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Abstract. This paper investigates the question of whether a key agree-
ment protocol with the same communication complexity as the original
Diffie-Hellman protocol (DHP) (two messages with a single group ele-
ment per message), and similar low computational overhead, can achieve
forward secrecy against active attackers in a provable way. We answer this
question in the affirmative by resorting to an old and elegant key agree-
ment protocol: the Okamoto-Tanaka protocol [22]. We analyze a variant
of the protocol (denoted mOT) which achieves the above goal. Moreover,
due to the identity-based properties of mOT, even the sending of certifi-
cates (typical for authenticated DHPs) can be avoided in the protocol.

As additional contributions, we apply our analysis to prove the secu-
rity of a recent multi-domain extension of the Okamoto-Tanaka protocol
by Schridde et al. and show how to adapt mOT to the (non id-based)
certificate-based setting.

1 Introduction

Since the invention of the Diffie-Hellman protocol (DHP) [10], much work has
been dedicated to armor the protocol against active (“man in the middle”) at-
tacks. Designing authenticated Diffie-Hellman protocols has proven to be very
challenging at the design and analysis level, especially when trying to optimize
performance (both computation and communication). This line of work has been
important not only from the practical point of view but also for understandings
what are the essential limits for providing authentication to the DHP.

In particular, it has been shown that one can obtain an authenticated DH pro-
tocol with the same communication as the basic unauthenticated DHP (at least
if one ignores the transmission of public key certificates); namely, a 2-message
exchange where each party sends a single DH value, and where the two mes-
sages can be sent in any order. A prominent example of such protocols is MQV
[18] (and its provably-secure variant HMQV [17]) where the cost of computing
a session key is as in the basic unauthenticated DHP plus half the cost of one
exponentiation (i.e., one off-line exponentiation and 1.5 on-line exponentiations).

Protocols such as the 2-message MQV are “implicitly-authenticated proto-
cols;” that is, the information transmitted between the parties is computed
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without access to the parties’ long-term secrets while the authentication is ac-
complished via the computation of the session key that involves the long-term
private/public keys of the parties. Unfortunately, implicitly-authenticated proto-
cols, while offering superb performance, are inherently limited in their security
against active attackers. Indeed, as shown in [17], such protocols can achieve
perfect forward secrecy (PFS) against passive attackers only.

Recall that PFS ensures that once a session key derived from a Diffie-Hellman
value is erased from memory, there is no way to recover the session key even
by an attacker that gains access to the long-term authentication keys of the
parties after the session is established. PFS is a major security feature that
sets DHPs apart from other key agreement protocols (such as those based in PK
encryption) and is the main reason for the extensive use of DHPs in practice (e.g.,
IPsec and SSH). Adding PFS against active attackers to protocols like MQV
requires increased communication in the form of additional messages and/or
explicit signatures.

In this paper we investigate the theoretical and practical question of whether
the limits of DHPs can be pushed further and obtain a protocol with full se-
curity against active attackers (including PFS) while preserving the communi-
cation complexity of a basic DHP (two messages with a single group element
per message) and low computational overhead. We answer this question in the
affirmative by departing from implicitly authenticated protocols and resorting to
an old and elegant key agreement protocol: the Okamoto-Tanaka protocol [22].
We analyze a variant of the protocol (denoted mOT) which achieves the above
minimal communication, incurs a negligible computational overhead relative to
a basic DHP over an RSA group, and yet achieves provable security including
full PFS against active attackers1. Moreover, due to the identity-based [24] prop-
erties of mOT, even the sending and verification of certificates is avoided in the
protocol.
Our Results. The protocol mOT we analyze is a “stripped down” version of the
“affiliation-hiding” key exchange protocol by Jarecki et al. [15] (a version of key
agreement where parties want to hide who certified their public keys). We remove
all the extra steps designed to obtain affiliation-hiding (which is not a concern
for our paper) and focus on the 2-message version of the [15] protocol (the latter
includes a third message and the transmission of additional authentication infor-
mation for the parties to confirm they indeed have the same key). We present a
rigorous proof of security for mOT in the Canetti-Krawczyk (CK) Key-Agreement
Protocol model [5]. The security of the protocol in this model, including weak PFS
(i.e., against passive attacks only), is proven in the random oracle model under
the standard RSA assumption. For the proof of full PFS against active attack-
ers (and only for this proof) we resort to non-black-box assumptions in the form
of the “knowledge of exponent” assumptions. We stress that our goal is to prove
full security (including full PFS) for the 2-message protocol without the extra key

1 There are DH protocols that provide full PFS against active attacks with just two
messages, but they require to send (and process) additional information, e.g. explicit
signatures [27] or encrypted challenges [16].
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confirmation steps: indeed the 3-message protocol with key confirmation can be
proven secure (including full PFS) under the standard RSA assumption without
requiring extra assumptions (this proof is actually implicit in [15]).

Modified Okamoto-Tanaka (mOT). The modified Okamoto-Tanaka protocol
mOT, is described in Figure 1 (for a precise specification see Section 3). We
describe the protocol as an identity-based protocol using a KGC (key generation
center) as this setting provides added performance advantages to the protocol.
Following [15], we include hashing operation on identities as well as the hashing
and squaring operations in the computation of the session key K (these steps
are not part of the original Okamoto-Tanaka).

The Modified Okamoto-Tanaka (mOT ) Protocol

Setting: A Key Generation Center (KGC) chooses RSA parameters
N = pq (such that p and q are random safe primes), and exponents d, e, and
a random generator g of QRN , the (cyclic) subgroup of quadratic residues
modN .

KGC publishes N, e, g, two hash functions H (with range QRN ) and H ′

(with range of the desired length of the session key), and distributes to
each user U with identity idU a private key SU = H(idU)d mod N .

Key agreement: A and B choose ephemeral private exponents x and y,
respectively.

A α = gxSA mod N � B

β = gySB mod N�

K̄A = (βe/H(idB))2x mod N K̄B = (αe/H(idA))2y mod N

K̄ = K̄A = K̄B = g2xye mod N

A and B set the session key to K = H ′(K̄, idA, idB, α, β)

Fig. 1. A and B share session key K. See Section 3 for full details.

Security Proof and Full PFS “for free”. The security result that sets our
protocol and work apart is our proof of full PFS for mOT, namely, perfect for-
ward secrecy against fully active attackers. The proof of full PFS (and only this
proof) requires two additional “non-black-box” assumptions: one is the well-
known KEA1 (knowledge of exponent) assumption [8,1] related to the hardness
of the Diffie-Hellman problem and the second is similar in spirit but applies to
the discrete logarithm problem (see Section 4). Enjoying full PFS is a major
advantage of mOT relative to efficient two-message protocols such as MQV that
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can only offer weak PFS. Indeed, in spite of mOT transmitting a single group
element in each of the two messages, it overcomes the inherent PFS limitations
of implicitly authenticated DHPs by involving the sender’s private key in the
computation of each protocol’s message. Most importantly, as we explain below,
this full security against active attackers is achieved with zero communication
and negligible computational overhead relative to the basic DHP. We believe this
to be not just a practical feature of mOT but also a significant contribution to
the theory of key agreement protocols showing that armoring the original DHP
against active attackers can be achieved essentially “for free”.

Performance. The cost of mOT remains essentially the same as in the basic
(unauthenticated) DHP: one message per party, that can be sent in any order,
with each message containing a single group element. No additional authentica-
tion information needs to be transmitted. Thanks to the identity-based proper-
ties of the protocol, public-key certificates need not be sent or verified. The only
extra operation is one exponentiation to the e-th power, which can be chosen to
be 3, and one squaring; that is, just three modular multiplications in all. How-
ever, note that mOT works over an RSA group and therefore exponentiations
are more expensive than over elliptic curves (where protocols like MQV can be
run). Yet, we also note that mOT can be implemented with short exponents,
say 160-bit exponents when the modulus is of size 1024 (or a 224-bit exponent
with a 2048-bit modulus). Our proof of the protocol holds in this case under
the common assumption that in the RSA group the discrete logarithm problem
remains hard also for these exponent sizes. In terms of practical efficiency, for
moderate security parameters (160-200 bit exponents) the cost of one on-line
exponentiation in mOT is competitive with the 1.5 exponentiations over elliptic
curves required by MQV. For larger security parameters the advantage is fully
on the elliptic curve side though in this case one has to also consider the over-
head incurred by certificate processing in a protocol like MQV (which is costly
especially for ECDSA-signed certificates).

Of course, beyond the practical performance considerations, mOT holds a
significant security advantage over 2-message MQV, namely, its full PFS against
active attackers. The fact that mOT can do so well with almost no overhead
over the underlying basic Diffie-Hellman protocol, and with full security against
active attacks, is an important theoretical (and conceptual) aspect of our work
pointing to the limits of what is possible in this area.

More discussion on the performance mOT can be found in the full version.

The Need for a Key Generation Center (KGC). As an identity-based
protocol, mOT avoids the need for certificates (a significant communication and
computational advantage). The id-based setting, however, introduces the need
for a KGC that generates and distributes keys to users. This results in a differ-
ent trust model than the traditional certification authority (CA) that certifies
public keys but does not generate or know the private keys of parties. Note,
however, that in mOT the private keys are used only for authentication. Thus,
while a KGC can impersonate a party, it cannot learn keys exchanged by that
party (we note – see full version – that the PFS property holds also against a
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corrupted KGC). Note that a regular CA can also impersonate parties at will
by issuing certificates with the user’s name but with a private key known to the
CA. Interestingly, as we show below, mOT can be modified to work also in the
traditional CA setting.

Further results. In the full version we extend the above proofs and analysis to
a recent extension of the Okamoto-Tanaka protocol proposed by Schridde, Smith
and Freisleben [25] that allows the execution of the protocol between users that
belong to different domains, i.e., to different key generation centers (KGC).

The full version also shows that the mOT protocol and its extension from
[25] can be modified to work as “traditional” (i.e., not ID-based) key agreement
protocol.

Related work. Key agreement protocols (KAPs) have played an important role
in the development of identity-based cryptography, with Okamoto [21], Okamoto
and Tanaka [22], Gunther [12] being early examples of id-based cryptography.
(Even earlier, the work by Blom [2] on key distribution can be seen as a precursor
of id-based schemes.) With the flourishing of pairings-based cryptography, many
more id-based KAPs have been designed; yet getting them right has been a chal-
lenging task. See the survey by Boyd and Choo [3] and Chen, Cheng, and Smart
[6] for good descriptions and accounts of the main properties of many of these
protocols. Even to date it seems that very few (e.g., [4,29]) were given full proofs
of security (many others were broken or enjoy only a restricted notion of secu-
rity, such as partial resistance to known-key attacks). In all, the mOT protocol
studied here compares very favorably with other id-based and traditional KAPs
in provability and security properties (e.g., PFS) as well as performance-wise.

We already discussed the relationship of our work with [15]. We stress again
that the security analysis there is for the protocol with the extra key confirmation
messages, while we analyze the minimalistic 2-message protocol in Figure 1.

Multi-domain extensions of id-based KAPs have been proposed in [7,19] but
without full proofs of security. The multi-domain extension of the mOT protocol
that we fully analyze here is from Schridde et al. [25] which also contains a good
discussion of the benefits of multi-domain identity-based protocols.

In general, while interactive authenticated KAPs, especially those authenti-
cated with signatures, can easily accommodate certificates (which a party can
send together with its signature), avoiding the need for certificates constitutes a
significant practical simplification of many systems. In particular, they provide
more convenient solutions for revocation and less management burden [28]. The
Okamoto-Tanaka example shows that the identity-based setting can sometimes
even improve performance.

Open questions. We believe that the mOT protocol is remarkable for its
“minimalism”, providing full and provable authenticated key-agreement secu-
rity (including full PFS) with the same communication and minimal compu-
tational overhead relative to the underlying unauthenticated DHP. Yet there
are several ways one could hope to improve on this protocol and on our results;
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achieving any of these improvements would bring us even closer to the “ultimate”
authenticated DHP:

(i) Find a protocol with the same communication/computation/security
characteristics as mOT but which works over arbitrary dlog groups (in particular
elliptic curves). In this case, the minimalism of mOT would translate into opti-
mal practical performance (even a certificate-based protocol with these properties
would be very useful). (ii) Prove the full PFS security of mOT without resorting
to non-black-box assumptions (while we believe that proofs under these assump-
tions carry a very strong evidence of security, using more standard assumptions is
obviously desirable). (iii) Improve on mOT by avoiding the vulnerability of the
protocol to the exposure of the DH values gx, gy or the ephemeral exponents
x, y.

2 Preliminaries

Let SPRIMES(n) be the set of n-bit long safe primes. Recall that a prime p
is safe if p−1

2 is prime. Let N = pq be the product of two random primes in
SPRIMES(n); denote p = 2p′ + 1 and q = 2q′ + 1. Let e be an integer which
is relatively prime to φ(N) = 4p′q′.

We say that the RSA Assumption (with exponent e) holds if for any prob-
abilistic polynomial time adversary A the probability that A on input N, e, R,
where R ∈R Z∗

N , outputs x such that xe = R mod N is negligible in n. The
probability of success of A is taken over the random choices of p, q, R and the
coin tosses of A.

Remark (semi-safe primes). For simplicity, we assume that p = 2p′ + 1
and q = 2q′ + 1 are safe primes, namely, p′ and q′ are prime. We can relax
this assumption to require that gcd(p′, q′) = 1 and that neither p′ or q′ have
a prime factor smaller than 2� for a given security parameter �. With these
assumptions we get that QRN is cyclic and that a random element in QRN is a
generator with overwhelming (1 − 2−�) probability, two properties that we use
in our construction and analysis.

Throughout the paper we use the following well-known result of Shamir [23]:

Lemma 1. Let N, e, d be RSA parameters and f be an integer relatively prime
to e. There is an efficient procedure that given N, e, f (but not d) and a value
(xf )d mod N , for x ∈ Z∗

N , computes xd mod N .

The cyclic group QRN . If N is an RSA modulus product of safe primes, then
the subgroup QRN of quadratic residues in Z∗

N is cyclic of order p′q′. Let g be a
random generator of QRN (such generator can be found by squaring a random
element in Z∗

N (this algorithm yields a generator with overwhelming probability
and the resulting distribution is statistically close to uniform). In protocols and
proofs below we are going to generate random elements in the group generated by
g according to the uniform distribution and with known exponents (i.e., their dlog
to the base g). Such a random element X could be generated by choosing an integer
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x ∈ [1..p′q′] uniformly at random and setting X = gx mod N . But this option
implies knowledge of the factorization of N (knowing the value p′q′ is equivalent to
factoring N). Parties who do not know the value p′q′ can approximate the uniform
distribution over 〈g〉 as follows: generate x ∈ [1..�N/4�] and set X = gx mod N .
It is not hard to see (cf. [9]) that if p′ and q′ are of the same size (as required here)
then the uniform distributions over [1..p′q′] and [1..�N/4�] are statistically close
with an exponentially small gap.

Let g be a random generator of QRN and let X = gx mod N and Y = gy mod
N two random elements in QRN . We say that the Computational Diffie-Hellman
(CDH) Assumption (for N and g) holds if for any probabilistic polynomial time
adversary A the probability that A on input N, g, X, Y outputs Z such that
Z = gxy mod N is negligible in n. The probability of success of A is taken over
the random choices of p, q, x, y and the coin tosses of A. We know from [26] that
the hardness of factoring N (and therefore the RSA Assumption) implies the
CDH Assumption.

3 The Modified Okamoto-Tanaka Protocol

Protocol Setup. A key generation center KGC (for “trusted authority”) chooses
an RSA key (N, e, d), where N is the product of two safe primes p, q. As usual e, d
are such that ed = 1 mod φ(N). The KGC also chooses a random generator g for
the subgroup of quadratic residues QRN . The public key of the KGC is (N, e, g)
and its secret key is d.

Two hash functions H, H ′ are public parameter. The first function H outputs
elements in the group generated by g (this can be achieved by setting H to be the
square mod N of another hash function with rangeZ∗

N ). The second hash function
H ′ outputs k-bit strings, where k is the length of the required session key.

Each user in the system has an identity; for convenience we sometimes asso-
ciate a name to an identity. For example, Alice will be the name of a party while
her identity is denoted idA. We also denote A = H(idA) and B = H(idB) (thus,
A, B are elements in QRN ). When Alice requests her secret key from the KGC,
she receives the value SA = Ad mod N as her secret key (we can think of this as
the KGC’s RSA signature on Alice’s id).

The key agreement. Alice chooses a random integer x from a set S that
we specify below. She then computes X = gx mod N and sends to Bob α =
X · SA mod N . Bob chooses a random y in S, sets Y = gy mod N , and sends
to Alice the value β = Y · SB mod N . Alice computes a shared secret value
K̄A = (βe/B)2x mod N while Bob computes it as K̄B = (αe/A)2y mod N . (Alice
and Bob check that the incoming value is in Z∗

N or else they abort the session.)
Notice that the values K̄A, K̄B are equal:

K̄A = Y 2xe · (Se
B/B)2x = Y 2xe(Bed/B)2x = g2xye = ((XSA)e/A)2y = K̄B

Alice and Bob set K̄ as this shared secret value K̄ = K̄A = K̄B = g2xye mod N
and set the session key to K = H ′[K̄, idA, idB, α, β]. Since we want both parties
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to compute the same session key we need to determine an ordering between
idA and idB, and between α and β in the input to the hash; for example, a
lexicographic ordering (note that we are not assuming necessarily that there is
a definite role of “initiator” and “responder” in the protocol, and hence we do
not use such roles to determine the ordering of the above values).
Protection of ephemeral values. We specify that the ephemeral Diffie-Hellman
values X, Y chosen by the parties be given the same protection level as the private
keys SA, SB (indeed, learning these ephemeral values is equivalent to learning the
private keys). In particular, if these values are stored in the (less secure) session
state they need to be stored encrypted under a (possibly symmetric) key stored
with the private key. (This is analogous to the need for protecting the ephemeral
value k in a DSA signature.) In addition, we specify that in the computation of
the session key, the hashing of the value K̄ be performed in protected memory
and only the session key be exported to a session state or application (learning
the shared secret K̄ value opens some attack venues as explained in the full
version).

The exponents set S and performance considerations. The performance
cost of the protocol is dominated by the exponentiation operations; hence the
choice of the set S from which ephemeral exponents are selected is important.
A first choice would be to define S as the interval [1..�√N/2�]. In this case, as
shown in [11] (following the results in [14]), the two distributions

{gx for x ∈R [1..�N/4�]} and {gx for x ∈R [1..�
√

N/2�]}
are computationally indistinguishable under the assumption that factoring N is
hard. Therefore, one can use exponents of length half the modulus without any
loss in security. However, performance can be significantly improved by setting
S to be the set of exponents of length κ, where κ is twice the security parameter
(e.g., κ = 224). Indeed in this case, the security of the protocol relies on the
common assumption that discrete log (over Z∗

N ) is hard also when the exponents
are of length κ. Indeed (see Lemma 3.6 in [11]), this assumption implies that the
two distributions

{gx for x ∈R [1..�N/4�]} and {gx for x ∈R [1..2κ]}
are computationally indistinguishable, and hence using the short or long expo-
nents is equivalent. Therefore, we recommend the protocol to be implemented
using short exponents; in particular, we use this case when discussing the pro-
tocol’s performance.

3.1 Proof of the mOT Protocol

We prove first the following theorem showing the basic security of the mOT
protocol. In the full paper we prove further security properties, namely, resistance
to KCI and to reflection attacks, and weak PFS. We defer the proof of full PFS
(which requires a more involved proof and additional assumptions) to Section 4.
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Theorem 1. Under the RSA assumption, if we model H, H ′ as random oracles,
the mOT protocol is a secure identity-based key agreement protocol.

Proof. The proof is carried in the Canetti-Krawczyk Key-Agreement security
model [5] (a succinct summary of this model is presented in the full version)
and it follows a typical simulation/reduction argument: We assume an efficient
KA-attacker M that breaks the security of the mOT protocol and use it to build
an algorithm that inverts RSA on random inputs.

We start by noting the following fact about an attacker against mOT: Since the
session identifier (idA, idB, α, β) is hashed together with the shared secret value
K̄ to obtain the session key K, we know that two different sessions necessarily
correspond to two different session keys. Moreover, since the hash function H ′

is modelled as a random oracle then the only way for the attacker to calculate,
identify, or distinguish a session key is by computing the value K̄ and explicitly
querying it from H ′.2

We call the algorithm that we build for inverting RSA a “simulator” (denoted
SIM) since it works by simulating a run of the mOT protocol against the KA-
attacker M which is assumed to win the test-session game with non-negligible
probability.
Input to SIM . The input to SIM is a triple (N, e, R) where N, e are chosen
with the same RSA distribution as used in the mOT protocol and R is a random
element in Z∗

N . The goal of SIM is to output Rd mod N where d is such that
ed = 1 mod φ(N).
Some conventions: We often omit the notation “modN” when operating in the
group Z∗

N . When saying that we chose a random element u from QRN we mean
choosing v ∈R Z∗

N and setting u = v2 mod N . To choose a value u in Z∗
N with

a known “RSA signature” s = ud, we first choose s and then set u = se. If
U = gu, W = gw are elements of QRN we denote with DHg(U, W ) the value
guw, i.e. the result of the Diffie-Hellman transform in base g applied to U, W .

SIM runs a virtual execution of the mOT protocol (consisting of multiple
sessions) against the attacker M, simulating all protocol actions, including the
determination of private keys and responses to queries to the functions H, H ′

made by M. In particular, we allow SIM to “program” the hash functions H, H ′

(as long as outputs are chosen independently of each other and with uniform
distribution) as is customary when modeling H, H ′ as random oracles.
Identities and keys. Each participant in the protocol has an identity, idP , possibly
chosen by M; we denote P = H(idP ). Of all party identities participating in
the protocol, SIM chooses one at random; we denote it by idB and will refer
to this party as Bob. For each participant idP other than Bob, SIM chooses a

2 Note that if parties A and B have a session where they exchanged messages α
(from A to B) and β (from B to A), and another session where the same messages
were exchanged but in the reverse direction, both sessions will have the same key.
However, as long as one of A and B is honest, each session will have at least one
fresh message (except for the negligible probability that two random values in QRN

coincide), hence the above cannot happen even with the attacker’s intervention (who
can only choose one message in each session).
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random value p ∈R QRN and sets P = H(idP ) = pe. In this way, SIM also
knows the private key of the participant, i.e., SP = P d = p (note that P and SP

are elements of QRN ). For Bob, SIM sets H(idB) = B = R2 mod N , where R
is the input to SIM (note that R2 is random in QRN ).

Choosing a QRN generator. SIM sets the random generator g of QRN to be
used in the protocol as following: it chooses random r̄ ∈R QRN , sets r = r̄e, and
g = (rB)e. Note that with these choices B = gd/r and r̄ = rd; also note that g
and B are random in QRN and independent.

Guessed test session. Before starting the simulation of session establishments,
SIM chooses at random a (future) session that it conjectures will be chosen by
M as the test session. SIM does so by guessing the holder of the test session
among all the parties in the orchestrated protocol run (we refer to this party as
Alice) and guessing the order number of the session among all of Alice’s sessions.
This allows SIM to know when the guessed session is activated at Alice in the
protocol’s run. In addition, SIM also guesses that the peer to the test session
will be Bob (defined above). We specify that, if at any point in SIM ’s simulation,
it is determined from the protocol’s run that the guessed session is not to be
chosen as the real test session by M (e.g., if either Alice or Bob are corrupted, or
another test session is chosen by M, etc.) the simulator aborts. The probability
that the guessed session will actually be chosen by M as the test session is
non-negligible (as long as the simulation of the protocol by SIM is correct).

Session Interactions (non-test sessions). Attacker M can choose to initiate and
schedule sessions between any two participants and can input its own values
into the various sessions, either by utilizing corrupted players or by delivering
messages allegedly coming from honest parties. The simulator SIM needs to
act on behalf of honest parties in these interactions. Simulating the actions of
any uncorrupted party other than Bob is simple for SIM , as it knows their
private keys and can choose their ephemeral exponents. Sessions in which Bob
is a participant are more problematic since SIM does not know Bob’s private
key SB = Bd. Whenever Bob is activated in a session, SIM will set the value
β = gb/r̄ as the outgoing message from Bob where b ∈R [1..�N/4�] is chosen
afresh with each activation of Bob and the value r̄ is fixed and defined above.
Clearly, β is distributed uniformly over QRN as in the real runs of mOT. While
SIM cannot compute session keys with such choice of β we will still see that it
can answer the attacker’s session-key queries.

Response to party corruption and session key queries (non-test sessions). If at
any point M corrupts a party, SIM provides all information for that party in-
cluding the private key (which SIM knows). Note that if the attacker asks to
corrupt Bob, SIM aborts since it is a sign that SIM did not guess correctly the
test session. Session-key queries for sessions where one of the messages was gen-
erated by an honest party other than Bob, can be answered by SIM who chooses
the ephemeral exponent for the session. The problematic cases are sessions where
Bob is a peer and for which the incoming message to Bob was chosen by the
attacker (rather than by SIM itself), and provided to Bob as coming from some
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party idC (we refer to it as Charlie), which may be honest or corrupted, but
different than Bob3. In this case SIM does not know the ephemeral exponents
of either party to the session so it cannot compute the session key. Instead the
simulation proceeds as follows.

The idea is that as long as M does not query the session value K̄ from the
random oracle H ′, then SIM can answer the session key query with a random
value. However, if M does know the value K̄, and it actually queries H ′ on
this value, then SIM needs to answer consistently. Specifically, we are dealing
with a session where the peers are Bob and Charlie, whose hashed identities
are B = H(idB) and C = H(idC), respectively, and the exchanged values are
γ, chosen by the attacker, and β chosen by SIM as specified above. Thus, the
session key is H ′(K̄, idC , idB, γ, β) for the appropriately computed K̄. Before
answering the session-key query, SIM needs to check whether an input of the
form (Q, idC , idB, γ, β) was queried from H ′ where Q = K̄. If such a query with
Q = K̄ was indeed performed then SIM will answer the session-key query with
the existing value H ′(Q, idC , idB, γ, β). If not, SIM will choose a random value
ρ in the range of H ′ and will return ρ as the value of the session key.

The main question is how will SIM verify whether Q = K̄ for a prior query.
The value K̄ can be represented as DHg(Z2, βe/B) for Z = γ/SC . By our choice
of B = gd/r, β = gb/r̄ and r = r̄e, we have that βe/B = (gebr̄−e)/(gdr−1) =
geb−d and therefore,

K̄ = DHg(Z2, βe/B) = DHg(Z2, geb−d) = Z2(eb−d) (1)

Now, since exponentiation to the e is a permutation over Z∗
N , we have that

Q = K̄ if and only if Qe = K̄e, and by Equation (1) this is the case if and only
if Qe = (Z2(eb−d))e = Z2(e2b−1). But this last computation can be performed
by SIM who knows all the involved values, including b that SIM chose and Z
(since Z = γ/SC and SIM knows both γ and SC).4

Simulating the test session. When M activates the session at Alice that SIM
chose as its guess for the test session, SIM acts as follows. Let the identity of
Alice be idA and denote A = H(idA). Since Alice is assumed to be the holder of
the test session, it means that it is Alice (or SIM in our case) who chooses the
outgoing message α from the session, not the attacker. SIM sets this message
to the value α = (rB)fSA, where r, B are as described at the begining of the
simulation, SA = Ad is Alice’s private key (which SIM knows) and f is chosen
as f = te+1 for t ∈R [1..�N/4�]. With this choice, α’s distribution is statistically
close to uniform over QRN . Indeed, we have (rB)te+1 = (gd)te+1 = gdgt with
3 We assume for the time being that Bob does not run a KA session with itself (thus

C �= B). The case where both session peers have the same identity is called a
reflection attack and is proved in the full version.

4 We note for future reference, that knowing SC is not strictly necessary for SIM
to carry this simulation step. If SIM does not know SC (as in some other proofs
in this paper) it does not know Z either. Instead SIM will use Ze = γe/C which

it does know, and instead of checking Qe = Z2(e2b−1) it will check the equivalent

Qe2
= (Ze)2(e

2b−1).
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t ∈R [1..�N/4�] (recall that in the real protocol Alice chooses α = gxSA with
gx also statistically close to uniform distribution over QRN ). It also makes it
independent of other values in the protocol including B and β.

The peer to the test session is Bob (or else SIM aborts) and the incoming
message is denoted by β. This value can be chosen by the attacker (which delivers
it to Alice as coming from Bob) or by Bob itself. In the latter case, β is chosen by
SIM as described above for other sessions activated at Bob. In case M chooses
β, it can be any arbitrary value. Below, we make no assumption on β other than
being in Z∗

N . The session key in this case is K = H ′(K̄, idA, idB, α, β) where K̄
is computed as follows: if X = gx denotes the value α/SA then K̄ = (βe/B)2x.
Now, by our choice of parameters α, g, B, r (in particular, rB = gd), we have
that X = α/SA = (rB)f = (gd)f and hence x = df mod φ(N)/4. Thus,

K̄ = (βe/B)2df (2)

Since SIM cannot compute this value (it does not know the ephemeral exponent
of either peer to the session) we need to show how SIM responds to a test-session
query (assuming the guessed session is indeed chosen by M as the test session).
Upon such a query, SIM will check if there was any query made to H of the
form (Q, idA, idB, α, β) and if so, it will check if Q equals the session value K̄.
This is done by checking whether Qe = (βe/B)2f (which involves values known
to SIM). Indeed, note that Q = K̄ if and only if Qe = K̄e (as exponentiation
to e is a permutation) and using Equation (2) we have K̄e = (βe/B)2f . If SIM
identifies such a Q, SIM has learned K̄ from which it can compute its target
RSA forgery as we explain below. If not, SIM responds to the session-key query
with a random value. From now on, it monitors M’s queries to H to see if a
Q = K̄ is identified, in which case SIM learns the session key and outputs the
forgery.

Computing the forgery Rd. The goal of SIM is to compute Rd mod N where
R ∈R Z∗

N was given to SIM as input. We now show that whenever SIM learns
the session key corresponding to the test session (as shown above) it can compute
Rd. Indeed, it is easy to see from Equation (2) that (B2f )d = β2f/K̄, and since
SIM chose B = R2 then (R4f )d = β2f/K̄. Using Lemma 1 and the fact that 4f
is relatively prime to e we derive Rd from (R4f )d.

Finally, we note that in order to win the test-session game with non-negligible
advantage it must be that M queries the correct K̄ from H with non-negligible
probability, then SIM is guaranteed to learn K̄, and hence compute Rd, also
with non-negligible probability.

In the full version we prove further security properties of mOT , such as resistance
to reflection and key compromise attacks.

4 Proof of the PFS Property of the mOT Protocol

In this section we prove that the Modified Okamoto-Tanaka protocol enjoys
full Perfect Forward Secrecy (PFS) against active attackers. For this proof we
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need to resort to two additional assumptions5 (on top of the RSA Assumption
required for the proof of the basic security of the protocol, i.e. Theorem 1).
The first assumption is the well-known “Knowledge of Exponent Assumption”
introduced by Damgard [8] (and further used and studied in [13,1]). Intuitively,
it states that to compute a DH value gxy out of a triple g, gx, gy one has to
necessarily know either x or y. We will refer to this assumption (called KEA1 in
[1]) as KEA-DH.

Knowledge of Exponent Assumption for Diffie-Hellman (KEA-DH).
Let G be a cyclic group, and let g, h be distinct generators of G. The assumption
says that for every algorithm M that on input G, g, h outputs (y, z) where y = gx

and z = hx for some integer x, there exists an algorithm M∗ which outputs x.
A fully formal statement of the assumption can be found in [1]; in particular,

it is assumed that for every set of random coins used by M, if M outputs
(y = gx, z = hx) then for the same set of random coins M∗ outputs x.

Our second assumption is close in spirit to KEA-DH but it applies to the
discrete logarithm problem; we refer to it as KEA-DL*. The idea is as follows:
Under the discrete log assumption, given a pair (g, B = gb) (for random b) it is
hard to find b. But what if in addition to the pair (g, B = gb) one is also given
a dlog oracle where one can input any value in G other than B, and receive its
dlog to base g. Obviously, one can find b by querying, for example, the value Bg;
more generally, one can query BV where V = Bigj for known i, j, and compute
b out of the dlog of BV . The KEA-DL* assumption states that if one is allowed
a single query to the oracle then the above strategy is the only feasible one.
Namely, if an algorithm finds b by querying a single value from the oracle then
there is another algorithm that outputs values i, j as above. In addition we also
need to assume that the knowledge of the e-th root of B (for a fixed value e) does
not help the attacker to find the dlog of B in the above game. More formally6:

Modified Knowledge of Exponent Assumption for Discrete Log (KEA-
DL*). Let G be the subgroup of Quadratic Residues in Z∗

N where N is an RSA
modulus. We modify the KEA-DL assumption to allow M to receive also the
e-root of B (where e is an RSA exponent). The modified assumption is as follows:

1. ChallDL∗ provides M with N, e, g, B = gb where g, B are random quadratic
residues in Z∗

N ;
2. M is allowed to query an element V ∈ G;
3. ChallDL∗ responds with the discrete log of BV and the e-root of B;
4. M outputs an integer b′; M wins if b = b′.

5 It is important to note that, as shown in the full version, weak PFS – i.e. against pas-
sive attackers – is a direct consequence of Theorem 1 and does not require additional
assumptions.

6 A fully formal statement of the assumption quantifies over each set of random coins
of algorithms M and M∗; the details are similar to the treatment of the KEA-DL*
assumption in [1] and are omitted from this extended abstract.
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The KEA-DL* assumption states that for every algorithm M that wins the
above game, there exists an algorithm M∗ which outputs integers i, j such that
V = Bigj .

Theorem 2. Under the RSA, KEA-DH and KEA-DL* assumptions, if we
model H, H ′ as random oracles, then the mOT protocol enjoys perfect forward
secrecy (PFS) (against passive and active attackers).

Proof. The PFS case differs from the non-PFS case, proven in Theorem 1, in
that, after completing the test session between Alice and Bob, the attacker is
given the values SA = Ad and SB = Bd, i.e., the private keys of the peers to the
session. Only after receiving these values, the adversary needs to distinguish the
test key from random.

Recall that due to the fact that the session key is the hash of the resulting
secret value K̄ = g2xye, where the hash is modeled as a random oracle, distin-
guishing the key is equivalent to finding K̄. Thus, in the sequel we assume that
a successful attacker is one that guesses this value g2xye.

Examining the proof of Theorem 1 we can see that in all the simulations in
that proof, the simulator knows the secret key SA of Alice, and therefore it can
provide it to the adversary upon corruption of Alice.

The difficulty in proving full PFS is the need to provide the attacker M with
SB = Bd before M outputs its guess for the session key. This is very different
than the case of Theorem 1 where the simulator first receives the attacker’s
guess and only then it uses this value to compute the forgery Bd. Still, with
some significant changes to the simulation and some added assumptions, we will
be able to prove the theorem by transforming a successful mOT attacker M into
an RSA forger F that inverts RSA on a random input. We show this reduction
now.
The RSA Forger F . The forger F is given as input an instance N, e, R ∈R QRN

of the RSA problem and needs to compute Rd mod N with non-negligible prob-
ability. F starts by running a simulation of the mOT protocol against attacker
M (which we assume to guess the test session key with non-negligible proba-
bility). For this F sets up the public parameters of mOT as N, e, g where N, e
are from F ’s input and g = he mod N for h chosen by F at random in QRN .
As in the proof of Theorem 1, F generates private keys for all parties except
Bob7 by programming the random oracle H (i.e., for each party idP , F chooses
p ∈R QRN and sets H(idP ) = P = pe, and SP = p).

For Bob, F chooses the value B = H(idB) by programming H as follows. It
sets a value U = gu mod N where F chooses u as a random integer in the range
[1..�N/2�] (note that with this choice of u, the distribution of the value U is
statistically close to uniform in QRN – by a similar argument as in Section 2).

7 Bob is the peer to the test session - as in the previous proof we assume that the
simulator successfully guesses the test session and its peers, an event that happens
with non-negligible probability.
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Then, it flips an unbiased coin coin, and sets

H(idB) = B =
{

R2 mod N if coin = 0 (where R is part of F ’s input)
Ue mod N if coin = 1

Notice that the distribution of B is correct, i.e., (statistically close to) random in
QRN and independent of other values in the protocol. To simulate all the sessions
other than the test session, F follows the same simulation as in Theorem 1. In
other words, we keep the proof of Theorem 1 intact up to the point in that proof
titled “Simulating the test session”.

It remains to show how F simulates the test session interaction with M in the
PFS case, and how this simulation results in the computation of Rd. For this we
are going to first modify the attacker M into an attacker M̄ that behaves like
M but, in addition, in runs where M guesses correctly the test session, M̄ will
output some additional values that will allow F to complete its forgery. Thus, F
will be running against the modified M̄ rather than against M. We now show
how we transform M into M̄ via several intermediate “games”. We start by
presenting a first game that represents the interaction with a KA-attacker in the
test session experiment in the PFS setting.

The PFS Game. The following game represents the test session interaction
between a “PFS challenger”, ChallPFS , and the KA-attacker M where M is
allowed to corrupt Bob after the test session key is complete. In this case, M
sends the incoming message β (allegedly coming from Bob) into the test session
held by Alice, and Alice outputs a value α. After these values are set, the attacker
receives Bob’s secret key SB = Bd and M wins the game if it outputs K̄ = g2exy.
PFS Game:

1. ChallPFS sends to M the values N, e, g, B, X .
Here X represents the value α sent by Alice; indeed, since we assume that
M can also be given SA (which F chooses and hence knows) then providing
α = X · SA is equivalent to providing X .

2. The adversary sends a value β which in turn determines a value Y defined
as Y = β/Bd.
Note that β, which is chosen by M, may not be an element of QRN , and
the same holds for Y . However, Y 2 mod N is necessarily in QRN and hence
generated by g. Defining y = logg(Y

2 mod N), and thanks to the squaring
operation in the computation of the session key in mOT, we get that the
session key g2xye equals Xye.

3. ChallPFS sends Bd.
4. M sends K̄. The adversary, M, wins if K̄ = Xye.

We now show how to transform an attacker M that wins the above PFS game
(with non-negligible probability) into a modified attacker M̄ (with the same
probability of success) that F will use to compute its RSA forgery. We arrive
to M̄ from M through a series of adversaries (M,M∗,M1,M∗

1,M̄) defined in
the following games.
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The adversary M∗: Note that M, in the above PFS game, can be changed
to also output Y 2e (computed as β2e/B2). So in a winning run on input g, X ,
attacker M would output K̄ = Xye and also Y 2e = gye. By invoking the KEA-
DH assumption there is another attacker M∗ that behaves as M but in addition
it outputs, in winning runs, ye = logg Y 2e in step 4.

Building Adversary M1 from M∗

ChallDL∗ M1 M∗

N, e, g,B �
N, e, g, B, X �

β�
V = β2e · B−2

�
Bd, w = logg(BV ) �

Bd
�

ye�
b = w − ye�

Fig. 2. Creating a KEA-DL* adversary

The adversary M1: We now use the modified PFS attacker M∗ to build an
attacker M1 that interacts with a challenger ChallDL∗ in a KEA-DL* game.
The actions of M1 are described in Figure 2: M1 uses M∗ as a subroutine (where
M1 acts as the PFS challenger with respect to M∗) and uses responses received
from M∗ to answer ChallDL∗ queries. Now, since in a successful run of M∗ the
last value ye output by M∗ satisfies gye = Y 2e = β2e/B2 = V , and the value w
output by ChallDL∗ satisfies w = logg BV = b + ye, then the value b = w − ye

answered by M1 is correct (i.e., gb = B) and M1 wins the KEA-DL* game.
In other words, each successful run of M∗ (which happens with non-negligible
probability) induces a successful run of M1 in the KEA-DL* game.

The adversary M∗
1: By the KEA-DL* Assumption, there is an adversary

M∗
1 that behaves exactly as M1 except that together with V it also outputs i, j

such that V = Bigj . Replacing M1 with M∗
1 in Figure 2, we get the same flows

except that now the values i, j as above are added to the second flow from M1

to ChallDL∗. We refer to this as the modified game of Figure 2.
The hybrid adversary M̄: Using M∗

1 we build an attacker M̄ that interacts
in a PFS game as represented in Figure 3. In the first flow M̄ receives inputs
from ChallPFS as in a regular PFS game. Next M̄ uses these inputs to call
M∗

1 in the modified game of Figure 2. In this modified game, M∗
1 uses these

same values as its first flow to M∗. Upon receiving the β response from M∗,
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Building PFS Adversary M̄ from M∗
1

ChallPFS M̄
N, e, g, B, X �

β, i, j�

Bd
�

ye�

Fig. 3. A Hybrid PFS Adversary M̄ (values in second flow satisfy β2eB−2 = Bigj)

M∗
1 produces the value V = β2eB−2 as well as i, j such that V = Bigj. Then,

M̄ sends to ChallPFS the values β, i, j (note that i, j are not part of the basic
PFS game but additional outputs produced by M̄). In the next flow, M̄ receives
from ChallPFS the value Bd as in a PFS game, which M̄ uses as the third flow
from M∗

1 to M∗. Finally, upon receiving the response ye from M∗, M̄ outputs
this same value as its fourth message in the PFS game.

It is important to observe that the flows involving the value w produced by
the dlog oracle in Figure 2 are not used by M̄; this is important since in a real
execution of the PFS game – as part of the interaction with a mOT attacker –
there is no such dlog oracle (this only exists as an artifact of the proof).

We note that in a successful run of M̄, the values β, i, j, ye output by M̄
satisfy the following equations:

gye = Y 2e = (βe/B)2 mod N (3)

β2eB−2 = V = Bigj mod N (4)

which yield
gye = Bigj mod N (5)

Also note that by virtue of the above sequence of games, if M succeeds with
non-negligible probability then M̄ succeeds in outputting the above values also
with non-negligible probability.

Summarizing the above transformations, we showed that the existence of a
successful PFS attacker M implies (via the KEA assumptions) the existence of
a second PFS attacker M̄ that in addition to the normal outputs of M (i.e.,
β and the session key guess), it also outputs the values i, j, ye that satisfy the
above equations.

Applying the above to the key agreement setting of mOT we get that one
can take a KA-attacker M that successfully breaks the PFS property of mOT
and transform it into an equivalent KA-attacker M̄, that differs from M in that
it also outputs the above values i, j, ye during a successful interaction in the
test session experiment. We use this modified KA-attacker M̄ to complete the
description of the forger F .
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Back to the RSA Forger F . We have seen before how F simulates a run of
mOT against a KA-attacker M except for the test session interaction. Here we
complete the description of this part of the simulation and show how F computes
its RSA forgery. For this we consider a run of F (as described so far) against
the modified KA-adversary M̄ defined above; that is, M̄ behaves exactly as M
but, in successful runs of M, in addition to β it outputs i, j and in addition to
the guess of the session key it outputs ye.

The way F uses M̄ to generate a forgery depends on two values: whether i
output by M̄ is 0 or not, and whether the coin chosen by F (see above) is 0 or
1. We now show these different cases.

Case i = 0. With probability 1/2 we also have that coin = 0 and therefore B =
R2 mod N . In this case, F is running M̄ on g = he, B = R2 and X ∈R QRN .
Assuming the run of M̄ is successful and i = 0, the forger F obtains the value
j = ye mod p′q′ in the second message from M̄ in Figure 3 (recall that by (5)
we have ye = ib + j mod p′q′). F then uses j to compute Y 2 as follows:

hj = hye = (gd)ye = gy = Y 2 mod N,

and uses Y 2 to compute (R4)d = B2d = (β2/Y 2) mod N . Using Lemma 1 and
the fact that 4 and e are relatively prime F can compute, out of the value (R4)d,
the required forgery Rd mod N .

Important: In the above case, F only needs to know j to complete its forgery;
therefore it does not need to complete the third and fourth flows in Figure 3
(that involve Bd) before it can forge.

Case i �= 0. With probability 1/2 we also have that coin = 1 and therefore
B = Ue = gue mod N where, by definition, u is a random integer in the range
[1..�N/2�]. In this case, F knows Bd = U and hence can complete the full run
against M̄ in Figure 3. That is, F runs M̄ sending (g, B, X) in the first message
and U in the third message. F receives from M̄ the values i, j in the second
message and y′ = ye in the last message. F will use i, j, y′ to find two values s
and t from which it will derive (whp) the factorization of N .

Specifically, F sets s = ie and t = y′ − j (these operations are over the
integers). It holds (mod p′q′) that

t = y′ − j = ye − j = ib = ieu = su mod p′q′

where the third equality is from Equation (5) and b = eu mod p′q′ holds by the
choice B = Ue = gue.

Thus, the integer t − su is a multiple of p′q′ that F can compute as it knows
s, t, u. If this number is non-zero then F factors N (as it is well known, the
factorization of N can be found from such a multiple of p′q′, e.g. [20]). Now,
note that there are at least two values of the integer u that will result in the
same element U in QRN (since u ∈R [1..�N/2�] and �N/2� ≥ 2p′q′). Since M̄
knows U but not the specific u (indeed, from the value U one cannot learn which
of the possible values of u was chosen by F ), the probability that t and s (that
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are derived from M̄ outputs) result in t− su being zero is at most 1/2 (at most
one of the u’s can satisfy this equation).

In all, we have that if F interacts with a successful run of M (which implies a
successful run of M̄) and i = 0 then with probability 1/2 F correctly computes
Rd. If the run of M is successful and i > 0 then with probability 1/2 F factors N
and hence can produce Rd as well. Since M (and M̄) succeed with non-negligible
probability so does F in computing the forgery Rd mod N . 
�
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