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1 Introduction

In a 1962 paper Oka [Ok] proved that given a family of varieties in an open
set Q C C? the set G C Q where the family is normal is pseudoconvex in Q.
The proof is based on the following remarkable inequality.

Let

H={(z] < Lw| <r)U(n <lz] < Lw| < Dr,r <1}

and
4, ={lz] < p.Iw] < p}.
If V is a closed complex curve in 4,, then for any p < 1 there exists C, such
that
vol(¥ N4,) £ Cyvol(V NH). (*)

Here C, is independent of V.

The result was generalized to varieties of codimension 1 in Q C € by
Fujita [Fu]. Riemenschneider [Ri] proved the analogue of inequality (*) for
varieties of dimension p in £ C €", in which case the standard Hartogs figure
has to be replaced by the right analogue. It turns out that the domain G where
a family of analytic varieties of dimension p, has locally bounded mass is
p-pseudoconvex (see below for a precise definition) in €. This notion was
introduced by Rothstein [Ro], see also [Siu2], and developed by Andreotti and
Grauert [A-G]. Observe that when a sequence of analytic varieties has bounded
volume, then any limit in the Hausdorff metric is an analytic variety, as follows
from Bishop’s theorem [Bi].

The second author has given in [Si] some estimates on currents from which
it is easy to deduce an inequality generalizing (*) to closed positive currents of
bidimension ( p, p). The purpose in [Si] was to extend the domain of definition
of the Monge Ampere operator (dd°)* to some unbounded plurisubharmonic
functions. It was not realized there that the given condition for defining (dd“u)
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was that the set where u is locally unbounded is in the » — k pseudoconvex
envelope of its complement.

We start here by proving a version of Oka’s inequality for currents of the
form u7, where T is a positive closed current of bidimension (p, p) in 2
and u is a negative plurisubharmonic function in Q. It follows from this in-
equality that G := {z € Q;uT has bounded mass in a neighborhood of z} is
p-pseudoconvex in £ (usual pseudoconvexity coincides with n — 1 pseudocon-
vexity). If the current (#7T') has locally bounded mass in £ one can define
dd‘u AT = dd*(uT).

We then prove a convergence result for the operator (u;,...,u,) = ddu; A
...Addus AT. The main idea is that if we control the mass or convergence
on an open set, then we have the same type of control in the envelope of
[-pseudoconvexity for the right /. When the (u;) are bounded, this operator
was studied by Chern, Levine and Nirenberg [CLN] and Bedford and Taylor
[BT]. The case where the (u;) are unbounded has been considered in Griffiths
[Gr], Siu [Siul], Sibony [Si] and more recently by Demailly [De].

Under pseudoconvexity assumptions we can define 7 A Ry A ... A R, where
T is a current of bidegree (n — p,n — p) and R; are currents of bidegree (1,1).
When the currents are in IP* we prove a Bezout type theorem i.e. express the
mass of T A... ARy in terms of the mass of the factors.

Let T be a positive closed current in P* of bidegree (1,1). So locally T
can be written as dd“u. Assuming that u is continuous, we show that support
T! is connected, provided 2/ < k.

In the last paragraph we apply the results on currents to holomorphic dy-
namics in IP¥. This was the main motivation to try to develop some tools
in order to understand closed currents which are not analytic varieties. To a
holomorphic surjective map f : IP* — IP¥ of degree d > 1, one associates a
positive closed current T of bidegree (1,1). The support of 7/ := T A...AT
(I factors) are of dynamical interest. In particular the support of T coincides
with the Julia set Jy of f: the sequence (/") is equicontinuous precisely on
IP¥\Jp. In this context we show that if 2/ < k, then support T/ is connected.

2 Oka’s inequality
We first define the notion of k-pseudoconvexity, see [Ri]. Let 0 < r{ < ' and
O<nry <r.
Definition 2.1 An (n — k, k) Hartogs figure H is defined as
H={(z,w)z€ C"F,we @, |z|| < L|w| < r}
U{zw)zeC*we ' rn < |z < 1w < 1}
where 0 < ry,r < 1. We set
H={zw)szeC*we|z|| < 1,|wl] <1} =4".

Here ||z|| = max |z;], ||w|| = max |w;].
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Definition 2.2 (k-pseudoconvexity) Let Qg C  be open subsets of €",0 <
k < n. Then € is k-pseudoconvex in Q if it satisfies the Kontinuititssaiz
with respect to (n — k) polydiscs. More precisely, whenever H is an (n — k, k)
Hartogs figure, @ : H — Q is a 1 — 1 holomorphic map and ®(H) C Qq, then
P(H) C Q.

Usual pseudoconvexity is the same as (# — 1) pseudoconvexity.
For p > 0,4, will denote the polydisc of radius p.

Theorem 2.3 [Ri] Let X be a pure k-dimensional closed complex analytic
subvariety of the unit polydisc 4 C €C",0 < k < n. Then if 0 < p < 1, and
H is an (n — k,k) Hartogs figure, vo X N 4,) < C,vol(X N H) for C, inde-
pendent of X.

It follows that if (X;) 1s a family of closed analytic varieties of pure dimension
k in @ C @, then if Q' := {z;35 > 0;sup, vol(X, N B(z;)) < oo} then Q' is
k-pseudoconvex in .

We want to prove a version of the previous theorem for positive closed
currents or even for currents of the form ul where T is a positive closed
current and u is a plurisubharmonic function.

For the fundamental results on currents we refer to [de Rh], [Lel] or [LG].
We recall a few facts.

Let € be an open set in €". Denote by D#9(Q) the space of smooth
differential forms of bidegree (p,g) with compact support in . The space of
currents of bidimension (p,q), hence of bidegree (n — p,n —g) is the dual
space of D”9(Q). A current T of bidimension (p, p) and bidegree (n — p,n —
p) is positive if for all a,...,0, € D'O(Q) the current T Ajoy ATTA ... A
i, A0, is a positive distribution. A current U is negative if —U is positive.

If « is a k- covector in € ~ R?", let |a| denote the usual Hilbertian norm
of a. If T is a current of bidimension (p, p) of order zero, i.e. with measure
coefficients, we define the measure My {T] on Q as follows. If ¥ is open in £,
let My[T] = sup{|T(P)|; & € DPP(V),|P(x})] < l,x € V}. This is called the
mass norm of 7.

Let d¢ := (i/2n)(0 — 8), then dd° = (i/n)é¢. Let f§:= ddzZ?. If T is a
positive current of bidimension ( p, p), then the trace measure o7 is defined as
or:=T A f7/p!. It is easy to show that there exists a constant C, depending
only on n and p such that for every open set V' C &,

(1/Cyor(V)y = My[T) < or(V) .
An upper semicontinuous function u : Q — [—00,0¢0) is plurisubharmonic
if and only if u € L} () and dd“u = 0, for short we will say that u is p.s.h.

Theorem 2.4 Let H be an (n — 1,1) Hartogs figure. Assume H = A. For every
p <1, there exists a constant C, such that Jor every negative current U in
a neighborhood of A, of bidimension (1,1), such that dd°U z 0 we have

My, [U] + My, [dd U] = C,Mg[U].
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Proof. Let Q be an open set in €". Assume w € & € €, and that w = {z;z €
@,Y(z) < 0,Viy|éw=+0} for some smooth function ¥ defined on @. Let M be
a closed subset in Q. Let x € M Nw and let ¢ € C>°(2) such that

(i) ¢(x) >0

(ii) ¢ =0 on a neighborhood V of dw N M.

Let # be a smooth function in ©, 0 £ £ £ 1, 2 =1 in a neighborhood of

.

We will need the following lemma. See also Lemma 4.1 in [Si].

Lemma 2.5 Let w, Q, ¢, h be as defined above. Let S and U be currents
with smooth coefficients in Q. Assume S is closed of bidegree (p, p) and U
is of bidegree (q,q) with p+q =n— 1. Then we have

(1) [¢(1 = h)ddUAS + [(~U)YANdd“p NS = [(—U) Add*(¢h) A S .

o () o

If U £0,dd°U = 0 then relation (1) holds without smoothness assumption
on U.

Proof. When y is a smooth function with compact support then since S is
closed

[1dd°UNS = [ddy NUAS.

So we just apply the above formula with y = ¢(1 — &) which is of compact
support since & = 1 near dw.

If U is not smooth, let U, be regularized currents, U, is just convolution
of U with an approximation of identity. Relation (1) holds for U;. We can just
let ¢ — 0.

The formula of integration by part is written in the form (1) to emphasize
that if # = 0 near x and if dd°¢ A S is positive then it is posible to control
the mass of dd°U near x and of (—U) A dd°¢ AS by what happens near the
support of dd°(¢h).

We continue the proof of the Theorem. Let Q be a neighborhood of A4
where U is defined. Recall that H = {(z,w),z € € /,w € C',||z|| < 1,|jw] <
rIu{r] < |lzll < Lw|l < 1}. Let M = A\H. Let M, be the set of points
in 4, \H for some p < p; < 1, such that exactly one of the w-coordinates is
= ry. Let x € M. For simplicity assume that |x,_;1| = {wi| = r and |x,-142]
= |wy| < ri,..n, xal = W] < 7. Let ¢ = 1/|w|*. Let H; be the (n—1,1)
Hartogs figure obtained by fixing the coordinates wy = x,_;42,..., w; = Xx,, with
the same numbers r,r{. We can construct an open set w; in €7~ !+ such that
¢(x) > maxy, Ay, \m,) @ Fatten w; to obtain an open set w in €" and extend
¢ to @, such that @,(x) > max,,~\y; P1, by adding to the trivial extension
a function 8 of wa,...,w, only.

Let @, := @, + 8|(z,w)|*>. For 6 > 0 small enough, ®3(x) > sups,~y D2
:=c. But also dd°®, A (dd°|w'|*)'~! > 0 where w' = (wy,...,w;). This is
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because the negativity in dd“®; introduced by the function 6(w’) is cancelled
by (dd°jw'[)!~".

Let 4 be a smooth increasing convex function on [0,oc), vanishing on
a neighborhood of [0,c] and then strictly increasing, we can assume that
M DPa(x)) > 0. Let & = 4o d,. We apply Lemma 2.5 with S = (dd¢|w'|*>)!~!
and ¢ = @ and h a function vanishing near x, & has value 1 near dw, but
M N support 4 1s contained in (¢ = 0).

Relation (1) in Lemma 2.5 gives an estimate of dd°U A (dd|w'|*y~! and
of (—U)Add°¢ A S near x in terms of the mass of U on a compact set of H.
If we apply the same argument to suitable perturbations of the coordinates w,
we finally get an estimate of the mass of (—U) and dd“U near x in terms of
quantities supported in a compact set of H. We have proved the theorem for
M, instead of 4,. Let M, be the set of points in 4,;\H such that exactly j

of the w-coordinates are = r; where we have chosen 1 > p, > --- > p; = p.
We will prove the theorem by induction in j. For simplicity of notation we
prove it for j = 2. Let x € M,. We can assume that |x,_;+i| = |w| = r and
|x,,~1+2| = le] 2 1 while |W3f < I”],...,lW1| < F}.

Let ¢, = 1/|wa2]>. We can construct an open set @, in €*~**! such that
$2(x) > max;,, g\, @- We fatten @, to obtain an open set @ in €" and
proceed as above. We will obtain an estimate of the mass of U and dd‘U
near x in term of the mass in // U M| which in turn is controlled by the mass
in H. So by induction we get the estimate in the theorem.

Corollary 2.6 Let (U,) be a sequence of negative currents of bidimension
(p,p) in a complex manifold Q. Assume for all i,dd°U, = 0. Then the
domain o on which the family has locally bounded mass is p-pseudo-
convex. In particular, if U is a negative current of bidimension (p, p) in Q,
such that dd°U z 0, then Q\(supp U) is p-pseudoconvex in Q. If T is a
positive closed current of bidimension (p, p) on Q, then Q\suppT is p-
pseudoconvex. '

Proof. Let H be an (n — p, p) Hartogs figure and f : H — Q be an injective
holomorphic map. If f(H) C Q,, Theorem 2.4 shows that f(H) C Q. The
estimate in the theorem is just given with f =1Id. So €y is p-pseudoconvex
in Q. To show that Q\supp U is p-pseudoconvex we just apply the first part
of the corollary to the sequence of currents Uy = kU, k € IN. If T is positive
and closed, we apply the previous result to U = —T.

Let T be a positive closed current of bidimension (p, p) in Q. Let u be a
plurisubharmonic function on Q. We consider the closed set M(T,u) = {¢;q €
,uT is not of finite mass in any neighborhood of g}. For simplicity, since
the results are of semi local nature (in neighborhoods of compacts) we will
assume that v < 0.

Proposition 2.7 Let T, u, Q be as above. Then Q\M(T,u) is p-pseudoconvex.
And on Q\M(T,u) the current uT is negative and satisfies dd“(uT) z 0.
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Proof. Let H be an (n — p, p) Hartogs figure, assume H = 4 € Q. Let U\, u
be a decreasing sequence of smooth plurisubharmonic functions in a neighbor-
hood of 4. If U; := u;T we clearly have U; < 0 for large j and dd“U, 2 0.
Theorem 2.4 implies that

fllxlAO'T é Cpfhl_,‘O'T é Cpf|u|0'y“.
A4y H H

Here o7 denotes the trace measure for the current 7. Hence if f " lulor < oo
we get that

[lulor < C,[lujor,

4p H
by Lebesgue’s dominated convergence theorem. The p-pseudoconvexity of
Q\M (T, u) follows easily from the above estimate. Since locally in Q\M (T, u),
u;T — uT in the sense of currents and since dd(u;T) =ddu; AT 2 0 we
get that dd(uT) = 0.

3 The operator (uy,...,u,) — dd‘uy A ... ANddug N T

It is very useful, in many questions in Algebraic Geometry and Complex Anal-
ysis, to define an expression such that dd“u AT where T is a closed (p, p)
current and u is an unbounded plurisubharmonic function. The case where u is
bounded is studied in [BT].

Here we want to extend the approach in [Si] to define

dduy A A Ndd“uy AT

under quite general assumptions on u,...,u; and 7.

Let € be an open subset in €". If # is a plurisubharmonic function in €,
define M(u) := {q;9 € ©,u is unbounded in any neighborhood of g¢}. Recall
that if T is a positive closed (p, p) current we define M(T,u) := {z;z € Q,u
is not or integrable in a neighborhood of ¢}. In Q\M(T,u) we will define
dd®u AT := dd*(uT).

If X 1s a closed set in @, we say that X is in the envelope of p-
pseudoconvexity of Q\X with respect to  if all points in X can be reached
by pushing polydiscs of dimension (n — p) using biholomorphic images of
(n — p, p) Hartogs figures with hulls in Q. So we use the same procedure as
for obtaining the envelope of holomorphy by pushing one dimensional discs.

Proposition 3.1 Let u be a plurisubharmonic function in Q. And let T be a
positive closed bidimension (p, p) current on Q. If M(u) NsuppT := X is in
the envelope of p-pseudoconvexity of Q\X with respect to Q, then u is locally
ar integrable.

Proof. Without loss of generality we can assume v < 0 on . It is clear that
M(T,u) C M(u)NsuppT. Since as proved in Proposition 2.7 Q\M(T,u) is
p-pseudoconvex it follows that M(T,u) is empty.
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Proposition 3.2 Let u;,u be nonpositive plurisubharmonic functions in Q. Let
T, T be positive closed currents of bidimension (p, p) in Q. Assume
(1) T, =T,
(2) (u;T;) has uniformly bounded mass on every compact,
(3) u, —uin Llloc.
If L is any weak limit of w;T;, then L £ uT. If u; 2 u and T; < T, then
u,T; — ul.

Proof. Let y =2 0 be a smooth form with compact support X C Q of bidegree
(p, p). Let f be a continuous function on X such that f = « on X. By Hartogs
lemma, see [H],

limsup(u; — f) < sup(u— f) £ 0.
J X X

Hence given ¢ > 0, there is a jo so that for j = jo,u; < f+¢ Since y =2 0
and T; =z 0 we have
wT Ay < (f + )Ty Ay
Hence
LAy S(f+e)TNy.

Since ¢ and f are arbitrary we get that L S uT. If v, Z w and T; < T. we
can assume using again Hartogs lemma that ¥, < 0 on support y, we have

JuT Ay £ fuTAy £ fu,T,Ay—LAy.
So L =uT.

Corollary 3.3 Let u, < 0 be plurisubharmonic in Q and assume that u, — u
in L\ and that u, 2 u. Then for any positive closed current of bidimension

(p, p), we have in Q\M(T,u) that u,T — uT and that ddu, AT v dd“u N\ T.

Proof. Since u, = 0,|u;] < |u| so given a compact K in Q\M(T,u),

Jlujldor < [luldor .
K K

Hence we can apply Proposition 3.2.

Let A* denote the Hausdorfl measure of dimension «. We have the follow-
ing convergence result.

Corollary 3.4 Let (u,) be a sequence of plurisubharmonic functions in Q.
Assume u, v u in L, and u; = u. Let T be a positive, closed current of
bidimension (p, p) in Q. If A*?(M(u)NsuppT) =0, then u,T — uT in Q.

Proof. We just have to check that M(T,u) is empty. It is clear that M(T,u) C
Mu)NSuppT := E. The idea is to show that E is in the p envelope of
the complement. By the results of Federer [Fe], for almost all » — p planes
say parallel to a given one the intersection with E is empty, hence we can
construct Hartogs figures of the right type. More precisely, fix x € E. Since
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A2P(E\{x}) = 0, almost every n — p complex plane through x does not inter-
sect E\{x}. Assume that x = 0 and let L = {w; =...w, = 0} be such a plane.
Let (z1,...,2,- p) be the coordinates in L. Fix a polydisc 4”7 € (2 centered at
the origin. Since d4""? NE = J, we can find a polydisc 47 in the orthogonal
complement L+ centered at the origin such that (04" 7 x APYNE = . We
can then complete the Hartogs figure H C Q\E such that 0 € H.

Theorem 3.5 Let T be a closed positive current of bidimension (p, p) in
Q,0 < p < n. Let uy,...,uy be plurisubharmonic < 0 functions in Q. If for
all ji,...,jm MQu; )0 .. .0OM(u;,)Nsupp T is in the p—-m+ 1 envelope of
pseudoconvexity of the complement, then wddu, A...\Ndd°ug AT has lo-
cally bounded mass in Q and similarly for dd°uy N\ ... Nddus N T. Moreover
the mass on a compact set of Q is majorized by the mass on a compact
where all the u; are bounded. We also have widdu’ A...Ndd“uj AT
wdduy A...Adduy NT provided ) v— w; in L\, and ui > uy, moreover

loc =

ddui A...Ndduj AT converge weakly to dduy A ... Nddug A'T.

Proof. Case g =1. We assume M{(u)Nsupp T is in the p-convex envelope
of the complement relative to Q. Then uT is well defined in © and if L is a
compact in @, Theorem 2.4 shows that

[luldor < cfluldar
3 K

where K is a compact of Q\M(u). Let y be a nonnegative test function with
value 1 in a neighborhood of L. If § = dd¢|z|?, then

M [ddunT] £ [ydduNT AP = [uT A Addy .

So we also get that M;[dd°u A T] £ ¢'My/[uT]. For ¢ = 1 the convergence
result is just Corollary 3.3.

So assume the theorem has been proved for (¢ — 1) functions (v;). Let
S =dduy A...ANdd°uy AT which is, by induction, a well defined current on
Q of bidimension (p — ¢+ 1,p— g+ 1). We want to show that Q\M(u,,S)
contains the complement of M(u;) N ...N M(ug) Nsupp T. Since Q\M(uy,S)
1s p — g + 1 pseudoconvex, the hypotheses of the theorem imply that M(u,,S)
is empty.

Fix zo ¢ M(u)N...NM(uy)Nsupp 7. If uy is bounded near z, we are
done. Assume z; = 0 and that u; is bounded on a neighborhood of B := B(0,r).
Replacing #; by max(u(z),A(|z|* — #?)) we can assume that u, is unchanged
on By = B(0,r/4), and is equal to A(|z|*> — r?) in a neighborhood of 4B. Let
T'=ddus N...ANdduy NT. We will show that

f~u|ddcu2/\T'/\[33 ()
B

is bounded by the mass of 1,7’ on B.
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~ Let & be a smooth function supported near 6B with value 1 near dB. Let
v\ ui, v} smooth plurisubharmonic functions. We can apply Lemma 2.5 with
U =vidduy AT  and S = *~! (in this case w = B, ¢ = |z|* and M is empty).
We have
[30(1 = B)dd v Adduy AT A~

— [vidd°d A dduy NT' A B
B
= — [v]dd(¢h) ANdduy AT A BT
B

Observe that —v] 2 0 and —A4’f < dd“(¢h) < A’ and that on the support
of h, dd°uy = Af. So the last integral is smaller in absolute value than

—A4A' [o)T' A B
B

Using Fatou’s lemma and the induction hypothesis we get

[luildd ¢ Ndduy NT' A1 < A4 [|uy|T" A B
B B

Hence we have shown (*). As a consequence, also the mass of dd“u, A
dduy AT’ on By is bounded by the mass of u;7’ on B.

We now turn to the convergence question. Let u’l = u,,l..,u", = uy;. We
know that if R is any limit point of w\dd“uj, A...AT then R < uydd u; A
...AT (by Proposition 3.2). In order to prove equality, it is enough to prove
that for any x¢ there exists an open set w € ,x0 € w, a smooth function
¢ in a neighborhood of &, a positive closed form y such that dd¢ Ay is
strictly positive in a neighborhood of xy and fmulddcuz AT AYyAdd D <
lim, [ wlddub A AT Ay Add®d.

If xo ¢ supp T this is clear. Assume xo & M(uy)N ... N M{u,). Then there
exists a ball B such that (u'f) is a bounded sequence in a neighborhood of B
for some 1 </ £ ¢q. Let B = {y < 0}, plurisubharmonic. Since the result
we want is local we can assume that on a neighborhood w; of 0B, u§ = Ay
where 4 is a large constant. Let # be a function in C§°(w,) with value 1 in
a neighborhood of dB. We are going to use repeatedly the identity of Lemma
2.5 with ¢ = |z|*> and M empty.

Assume that all the u*,’:s are smooth.

Let T’ denote T A 779, we have

Jurdduy N AT ANdd
B
< fulddupy AL AT ANdd
B
= ,{‘f’“ — hyddu, Adduy A .. AT’

+ [uldd(phy ndduy A ... AT’
B
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= [uydd ¢ Addul A...NT'
B
— [urdd*(phy Nddw A ... AT
B
+ [uldd(phy Ndduy A .. AT’
B
< Bfufz’ddqu ANddW AT ...
— [wadd(ph) Addu) A .. AT’
B
+ [uldd(ph) Ndduy .. AT ... =
B
(where we do not write terms containing dd°(¢h))
= [$(1 — h)ddu) Add°ul, Addus A ...
B
+ [wldd (ph) Ndduw| A ... T + ...
B
= [wlddw, Nddus A ... NT' Add¢
B
~ fuldd*(phy ndd W N.. AT’
B
+ futdd(ph) Nddul A NT’
B
= [udd(ph) Nddul A ... N T’
B
+ [widd (ph) Ndduy A ... AT’
B
< l{u’,ddfué A Nddu) AT Ndd g+

sum of integrals involving dd“(¢h).

Recall that if positive measures fy — p weakly on an open Q set then
limy oo pix(K) < u(K) for each compact K C Q and p(V) < limyy (V) for
each open set. Hence, if V' is an open set such that p (V) = u(éV) =0 for
all k, then (V') = limg (V). We can assume that all the measures, which are
coefficients of the currents we work with, have no mass on 0B.

On support of dd“(¢h),u} = Ay, so we have only g — | nonconstant se-
quences (u7,) so for every integral involving dd“(¢h) we have convergence,
but as it is shown from the above development the limit of the sum of in-

tegrals involving dd®(¢h) is zero, (observe that the manipulations are purely
algebraic) so

Jwdduy A AT Add“¢ < lim, fuldduy A... Addul AT Add“¢ .

Now assume x € M(u)N...NM(ug) Nsupp T := M. Since this set is in the
envelope of p — g + 1 pseudoconvexity of the complement we can construct
finitely many Hartogs figures to absorb successively all of M. Given a Hartogs
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figure H and x € H N M, we can construct a smoothly bounded neighborhood
o € H of x and smooth functions (¢i)igs vanishing in a neighborhood of
dwNM such that dd“¢, Ay, = 0 and }:fddcqb, A7y, > 0 in a neighborhood
of x, where the 1/s are closed forms of bidegree (p — ¢, p — ¢). We compute
the integrals in the same way as above, where now T’ denotes T A y,. Since
the support of ¢h is contained in the set where we have already proved con-
vergence, the sum of integrals involving dd“(¢h) is going to converge to zero
as j v oo, and then we add up with respect to 1 £ i < 5. Hence,

[wddus A... Ay Add®¢ < lim [ulddu), ... Ay Addd .

This finishes the convergence proof for general g. The last part follows
immediately.

Corollary 3.6 Let Q, T, uy,...,uqy and u; 2 u; be as in theorem. Assume that
AXPTEN M (u, YN N M (uy, ) Nsupp T) =0 for all ji,...,jm < q. Then
wdduy A ... Ndd°ug AT has locally bounded mass and u',dd‘ul, A ... A ddu),
AT +— ulddcuz /\.../\dd‘uq/\T in €.

Proof. The assumption on the Hausdorff dimension of X := M(u, )N...N
M(u,, ) N supp T, implies that X is in the envelope of p — m + 1 pseudocon-
vexity of Q\X, as in the proof of Corollary 3.4 so the result follows from
Theorem 3.5.

A weaker form of the corollary was proved recently by Demailly [De]. He
requires that A*7~2"*Y(M(u, )N ...NM(u,,)NsuppT) = 0. The case when
M(u;) is empty, 1 £ j = ¢ is due to Bedford and Taylor [BT].

Remark 3.7 Theorem 3.5 gives a Thullen type extension for currents of type
uT. More precisely, let T be a positive closed current in £, of bidimension
(p, p). Let u be a plurisubharmonic function in £ and V' an analytic subvariety
of dimension p in Q. If M(T,u) is contained in ¥ and Q\M(T,u) intersects
every irreducible branch of V then M(7,u) = . The example of Shiffman-
Taylor in [Siu] is a case where V is of codimension 1 in €* and udd‘u has
locally bounded mass in C>\V and M(T,u) = V.

A natural question about the operator (dd*)* is the following: Let (u,) be a
sequence of plurisubharmonic functions in Q. Find the right notion of conver-
gence such that u; — u implies (dd‘u, Y+ (ddu)* in the sense of currents.
Cegrell [Ce] and Lelong [Le] observed that the convergence of (u;) to u in
L, p < oo, is not enough. We start with a refinement of their example.

Proposition 3.8 There exists a uniformly bounded sequence (v,) of plurisub-
harmonic functions in the unit bidisc A C €* such that:

(i) vy(z) — v(z) for every z € A except on a set of Hausdorff dimension 2.
More precisely, given any ¢ > 0 and o > 0, there are balls B(x, r;) with
St < oo such that for p > p(e),v, > v—¢ on B\UB(x,,r;).

(ii) (dd°v,)? does not converge to (dd‘v).
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Proof. Let v,(z,w) := |2%7 + w?P|Y/2P) and v(z, w) = max(|z),|w|). Clearly 0 <
v, < 2Py, Let w:= {|z]+w|}. We have uniform convergence on compact
subsets of w. Since through every point g in €? there exists a disc 4, on which
vp is harmonic, it follows that (dd”v,,)2 = (), see [FS1, Lemma 6.9]. On the
other hand one computes easily that (ddv)? 40 since v = 1 on the boundary
of the unit polydisc but we do not have that 1 < v as should be the case by
maximum principle if (dd°v)? = 0, see [BT].

We now study for which points w = ze', v p(z,w) does not converge to
v(z,w). We have v,(z,e%2) = |z]|1 + €¥P0|1/2P) = 2Y2P|z|| cos pf)'/(?P).

Let E = {e%;liminf,|cos pA]"? < 1}. Let g =1~ 1/k. Then E C
U MwU s n{lcos pfl < &} =: UEs. The set {|cos pf] < &f} is contained
in a union of 2p intervals of length at most 3¢/p for p = p(k). Given
a > 0 we have A*(E) £ Y, A*(Ey), and A*(Ey) < czp>Np(s,f)°‘ =o(1) as
N — 00 so for every k, A*(Ey) = 0. Hence A*(E) = 0. It follows easily that
vp(z,w) — v(z, w) except on a set of Hausdorff dimension 2. Indeed, given any
e > 0 and o > 0, there are balls B(x,r,) with Zr,z“ < ¢ and such that for
p > p(e),v, = v—egon B\ ,(B(x,r).

The previous example is quite sharp as the following result * shows.

Theorem 3.9 Let T, be a sequence of positive closed currents of bidimension
(p, p) in an open set Q in C". Let A be a subset in Q with A*P(4) = 0. Let
(#,) be a bounded sequence of plurisubharmonic functions and u a plurisub-
harmonic function in 2, whose restriction to Q\A4 is continuous. Assume

(1) T, — T as currents.

(i) u;j — u in L.
(iii) For every compact K C Q\A and ¢ > 0 there exists j(K) such that for
JZ Ky 2 u— e

Then u;T; — uT and ddu; N T; — ddu A T.

Proof. Observe that we do not assume that 4 is closed.

Let S be a limit point of the bounded sequence of currents u;T,. By Propo-
sition 3.2 we know that § < uT. Let y be a positive form with compact support
in w € wy € Q. Since (u;) is bounded, we can assume that 0 < u; < M. We
have to show that [uT Ay < lim inf [u;T; A y.

Since the mass of (T;) is bounded by a constant C on w;, for every ball
B(x,r) C w;, we have [Lel]

orB(x,r) £ Crif. (1)

Fix ¢ > 0 and let B(x;,r;) be a sequence of balls such that 4 C | JB(x;,r;) and

Z,rfp < ¢. It follows from (1) that there exists an open set U D 4 N w such
that o7, (U) < ¢ independently of j. Let K = suppy N (2\U). Since u,T; 2 0,

*Note. We thank Russakovski for pointing out that a weaker version of
Theorem 3.9 has been proved by Ronkin [Ro].
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we have for j = j(K)

f”jTi/\V: f(u/'l‘)]}'A7+ f”T/AV‘"f”iT//\}'
o\U o\U U
> —Ce+ [ uljAy.
UJ\U

Let 4 be a continuous extension of u from suppy\U to suppy,0 < i# = M.
Since for all j,o7,(U) < ¢, the last integral is close to fm uT, Ay which con-
verges to [ uT Ay. We have then proved that

JuT Ay < lim fu;Tj Ay
j

which is what we wanted to show.

4 Bezout theorem for currents in P*

Let w be the standard Kahler form on IP*, normalized such that fn,A ok = 1.
If n: €' P* is the canonical projection, then n*w = dd®log|z|| where
z =(20,21,...,2) and || || is the Euclidean norm in ©**'. Given a positive
closed current T of bidimension (p, p) we define ||T||:= [T A w?. When T
corresponds to integration on an analytic manifold ¥, then ||T} 1s just the 2 p-
volume of V. We will need the following standard result.

Proposition 4.1 Let R be a closed positive (1,1) current on P,

(i) There exists a plurisubharmonic function v on C*' such that n*R =
ddv,v(jz) = clog || + v(z) for 4 € C,z € C*.

(ii) If v is a plurisubharmonic function on ©**', satisfying the previous ho-
mogeneity condition, then there is a decreasing sequence (v,) of plurisub-
harmonic functions on €+ satisfying the homogeneity condition, such that

v, € C®(CHN\{0}) and v, \, v.

Proof. A proof of (i) can be found in Theorem 4.1 of [FS1], see also [LG].
For simplicity assume ¢ = 1. If o is an approximation of the identity in
C**! depending only on ||z||, we define

v(z) = Wz—ﬂzl(k—ﬁ)fv(w)ag <z||_THw> di(w) = [ov(z — l|z||w)ot(w)d 2(w)

where / denotes Lebesgue measure. The proof is then the same as in Theorem
7.6 of Lelong and Gruman [LG].

Proposition 4.2 Let R be a positive closed current of bidegree (1,1) on P*.
Let v be a plurisubharmonic function on C**' satisfying:

(1) ~*R =dd

(1) v(iz) = clog|| + v(z),4 € C.

Then ||R|| = c.



412 J.E. Fornass, N. Sibony

Proof. We can assume ¢ = 1. Let (v,) be the sequence of plurisubhar-
monic functions constructed in Proposition 4.1. Consider the positive closed
current on IP¥ (R,), defined by the relation n*R, = ddv,. Let u,[zp : ... : zz] =
v,(20,...,2x) — log|iz||. The function u, is smooth and well defined on IP¥.
Moreover R, — w = ddu,. Since v, — v in LI‘OC, then R, — R in the sense of
currents. Using Stoke’s theorem we get:

R = [RA ! = lim SR A 7!
= lim [of + ddu, Ao ™! = fot=1.
Remark 4.3 Let P be a homogeneous polynomial of degree d in C*'. Let

V = {z € P¥,P(z) = 0} and [V'] the current of integration on V. Since n*[V] =
ddlog|P|, we get vol(V) = ||V || = [[V]1A*~! =d.

Let T be a positive closed current of bidimension (p, p) in P, Let Ri,...,R,
be closed positive currents of bidegree (1,1). Locally in IP¥ each R, can be
written as dd“u; where u; is a plurisubharmonic function. We will say that

(T,Ry,...,R,) admit a wedge product if for every x € IP*, there exists an open
set w containing x, and plurisubharmonic functions (u1,...,u,) on w such that
for every j,1 < j < ¢,R; = dd‘u;, and moreover for all ij,...,i, € [1,q], the
set

X :=SuppTNM(u,)N..N"M(u, )N w
is in the envelope of p — m + 1 pseudoconvexity of w\X.

Under this assumption and using Theorem 3.5 we can define the wedge
product T ARy A...AR,.

Theorem 4.4 Let T be a positive closed current of bidimension (p, p) on P¥.
Let Ry,...,R, be positive closed currents of bidegree (1,1) on P*. Assume
that (T,Ry,...,R,) admit a wedge product. Then

IT AR ARG = [ITHIRA]-- - IRl -

In particular T ARy N...ANRy is nonzero and suppT Nsupp(R;)N...N
supp (Ry) + .

Proof. Without loss of generality we can assume that |7 = ||R)]| =... =
IR4ll = 1. Assume n*R, = ddv,v(iz) = log|A| + v(z). Then as in the proof
of Proposition 4.2, R; = lim, ¢ R; where n*R; = ddv,. The assumption that
(T,Ry,...,R,) admit a wedge product and Theorem 3.5 imply that T A R; A
ARy =limg o TARI AL AR, A R;. (Indeed convergence of currents
has to be checked locally, and v, \, v in a given chart in IP¥.)

We can also assume that p + g = k. Hence using Stokes theorem we get
if u,[z] = v,(z) — log|z|

JT ARy /\...AR,,:%%]T/\R, A...ARg\ ARy
:lin?)fT/\Rl A ARg_y A+ dduy)

= [TARA... AR 1 ANw.
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Repeating the procedure we then show that
JTARIA..AR; = [TAh?=1.

Remark 4.5 Let Py,..., P, be homogeneous polynomials of degree d,...,d, in
CH'. Let ¥; = {z € PX; Pj(z) = 0}. Assume codim(¥,, N...N ¥, ) = m. Then
the currents ([V1],...,[V,]) admit a wedge product. Indeed if u, is such that on
a given chart on ]P"',ddcuj = [V;], then M{u; yN...NM(u,) has dimension
k —m, so is in the £ —m + 1 envelope of the complement. So Theorem 4.4
and Remark 4.3 gives in this case Bezout’s theorem. See Demailly [De] who
shows that [F1] A ... A [V,] is the current of integration of the intersection with
multiplicity.

Theorem 4.6 Let T be a nonzero, positive closed current of bidegree (p, p) in
P*. Let X = suppT. For any algebraic variety V. ={h, =...=h; = 0},X N
V£ provided p+1 < k and provided V is a geometric complete inter-
section.

Proof. Let ® be the Kahler form on IP*. Replacing T by T A of~(P*)) we can
assume that p +/ = k. We assume that X NV = .
Define

21>
|2+ .o+ AP
where we have assumed that the polynomials 4; are homogenous of degree s.

The function u is smooth in IP¥\ . Let S be the current in IP* defined by
the relation:

ulzg ... zz] = log

'S = (dd log(Jh > + ... |m|?))' .
We show at first that in P*\V, we have
ddunS =2swNS.
In local coordinates
ddu NS = dd®log ||z||* A S — (dd° log ||A|*)’
and the last term is zero outside V. Indeed, if for example k; #0,log ||4]|* =
log |y )? + log <1 + 1:?; + ..+ f—:—:—lé) If we consider the variety };1—':’ =

we see that dd°log||h]|* has at least & — 7+ 1 zero eigenvalues, the result
follows.

Let 6 be a nonnegative test function with support in PX\? and with value
1 in a neighborhood of X. Since S is smooth and closed in a neighborhood of
supp T, the current T A S is well defined and

(T AS,0dd°u) = (T AS,dd"(ub)) = (dd°T A S,ub) =0

Cfe"

and hence 7 AS A w = 0. We can vary slightly the As to obtain varieties V,
close to ¥ and still not intersecting X. We obtain for the corresponding forms
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S,, that T A S; Aw = 0. It is clear that if we take enough perturbations of V,
this implies that 7 = 0, a contradiction.

Theorem 4.7 Let T be a positive, closed (1,1) current on P*. Assume n*T =
ddv with v plurisubharmonic and continuous on C+'\{0}. Let X; = supp T'.
Then for 21 £ kX, is connected.

Proof. We first observe that a positive closed current S of bidegree (/,/) is
a limit of smooth positive closed currents. Indeed it is enough to take an
approximation of identity in Aut(IP*) and average the current S with respect
to the approximation of identity. Let p.(g) be an approximation of identity on
the group U(k) which acts transitively on P¥. Let u be the Haar measure for
U(k). For a positive (/,1) current S define S, by

Se= [ ps(g)g+S)du(g) .
U(k)

If p. 2 0, S, is positive, closed and smooth [deRh]. The previous formula has
to be understood as follows: If ¢ is a test form,

(Se; @) = [p(9)(S, 9" p)du(g) .

It is also known, Dold [Do] or de Rham [deRh], that there exists a constant
c such that S — cw' = dd°H where H has integrable coefficients. Observe that
since S = 0 then ¢ = 0.

Since T has locally a continuous potential u, i.e. ddu = T, we can define
T! for any / < k. Assume there exists two disjoint open sets U}, U, each one
intersecting X; = supp 7' and such that X; NoU, = X;NoU, = . Let S| =
T! Uy and S; = T'|U;. Clearly ) is a positive closed current. Let (S7) be a
sequence of smooth positive closed currents S} — S). Let B be a ball where
T = ddu. Since all the currents are positive, hence with measure coeflicients,
we have uS7? — uS;, on B hence ddu A S} — ddu A S,. Inductively we get
(ddu)’ A (ddu)! A S, hence T’ AST— T' A'S). Since T' has no mass
on 0U, we also have S; AST — S, ASy.

Let s =k — 27 and let S, = ;' + dd°H,. We have

[SHAS AW :liﬁnsz/\S{’/\ws
= lim [eS7 Ao + [dd°Hy ST A o .
Since S} are smooth, the last integral is zero. Hence
[SEASINe =cafo'™ AS) .
But S;+0 implies ¢;+0 and S, +0 implies that S| A w/**+0. Consequently

the previous relation shows that S; A S; £0, contradicting the assumption that
supp Sy Nsupp S, = .
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5 Examples from holomorphic dynamics in IP*

For background on this section we refer to [FS1], [FS2] and [HP].

Let f be a holomorphic surjective map on PX. Let F = [Fy:...: Fy] be a
lifting of f to C**!. Let d be the common degree of the polynomials F,. The
fact that f is holomorphic implies that F~'(0) = (0) and hence, there exists a
constant ¢ > 0 such that 1/c|jz||* £ |F(z)|| £ c||z||¥. Hence out of 0 we have

[1/d"  log |[F™Y|| — 1/d" log |F™||| < c\/d"

and the function
G(z):= lim 1/d"log ||F"(z)]|
R OC

is continuous on C**'\{0} since the convergence is uniform. Clearly we have:
(1) GUz) =logli] + G(z),~2 € C

(ii) G is plurisubbarmonic in C**!

(1) G((F(z)) = dG(z).

Definition 5.1 Let f:IP* — IP* be in the space Hy of holomorphic self maps

on P* given by polynomials of degree d. For 0 < | < k — 1, a point p ¢ P

belongs to the Fatou set F; if there exists a neighborhood U( p) such that for

every q € U(p) there exists a complex variety X; of codimension 1 such that

{ "Xy} is equicontinuous. Observe that Fy is the largest open set where f"

is equicontinuous. We call Fy the Fatou set. We have Fo C F\ C ... C Fy_,.
Let J; := PX\F,, we call J; the Julia set of order I.

Let T be the (1, 1) positive closed current defined on IP* by the relation n*T =
dd“G. Since G is continuous on C¥*'\{0},7T has a continuous potential on
any chart in IP¥, for example if 2z, +0,T = dd°G(l,z),...,z ). Hence we can
define the closed positive currenis of bidegree (/,1) by the relation 7*(T') =
(dd°G) forany | £ 1 < k. We defineJ; , =supp7’,1 £/ < k,and F|_, =
LAV

Theorem 5.2 Let f:IP* — IP* be a surjective holomorphic map of degree
d =2 on IPX. Let T be the positive closed (1,1) current associated to f.
Then

(i) J{_, is nonempty and for every 0 < 1 < k, f(J]) = f~'(J]) = J]. More-
over J{ C J; for 0 £ 1 < k.

(i1) Support T =Jj = Jy and Fy is a domain of holomorphy. For 0 < I <
k,F{ is (k — I — 1) pseudoconvex.
(iii) J/_, is connected if 21 < k.
(iv) If X is an algebraic variety of dimension r, which is a complete inter-
section, then T' N[X] is a positive measure of total mass vol(X). Moreover
X intersects every component of supp T".

Proof. 1t follows from Proposition 4.2 that ||T|| = 1 since G(/z) = log|/| +
G(z). Theorem 4.4 implies that for every 1 £ I < k||T'|| = 1, in particular T*
is a probability measure, hence J;_, = supp 7* is nonempty.
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Let G, := 1/d" log ||F"|| and observe that G, are smooth and converge uni-
formly to G on C**'\{0}. If (dd°G,)'— 0, then (dd‘G,oF) =
(dd°(Gpy1d))! +— 0, hence F) and J] are totally invariant.

We prove now that J; C J;,0 </ < k. We have to show that if p € F,
then T'*! vanishes in a neighborhood of p. Let U be a neighborhood of
p,q € U, and let X, be an analytic variety of codimension / through ¢ such
that f"|X, is equicontinuous. Let f™|X, +- h. This means that we can find non

. . - n .
zero holomorphic functions 4, on X, such that il converge to a holomorphic
n,
function H. We can write

Gy, = 1/d™ log ||[F"™ [, || + 1/d™ log | A, | .

The first sequence converges uniformly to zero on n~'(X,) and the sequence
1/d"log |4, | is harmonic on any analytic disc in n~'(X;). So G is har-
monic on any analytic disc in 7~ '(X,). Hence if G, is a local section of
G in U, G, is harmonic on any analytic disc contained in X,. Assume
that U is a polydisc A¥~/~! x 4!, For every a € 45~'~! and every ¢ in
ax A"“,X; :=ax 4" NX, is at least of dimension one, and G is har-
monic on any analytic disc contained in X. Therefore Lemma 6.9 in [FS2]
implies that (dd“G(a,w))*' =0 in a x 4'*!. Since a was arbitrary, standard
results in slicing theory applied to the current 7'*! [HS] or [Fe], imply that
T+ is zero on U.

(ii) We show that supp T = Jy. We have that supp 7 C Jy, in this case no
slicing is needed since the first part of the proof shows that G is plurtharmonic
on n~'(Fy). Let U be an open set disjoint from supp 7. We want to prove
that U C Fp. We can assume U is a ball. We know that G is pluriharmonic
on n-Y(U), hence G = log |h| where & is holomorphic on n~'(U). Since

|G = Gyl £ c/d”
we get
e < IF
e é ‘hd!ll é ec M

So the family ( /") is normal on U.

The fact that Fy = IP¥\J, is pseudoconvex follows from Corollary 2.6. Since
the Levi problem has a positive solution for domains in P* it follows that Fy is
a domain of holomorphy. Corollary 2.6 also implies that F;_,, the complement
of supp T’ is (k — I)-pseudoconvex.

(iil) Theorem 4.7 shows that J/_, is connected if / < 2k.

(iv) Since T has locally a continuous potential, 77 and [X] admit a wedge
product. The current [X] is given locally as dd‘log |Pi| A ... Addlog|Pr_,]|
where (P;) are homogeneous polynomials. So we can apply Theorem 4.4 and
we get that |77 A [X]|| = ||[X]|. Let Y be a component of supp7”. Assume
YNX = Let U be a neighborhood of ¥ such that UNX = . Let § =
T"U,S is a positive closed current of bidegree (r,#) to which we can apply
Theorem 4.6, hence supp S intersects X, a contradiction.
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We next show that f cannot be hyperbolic on J/ for / < k — 1. Let f €
Hy, f : IP* — P*. We define first hyperbolicity, see Ruelle [Ru]. Let K C P
be a compact set. We assume that K is surjectively forward invariant, that is
f(K) =K. The space K = KN of orbits {30 o, f(xy) = x,41 is compact
in the product topology. By the tangentbundle T; of K we mean the space
of {x,&) where x = {x,} € K and éeT p2{xo) is a tangent vector. We give
this tangentbundle the obvious topology. Then f lifts to a homeomorphism
f:K— K and /' lifts to a map f’ on T} in the obvious way.

Definition 5.3 Let K C IP* be a compact surjectively forward invariant set.
Then f is hyperbolic on K if there exists a continuous splitting E* & E* of

~ ~t
the tangent space bundle of K such that f preserves the splitting and for
some constants C,c > 0,4 > l,u < 1 depending on the choice of a Hermitian
metric on P2,

IDF(E) 2 ei|E), & € E
IDF(E) < CuMElECE, n=1.2,...

Theorem 5.4 Let f:1P* — P, f € H,. If supp u = J{ _, is hyperbolic, then the
unstable dimension of J/_, is equal to k.

Proof. Suppose the stable dimension is equal to / = 1. Then through every
point x € J/_, there is an analytic disc 4, on which the family ( ") is equicon-
tinuous. Hence if G is a local potential for g, i.e. (ddCGl)"" = u, then G, is
harmonic on 4,. The theorem will then be a consequence of the following
lemma.

Lemma 5.5 Let u be a continuous plurisubharmonic function in a ball B ¢ C*,
Let (dd°u) = v. Assume that through every point x of X := suppv there is
an analytic disc A, such that u|4, is harmonic, then v = 0.

Proof. We are going to prove that v is maximal and hence v = 0. Let v be a
continuous function on B8 which is plurisubharmonic on B, with v < u on 8B.
Let M :=supyv —u, assume M > 0. Let K = {z;z € B,(v ~ u)(z) = M}. Let
p be a peak point for a function # € C(K) which is a uniform limit of K of
holomorphic polynomials, i.e., /{(p) = 1 and |4| < 1 on K\{p}. If p € X, then
since v < u + M and u|4, is harmonic then v —u = M on 4,, hence 4, C K,
contradicting that p is a peak point for . So p € B\X. Let B(p,r) € B be a
ball such that B(p,r)NX = (&. Since (dd“u)* = 0 on B(p,r), it follows from
[GS] that given any z € B(p,r), there exists a probability measure o, supported
on 0B(p,r) such that u(z) = [ uda,, and moreover for any continuous function
on B(p,r), plurisubharmonic on B(p,r)

¢(z) £ [ddo. .
Since M = v(p) — u(p) < [(u —v)do, < M, we have that support o, is con-
tained in K, and p cannot be a peak point for h, since h(p) = [ hdo,, hence
K is empty and v = 0.
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Theorem 5.6 Let f:IP* s IP* be a holomorphic map of degree d < 2. Then
f cannot be hyperbolic on P* nor on J] for | < k — 1.

Proof. Assume f is hyperbolic on IP*. Since the critical set is nonempty the
fibre dimension of E¥ is < k — 1. If dim E* = & then all periodic orbits are
attractive. Pick one, p, with immediate basin of attraction Q. Since f is surjec-
tive, 4Q is a non empty, compact, forward invariant subset of IP*. Hyperbolicity
implies that orbits of points ¢ € Q close to 02 converge to Q2 contradicting
that they are in the attractive basin of p. Hence 1 < dim£* £ k — 1. Let
dim E° = I. Then we have a foliation of IP* by stable manifolds of dimension
1, and on each manifold the family ( f”) is equicontinuous, so P* C F;_,.
Since Fy_; C Fr_y, we get J,_; = J which is a contradiction.

Let / < k—1 and assume J| is hyperbolic. Theorem 5.2(iv) shows that
every component of J; intersects C, the critical set. Hence the fibre dimension
of E¥ <k —1, so dimE*® > [. This implies that through every point p in
J/ D supp u there exists an analytic disc 4, on which G| is harmonic, G, is
a local solution of dd°G, =T.

So Lemma 5.6 applies and p = 0, a contradiction.

Acknowledgement. We thank G. Henkin and R. Narasimhan for attracting our attention to
Qka’s paper.
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