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1. Introduction. Let K be a local field with perfect residue class field,
O its ring of integers, m the maximal ideal of O, and v : K

∗ → Q the canon-
ical extension of the discrete valuation of K to an algebraic closure of K.
Let F (x) ∈ O[x] be a monic irreducible polynomial, θ ∈ K a root of F (x),
and L = K(θ). Kōsaku Okutsu [Oku] attached to F (x) a family of monic
irreducible separable polynomials, F1(x), . . . , Fr(x) ∈ O[x], called the prim-
itive divisor polynomials of F (x). Take F0(x) = 1. For each 1 ≤ i ≤ r, degFi
is minimal among all monic irreducible polynomials g(x) ∈ O[x] satisfying
v(g(θ))/deg g > v(Fi−1(θ))/degFi−1, and v(Fi(θ)) is maximal among all
polynomials having this minimal degree. Let us call the chain [F1, . . . , Fr]
an Okutsu frame of F (x), and let K1, . . . ,Kr be the respective extensions
of K determined by these polynomials. The polynomials F1, . . . , Fr are not
uniquely determined, but many of their invariants, like the residual degrees
f(Ki/K) and the ramification indices e(Ki/K), depend only on F (x), and
they are linked to some arithmetical invariants of the extension L/K and
its subextensions (Corollaries 2.8 and 2.9).

In this paper we find a natural characterization of Okutsu frames in
terms of Newton polygons of higher order [HN]. More precisely, a family
[F1, . . . , Fr] of monic irreducible separable polynomials in O[x] is an Okutsu
frame of F (x) if and only if (Theorems 3.5 and 3.9):

(1) F1(x) is irreducible modulo m and divides F (x) modulo m.
(2) degF1(x) < · · · < degFr(x) < degF (x).
(3) For each 1 ≤ i < r, the Newton polygons of ith order (with respect

to [F1, . . . , Fi]), Ni(F ) and Ni(Fi+1), are one-sided and they have
the same negative slope.
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(4) For each 1 ≤ i < r, the residual polynomial of ith order, Ri(Fi+1),
is irreducible and, up to a multiplicative constant, Ri(F ) is a power
of Ri(Fi+1).

(5) Nr(F ) is one-sided of negative slope and Rr(F ) is irreducible.

As a consequence, we get closed formulas for the invariants v(Fi(θ)) in

terms of combinatorial data attached to these Newton polygons (Corollary

3.6), and we find new Okutsu invariants of F (x) (Corollary 3.7). Newton

polygons can also be used to construct Okutsu approximations to F (x);

these are monic irreducible polynomials sufficiently close to F (x) to share

all its Okutsu invariants (Lemma 4.3). In the tamely ramified case any

Okutsu approximation to F (x) generates the same extension of K (Propo-

sition 4.4).

Moreover, this characterization of the Okutsu frames provides the fol-

lowing reinterpretation of the Montes algorithm [HN], [GMNa]: at the input

of a monic separable polynomial f(x) ∈ O[x], the algorithm computes an

Okutsu frame and an Okutsu approximation to each irreducible factor of

f(x). This widens the scope of applications of this algoritm, as a tool to

compute the arithmetic information about the irreducible factors of f(x),

contained in their Okutsu invariants. For instance, this perspective yields

a measure of the precision of an Okutsu approximation (Lemma 4.5), that

makes it possible to slightly modify the algorithm in order to find approxi-

mations to the irreducible factors with prescribed precision (Section 4.3).

In another direction, the results of this paper open the door to a new

construction of the prime ideals of the number field M determined by a

monic irreducible polynomial f(x) with integer coefficients. For any prime

number p, the Montes algorithm computes Okutsu frames and Okutsu ap-

proximations to the different p-adic irreducible factors of f(x). This can be

interpreted as a canonical parameterization of the prime ideals of M divid-

ing p, in terms of Okutsu invariants that depend only on the polynomial

f(x). This parameterization is faithful enough to enable one to carry out

the basic tasks concerning ideals in number fields, without the necessity of

either factorizing the discriminant of f(x) or constructing an integral basis

of the ring of integers of the number field. We hope to develop these ideas

in a forthcoming paper [GMNb].

In the same vein, the divisors of a curve C over a finite field can be

also parameterized in terms of Okutsu invariants that depend only on the

defining equation of the curve. This enables one to compute the divisor of

a function, or to construct a function with zeros and poles of a prescribed

order at a finite number of places, avoiding the computation of integral bases

of subrings of the function field of C.
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2. Okutsu frames. In this section we review and generalize Okutsu’s
results [Oku]. The aim of the generalization is to facilitate the application
of these results to the situation of Section 4.

Let K be a local field, O its ring of integers, m the maximal ideal of O,
π ∈ m a generator of m, and F the residue field, which is supposed to
be perfect. Let K be a fixed algebraic closure of K, and v : K

∗ → Q the
canonical extension of the discrete valuation of K. We extend the valuation
v to the ring O[x] in a natural way:

(2.1) v : O[x]→ Z≥0∪{∞}, v(b0+· · ·+brxr) := min{v(bj) | 0 ≤ j ≤ r}.
For any finite extension M of K we denote by OM the ring of integers

of M , and for any η ∈ K we define degM η := [M(η) : M ].

We fix throughout the section a monic irreducible polynomial F (x) ∈
O[x] of degree n, a root θ ∈ K of F (x), and the field L = K(θ).

2.1. Okutsu invariants. Consider the two sequences

m0 := 1 ≤ m1 < · · · < mr < mr+1 = n,

µ0 := 0 < µ1 < · · · < µr < µr+1 =∞,
the first one of positive integers, the second one of nonnegative rational
numbers (and infinity), defined in the following recurrent way for i ≥ 1:

mi := min{degK η | η ∈ K, v(θ − η) > µi−1},
µi := max{v(θ − η) | η ∈ K, degK η = mi}.

These numbers do not depend on the choice of θ among the roots of F (x).

Definition 2.1. For 1 ≤ i ≤ r, choose αi ∈ K, separable over K,
such that degK αi = mi, v(θ − αi) = µi. Let Fi(x) ∈ O[x] be the minimal
polynomial of αi, and denote Ki = K(αi). The chain [F1, . . . , Fr] of monic
irreducible separable polynomials in O[x] is called an Okutsu frame of F (x).
The length r of an Okutsu frame is called the depth of F (x), and it will be
denoted depth(F ).

The polynomials F1, . . . , Fr that constitute an Okutsu frame of F (x)
are not uniquely determined. However, they are canonical in some sense,
since many of their invariants (like the sequences m1 < · · · < mr and
µ1 < · · · < µr) depend only on F (x). More generally, an invariant of the
family F1, . . . , Fr, F will be called an Okutsu invariant if it does not depend
on the choice of the Okutsu frame [F1, . . . , Fr]. Thus, although the frame
might be involved in their computation, they are actually invariants of F (x).
Corollaries 2.8, 2.14 and 3.7 present more Okutsu invariants of F (x).

Lemma 2.2. For any h(x) ∈ O[x], we have v(h(θ)) = 0 if and only if
h(x) is relatively prime to F (x) modulo m.
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Proof. If there exist a(x), b(x) ∈ O[x] such that a(x)F (x) + b(x)h(x) ∈
1 + m[x], then clearly v(h(θ)) = 0.

By the Hensel lemma, F (x) ≡ F1(x)
ℓ (mod m) for some F1(x) ∈ O[x]

which is irreducible modulo m. Clearly, v(F1(θ)) > 0, and if F1(x) divides
h(x) modulo m, we have v(h(θ)) > 0 too.

Corollary 2.3.

(i) A monic irreducible polynomial F (x) ∈ O[x] has depth zero if and
only if F (x) is irreducible modulo m. In this case, the Okutsu frames
of F (x) are all empty.

(ii) If [F1, . . . , Fr] is an Okutsu frame of F (x), then F1(x) is irreducible
modulo m, m1 |n, and F (X) ≡ F1(x)

n/m1 (mod m).

Lemma 2.4. Let [F1, . . . , Fr] be an Okutsu frame of F (x). For some in-
dex, 1 ≤ i ≤ r+1, let α ∈ K be an algebraic integer satisfying degK α = mi,
v(θ−α) > µi−1, and let G(x) be the minimal polynomial of α over K. Then
[F1, . . . , Fi−1] is an Okutsu frame of G(x).

Proof. Since the sequence µj = v(θ − αj) is strictly increasing,

v(α− αj) = min{v(α− θ), v(θ − αj)} = µj , ∀1 ≤ j < i.

Now, for all 1 ≤ j < i and all η ∈ K we have

v(α− η) > µj−1 ⇒ v(θ − η) > µj−1 ⇒ degK η ≥ mj ,

degK η = mj ⇒ v(θ − η) ≤ µj ⇒ v(α− η) ≤ µj .
Corollary 2.5. Let [F1, . . . , Fr] be an Okutsu frame of F (x). Then,

for all 1 ≤ i ≤ r, [F1, . . . , Fi−1] is an Okutsu frame of Fi(x). In particular,
depth(Fi) = i− 1.

Lemma 2.6. For some 1 ≤ i ≤ r + 1, let α, η ∈ K be algebraic integers
satisfying

v(θ − α) > µi−1, v(θ − η) > µi−1.

Then, for any nonzero polynomial g(x) ∈ K[x] of degree less than mi,
we have v(g(η) − g(α)) > v(g(α)). In particular, if degK α = mi, then
e(K(α)/K) divides e(K(η)/K).

Proof. By dividing g(x) by its leading coefficient we can suppose that
g(x) is monic. If g(x) has degree zero, the statement is obvious. Suppose g(x)
has positive degree s < mi, with roots ρ1, . . . , ρs in K. By the minimality
of mi, we necessarily have v(θ − ρj) ≤ µi−1 for all j. Hence,

(2.2) v(ρj − α) = min{v(θ − ρj), v(θ − α)} ≤ µi−1 < v(η − α).

By Taylor’s development, there exist a1, . . . , as ∈ K such that

g(η)− g(α) = a1(η − α) + · · ·+ ak(η − α)k + · · · .
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Now, (2.2) and the formula

ak =
∑

S⊆{1,...,s}
#S=k

∏

j 6∈S

(α− ρj)

show that v(ak(η − α)k) > v(g(α)) for all k ≥ 1.
If degK α = mi, any u ∈ K(α) with v(u) = 1/e(K(α)/K) can be ex-

pressed as u = g(α) for some g(x) ∈ K[x] of degree less than mi. Hence,
from v(g(η)) = v(g(α)) = 1/e(K(α)/K), we deduce that e(K(α)/K) divides
e(K(η)/K).

The algebraic integers α1, . . . , αr are close to θ with regard to their de-
gree, but the fields K1, . . . ,Kr are not necessarily subfields of L. However,
the next proposition, which is a generalization of [Oku, II, Prop. 4], shows
that the maximal tamely ramified subextensions of K1/K, . . . ,Kr/K are
always included in L.

Proposition 2.7. For some 1 ≤ i ≤ r+ 1, suppose that α ∈ K satisfies

degK α = mi, v(θ − α) > µi−1,

and let N = K(α). Suppose θ and α are separable over K, let M/K be
any finite Galois extension containing L and N , and let G = Gal(M/K).
Consider the subgroups

Hi = {σ ∈ G | v(θ − σ(θ)) > µi−1} ⊇ H ′
i = {σ ∈ G | v(θ − σ(θ)) ≥ µi},

and let MHi ⊆MH′

i ⊆M be the respective fixed fields. Finally, let V be the
maximal tamely ramified subextension of N/K. Then V ⊆MHi ⊆ L∩N . If
moreover v(θ − α) = µi, then V ⊆MHi ⊆MH′

i ⊆ L ∩N .

Proof. In order to show that MHi ⊆ K(θ) ∩ K(α), we need to check
that all σ ∈ G that leave θ or α invariant lie in Hi. This is obvious for the
automorphisms leaving θ invariant; for the σ ∈ G such that σ(α) = α, we
have v(σ(θ)− α) = v(σ(θ)− σ(α)) > µi−1, so that

v(θ − σ(θ)) ≥ min{v(θ − α), v(α− σ(θ))} > µi−1.

The same argument shows that MH′

i ⊆ L ∩N , if v(θ − α) = µi.

M

L

MHi

V

K

N
✏✏✏

❅
❅

❅❅
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By the basic properties of tamely ramified extensions [Nar, Ch. 5, §2],
in order to check that V ⊆MHi , it is sufficient to show that

v

(

σ(u)

u
− 1

)

> 0, ∀u ∈ N∗, ∀σ ∈ Hi.

Clearly, v(θ−σ(α)) ≥ min{v(θ−σ(θ)), v(σ(θ)−σ(α))} > µi−1 for all σ ∈ Hi.
Finally, any u ∈ N∗ can be written as u = g(α) for some g(x) ∈ K[x] of
degree less than mi. By Lemma 2.6 applied to η = σ(α), we have

v(σ(u)− u) = v(g(σ(α))− g(α)) > v(g(α)) = v(u),

as desired.

The following two corollaries generalize [Oku, II, Prop. 6, Cors. 1, 2].

Corollary 2.8. Let [F1, . . . , Fr] be an Okutsu frame of F (x). Then the
numbers e(Ki/K), f(Ki/K) for 1 ≤ i ≤ r do not depend on the Okutsu
frame chosen. Moreover,

e(K1/K) | · · · | e(Kr/K) | e(L/K), f(K1/K) | · · · | f(Kr/K) | f(L/K).

In particular, m1 | · · · |mr |mr+1 = degF .

Proof. For all 1 ≤ i ≤ r, suppose that η ∈ K satisfies degK η =
mi and v(θ − η) = µi. By Lemma 2.6, e(Ki/K) = e(K(η)/K), because
these two numbers divide each other. Hence, f(Ki/K) = mi/e(Ki/K) =
mi/e(K(η)/K) = f(K(η)/K).

By Proposition 2.7, we have f(Kr/K) | f(L/K). By Lemma 2.6, applied
to i = r, α = αr and η = θ, we get e(Kr/K) | e(L/K). The rest of the
statements follow from Corollary 2.5 by a recurrent argument.

Corollary 2.9. Suppose L/K is tamely ramified. Let [F1, . . . , Fr] be
an Okutsu frame of F (x), and let Kr+1 := L. Then

(i) Ki = MHi = MH′

i for all 1 ≤ i ≤ r+1. Hence, K1 ⊆ · · · ⊆ Kr ⊆ L.

(ii) {v(θ − σ(θ)) | σ ∈ G} =

{

{µ1, . . . , µr, µr+1} if m1 = 1,
{µ0, µ1, . . . , µr, µr+1} if m1 > 1.

In particular, µr is the Krasner radius of F (x):

µr = max{v(θ − θ′) | F (θ′) = 0, θ′ 6= θ}.
Proof. Denote αr+1 := θ. By Corollary 2.8, if L/K is tamely ramified,

then Ki/K is tamely ramified for all 1 ≤ i ≤ r+ 1. Proposition 2.7, applied
to each αi, shows that Ki = MHi = MH′

i , and hence Hi = H ′
i for all

1 ≤ i ≤ r+ 1. Moreover, for all 1 ≤ i ≤ r we have Hi+1 ( Hi = H ′
i, because

[Ki+1 : Ki] > 1; hence, there is some σ ∈ Hi with v(θ − σ(θ)) = µi. Finally,
there is no σ ∈ G with v(θ−σ(θ)) = 0 if and only if H1 = G, or equivalently,
K1 = K.
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2.2. Okutsu frames and divisor polynomials

Proposition 2.10 ([Oku, I, Prop. 1]). For any integer 0 ≤ m < n there
exists a monic polynomial gm(x) ∈ O[x] of degree m such that

(2.3) v(gm(θ)) ≥ v(g(θ))− v(g(x))
for all polynomials g(x) ∈ O[x] of degree m.

Proof. Let g(x) ∈ O[x] be a monic polynomial of degree m. Let O′ ⊆ OL
be the O-module generated by θ and g(θ)/π⌊v(g(θ))⌋. Clearly,

⌊v(g(θ))⌋ = ℓ(O′/O[θ]) ≤ ℓ(OL/O[θ]) <∞,
where ℓ denotes the length as an O-module. Since v restricted to L is dis-
crete, v(g(θ)) takes only a finite number of values; hence, there exists a
monic gm(x) ∈ O[x] of degree m such that v(gm(θ)) ≥ v(g(θ)) for all monic
g(x) ∈ O[x] of degree m. In order to check (2.3) it is sufficient to show that
v(gm(θ)) ≥ v(g(θ)) for any g(x) ∈ O[x] of degree m such that v(g(x)) = 0.
Let us prove this by induction on m. For m = 0 we have gm(x) = 1 and the
statement is obvious. Suppose m > 0. If a ∈ O is the leading coefficient of
g(x), we write

g(x) = agm(x) + r(x), m′ := deg r(x) < m.

If v(a) = 0, then v(gm(θ)) ≥ v(a−1g(θ)) = v(g(θ)), by the construction of
gm(x). If v(a) > 0, then v(r(x)) = 0 and by the induction hypothesis

v(gm(θ)) ≥ v(θm−m′

gm′(θ)) ≥ v(gm′(θ)) ≥ v(r(θ)).
Thus, v(r(θ)) < v(agm(θ)), so that v(g(θ)) = v(r(θ)) ≤ v(gm(θ)).

Definition 2.11. Clearly, (2.3) does not depend on the choice of θ
among the roots of F (x). We call gm(x) a divisor polynomial of degree m
of F (x).

Lemma 2.12. Let [F1, . . . , Fr] be an Okutsu frame of F (x). Let h(x) ∈
O[x] be a monic irreducible polynomial of degree m, and let

δF (h) = max{v(θ − β) | β ∈ K is a root of h(x)}.
Then, for any 1 ≤ i ≤ r,

(i) δF (h) < µi ⇒ v(h(θ)) < (m/mi)v(Fi(θ)),
(ii) δF (h) = µi ⇒ v(h(θ)) = (m/mi)v(Fi(θ)),
(iii) δF (h) > µi ⇒ v(h(θ)) > (m/mi)v(Fi(θ)).

Proof. We can assume that F (x) and h(x) are separable by considering
separable polynomials sufficiently close to them. Take a finite Galois exten-
sion M/K containing L, Ki and the roots of h(x). Denote G := Gal(M/K).
Choose a root β of h(x) such that v(θ − β) = δF (h) ≥ v(θ − σ(β)) for all
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σ ∈ G. This implies

(2.4) v(θ − σ(θ)) ≥ min{v(θ − σ(β)), v(σ(β)− σ(θ))} = v(θ − σ(β))

for all σ ∈ G. Suppose δF (h) ≤ µi. We claim that

(2.5) v(θ − σ(β)) ≤ v(θ − σ(αi)), ∀σ ∈ G.
In fact, by the maximality of µi, we have v(θ − σ(αi)) ≤ µi for all σ ∈ G.
Now, if v(θ− σ(αi)) = µi, then the inequality (2.5) is obvious; on the other
hand, if v(θ − σ(αi)) < µi, by (2.4) we have

v(θ−σ(β)) ≤ v(θ−σ(θ)) = min{v(θ−σ(αi)), v(σ(αi)−σ(θ))} = v(θ−σ(αi)).

Therefore, (2.5) shows that

(2.6)
#G

m
v(h(θ)) =

∑

σ∈G

v(θ − σ(β)) ≤
∑

σ∈G

v(θ − σ(αi)) =
#G

mi
v(Fi(θ)).

If δF (h) < µi, then the inequality in (2.5) is strict, at least for σ = 1; hence,
the inequality in (2.6) is strict too. This proves item (i).

Suppose now δF (h) ≥ µi. Then v(αi−β) ≥ min{v(αi−θ), v(θ−β)} = µi,
and we have directly, for all σ ∈ G,

(2.7) v(θ − σ(β)) ≥ min{v(θ − σ(αi)), v(σ(αi)− σ(β))} = v(θ − σ(αi)).

Therefore,

(2.8)
#G

m
v(h(θ)) =

∑

σ∈G

v(θ − σ(β)) ≥
∑

σ∈G

v(θ − σ(αi)) =
#G

mi
v(Fi(θ)).

The inequalities (2.6) and (2.8) prove item (ii). Finally, if δF (h) > µi, the
inequality (2.7) is strict at least for σ = 1, and the inequality in (2.8) is
strict too. This proves item (iii).

The next result is a generalization of [Oku, II, Prop. 2].

Theorem 2.13. Let m1 < · · · < mr < degF be the Okutsu degrees
of F (x), and let F1(x), . . . , Fr(x) ∈ O[x] be a family of monic separable
polynomials with degFi(x) = mi for all 1 ≤ i ≤ r. Then [F1, . . . , Fr] is an
Okutsu frame of F (x) if and only if each Fi(x) is a divisor polynomial of
F (x) of degree mi.

Proof. Suppose that [F1, . . . , Fr] is an Okutsu frame of F (x). For any
index 1 ≤ i ≤ r, let g(x) ∈ O[x] be a monic polynomial of degree mi, and
let g(x) = h1(x) · · ·hs(x) with hj(x) ∈ O[x] monic and irreducible. By the
maximality of µi, we have δF (hj) ≤ µi for all j. Lemma 2.12 shows that
v(hj(θ)) ≤ ((deg hj)/mi)v(Fi(θ)) for all j; hence,

v(g(θ)) =
∑

j

v(hj(θ)) ≤
∑

j

((deg hj)/mi)v(Fi(θ)) = v(Fi(θ)).
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Along the proof of Proposition 2.10 we saw that this property, for all monic
g(x) of degree mi, already implies that Fi(x) is a divisor polynomial of
degree mi.

Conversely, suppose that each Fi(x) is a divisor polynomial of F (x) of
degree mi, and let [F ′

1, . . . , F
′
r] be an Okutsu frame of F (x). Fix an index

1 ≤ i ≤ r; clearly, v(Fi(θ)) = v(F ′
i (θ)), since Fi(x) and F ′

i (x) are both divisor
polynomials of degreemi. Let us see first that Fi(x) is necessarily irreducible.
In fact, suppose Fi(x) = h1(x) · · ·hs(x), with all hj(x) monic irreducible
polynomials of degree less than mi. Then δF (hj) ≤ µi−1 < µi for all j, by
the minimality of mi. By Lemma 2.12, v(hj(θ)) < ((deg hj)/mi)v(F

′
i (θ))

for all j, and this implies v(Fi(θ)) < v(F ′
i (θ)), in contradiction with our

assumption. Once we know that Fi(x) is irreducible, Lemma 2.12 shows
that δF (Fi) = µi. Thus, [F1, . . . , Fr] is an Okutsu frame of F (x).

Corollary 2.14. The rational numbers 0 < v(F1(θ)) < · · · < v(Fr(θ))
depend only on F (x).

In Corollary 3.6 below, we shall show how to compute these invariants
solely in terms of the Okutsu frame [F1, . . . , Fr].

Okutsu refers to F1(x), . . . , Fr(x) as the primitive divisor polynomials of
F (x), because by multiplying them in a suitable way one obtains the divisor
polynomials of all degrees 0 ≤ m < n.

Theorem 2.15 ([Oku, II, Thm. 1]). Let [F1, . . . , Fr] be an Okutsu frame
of F (x). Take F0(x) = x. Let 0 < m < n, and write it (in a unique form)
as

m =

r
∑

i=0

aimi with 0 ≤ ai < mi+1/mi.

Then gm(x) :=
∏r
i=0 Fi(x)

ai is a divisor polynomial of degree m of F (x).

Proof. As we saw in the proof of Proposition 2.10, it is sufficient to show
that v(gm(θ)) ≥ v(g(θ)) for all g(x) ∈ O[x] monic of degree m. Let us prove
this by induction on m.

If m < m1, then gm(x) = xm and v(gm(θ)) = 0 = v(g(θ)) for all g(x)
monic of degree m, by Lemma 2.2 and Corollary 2.3. If m = m1 then
gm(x) = F1(x), which is a divisor polynomial of degree m1 of F (x) by
Theorem 2.13. Thus, the theorem is proven for all 0 < m ≤ m1.

Let mj ≤ m < mj+1 for some 1 ≤ j ≤ r, and suppose that the theorem
is true for all degrees less than m. We claim that v(θ − η) ≤ v(αj − η) for
any root η ∈ K of any monic polynomial g(x) ∈ O[x] of degree m. In fact,
v(θ − η) ≤ µj , by the minimality of mj+1, and

v(θ − η) < µj ⇒ v(αj − η) = min{v(θ − η), v(θ − αj)} = v(θ − η),
v(θ − η) = µj ⇒ v(αj − η) ≥ min{v(θ − η), v(θ − αj)} = µj .
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Hence, v(g(θ)) ≤ v(g(αj)). Consider now

g(x) = Fj(x)q(x) + r(x), deg r(x) < mj .

Clearly, v(g(θ)) ≤ v(g(αj)) = v(r(αj)) = v(r(θ)), the last equality by
Lemma 2.6 applied to α = αj , η = θ. Since deg q(x) = m−mj , we have

v(q(θ)) ≤ v
(

Fj(θ)
aj−1

j−1
∏

k=0

Fk(θ)
ak

)

by the induction hypothesis; hence

v
(

r
∏

i=0

Fi(θ)
ai

)

≥ v(Fj(θ)q(θ)) ≥ min{v(g(θ)), v(r(θ))} = v(g(θ)).

3. Okutsu frames and Newton polygons of higher order. In this
section we study more properties of Okutsu frames in connection with the
theory of Newton polygons of higher order. These polygons were introduced
in [Mon], and revised in [HN] (HN standing for “higher Newton”).

We keep dealing with a local field K with perfect residue class field, and
we keep the notations O, m, π, F and v of the previous section. Also, we
keep fixing a monic irreducible polynomial F (x) ∈ O[x] of degree n, a root
θ ∈ K of F (x), and the field L = K(θ).

The aim of this section is to characterize when a chain [F1, . . . , Fr] of
monic irreducible separable polynomials is an Okutsu frame of F (x) in terms
of invariants linked to certain Newton polygons (Theorems 3.5 and 3.9). As
a consequence, we give a closed formula for the invariants v(Fi(θ)) solely
in terms of the Okutsu frame (Corollary 3.6), and we find new Okutsu
invariants of F (x) (Corollary 3.7).

Notation. Let F be a field and ϕ(y), ψ(y) ∈ F [y] two polynomials. We
write ϕ(y) ∼ ψ(y) to indicate that there exists a constant c ∈ F∗ such that
ϕ(y) = cψ(y).

3.1. Newton polygons of higher order. Let us briefly review Newton
polygons of higher order [HN, Secs. 1, 2]. We denote by v1 the discrete
valuation on K(x) determined by the natural extension of v to polynomials,
given in (2.1). Consider the 0th residual polynomial operator

R0 : O[x]→ F[y], g(x) 7→ red(g(y)/πv1(g)),

where red: O[y]→ F[y] is the natural reduction map. A type of order zero,
t = ψ0(y), is just a monic irreducible polynomial ψ0(y) ∈ F[y]. A represen-
tative of t is any monic polynomial φ1(x) ∈ O[x] such that R0(φ1) = ψ0.
The pair (φ1, v1) can be used to attach a Newton polygon to any nonzero
polynomial g(x) ∈ K[x]. If g(x) =

∑

i≥0 ai(x)φ1(x)
i is the φ1-adic develop-
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ment of g(x), then N1(g) := Nφ1,v1(g) is the lower convex envelope of the
set of points of the plane with coordinates (i, v1(ai(x)φ1(x)

i)) [HN, Sec. 1].
Let λ1 ∈ Q− be a negative rational number, λ1 = −h1/e1, with h1, e1

positive coprime integers. The triple (φ1, v1, λ1) determines a discrete val-
uation v2 on K(x), constructed as follows: for any nonzero polynomial
g(x) ∈ O[x], take a line of slope λ1 far below N1(g) and shift it upwards till
it touches the polygon for the first time; if H is the ordinate at the origin
of this line, then v2(g(x)) = e1H by definition. Also, the triple (φ1, v1, λ1)
determines a residual polynomial operator

R1 := Rφ1,v1,λ1
: O[x]→ F1[y], F1 := O[x]/(m[x], φ1(x)),

which is a kind of reduction of first order of g(x) [HN, Def. 1.9].
Let ψ1(y) ∈ F1[y] be a monic irreducible polynomial with ψ1(y) 6= y.

The triple t = (φ1(x);λ1, ψ1(y)) is called a type of order one. Given any
such type, one can compute a representative of t, that is, a monic separable
polynomial φ2(x) ∈ O[x] of minimum degree satisfying R1(φ2)(y) ∼ ψ1(y).

Now we may start over and repeat all constructions in order two. The
pair (φ2, v2) can be used to attach a Newton polygon N2(g) := Nφ2,v2(g) to
any nonzero polynomial g(x) ∈ K[x]. This polygon is constructed from the
φ2-adic development g(x) =

∑

i≥0 bi(x)φ2(x)
i, as the lower convex envelope

of the set of points of the plane with coordinates (i, v2(bi(x)φ2(x)
i)). For

any negative rational number λ2, the triple (φ2, v2, λ2) determines a discrete
valuation v3 on K(x) and a residual polynomial operator

R2 := Rφ2,v2,λ2
: O[x]→ F2[y], F2 := F1[y]/(ψ1(y)).

The iteration of this procedure leads to the concept of type of order r.
A type of order r ≥ 1 is a chain

t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y)),

where φ1(x), . . . , φr(x) are monic irreducible separable polynomials in O[x],
the slopes λ1, . . . , λr are negative rational numbers, and ψr(y) is a polyno-
mial over certain finite extension Fr of F (to be specified below), that have
the following recursive properties:

(1) φ1(x) is irreducible modulo m. We denote ψ0(y) := R0(φ1)(y) ∈ F[y],
and we define F1 := F[y]/(ψ0(y)).

(2) For all 1 ≤ i < r, Ni(φi+1) := Nφi,vi
(φi+1) is one-sided of slope λi,

and Ri(φi+1)(y) := Rφi,vi,λi
(φi+1)(y) ∼ ψi(y) for some monic irre-

ducible polynomial ψi(y) ∈ Fi[y]. We define Fi+1 = Fi[y]/(ψi(y)).
(3) ψr(y) ∈ Fr[y] is a monic irreducible polynomial, ψr(y) 6= y.

We attach to any type t of order r certain invariants: e1, . . . , er, h1, . . . , hr,
f0, f1, . . . , fr. They are defined as follows: λi = −hi/ei, with ei, hi positive
coprime integers, and fi = degψi(y). Below we shall extensively use these
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numerical invariants without any mention of the underlying type t, which
will be usually implicit in the context.

For any nonzero g(x) ∈ K[x], we denote by N−
i (g) the union of the sides

of negative slope of Ni(g). We say that N−
i (g) is the principal part of Ni(g).

The length of either of these two polygons is by definition the length of its
projection to the horizontal axis.

At each order 1, . . . , r, three fundamental theorems provide a far-reaching
generalization of the Hensel lemma, that had been worked out by Ore in
order one [Ore]: the theorems of the product [HN, Thm. 2.26], of the polygon
[HN, Thm. 3.1], and of the residual polynomial [HN, Thm. 3.7]. Let us only
mention the following facts, which are an immediate consequence of these
results.

Proposition 3.1. Let t be a type of order r ≥ 1, and let g(x) ∈ O[x] be
a nonzero polynomial. Then, for any 1 ≤ i ≤ r:

(i) If N−
i (g) is reduced to a point or it is one-sided of slope λ 6= λi,

then Ri(g)(y) is a constant in Fi.
(ii) If N−

i (g) is not reduced to a point and g(x) is irreducible, then
Ni(g) = N−

i (g) is one-sided and Nj(g) = N−
j (g) is one-sided of

slope λj for all 1 ≤ j < i. Moreover, if β ∈ K is a root of g(x),
then the theorem of the polygon shows that

(3.1) v(φi(β)) =
|λ|+ vi(φi)

e1 · · · ei−1
,

where λ is the slope of N−
i (g).

(iii) If Ni(g) is one-sided of slope λi, then degRi(g) = (deg g)/ei deg φi.
If moreover g(x) is irreducible, then Ri(g)(y) is the power of an
irreducible polynomial in Fi[y].

(iv) If i < r, then N−
i+1(g) has length equal to ordψi(y)(Ri(g)(y)).

Definition 3.2. Let f(x) ∈ O[x] be a monic separable polynomial,
and t a type of order r ≥ 1.

(1) We say that t divides f(x) if ψr(y) divides Rr(f)(y) in Fr[y].
(2) We say that t is f-complete if ordψr

(Rr(f)) = 1. In this case, t singles
out an irreducible factor of f(x) in O[x]. This factor is denoted
ft(x); it has degree erfr deg φr, and it is uniquely determined by the
property Rr(ft)(y) ∼ ψr(y).

(3) A representative of t is a monic separable polynomial φr+1(x) ∈ O[x]
of minimum degree having the property that t is φr+1-complete.
This polynomial is necessarily irreducible in O[x]. Note that, by the
definition of a type, each φi(x) is a representative of the truncated
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type of order i− 1:

ti−1 := (φ1(x);λ1, φ2(x); . . . ;λi−2, φi−1(x);λi−1, ψi−1(y)).

In [HN, Sec. 2.3] we found an explicit and efficient procedure to
compute representatives of arbitrary types.

(4) We say that t is optimal if deg φ1 < · · · < deg φr, or equivalently,
eifi > 1 for all 1 ≤ i < r. We say that t is strongly optimal if t is
optimal and erfr > 1. We convene that all types of order zero are
strongly optimal.

We finish this section with a proposition, extracted from [HN, Prop. 3.5],
which plays an essential role in what follows, and an auxiliary lemma.

Proposition 3.3. Let F (x) ∈ O[x] be a monic irreducible polynomial,
θ ∈ K a root of F (x), and t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y))
a type of order r dividing F (x). Let g(x) ∈ O[x] be a nonzero polynomial.
Take a line of slope λr far below Nr(g), and let it shift upwards till it touches
the polygon for the first time. Let H be the ordinate at the origin of this line.
Then v(g(θ)) ≥ H/e1 · · · er−1, and equality holds if and only if t does not
divide g(x).

Lemma 3.4. Let F (x) ∈ O[x] be a monic irreducible polynomial, and let
t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y)) be a type of order r ≥ 1 di-
viding F (x). Let φr+1(x) be a representative of t, and let λr+1 =−hr+1/er+1

be the slope of Nr+1(F ), where hr+1, er+1 are positive coprime integers. Then

v(φr+1(θ)) =
deg φr+1

deg φr
v(φr(θ)) +

hr+1

e1 · · · er+1
.

Proof. By [HN, Prop. 2.7], vr+1(φr) = ervr(φr) + hr, and by [HN, Thm.
2.11], vr+1(φr+1) = erfrvr+1(φr). These two formulas together show that

vr+1(φr+1)

e1 · · · er
= erfr

|λr|+ vr(φr)

e1 · · · er−1
.

Therefore, since deg φr+1/deg φr = erfr, the lemma is a consequence of the
theorem of the polygon, (3.1):

v(φr+1(θ)) =
|λr+1|+ vr+1(φr+1)

e1 · · · er
, v(φr(θ)) =

|λr|+ vr(φr)

e1 · · · er−1
.

3.2. Okutsu frames and complete types

Theorem 3.5. Let [F1, . . . , Fr] be an Okutsu frame of F (x), and let
Kr+1 = L, Fr+1(x) = F (x). Then there exist negative rational numbers
λ1, . . . , λr, a finite extension Fr of F and a monic irreducible polynomial
ψr(y) ∈ Fr[y] such that

(F1(x);λ1, F2(x); . . . ;λr−1, Fr(x);λr, ψr(y))
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is an F -complete strongly optimal type of order r. More precisely, F1 is
irreducible modulo m, the field F1 := O[x]/(m[x], F1(x)) is the residue field
of K1, and for all 1 ≤ i ≤ r:

(1) Ni(F ) and Ni(Fi+1) are one-sided of slope λi.
(2) If we write λi = −hi/ei with hi, ei positive coprime integers, then

ei = e(Ki+1/K)/e(Ki/K).
(3) Ri(F )(y) ∼ ψi(y)

ai for some monic irreducible polynomial ψi(y) ∈
Fi[y], and Ri(Fi+1)(y) ∼ ψi(y).

(4) fi := degψi(y) = f(Ki+1/K)/f(Ki/K).
(5) Fi+1 := Fi[y]/(ψi(y)) has degree [Fi+1 : F] = f(Ki+1/K).

Proof. By Corollary 2.3(ii), F1(x) is irreducible modulo m and F (x) ≡
F1(x)

(degF )/m1 (mod m); in particular, F1 is the residue field of K1. Let us
prove simultaneously all statements (1)–(5) by induction on i. Actually, we
argue with an arbitrary 1 ≤ i ≤ r; if i = 1 we do not make any assumption
and if i > 1 we assume that the conditions (1)–(5) are true for the indices
1, . . . , i − 1, for all Okutsu frames of all polynomials of depth less than or
equal to r.

If i = 1, the Newton polygon N−
1 (F ) has length (degF )/m1 [HN, Def.

1.8]. If i > 1, the induction hypothesis shows that Fi(x) is a representative of
the type (F1(x); . . . ;Fi−1(x);λi−1, ψi−1(y)), and ψi−1(y) divides Ri−1(F )(y);
hence,N−

i (F ) has positive length equal to ordψi−1(y)(Ri−1(F )(y)), by Propo-

sition 3.1(iv). Therefore, N−
i (F ) is never reduced to a point. By Proposition

3.1(ii), N−
i (F ) = Ni(F ) is one-sided and it has a negative slope that we

denote by λi, and we write it as λi = −hi/ei, with hi, ei positive coprime
integers. Also, by Proposition 3.1(iii), Ri(F )(y) is, up to a multiplicative
constant, the power of some monic irreducible polynomial ψi(y) ∈ Fi[y],
whose degree is denoted by fi.

We want to show thatNi(Fi+1) is also one-sided of the same slope λi, and
Ri(Fi+1) ∼ ψi(y). To this end we apply Proposition 3.3 to the polynomial
Fi+1(x) and the type ti := (F1(x); . . . ;Fi(x);λi, ψi(y)), in order to estimate
v(Fi+1(θ)) and compare this estimation with the inequality

(3.2) v(Fi+1(θ)) >
mi+1

mi
v(Fi(θ)) =

mi+1

mi

|λi|+ vi(Fi)

e1 · · · ei−1
,

given by Lemma 2.12 and the theorem of the polygon, (3.1). The possible
shapes of N−

i (Fi+1) and the first point of contact with a line of slope λi
shifting upwards from below are displayed in Figure 1, where we denote
g(x) := Fi+1(x) and m := mi+1/mi.

Let Fi+1(x) =
∑

0≤j<mi+1/mi
aj(x)Fi(x)

j + Fi(x)
mi+1/mi be the Fi-adic

development of Fi+1. Recall that vi(Fi+1) = min0≤j≤mi+1/mi
{vi(ajF ji )} [HN,

Lem. 2.17(1)]. If vi(a0) = vi(Fi+1), then N−
i (Fi+1) is reduced to the point
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(0, vi(Fi+1)) and Proposition 3.3 shows that

v(Fi+1(θ)) = vi(Fi+1)/e1 · · · ei−1 ≤ vi(Fmi+1/mi

i )/e1 · · · ei−1,

in contradiction with (3.2). Hence, vi(a0) > vi(Fi+1); this implies that
N−
i (Fi+1) is not reduced to a point, and by Proposition 3.1(ii), Ni(Fi+1)

= N−
i (Fi+1) is one-sided and has a negative slope, that we denote by λ. In

particular, vi(Fi+1) = (mi+1/mi)vi(Fi).

The ordinate at the origin of the line of slope λi that first touches the
polygon from below is equal to

H = vi(Fi+1) +
mi+1

mi
min{|λi|, |λ|} =

mi+1

mi
(vi(Fi) + min{|λi|, |λ|}).

If λ 6= λi, item (i) of Proposition 3.1 shows that Ri(Fi+1) is a constant.
Hence, if either λ 6= λi or ψi(y) does not divide Ri(Fi+1), Proposition 3.1
would imply v(Fi+1(θ)) = H/e1 · · · ei−1, in contradiction with (3.2). There-
fore, λ = λi and Ri(Fi+1)(y) ∼ ψi(y)a for some positive exponent a.

Denote e′j := e(Kj+1/K)/e(Kj/K), f ′j := f(Kj+1/K)/f(Kj/K) for all
1 ≤ j ≤ i. By the induction hypothesis, e′j = ej , f

′
j = fj for all 1 ≤ j < i.

Note that e(K1/K) = 1, f(K1/K) = m1. By Proposition 3.1(iii) applied to
Fi+1(x), we have

mie
′
if

′
i = e(Ki+1/K)f(Ki+1/K) = mi+1 = mieifia.

By [HN, Cors. 1.16, 1.20] we have

e1 · · · ei | e(Ki+1/K) = e1 · · · ei−1e
′
i,

[Fi+1 : F] = m1f1 · · · fi | f(Ki+1/K) = m1f1 · · · fi−1f
′
i .

In particular, ei | e′i, fi | f ′i . Thus, if we prove that a = 1, then all statements
(1)–(5) will be proven. Let φi+1(x) ∈ O[x] be a representative of the above
mentioned type ti. This monic irreducible polynomial has degree eifimi

[HN, Thm. 2.11], and by Lemma 3.4, v(φi+1(θ)) > eifiv(Fi(θ)). Now, a > 1
implies deg φi+1(x) < mi+1, and this leads to v(φi+1(θ)) ≤ v(Fi(θ)

eifi), by
Theorem 2.15. Therefore, a = 1 and the theorem is proven.
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By [HN, Cor. 3.2(1)], Theorem 3.5 has the following immediate conse-
quence.

Corollary 3.6. The invariants v(F1(θ)), . . . , v(Fr(θ)) can be computed
directly in terms of any Okutsu frame:

v(Fi(θ)) =
i

∑

j=1

(ejfj · · · ei−1fi−1)
hj

e1 · · · ej
.

Corollary 3.7. The following invariants depend only on F (x):

(i) The slopes λ1, . . . , λr of N1(F ), . . . , Nr(F ), respectively.
(ii) The discrete valuations v1, . . . , vr+1 on K(x).

The slopes λ1, . . . , λr−1, and the discrete valuations v1, . . . , vr on K(x), can
be computed from any Okutsu frame of F (x).

Proof. Suppose that [F ′
1, . . . , F

′
r] is another Okutsu frame of F (x), lead-

ing to the family of slopes λ′1, . . . , λ
′
r, and valuations v1, v

′
2, . . . , v

′
r+1 onK(x).

By Theorem 3.5, both Okutsu frames determine F -complete types of order r;
let hi, ei, fi and h′i, e

′
i, f

′
i be the respective invariants of these types, for all

1 ≤ i ≤ r. By Theorem 3.5 and Corollary 2.8,

ei = e(Ki+1/K)/e(Ki/K) = e′i, fi = f(Ki+1/K)/f(Ki/K) = f ′i

for all 1 ≤ i ≤ r. Let us prove that λi = λ′i for all 1 ≤ i ≤ r, by induction
on i. Since F1(x) and F ′

1(x) are both divisor polynomials of degree m1 of
F (x) (Theorem 2.13), we have λ1 = −v(F1(θ)) = −v(F ′

1(θ)) = λ′1. Suppose
i > 1 and λj = λ′j (hence hj = h′j) for all 1 ≤ j < i. Since Fi(x) and F ′

i (x) are
both divisor polynomials of degree mi of F (x), we have v(Fi(θ)) = v(F ′

i (θ)),
and by the theorem of the polygon (cf. (3.1)),

(3.3)
|λi|+ vi(Fi)

e1 · · · ei−1
= v(Fi(θ)) = v(F ′

i (θ)) =
|λ′i|+ v′i(F

′
i )

e1 · · · ei−1
.

In [HN, Prop. 2.15], we found a closed formula for vi(Fi) that depends only
on h1, . . . , hi−1, e1, . . . , ei−1 and f1, . . . , fi−1; hence, vi(Fi) = v′i(F

′
i ), and

(3.3) shows that λi = λ′i.
Let us prove now that vi = v′i for all 1 ≤ i ≤ r + 1, by induction on i.

The valuation v1 being canonical, we need only prove that vi+1 = v′i+1,
under the assumption vi = v′i for some 1 ≤ i ≤ r. We claim that Ni(F

′
i ) is

one-sided with negative slope −h for some positive integer h ≥ |λi|, which
may be taken to be h = ∞ if Fi = F ′

i [HN, Lem. 2.17(3)]. In fact, let
A(x) = Fi(x) − F ′

i (x), with vi(A) = vi(Fi) + h; the shape of Ni(F
′
i ) is

displayed in Figure 2, and v(F ′
i (θ)) ≥ H/e1 · · · ei−1, by Proposition 3.3.

This implies h ≥ |λi|, because v(F ′
i (θ)) = (|λi|+vi(Fi))/e1 · · · ei−1, by (3.3).

Both discrete valuations vi+1, v
′
i+1 coincide with e1 · · · eiv1 when re-

stricted to K [HN, Prop. 2.6]. Hence, in order to show that they are equal
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it is sufficient to show that they coincide on all irreducible polynomials with
coefficients in O. Let g(x) ∈ O[x] be an irreducible polynomial. Let us recall
the definition of vi+1 [HN, Def. 2.5]. If we consider a line of slope λi far below
Ni(g) and we let it shift upwards till it touches the polygon for the first time,
then vi+1(g(x)) = eiH, where H is the ordinate at the origin of this line.
Let g(x) =

∑

0≤j≤m aj(x)Fi(x)
j be the Fi-adic development of g(x); we re-

call that vi(g) = min0≤j≤m{vi(aj(x)Fi(x)j)} [HN, Lem. 2.17(1)]. Note that
the 0th coefficient of the F ′

i -adic development g(x) =
∑

0≤j≤m a
′
j(x)F

′
i (x)

j

is a′0 = a0 + a1A + · · · + amA
m. We distinguish three cases according to

the shape of N−
i (g), and its first point of contact with the line of slope λi

under it. These possibilities are reflected in Figure 1 in the proof of Theo-
rem 3.5.

If vi(a0) = vi(g), then N−
i (g) is reduced to the point (0, vi(g)), and

vi+1(g) = eivi(g). Since vi(A) > vi(Fi), we have vi(a0) ≤ vi(akF
k
i ) <

vi(akA
k) for all k > 0. Thus, vi(a

′
0) = vi(a0) = vi(g), so that (N ′

i)
−(g)

is also reduced to the point (0, vi(g)), and v′i+1(g) = eivi(g) too.

If vi(a0) > vi(g), then N−
i (g) is not reduced to a point, and N−

i (g) =
Ni(g) is one-sided of negative slope λ, by Proposition 3.1(ii). In the special
case g(x) = Fi(x) we take λ = ∞ [HN, Lem. 2.17(3)]. As Figure 1 shows,
vi+1(g) = eiH, where H = vi(g) +mmin{|λi|, |λ|}. Now,

(3.4) vi(akA
k) = vi(akF

k
i ) + kh ≥ vi(g) + (m− k)|λ|+ kh

for all k ≥ 0. Suppose |λ| < |λi|. Then h > |λ|, and vi(akA
k) > vi(g) +

m|λ| = vi(a0) for all k > 0. Hence, vi(a
′
0) = vi(a0) > vi(g). This implies

N−
i (g) = (N ′

i)
−(g), because both polygons are one-sided with the same end

points: (0, vi(a0)) and (m, vi(g)). In particular, vi+1(g) = v′i+1(g) = eivi(a0).

Suppose now |λ| ≥ |λi|. By (3.4), we have now vi(akA
k) ≥ vi(g) +m|λi|

for all k ≥ 0. Hence, vi(a
′
0) ≥ vi(g) + m|λi| > vi(g), and (N ′

i)
−(g) is one-

sided of negative slope λ′, which is not necessarily equal to λ. Clearly, |λ′| =
(vi(a

′
0)− vi(g))/m ≥ |λi|, and vi+1(g) = v′i+1(g) = ei(vi(g) +m|λi|).
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The last statement of the corollary is a consequence of Theorem 3.5: λi is
the slope of Ni(Fi+1), and vi+1 is determined by Fi(x), vi and λi.

Our next aim is to prove the converse of Theorem 3.5: an F -complete
strongly optimal type is an Okutsu frame, plus the data λr, ψr(y). To this
end we recall what kind of optimal behaviour the optimal types have. The
following result is extracted from [GMNa, Thm. 3.1], where this optimality
was analyzed in a more general situation.

Theorem 3.8 ([GMNa, Thm. 3.1]). Let F (x) ∈ O[x] be a monic ir-
reducible polynomial, and t = (φ1(x);λ1, φ2(x); . . . ;λi−1, φi(x);λi, ψi(y)) a
type of order i ≥ 1 dividing F (x). Let φ′i(x) ∈ O[x] be another representative
of the truncated type

ti−1 = (φ1(x);λ1, φ2(x); . . . ;λi−2, φi−1(x);λi−1, ψi−1(y)).

Let λ′i be the slope of the one-sided Newton polygon of ith order of F (x),
N ′
i(F ), taken with respect to the pair (φ′i(x), vi). If eifi > 1, then |λ′i| ≤ |λi|.
Theorem 3.9. Let F (x) ∈ O[x] be a monic irreducible polynomial, and

let t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y)) be an F -complete strongly
optimal type of order r ≥ 1. Then [φ1, . . . , φr] is an Okutsu frame of F (x).

Proof. Let m′
i = deg φi for all 1 ≤ i ≤ r, and m′

r+1 := degF . We know
that m′

i+1 = m′
ieifi for all 1 ≤ i ≤ r. Let s = depth(F ) and consider the

basic Okutsu invariants

m1 < · · · < ms < ms+1 = degF, µ1 < · · · < µs < µs+1 =∞.
Since φ1(x) is irreducible modulo m, F (x) ≡ φ1(x)

(degF )/m′

1 (mod m),
and degF > m′

1, Corollary 2.3 shows that s ≥ 1 and m′
1 = m1. Let F1(x) ∈

O[x] be any choice for the first polynomial of an Okutsu frame. The Newton
polygonsNφ1

(F ),NF1
(F ) are both one-sided, of respective slopes −v(φ1(θ)),

−v(F1(θ)). Since F1(x) is a divisor polynomial of degree m1 of F (x) (Theo-
rem 2.13), we have v(φ1(θ)) ≤ v(F1(θ)). Since m′

2 > m′
1, Theorem 3.8 shows

that the opposite inequality holds, so that v(φ1(θ)) = v(F1(θ)). Now, by
Theorem 2.13, φ1(x) can also be taken as the first polynomial of an Okutsu
frame of F (x).

Suppose that for some 1 ≤ i ≤ r, the polynomials φ1, . . . , φi can be taken
as the first i polynomials of an Okutsu frame of F (x). Let us show that in
this case, i = r if and only if i = s. In fact, suppose i = r < s, and let Fr+1 be
any (r+1)th polynomial in an Okutsu frame. Since t is F -complete, Nr(F )
is one-sided of slope λr and Rr(F ) ∼ ψr(y); on the other hand, Theorem 3.5
shows thatNr(Fr+1) is one-sided of the same slope λr, andRr(Fr+1) ∼ ψr(y)
too. By Proposition 3.1(iii), mr+1 = mrerfr = m′

r+1 = degF , and this con-
tradicts the assumption s > r. Suppose now i = s < r. By Lemma 3.4,
v(φs+1(θ)) > (m′

s+1/m
′
s)v(φs(θ)), and we get again a contradiction, since
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m′
s+1 < m′

r+1 = degF implies v(φs+1(θ)) ≤ v(φs(θ)
m′

s+1
/m′

s), by Theo-
rem 2.15.

Finally, suppose that for some 1 ≤ i < r, the polynomials φ1, . . . , φi can
be taken as the first i polynomials of an Okutsu frame of F (x). We have
just seen that also i < s; thus, there exists Fi+1(x) such that φ1, . . . , φi, Fi+1

are the first i+1 polynomials of an Okutsu frame of F (x). By Theorem 3.5,
Ni(Fi+1) is one-sided of the same slope λi as Ni(F ), and Ri(Fi+1) ∼ ψi(y),
the monic irreducible factor of Ri(F )(y); hence, mi+1 = mieifi = m′

ieifi =
m′
i+1. In particular, Fi+1 is another representative of the truncated type

ti = (φ1(x);λ1, φ2(x); . . . ;λi−1, φi(x);λi, ψi(y)),

and vi+1(Fi+1) = vi+1(φi+1), since this value depends only on λ1, . . . , λi
and f1, . . . , fi [HN, Prop. 2.15]. By Theorem 3.8, |λ′i+1| ≤ |λi+1|, where
λ′i+1 is the slope of NFi+1,vi+1

(F ), and by the theorem of the polygon, (3.1),
we have v(Fi+1(θ)) ≤ v(φi+1(θ)). Now, since Fi+1 is a divisor polynomial
of degree mi+1 of F (x) (Theorem 2.13), we have v(Fi+1(θ)) = v(φi+1(θ)).
Hence, φi+1(x) is a divisor polynomial of degree mi+1 of F (x), and Theorem
2.13 shows that φ1, . . . , φi, φi+1 are the first i+ 1 polynomials of an Okutsu
frame of F (x).

4. Okutsu approximations to an irreducible polynomial. Al-
though Theorems 3.5 and 3.9 seem to indicate that the notion of Okutsu
frame is equivalent to that of F -complete strongly optimal type, this is not
quite exact. An F -complete strongly optimal type is an Okutsu frame to-
gether with extra information on F (x) given by the data λr, ψr(y).

In this section we introduce the notion of Okutsu approximation to F (x):
this is a monic irreducible polynomial in O[x] of the same degree and suffi-
ciently close to F (x). A better way to summarize the content of Theorems
3.5 and 3.9 is to think that an F -complete strongly optimal type is equivalent
to an Okutsu frame, together with an Okutsu approximation to F (x). After
extending this point of view to the optimal case (Theorem 4.2), the Montes
algorithm can be reinterpreted as a fast method to compute an Okutsu frame
and an Okutsu approximation to each of the irreducible factors of a monic
separable polynomial in O[x] (Section 4.2). Finally, Newton polygons can
also be used to obtain approximations with arbitrary prescribed precision,
leading in this way to a factorization algorithm (Section 4.3).

4.1. Okutsu approximations

Lemma-Definition 4.1. Let F (x) ∈ O[x] be a monic irreducible poly-
nomial of degree n, θ ∈ K a root of F (x) and r = depth(F ). For any
φ(x) ∈ O[x], the following three conditions are equivalent :
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(i) φ(x) is a monic irreducible separable polynomial of degree n, and it
has a root α ∈ K satisfying v(θ − α) > µr.

(ii) φ(x) is a monic irreducible separable polynomial of degree n, and

v(φ(θ)) > (n/mr)v(Fr(θ)),

where Fr(x) is the rth polynomial of an Okutsu frame of F (x).
(iii) φ(x) is a representative of some F -complete strongly optimal type

of order r.

If any of these conditions is satisfied, we say that φ(x) is an Okutsu ap-
proximation to F (x).

Proof. Lemma 2.12 shows that (i) and (ii) are equivalent. Let us show
that (ii) and (iii) are equivalent too. Let [F1, . . . , Fr] be an Okutsu frame
of F (x), and suppose that φ(x) satisfies (ii). By Theorem 3.5, there are neg-
ative rational numbers λ1, . . . , λr and a monic irreducible polynomial ψr(y)
over some finite extension of F, such that the type (F1(x);λ1, F2(x); . . . ;
λr−1, Fr(x);λr, ψr(y)) is F -complete and strongly optimal. Arguing as in
the proof of Theorem 3.5, we deduce from Proposition 3.3 that φ(x) is a
representative of this type.

Conversely, suppose φ(x) is a representative of an F -complete strongly
optimal type t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y)). Then φ(x) is
a monic irreducible polynomial of degree n [HN, Prop. 3.12]. By Theorem
3.9, [φ1, . . . , φr] is an Okutsu frame of F (x), and Lemma 3.4 shows that
v(φ(θ)) > (n/mr)v(φr(θ)).

This concept leads to a reinterpretation of the arithmetic information
contained in an f -complete optimal type, where f(x) ∈ O[x] is a monic
separable polynomial.

Theorem 4.2. Let f(x) ∈ O[x] be a monic separable polynomial, and
let t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y)) be an f-complete optimal
type of order r ≥ 1. Let φr+1(x) ∈ O[x] be a representative of t, and ft(x) ∈
O[x] the irreducible factor of f(x) that corresponds to t.

• If erfr > 1, then [φ1, . . . , φr] is an Okutsu frame of ft(x) and φr+1(x)
is an Okutsu approximation to ft(x).
• If erfr = 1, then [φ1, . . . , φr−1] is an Okutsu frame of ft(x) and
φr(x), φr+1(x) are both Okutsu approximations to ft(x).

Proof. If erfr > 1, the type t is ft-complete and strongly optimal, and
the statement is a consequence of Theorem 3.9 and Lemma-Definition 4.1.

If erfr = 1, let us show first that the truncated type

tr−1 = (φ1(x);λ1, φ2(x); . . . ;λr−2, φr−1(x);λr−1, ψr−1(y))
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is strongly optimal and ft-complete. Since deg φr = er−1fr−1 deg φr−1, we
have er−1fr−1 > 1, and tr−1 is strongly optimal. Since t is f -complete,
we have Rr(ft)(y) ∼ ψr(y). By Proposition 3.1(i)&(ii), Nr(ft) = N−

r (ft)
is one-sided of slope λr; the length of this polygon is deg ft/deg φr = erfr
= 1. By Proposition 3.1(iv)&(iii), ordψr−1

(Rr−1(ft)) = 1, and Rr−1(ft)(y) ∼
ψr−1(y), so that tr−1 is ft-complete.

Therefore, [φ1, . . . , φr−1] is an Okutsu frame of ft(x) by Theorem 3.9.
Since φr(x) is a representative of tr−1, it is an Okutsu approximation to
ft(x), by Lemma-Definition 4.1. Finally, φr+1(x) is also an Okutsu approx-
imation to ft(x), because v(φr+1(θ)) > v(φr(θ)), by Lemma 3.4.

The following lemma is an immediate consequence of Lemma 2.4.

Lemma 4.3. If φ(x) is an Okutsu approximation to F (x), then any
Okutsu frame of F (x) is an Okutsu frame of φ(x), and vice versa. In par-
ticular, the relation “to be an Okutsu approximation to” is an equivalence
relation on the set of all monic irreducible polynomials in O[x].

This relation is strictly stronger than the equivalence relation “to have
the same Okutsu frames”. For instance, consider two representatives φ(x),
φ′(x), of two optimal types t, t′ of order r that differ only on the last data:
(λr, ψr(y)) 6= (λ′r, ψ

′
r(y)), but they satisfy erfr = e′rf

′
r; then φ(x), φ′(x) are

monic irreducible polynomials of the same degree, having the same Okutsu
frames, but they are not Okutsu approximations to each other.

Thus, besides sharing with F (x) all Okutsu invariants, an Okutsu ap-
proximation to F (x) is close to F (x) in some stronger sense, as the next
result shows.

Proposition 4.4. Let F (x) ∈ O[x] be a monic irreducible polynomial of
degree n, θ ∈ K a root of F (x) and L = K(θ). Let φ(x) ∈ O[x] be an Okutsu
approximation to F (x), α ∈ K a root of φ(x) such that v(θ − α) > µr, and
N = K(α). Then

(i) e(N/K) = e(L/K), f(N/K) = f(L/K).
(ii) The maximal tamely ramified subextension of N/K is contained in

L/K. In particular, if L/K is tamely ramified then L = N .

Proof. By Lemma 2.6, e(L/K) = e(N/K); since [N : K] = [L : K], we
have f(L/K) = f(N/K) too. Item (ii) is a consequence of Proposition 2.7.

We end this section with a measure of the precision of these Okutsu
approximations. Let t = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, ψr(y)) be an
F -complete optimal type. Let h1, . . . , hr, e1, . . . , er, f0, f1, . . . , fr, be the
usual invariants of the type. Theorem 3.5 shows that e(L/K) = e1 · · · er,
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f(L/K) = f0f1 · · · fr. Consider the rational number

νt :=
h1

e1
+

h2

e1e2
+ · · ·+ hr

e1 · · · er
.

By Proposition 3.1(iv), since Rr(F )(y) ∼ ψr(y), the Newton polygon
N−
r+1(F ) has length one and slope λr+1 = −hr+1 for some positive integer

hr+1; in particular, the minimal positive denominator of λr+1 is er+1 = 1.

Lemma 4.5. Let φ(x) ∈ O[x] be an Okutsu approximation to F (x), con-
structed as a representative of an F -complete optimal type t. Then

F (x) ≡ φ(x) (mod m
⌈ν⌉), where ν = νt + (hr+1/e(L/K)).

Proof. Let g(x) = φ(x)− F (x) ∈ O[x]. This polynomial has degree less
than n. Take e0 = 1; since

n− 1 = (erfr − 1)mr + · · ·+ (e1f1 − 1)m1 + (e0f0 − 1),

Theorem 2.15 shows that

v(g(θ))− v(g(x)) ≤ v(φr(θ)erfr−1 · · ·φ1(θ)
e1f1−1θe0f0−1)

=
r

∑

i=1

(eifi − 1)v(φi(θ)).

Now, g(θ) = φ(θ), and by Lemma 3.4, applied to φr+1(x) := φ(x), we get

v(g(x)) ≥ v(φr+1(θ))−
r

∑

i=1

(eifi − 1)v(φi(θ))

= v(φr+1(θ))−
r

∑

i=1

v(φi+1(θ))− v(φi(θ))−
hi+1

e1 · · · ei+1

= v(φ1(θ)) +

r
∑

i=1

hi+1

e1 · · · ei+1
= ν.

4.2. Reinterpretation of the Montes algorithm. Let f(x) ∈ O[x]
be a monic separable polynomial. The Montes algorithm starts by com-
puting the order zero types determined by the irreducible factors of f(x)
modulo m, and then proceeds to enlarge them in a convenient way till sev-
eral f -complete optimal types t1, . . . , ts are obtained, which are in bijective
correspondence with the irreducible factors ft1(x), . . . , fts(x) of f(x) in O[x]
([HN], [GMNa]). This one-to-one correspondence is determined by the fol-
lowing properties:

(1) For all 1 ≤ i ≤ s, the type ti is fti
-complete.

(2) For all j 6= i, the type tj does not divide fti
(x).

This enlargement process of the types is based on a branching phe-
nomenon, plus a procedure taking care that all types we construct are opti-
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mal. Let us briefly explain how this works. Suppose the algorithm considers
an optimal type of order i,

t = (φ1(x);λ1, φ2(x); . . . ;λi−1, φi(x);λi, ψi(y)),

dividing f(x). If this type is not f -complete, it may ramify to produce
new types, that are the germs of different f -complete types (thus, of dif-
ferent irreducible factors). A representative φi+1(x) ∈ O[x] of t is con-
structed (in a noncanonical way); then Ni+1(f) = Nφi+1,vi+1

(f) is com-
puted, and for each side of negative slope (say) λ, the residual polynomial
Rλ(f)(y) = Rφi+1,vi+1,λ(f)(y) ∈ Fi+1[y] is computed and factorized into a
product of irreducible factors. The type t ramifies in principle into as many
types as pairs (λ, ψ(y)), where λ runs through the negative slopes of Ni+1(f)
and ψ(y) runs through the different irreducible factors of Rλ(f)(y). These
branches determine either types of order i+1, or types of order i. To decide
which is the case, one looks at the pair (ei, fi), where ei is the least positive
denominator of λi, and fi = deg(ψi(y)); if eifi > 1 then φi(x) is an optimal
representative of the truncated type ti−1 (in the sense of Theorem 3.8), and
the branches lead to new optimal types of order i+ 1,

t′ = (φ1(x);λ1, φ2(x); . . . ;λi−1, φi(x);λi, φi+1(x);λ, ψ(y)),

dividing f(x). If eifi = 1 then φi(x) is not optimal, and we replace it by
φ′i(x) := φi+1(x) to get a better representative of the truncated type ti−1;
this is called a refinement step [GMNa, Sec. 3.2]. In this latter case, we
consider new optimal types of order i dividing f(x),

t′ = (φ1(x);λ1, φ2(x); . . . ;λi−1, φ
′
i(x);λ, ψ(y)), |λ| > |λi|,

that will be analyzed and ramified in a similar way.

The final output of the algorithm is a list of f -complete optimal types.
Therefore, Theorems 3.9 and 4.2 have the following interpretation.

Corollary 4.6. The output of the Montes algorithm is a family of Oku-
tsu frames and Okutsu approximations to all the irreducible factors of f(x).

Corollary 4.6 opens new perspectives in the applications of the Montes
algorithm, as a tool to compute the essential arithmetic information about
the irreducible factors of f(x), carried by their Okutsu frames and their
Okutsu approximations [GMNb].

We finish this section with an example that illustrates when strongly
optimal f -complete types may occur.

Example. Let p be an odd prime number, and φ(x) ∈ Zp[x] a monic
polynomial which is irreducible modulo p. Take c ∈ Zp such that c ≡
1 (mod p), and consider the polynomial f(x) = φ(x)2 + p2c. Clearly, Nφ(f)
is one-sided of length 2 and slope −1, whereas Rφ,−1(f)(y) = y2 +1 ∈ Fp[y].
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If p ≡ 3 (mod 4), the Montes algorithm outputs the f -complete and
strongly optimal type t = (φ(x);−1, y2 + 1). In this case, f(x) = ft(x) is
irreducible of depth one, [φ] is an Okutsu frame of f(x), and any represen-
tative of t (e.g., φ2(x) = φ(x)2 + p2) is an Okutsu approximation to f(x).

If p ≡ 1 (mod 4), there is some i ∈ Zp satisfying i2 = −1. In this case
the residual polynomial Rφ,−1(f)(y) factorizes as y2 + 1 = (y − i)(y + i) in
Fp[y], and the Montes algorithm outputs two types:

t = (φ(x);−1, y − i), t′ = (φ(x);−1, y + i).

These types are f -complete and optimal, but not strongly optimal; they
correspond to the two irreducible factors of f(x): ft(x) = φ(x) − ip

√
c,

ft′(x) = φ(x) + ip
√
c, both of depth zero. Let φ2(x) = φ(x) − ip, φ′2(x) =

φ(x) + ip be representatives respectively of t and t′. The five polynomials
φ, ft, ft′ , φ2, φ

′
2 are Okutsu approximations to one another, since

ft(x) ≡ ft′(x) ≡ φ2(x) ≡ φ′2(x) ≡ φ(x) (mod p).

They are all representatives of the type of order zero, t0 = φ(y) (mod p),
which is ft-complete and ft′-complete, but not f -complete.

Note that φ2(x) (respectively φ′2(x)) is a better approximation to ft(x)
(respectively ft′(x)) than φ(x). This is the basic idea behind a method to
get approximations of arbitrarily high precision, to be explained in the next
section.

4.3. Applications to local factorization. For many purposes, an
Okutsu approximation yields sufficient arithmetic information about an ir-
reducible factor F (x) of f(x), the extension L/K that it determines, and
its subextensions. However, the setting of the Montes algorithm can also be
used to compute an approximation to each irreducible factor of f(x), with
an arbitrary prescribed precision, leading in this way to a factorization algo-
rithm. The basic idea is to continue the process of enlarging the f -complete
types.

Let us describe this factorization algorithm in detail. The input polyno-
mial is a monic separable polynomial f(x) ∈ O[x]. First, we compute all f -
complete types parameterizing the irreducible factors of f(x), and an Okutsu
approximation to each factor, by a single call to the Montes algorithm. Then,
for each complete type t, with representative φr+1(x), we compute the New-
ton polygon N−

r+1(f) and the residual polynomial Rr+1(f)(y) ∼ ψr+1(y). By
Proposition 3.1, this polygon has length one, a negative slope λr+1 = −hr+1

for some positive integer hr+1, and ψr+1(y) ∈ Fr+1[y] is a monic irreducible
polynomial of degree one.

In order to get a better approximation to ft(x), we compute a represen-
tative φr+2(x) of the following type of order r + 1:

t′ = (φ1(x);λ1, φ2(x); . . . ;λr−1, φr(x);λr, φr+1(x);−hr+1, ψr+1(y)).
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By Lemma 3.4, v(φr+2(θ)) > v(φr+1(θ)), so that φr+2(x) is another Okutsu
approximation to ft(x), by Lemma-Definition 4.1(ii). The slope of the poly-
gon Nr+2(f) determines the precision of the new approximation. However,
computations in order r+ 2 have a higher complexity than computations in
order r + 1. Therefore, we consider φr+2(x) as a new representative of the
type t, say φ′r+1(x) := φr+2(x), and we repeat the procedure with the new
representative: we compute the slope −h′r+1 of N ′

r+1(f) = N ′
φ′r+1

,vr+1
(f) and

the residual polynomial R′
−hr+1

(f)(y). By Lemma 4.5, the new precision of
the approximation is

ν ′ = νt +
h′r+1

e(L/Qp)
.

Since v(φ′r+1(θ)) > v(φr+1(θ)), we have h′r+1 > hr+1, and the new approx-
imation is better than the former one. Note that each iteration requires
three computations in order r+ 1: a Newton polygon of length one, a resid-
ual polynomial of degree one and a representative of the extended type t′.
One can perform the necessary number of iterations till a prefixed precision
is attained.

The scheme of the factorization algorithm would be the following:

Input. A monic separable polynomial f(x) ∈ O[x] and a precision N ∈ N.

Output. A family of monic irreducible polynomials f1(x), . . . , fs(x) in O[x],
satisfying fi(x) ≡ fti

(x) (mod m
N ) for 1 ≤ i ≤ s, where the polynomials

ft1(x), . . . , fts(x) are the genuine irreducible factors of f(x) in O[x].

1. Apply the Montes algorithm to compute f -complete types t1, . . . , ts, cor-
responding to the irreducible factors of f(x) in O[x].

2. For each f -complete type t, let r be the order of t, and:

3. Compute νt =
∑r

i=1 hi/e1 · · · ei, and e = e1 · · · er.
4. Compute a representative φ(x) ∈ O[x] of t.
5. Compute Nr+1(f), and let the slope of this one-sided polygon be −h.

If ⌈νt + (h/e)⌉ ≥ N output φ(x) as the final approximation to ft(x),
and consider the next f -complete type. Else:

6. Compute Rr+1(f)(y) ∼ ψ(y) for some monic polynomial ψ(y) ∈
Fr+1[y] of degree one.

7. Compute a representative φ′(x) of the type t′ of order r+ 1 obtained
by enlarging t with the triple (φ;−h, ψ(y)).

8. Replace φ(x)← φ′(x) and go to step 5.

This algorithm has some advantages: it has very low memory require-
ments, and it always outputs a family f1(x), . . . , fs(x) ∈ O[x] of monic irre-
ducible polynomials that satisfy f(x) ≡ f1(x) · · · fs(x) (mod m

N ), regardless
of the value of the imposed precision N .
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As to the disadvantages: although the algorithm computes each new
approximation very fast, it has a slow convergence because at each step the
improvement of the precision is rather small.

Probably, an optimal local factorization algorithm would consist in the
application of the Montes algorithm as a fast method to get an Okutsu
approximation to each irreducible factor, combined with an efficient “Hensel
lift” routine able to improve these initial approximations by doubling the
precision at each iteration. One may speculate that Newton polygons of
higher order might also be used to design a similar acceleration procedure.
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