1 / 2 p}|z||\cos p \theta|^{1 /(2 p)}$.

Let $E=\left\{e^{i \theta} ; \lim \inf _{p}|\cos p \theta|^{1 / p}<1\right\}$. Let $\varepsilon_{k}=1-1 / k$. Then $E \subset$ $\bigcup_{k} \cap_{N} \bigcup_{p>N}\left\{|\cos p \theta|<\varepsilon_{k}^{p}\right\}=: \bigcup E_{k}$. The set $\left\{|\cos p \theta|<\varepsilon_{k}^{p}\right\}$ is contained in a union of $2 p$ intervals of length at most $3 \varepsilon_{k}^{p} / p$ for $p \geqq p(k)$. Given $\alpha>0$ we have $\Lambda^{x}(E) \leqq \sum_{k} \Lambda^{x}\left(E_{k}\right)$, and $\Lambda^{x}\left(E_{k}\right) \leqq c \sum_{p>N} p\left(\varepsilon_{k}^{p}\right)^{x}=o(1)$ as $N \mapsto \infty$ so for every $k, \Lambda^{x}\left(E_{k}\right)=0$. Hence $\Lambda^{x}(E)=0$. It follows easily that $v_{p}(z, w) \mapsto v(z, w)$ except on a set of Hausdorff dimension 2. Indeed, given any $\varepsilon>0$ and $\alpha>0$, there are balls $B\left(x_{1}, r_{i}\right)$ with $\sum r_{t}^{2+\alpha}<\varepsilon$ and such that for $p>p(\varepsilon), v_{p} \geqq v-\varepsilon$ on $B \backslash \bigcup_{l}\left(B\left(x_{t}, r_{l}\right)\right.$.

The previous example is quite sharp as the following result * shows.
Theorem 3.9 Let T_{j} be a sequence of positive closed currents of bidimension (p, p) in an open set Ω in \mathbb{C}^{n}. Let A be a subset in Ω with $\Lambda^{2 p}(A)=0$. Let $\left(u_{j}\right)$ be a bounded sequence of plurisubharmonic functions and $и$ a plurisubharmonic function in Ω, whose restriction to $\Omega \backslash A$ is continuous. Assume
(i) $T_{j} \mapsto T$ as currents.
(ii) $u_{j} \mapsto u$ in $L_{\text {loc }}^{1}$.
(iii) For every compact $K \subset \Omega \backslash A$ and $\varepsilon>0$ there exists $j(K)$ such that for $j \geqq j(K) u_{j} \geqq u-\varepsilon$.
Then $u_{j} T_{j} \mapsto u T$ and $d d^{c} u_{j} \wedge T_{j} \mapsto d d^{c} u \wedge T$.
Proof. Observe that we do not assume that A is closed.
Let S be a limit point of the bounded sequence of currents $u_{j} T_{j}$. By Proposition 3.2 we know that $S \leqq u T$. Let γ be a positive form with compact support in $\omega \Subset \omega_{1} \Subset \Omega$. Since $\left(u_{j}\right)$ is bounded, we can assume that $0 \leqq u_{j} \leqq M$. We have to show that $\int u T \wedge \gamma \leqq \lim \inf \int u_{j} T_{j} \wedge \gamma$.

Since the mass of $\left(T_{j}\right)$ is bounded by a constant C on ω_{1}, for every ball $B(x, r) \subset \omega_{1}$, we have [Le1]

$$
\begin{equation*}
\sigma_{T_{j}} B(x, r) \leqq C r^{2 p} \tag{1}
\end{equation*}
$$

Fix $\varepsilon>0$ and let $B\left(x_{j}, r_{j}\right)$ be a sequence of balls such that $A \subset \bigcup B\left(x_{i}, r_{i}\right)$ and $\sum_{r} r_{i}^{2 p}<\varepsilon$. It follows from (1) that there exists an open set $U \supset A \cap \omega$ such that $\sigma_{T_{j}}(U)<\varepsilon$ independently of j. Let $K=\operatorname{supp} \gamma \cap(\Omega \backslash U)$. Since $u_{l} T_{i} \geqq 0$,

[^0]we have for $j \geqq j(K)$
\[

$$
\begin{aligned}
\int u_{j} T_{j} \wedge \gamma & =\int_{\omega \backslash U}\left(u_{j}-u\right) T_{j} \wedge \gamma+\int_{\omega \backslash U} u T_{j} \wedge \gamma+\int_{U} u_{j} T_{1} \wedge \gamma \\
& \geqq-C \varepsilon+\int_{\omega \backslash U} u T_{j} \wedge \gamma
\end{aligned}
$$
\]

Let \tilde{u} be a continuous extension of u from $\operatorname{supp} \gamma \backslash U$ to supp $\gamma, 0 \leqq \tilde{u} \leqq M$. Since for all $j, \sigma_{T_{j}}(U)<\varepsilon$, the last integral is close to $\int_{\omega} \tilde{u} T_{j} \wedge \gamma$ which converges to $\int u T \wedge \gamma$. We have then proved that

$$
\int u T \wedge \gamma \leqq \lim _{j} \int u_{j} T_{j} \wedge \gamma
$$

which is what we wanted to show.

4 Bezout theorem for currents in \mathbb{P}^{k}

Let ω be the standard Kahler form on \mathbb{P}^{k}, normalized such that $\int_{\mathbb{P}^{k}} \omega^{k}=1$. If $\pi: \mathbb{C}^{k+1} \mapsto \mathbb{P}^{k}$ is the canonical projection, then $\pi^{*} \omega=d d^{c} \log \|z\|$ where $z=\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ and $\left\|\|\right.$ is the Euclidean norm in \mathbb{C}^{k+1}. Given a pusitive closed current T of bidimension (p, p) we define $\|T\|:=\int T \wedge \omega^{p}$. When T corresponds to integration on an analytic manifold V, then $\|T\|$ is just the $2 p$ volume of V. We will need the following standard result.

Proposition 4.1 Let R be a closed positive $(1,1)$ current on \mathbb{P}^{k}.
(i) There exists a plurisubharmonic function v on \mathbb{C}^{k+1} such that $\pi^{*} R=$ $d d^{c} v, v(\lambda z)=c \log |\lambda|+v(z)$ for $\lambda \in \mathbb{C}, z \in \mathbb{C}^{k}$.
(ii) If v is a plurisubharmonic function on \mathbb{C}^{k+1}, satisfying the previous homogeneity condition, then there is a decreasing sequence $\left(v_{\varepsilon}\right)$ of plurisubharmonic functions on \mathbb{C}^{k+1} satisfying the homogeneity condition, such that $v_{\varepsilon} \in C^{\infty}\left(\mathbb{C}^{k+1} \backslash\{0\}\right)$ and $v_{\varepsilon} \searrow v$.

Proof. A proof of (i) can be found in Theorem 4.1 of [FS1], see also [LG].
For simplicity assume $c=1$. If α is an approximation of the identity in \mathbb{C}^{k+1} depending only on $\|z\|$, we define

$$
v_{\varepsilon}(z):=\frac{1}{\|z\|^{2(k+1)}} \int v(w) \alpha_{\varepsilon}\left(\frac{z-w}{\|z\|}\right) d \lambda(w)=\int v(z-\|z\| w) \alpha_{\varepsilon}(w) d \lambda(w)
$$

where i denotes Lebesgue measure. The proof is then the same as in Theorem 7.6 of Lelong and Gruman [LG].

Proposition 4.2 Let R be a positive closed current of bidegree $(1,1)$ on \mathbb{P}^{k}. Let v be a plurisubharmonic function on \mathbb{C}^{k+1} satisfying:
(i) $\pi^{*} R=d d^{c} v$
(ii) $v(\lambda z)=c \log |\lambda|+v(z), \lambda \in \mathbb{C}$.

Then $\|R\|=c$.

Proof. We can assume $c=1$. Let $\left(v_{\varepsilon}\right)$ be the sequence of plurisubharmonic functions constructed in Proposition 4.1. Consider the positive closed current on $\mathbb{P}^{k},\left(R_{\varepsilon}\right)$, defined by the relation $\pi^{*} R_{\varepsilon}=d d^{c} v_{\varepsilon}$. Let $u_{\varepsilon}\left[z_{0}: \ldots: z_{k}\right]=$ $v_{\varepsilon}\left(z_{0}, \ldots, z_{k}\right)-\log \|z\|$. The function u_{ε} is smooth and well defined on \mathbb{P}^{k}. Moreover $R_{\varepsilon}-\omega=d d^{c} u_{\varepsilon}$. Since $v_{\varepsilon} \mapsto v$ in L_{loc}^{1}, then $R_{\varepsilon} \mapsto R$ in the sense of currents. Using Stoke's theorem we get:

$$
\begin{aligned}
\|R\| & =\int R \wedge \omega^{k-1}=\lim _{\varepsilon \mapsto 0} \int R_{\varepsilon} \wedge \omega^{k-1} \\
& =\lim _{\varepsilon \rightarrow 0} \int \omega^{k}+d d^{c} u_{\varepsilon} \wedge \omega^{k-1}=\int \omega^{k}=1
\end{aligned}
$$

Remark 4.3 Let P be a homogeneous polynomial of degree d in \mathbb{C}^{k+1}. Let $V=\left\{z \in \mathbb{P}^{k}, P(z)=0\right\}$ and $[V]$ the current of integration on V. Since $\pi^{*}[V]=$ $d d^{c} \log |P|$, we get $\operatorname{vol}(V)=\|V\|=\int[V] \wedge \omega^{k-1}=d$.
Let T be a positive closed current of bidimension (p, p) in \mathbb{P}^{k}. Let R_{1}, \ldots, R_{q} be closed positive currents of bidegree $(1,1)$. Locally in \mathbb{P}^{k} each R_{j} can be written as $d d^{c} u_{j}$ where u_{j} is a plurisubharmonic function. We will say that $\left(T, R_{1}, \ldots, R_{q}\right)$ admit a wedge product if for every $x \in \mathbb{P}^{k}$, there exists an open set ω containing x, and plurisubharmonic functions (u_{1}, \ldots, u_{q}) on ω such that for every $j, 1 \leqq j \leqq q, R_{j}=d d^{c} u_{j}$, and moreover for all $i_{1}, \ldots, i_{m} \in[1, q]$, the set

$$
X:=\operatorname{Supp} T \cap M\left(u_{t_{1}}\right) \cap \ldots \cap M\left(u_{l_{m}}\right) \cap \omega
$$

is in the envelope of $p-m+1$ pseudoconvexity of $\omega \backslash X$.
Under this assumption and using Theorem 3.5 we can define the wedge product $T \wedge R_{1} \wedge \ldots \wedge R_{q}$.
Theorem 4.4 Let T be a positive closed current of bidimension (p, p) on \mathbb{P}^{k}. Let R_{1}, \ldots, R_{q} be positive closed currents of bidegree $(1,1)$ on \mathbb{P}^{k}. Assume that $\left(T, R_{1}, \ldots, R_{q}\right)$ admit a wedge product. Then

$$
\left\|T \wedge R_{\mathbf{1}} \ldots \wedge R_{q}\right\|=\|T\|\left\|R_{1}\right\| \ldots\left\|R_{q}\right\|
$$

In particular $T \wedge R_{1} \wedge \ldots \wedge R_{q}$ is nonzero and $\operatorname{supp} T \cap \operatorname{supp}\left(R_{1}\right) \cap \ldots \cap$ $\operatorname{supp}\left(R_{q}\right) \neq \varnothing$.

Proof. Without loss of generality we can assume that $\|T\|=\left\|R_{1}\right\|=\ldots=$ $\left\|R_{q}\right\|=1$. Assume $\pi^{*} R_{q}=d d^{c} v, v(\lambda z)=\log |\lambda|+v(z)$. Then as in the proof of Proposition 4.2, $R_{q}=\lim _{b \mapsto 0} R_{q}^{\varepsilon}$ where $\pi^{*} R_{q}^{\varepsilon}=d d^{c} v_{i}$. The assumption that $\left(T, R_{1}, \ldots, R_{q}\right)$ admit a wedge product and Theorem 3.5 imply that $T \wedge R_{1} \wedge$ $\ldots \wedge R_{q}=\lim _{\varepsilon \rightarrow 0} T \wedge R_{1} \wedge \ldots \wedge R_{q-1} \wedge R_{q}^{\varepsilon}$. (Indeed convergence of currents has to be checked locally, and $v_{\varepsilon} \searrow v$ in a given chart in \mathbb{P}^{k}.)

We can also assume that $p+q=k$. Hence using Stokes theorem we get if $u_{\varepsilon}[z]=v_{\varepsilon}(z)-\log |z|$

$$
\begin{aligned}
\int T \wedge R_{\mathrm{I}} \wedge \ldots \wedge R_{q} & =\lim _{\varepsilon \rightarrow 0} \int T \wedge R_{1} \wedge \ldots \wedge R_{q-1} \wedge R_{q}^{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \int T \wedge R_{1} \wedge \ldots \wedge R_{q-1} \wedge\left(\omega+d d^{c} u_{\varepsilon}\right) \\
& =\int T \wedge R_{1} \wedge \ldots \wedge R_{q-1} \wedge \omega
\end{aligned}
$$

Repeating the procedure we then show that

$$
\int T \wedge R_{1} \wedge \ldots \wedge R_{q}=\int T \wedge \omega^{q}=1
$$

Remark 4.5 Let P_{1}, \ldots, P_{q} be homogeneous polynomials of degree d_{1}, \ldots, d_{q} in \mathbb{C}^{k+1}. Let $V_{j}=\left\{z \in \mathbb{P}^{k} ; P_{j}(z)=0\right\}$. Assume $\operatorname{codim}\left(V_{l_{1}} \cap \ldots \cap V_{j m}\right)=m$. Then the currents $\left(\left[V_{1}\right], \ldots,\left[V_{q}\right]\right)$ admit a wedge product. Indeed if u_{j} is such that on a given chart on $\mathbb{P}^{k}, d d^{c} u_{j}=\left[V_{j}\right]$, then $M\left(u_{i_{1}}\right) \cap \ldots \cap M\left(u_{t_{m}}\right)$ has dimension $k-m$, so is in the $k-m+1$ envelope of the complement. So Theorem 4.4 and Remark 4.3 gives in this case Bezout's theorem. See Demailly [De] who shows that $\left[V_{1}\right] \wedge \ldots \wedge\left[V_{q}\right]$ is the current of integration of the intersection with multiplicity.

Theorem 4.6 Let T be a nonzero, positive closed current of bidegree (p, p) in P^{k}. Let $X=\operatorname{supp} T$. For any algebraic variety $V=\left\{h_{1}=\ldots=h_{l}=0\right\}, X \cap$ $V \neq \varnothing$ provided $p+l \leqq k$ and provided V is a geometric complete intersection.

Proof. Let ω be the Kahler form on \mathbb{P}^{k}. Replacing T by $T \wedge \omega^{k-\left(p^{+l)}\right.}$ we can assume that $p+l=k$. We assume that $X \cap V=\varnothing$.

Define

$$
u\left[z_{0}: \ldots: z_{k}\right]=\log \frac{\|z\|^{2 s}}{\left|h_{1}\right|^{2}+\ldots+\left|h_{l}\right|^{2}}
$$

where we have assumed that the polynomials h_{j} are homogenous of degree s.
The function u is smooth in $\mathbb{P}^{k} \backslash V$. Let S be the current in \mathbb{P}^{k} defined by the relation:

$$
\pi^{*} S=\left(d d^{c} \log \left(\left|h_{1}\right|^{2}+\ldots\left|h_{l}\right|^{2}\right)\right)^{l-1}
$$

We show at first that in $\mathbb{P}^{k} \backslash V$, we have

$$
d d^{c} u \wedge S=2 s \omega \wedge S
$$

In local coordinates

$$
d d^{c} u \wedge S=d d^{c} \log \|z\|^{2 s} \wedge S-\left(d d^{c} \log \|h\|^{2}\right)^{l}
$$

and the last term is zero outside V. Indeed, if for example $h_{1} \neq 0, \log \|h\|^{2}=$ $\log \left|h_{1}\right|^{2}+\log \left(1+\frac{\left|h_{2}\right|^{2}}{\left|h_{1}\right|^{2}}+\ldots+\frac{\left|h_{1}\right|^{2}}{\left|h_{1}\right|^{2}}\right)$. If we consider the variety $\frac{h_{m}}{h_{1}}=c^{t e}$, we see that $d d^{c} \log \|h\|^{2}$ has at least $k-l+1$ zero eigenvalues, the result follows.

Let θ be a nonnegative test function with support in $\mathbb{P}^{k} \backslash V$ and with value 1 in a neighborhood of X. Since S is smooth and closed in a neighborhood of supp T, the current $T \wedge S$ is well defined and

$$
\left\langle T \wedge S, \theta d d^{c} u\right\rangle=\left\langle T \wedge S, d d^{c}(u \theta)\right\rangle=\left\langle d d^{c} T \wedge S, u \theta\right\rangle=0
$$

and hence $T \wedge S \wedge \omega=0$. We can vary slightly the h_{j}^{\prime} s to obtain varieties V_{1} close to V and still not intersecting X. We obtain for the corresponding forms
S_{l}, that $T \wedge S_{i} \wedge \omega=0$. It is clear that if we take enough perturbations of V, this implies that $T=0$, a contradiction.
Theorem 4.7 Let T be a positive, closed $(1,1)$ current on \mathbb{P}^{k}. Assume $\pi^{*} T=$ $d d^{c} v$ with v plurisubharmonic and continuous on $\mathbb{C}^{k+1} \backslash\{0\}$. Let $X_{l}=\operatorname{supp} T^{l}$. Then for $2 l \leqq k, X_{l}$ is connected.

Proof. We first observe that a positive closed current S of bidegree (l, l) is a limit of smooth positive closed currents. Indeed it is enough to take an approximation of identity in $\operatorname{Aut}\left(\mathbb{P}^{k}\right)$ and average the current S with respect to the approximation of identity. Let $\rho_{\varepsilon}(g)$ be an approximation of identity on the group $U(k)$ which acts transitively on \mathbb{P}^{k}. Let μ be the Haar measure for $U(k)$. For a positive (l, l) current S define S_{ε} by

$$
S_{\varepsilon}=\int_{U(k)} \rho_{\varepsilon}(g)\left(g_{*} S\right) d \mu(g)
$$

If $\rho_{\varepsilon} \geqq 0, S_{\varepsilon}$ is positive, closed and smooth [deRh]. The previous formula has to be understood as follows: If ϕ is a test form,

$$
\left\langle S_{\varepsilon}, \phi\right\rangle=\int \rho_{\varepsilon}(g)\left\langle S, g^{*} \phi\right\rangle d \mu(g)
$$

It is also known, Dold [Do] or de Rham [deRh], that there exists a constant c such that $S-c \omega^{l}=d d^{c} H$ where H has integrable coefficients. Observe that since $S \geqq 0$ then $c \geqq 0$.

Since T has locally a continuous potential u, i.e. $d d^{c} u=T$, we can define T^{l} for any $l \leqq k$. Assume there exists two disjoint open sets U_{1}, U_{2} each one intersecting $X_{l}=\operatorname{supp} T^{l}$ and such that $X_{l} \cap \partial U_{1}=X_{l} \cap \partial U_{2}=\varnothing$. Let $S_{1}=$ $T^{l} \mid U_{1}$ and $S_{2}=T^{l} \mid U_{2}$. Clearly S_{1} is a positive closed current. Let $\left(S_{1}^{n}\right)$ be a sequence of smooth positive closed currents $S_{1}^{n} \mapsto S_{1}$. Let B be a ball where $T=d d^{c} u$. Since all the currents are positive, hence with measure coefficients, we have $u S_{1}^{n} \mapsto u S_{1}$, on B hence $d d^{c} u \wedge S_{1}^{n} \mapsto d d^{c} u \wedge S_{1}$. Inductively we get $\left(d d^{c} u\right)^{l} \wedge S_{1}^{n} \mapsto\left(d d^{c} u\right)^{l} \wedge S_{1}$, hence $T^{l} \wedge S_{1}^{n} \mapsto T^{l} \wedge S_{1}$. Since T^{l} has no mass on ∂U_{2} we also have $S_{2} \wedge S_{1}^{n} \mapsto S_{2} \wedge S_{1}$.

Let $s=k-2 l$ and let $S_{2}=c_{2} \omega^{l}+d d^{c} H_{2}$. We have

$$
\begin{aligned}
\int S_{2} \wedge S_{1} \wedge \omega^{s} & =\lim _{n} \int S_{2} \wedge S_{1}^{n} \wedge \omega^{s} \\
& =\lim _{n} \int c_{2} S_{1}^{n} \wedge \omega^{l+s}+\int d d^{c} H_{2} \wedge S_{1}^{n} \wedge \omega^{s}
\end{aligned}
$$

Since S_{1}^{n} are smooth, the last integral is zero. Hence

$$
\int S_{2} \wedge S_{1} \wedge \omega^{s}=c_{2} \int \omega^{l+s} \wedge S_{1}
$$

But $S_{2} \neq 0$ implies $c_{2} \neq 0$ and $S_{1} \neq 0$ implies that $S_{1} \wedge \omega^{l+s} \neq 0$. Consequently the previous relation shows that $S_{1} \wedge S_{2} \neq 0$, contradicting the assumption that $\operatorname{supp} S_{1} \cap \operatorname{supp} S_{2}=\varnothing$.

5 Examples from holomorphic dynamics in \mathbb{P}^{k}

For background on this section we refer to [FS1], [FS2] and [HP].
Let f be a holomorphic surjective map on \mathbb{P}^{k}. Let $F=\left[F_{0}: \ldots: F_{k}\right]$ be a lifting of f to \mathbb{C}^{k+1}. Let d be the common degree of the polynomials F_{j}. The fact that f is holomorphic implies that $F^{-1}(0)=(0)$ and hence, there exists a constant $c>0$ such that $1 / c\|z\|^{d} \leqq\|F(z)\| \leqq c\|z\|^{d}$. Hence out of 0 we have

$$
\left|1 / d^{n+1} \log \left\|F^{n+1}\right\|-1 / d^{n} \log \left\|F^{n}\right\|\right| \leqq c_{1} / d^{n}
$$

and the function

$$
G(z):=\lim _{n \rightarrow \infty} 1 / d^{n} \log \left\|F^{n}(z)\right\|
$$

is continuous on $\mathbb{C}^{k+1} \backslash\{0\}$ since the convergence is uniform. Clearly we have:
(i) $G(\lambda z)=\log |\lambda|+G(z), \lambda \in \mathbb{C}$
(ii) G is plurisubharmonic in \mathbb{C}^{k+1}
(iii) $G((F(z))=d G(z)$.

Definition 5.1 Let $f: \mathbb{P}^{k} \mapsto \mathbb{P}^{k}$ be in the space H_{d} of holomorphic self maps on \mathbb{P}^{k} given by polynomials of degree d. For $0 \leqq l \leqq k-1$, a point $p \in \mathbb{P}^{k}$ belongs to the Fatou set F_{l} if there exists a neighborhood $U(p)$ such that for every $q \in U(p)$ there exists a complex variety X_{q} of codimension l such that $\left\{f^{n} \mid X_{q}\right\}$ is equicontinuous. Observe that F_{0} is the largest open set where f^{n} is equicontinuous. We call F_{0} the Fatou set. We have $F_{0} \subset F_{1} \subset \ldots \subset F_{h-1}$.

Let $J_{l}:=\mathbb{P}^{k} \backslash F_{l}$, we call J_{l} the Julia set of order l.
Let T be the $(1,1)$ positive closed current defined on \mathbb{P}^{k} by the relation $\pi^{*} T=$ $d d^{c} G$. Since G is continuous on $\mathbb{C}^{k+1} \backslash\{0\}, T$ has a continuous potential on any chart in \mathbb{P}^{k}, for example if $z_{0} \neq 0, T=d d^{c} G\left(1, z_{1}, \ldots, z_{k}\right)$. Hence we can define the closed positive currents of bidegree (l, l) by the relation $\pi^{*}\left(T^{l}\right)=$ $\left(d d^{c} G\right)^{l}$ for any $1 \leqq l \leqq k$. We define $J_{l-1}^{\prime}=\operatorname{supp} T^{l}, 1 \leqq l \leqq k$, and $F_{l-1}^{\prime}=$ $\mathbb{P}^{k} \backslash J_{l-1}^{\prime}$.

Theorem 5.2 Let $f: \mathbb{P}^{k} \mapsto \mathbb{P}^{k}$ be a surjective holomorphic map of degree $d \geqq 2$ on \mathbb{P}^{k}. Let T be the positive closed $(1,1)$ current associated to f. Then
(i) J_{k-1}^{\prime} is nonempty and for every $0 \leqq l<k, f\left(J_{l}^{\prime}\right)=f^{-1}\left(J_{l}^{\prime}\right)=J_{l}^{\prime}$. Moreover $J_{l}^{\prime} \subset J_{l}$ for $0 \leqq l<k$.
(ii) Support $T=J_{0}^{\prime}=J_{0}$ and F_{0} is a domain of holomorphy. For $0 \leqq l<$ k, F_{l}^{\prime} is $(k-l-1)$ pseudoconvex.
(iii) J_{l-1}^{\prime} is connected if $2 l \leqq k$.
(iv) If X is an algebraic variety of dimension r, which is a complete intersection, then $T^{r} \wedge[X]$ is a positive measure of total mass vol(X). Moreover X intersects every component of $\operatorname{supp} T^{r}$.

Proof. It follows from Proposition 4.2 that $\|T\|=1$ since $G(\lambda z)=\log |\lambda|+$ $G(z)$. Theorem 4.4 implies that for every $1 \leqq l \leqq k\left\|T^{\prime}\right\|=1$, in particular T^{k} is a probability measure, hence $J_{k-1}^{\prime}=\operatorname{supp} T^{k}$ is nonempty.

Let $G_{n}:=1 / d^{n} \log \left\|F^{n}\right\|$ and observe that G_{n} are smooth and converge uniformly to G on $\mathbb{C}^{k+1} \backslash\{0\}$. If $\left(d d^{c} G_{n}\right)^{l} \mapsto 0$, then $\left(d d^{c} G_{n} \circ F\right)^{l}=$ $\left(d d^{c}\left(G_{n+1} d\right)\right)^{\prime} \mapsto 0$, hence F_{l}^{\prime} and J_{l}^{\prime} are totally invariant.

We prove now that $J_{l}^{\prime} \subset J_{l}, 0 \leqq l<k$. We have to show that if $p \in F_{l}$ then T^{l+1} vanishes in a neighborhood of p. Let U be a neighborhood of $p, q \in U$, and let X_{q} be an analytic variety of codimension l through q such that $f^{n} \mid X_{q}$ is equicontinuous. Let $f^{n_{n}} \mid X_{q} \mapsto h$. This means that we can find non zero holomorphic functions $\lambda_{n_{i}}$ on X_{q} such that $\frac{F^{n_{i}}}{\lambda_{n_{1}}}$ converge to a holomorphic function H. We can write

$$
G_{n_{1}}=1 / d^{n_{t}} \log | | F^{n_{1}} / \lambda_{n_{t}}\left|+1 / d^{n_{t}} \log \right| \lambda_{n_{1}} \mid .
$$

The first sequence converges uniformly to zero on $\pi^{-1}\left(X_{q}\right)$ and the sequence $1 / d^{n} \log \left|\lambda_{n_{1}}\right|$ is harmonic on any analytic disc in $\pi^{-1}\left(X_{q}\right)$. So G is harmonic on any analytic disc in $\pi^{-1}\left(X_{q}\right)$. Hence if G_{1} is a local section of G in U, G_{1} is harmonic on any analytic disc contained in X_{q}. Assume that U is a polydisc $\Delta^{k-l-1} \times \Delta^{l+1}$. For every $a \in \Delta^{k-l-1}$ and every q in $a \times \Delta^{i+1}, X_{q}^{a}:=a \times \Delta^{l+1} \cap X_{q}$ is at least of dimension one, and G_{1} is harmonic on any analytic disc contained in X_{q}^{a}. Therefore Lemma 6.9 in [FS2] implies that $\left(d d^{c} G_{1}(a, w)\right)^{l+1}=0$ in $a \times \Delta^{l+1}$. Since a was arbitrary, standard results in slicing theory applied to the current T^{l+1} [HS] or [Fe], imply that T^{l+1} is zero on U.
(ii) We show that supp $T=J_{0}$. We have that supp $T \subset J_{0}$, in this case no slicing is needed since the first part of the proof shows that G is pluriharmonic on $\pi^{-1}\left(F_{0}\right)$. Let U be an open set disjoint from supp T. We want to prove that $U \subset F_{0}$. We can assume U is a ball. We know that G is pluriharmonic on $\pi^{-1}(U)$, hence $G=\log |h|$ where h is holomorphic on $\pi^{-1}(U)$. Since

$$
\left|G-G_{n}\right| \leqq c / d^{n}
$$

we get

$$
e^{-c} \leqq \frac{\left\|F^{n}\right\|}{\left|h^{d^{n}}\right|} \leqq e^{c} .
$$

So the family (f^{n}) is normal on U.
The fact that $F_{0}=\mathbb{P}^{k} \backslash J_{0}$ is pseudoconvex follows from Corollary 2.6. Since the Levi problem has a positive solution for domains in \mathbb{P}^{k}, it follows that F_{0} is a domain of holomorphy. Corollary 2.6 also implies that F_{l-1}^{\prime}, the complement of supp T^{l} is $(k-l)$-pseudoconvex.
(iii) Theorem 4.7 shows that J_{l-1}^{\prime} is connected if $l \leqq 2 k$.
(iv) Since T has locally a continuous potential, T^{r} and $[X]$ admit a wedge product. The current $[X]$ is given locally as $d d^{c} \log \left|P_{\mathrm{l}}\right| \wedge \ldots \wedge d d^{c} \log \left|P_{k-r}\right|$ where $\left(P_{l}\right)$ are homogeneous polynomials. So we can apply Theorem 4.4 and we get that $\left\|T^{r} \wedge[X]\right\|=\|[X]\|$. Let Y be a component of supp T^{r}. Assume $Y \cap X=\varnothing$. Let U be a neighborhood of Y such that $U \cap X=\varnothing$. Let $S=$ $T^{r} \mid U, S$ is a positive closed current of bidegree (r, r) to which we can apply Theorem 4.6, hence $\operatorname{supp} S$ intersects X, a contradiction.

We next show that f cannot be hyperbolic on J_{l}^{\prime} for $l<k-1$. Let $f \in$ $H_{d}, f: \mathbb{P}^{k} \mapsto \mathbb{P}^{k}$. We define first hyperbolicity, see Ruelle $[\mathrm{Ru}]$. Let $K \subset \mathbb{P}^{k}$ be a compact set. We assume that K is surjectively forward invariant, that is $f(K)=K$. The space $\hat{K}=K^{\mathbb{N}}$ of orbits $\left\{x_{n}\right\}_{n=-\infty}^{0}, f\left(x_{n}\right)=x_{n+1}$ is compact in the product topology. By the tangentbundle T_{k} of \hat{K} we mean the space of (x, ξ) where $x=\left\{x_{n}\right\} \in \hat{K}$ and $\xi \in T_{\mathbb{P}^{2}}\left(x_{0}\right)$ is a tangent vector. We give this tangentbundle the obvious topology. Then f lifts to a homeomorphism $\hat{f}: \hat{K} \mapsto \hat{K}$ and f^{\prime} lifts to a map f^{\prime} on T_{k} in the obvious way.

Definition 5.3 Let $K \subset \mathbb{P}^{k}$ be a compact surjectively forward invariant set. Then f is hyperbolic on K if there exists a continuous splitting $E^{u} \oplus E^{s}$ of the tangent space bundle of \hat{K} such that \hat{f}^{\prime} preserves the splitting and for some constants $C, c>0, \lambda>1, \mu<1$ depending on the choice of a Hermitian metric on \mathbb{P}^{2},

$$
\begin{aligned}
& \left|D \hat{f}^{n}(\xi)\right| \geqq c \lambda^{n}|\xi|, \xi \in E^{u} \\
& \left|D \hat{f}^{n}(\xi)\right| \leqq C \mu^{n}|\xi|, \xi \in E^{s}, \quad n=1,2, \ldots
\end{aligned}
$$

Theorem 5.4 Let $f: \mathbb{P}^{k} \mapsto \mathbb{P}^{k}, f \in H_{d}$. If supp $\mu=J_{k-1}^{\prime}$ is hyperbolic, then the unstable dimension of J_{k-1}^{\prime} is equal to k.

Proof. Suppose the stable dimension is equal to $l \geqq 1$. Then through every point $x \in J_{k-1}^{\prime}$ there is an analytic disc Δ_{x} on which the family $\left(f^{n}\right)$ is equicontinuous. Hence if G_{1} is a local potential for μ, i.e. $\left(d d^{c} G_{1}\right)^{\dot{k}}=\mu$, then G_{1} is harmonic on Δ_{x}. The theorem will then be a consequence of the following lemma.

Lemma 5.5 Let u be a continuous plurisubharmonic function in a ball $\bar{B} \subset \mathbb{C}^{k}$. Let $\left(d d^{c} u\right)^{k}=v$. Assume that through every point x of $X:=\operatorname{supp} v$ there is an analytic disc Δ_{x} such that $u \mid \Delta_{x}$ is harmonic, then $v=0$.

Proof. We are going to prove that u is maximal and hence $v=0$. Let v be a continuous function on \vec{B} which is plurisubharmonic on B, with $v \leqq u$ on ∂B. Let $M:=\sup _{B} v-u$, assume $M>0$. Let $K=\{z ; z \in B,(v-u)(z)=M\}$. Let p be a peak point for a function $h \in C(K)$ which is a uniform limit of K of holomorphic polynomials, i.e., $h(p)=1$ and $|h|<1$ on $K \backslash\{p\}$. If $p \in X$, then since $v \leqq u+M$ and $u \mid \Delta_{p}$ is harmonic then $v-u=M$ on Δ_{p}, hence $\Delta_{p} \subset K$, contradicting that p is a peak point for h. So $p \in B \backslash X$. Let $B(p, r) \Subset B$ be a ball such that $B(p, r) \cap X=\varnothing$. Since $\left(d d^{c} u\right)^{k}=0$ on $B(p, r)$, it follows from [GS] that given any $z \in B(p, r)$, there exists a probability measure σ_{z} supported on $\partial B(p, r)$ such that $u(z)=\int u d \sigma_{z}$, and moreover for any continuous function on $\bar{B}(p, r)$, plurisubharmonic on $B(p, r)$

$$
\phi(z) \leqq \int \phi d \sigma_{z}
$$

Since $M=v(p)-u(p) \leqq \int(u-v) d \sigma_{p} \leqq M$, we have that support σ_{p} is contained in K, and p cannot be a peak point for h, since $h(p)=\int h d \sigma_{p}$, hence K is empty and $v=0$.

Theorem 5.6 Let $f: \mathbb{P}^{k} \mapsto \mathbb{P}^{k}$ be a holomorphic map of degree $d \leqq 2$. Then f cannot be hyperbolic on \mathbb{P}^{k} nor on J_{l}^{\prime} for $l<k-1$.

Proof. Assume f is hyperbolic on \mathbb{P}^{k}. Since the critical set is nonempty the fibre dimension of E^{u} is $\leqq k-1$. If $\operatorname{dim} E^{s}=k$ then all periodic orbits are attractive. Pick one, p, with immediate basin of attraction Ω. Since f is surjective, $\partial \Omega$ is a non empty, compact, forward invariant subset of \mathbb{P}^{k}. Hyperbolicity implies that orbits of points $q \in \Omega$ close to $\partial \Omega$ converge to $\partial \Omega$ contradicting that they are in the attractive basin of p. Hence $1 \leqq \operatorname{dim} E^{s} \leqq k-1$. Let $\operatorname{dim} E^{s}=l$. Then we have a foliation of \mathbb{P}^{k} by stable manifolds of dimension l, and on each manifold the family $\left(f^{n}\right)$ is equicontinuous, so $\mathbb{P}^{k} \subset F_{k-l}$. Since $F_{k-1} \subset F_{k-1}$, we get $J_{k-1}=\varnothing$ which is a contradiction.

Let $l<k-1$ and assume J_{l}^{\prime} is hyperbolic. Theorem 5.2 (iv) shows that every component of J_{l}^{\prime} intersects C, the critical set. Hence the fibre dimension of $E^{u} \leqq k-1$, so $\operatorname{dim} E^{s} \geqq l$. This implies that through every point p in $J_{l}^{\prime} \supset \operatorname{supp} \mu$ there exists an analytic disc Δ_{p} on which G_{1} is harmonic, G_{1} is a local solution of $d d^{c} G_{1}=T$.

So Lemma 5.6 applies and $\mu=0$, a contradiction.

Acknowledgement. We thank G. Henkin and R. Narasimhan for attracting our attention to Oka's paper.

References

[AG] Andreotti, A., Grauert, H; Theoremes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90 (1962), 193-259
[BT] Bedford, E., Taylor, B.A; A new capacity for plurisubharmonic functions. Acta Math. 149 (1982), 1-39
[Bi] Bishop, E; Conditions for analyticity of certain analytic sets. Mich. Math. J. 11 (1964), 289-304
[Ce] Cegrell, U; Discontinuite de l'operateur de Monge Ampere complexe, C.R.A.S. Paris, Serie I, Math. 296 (1983), 869-871
[CLN] Chern, S.S., Levine, H., Nirenberg, L; Intrinsic norms on a complex manifold. Global Analysis (Papers in Honour of K. Kodaira), Univ. Tokyo Press (1969)
[De] Demailly, J.P; Monge Ampere operators, Lelong numbers and intersection theory. Prepubl. Inst. Fourier 173
[de Rh] de Rham, G; Varietes differentiables. Paris, Hermann (1955)
[Do] Dold, A; Lectures on algebraic topology. Springer, Berlin Heidelberg New York (1972)
[Fe] Federer, H; Geometric Measure Theory. Springer, Berlin Heidelberg New York (1969)
[FS1] Fornæss, J.E., Sibony, N; Complex Dynamics in higher Dimension I. Asterisque (to appear)
[FS2] Fornæss, J.E., Sibony, N; Complex Dynamics in higher Dimension II. Preprint
[Fu] Fujita, O; Sur les familles d'ensembles analytiques. J. Math. Soc. Japan 1 (1964), 379-405
[GS] Gamelin, T.W., Sibony, N; Subharmonicity for Uniform Algebras. J. Funct. Anal. 35 (1980), 64-108
[Gr] Griffiths, Ph ; Two theorems on extension of holomorphic mappings, Invent. Math. 14 (1971), 27-62
[HP] Hubbard, J., Papadopol P; Superattractive fixed points in \mathbb{C}^{n}. Preprint
[HS] Harvey, R., Shiffman, B; A characterization of holomorphic chains. Ann. Math. 99 (1974), 553-587
[H] Hörmander, L; The analysis of linear partial differential operators 1. Springer, Berlin Heidelberg New York (1983)
[Lel] Lelong, P; Fonctions plurisousharmoniques et formes differentielles positives. Gordon and Breach, Dunod, Paris (1968)
[Le2] Lelong, P; Discontinuite et annulation de l'operateur de Monge Ampere complexe. In: Lecture Notes Math. Springer, Berlin Heidelberg New York 1028 (1983), 217-224
[LG] Lelong, P., Gruman, L; Entire Functions of several variables. Grundlehren Math. Wiss. Springer, Berlin Heidelberg New York 282 (1986)
[Ok] Oka, K; Sur les fonctions analytiques de plusieurs variables, IX. Une Mode Nouvelle engeandrant les Domaines Pseudoconvexes. Jap. J. Math. 32 (1962), 1-12
[Ri] Riemenschneider, O ; Uber den Flacheneinhalt analytischen Mengen und die Erzeugung k-pseudokonvexe Gebiete. Invent. Math. 2 (1967), 307-331
[Ro] Ronkin, L.I; Weak convergence of the currents $\left(d d^{c} u\right)^{2}$ and asymptotics of order functions for holomorphic mappings of regular growth. Sib. Math. Zh. 25 (146) (1984) 645-650
[Ru] Ruelle, D; Elements of differentiable Dynamics and bifurcation theory. Acad. Press (1989)
[Ro] Rothstein, W; Ein neuer Beweis das Hartogschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen. Math. Z. 53 (1950) 84-95
[Si] Sibony, N; Quelques problems de prolongement de courants en Analyse complexe. Duke Math. J. 52 (1985), 157-197
[Siul] Siu, Y.T; Extension of meromorphic maps into Kahler manifolds. Ann. Math. 102 (1975) 421-462
[Siu2] Siu, Y.T; Techniques of extension of analytic objects. Marcel Dekker, New York (1974)

[^0]: *Note. We thank Russakovski for pointing out that a weaker version of Theorem 3.9 has been proved by Ronkin [Ro].

