

Aalborg Universitet

OLAP over Probabilistic Data Cubes II

Parallel Materialization and Extended Aggregates

Xie, X.; Zou, K.; Hao, X.; Pedersen, T. B.; Jin, Peiquan; Yang, W.

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2019.2913420

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Xie, X., Zou, K., Hao, X., Pedersen, T. B., Jin, P., & Yang, W. (2020). OLAP over Probabilistic Data Cubes II:
Parallel Materialization and Extended Aggregates. IEEE Transactions on Knowledge and Data Engineering,
32(10), 1966-1981. [8700285]. https://doi.org/10.1109/TKDE.2019.2913420

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 28, 2022

https://doi.org/10.1109/TKDE.2019.2913420
https://vbn.aau.dk/en/publications/bf38e2fb-e5c0-4a83-b7e8-4c4bdd642e96
https://doi.org/10.1109/TKDE.2019.2913420

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
1

OLAP over Probabilistic Data Cubes II: Parallel
Materialization and Extended Aggregates

Xike Xie†, Kai Zou†, Xingjun Hao†, Torben Bach Pedersen#, Peiquan Jin†, and Wei Yang†

Abstract—On-Line Analytical Processing (OLAP) enables powerful analytics by quickly computing aggregate values of numerical

measures over multiple hierarchical dimensions for massive datasets. However, many types of source data, e.g., from GPS, sensors,

and other measurement devices, are intrinsically inaccurate (imprecise and/or uncertain) and thus OLAP cannot be readily applied. In

this paper, we address the resulting data veracity problem in OLAP by proposing the concept of probabilistic data cubes. Such a cube

is comprised of a set of probabilistic cuboids which summarize the aggregated values in the form of probability mass functions (pmfs in

short) and thus offer insights into the underlying data quality and enable confidence-aware query evaluation and analysis. However, the

probabilistic nature of data poses computational challenges, since a probabilistic database can have exponential number of possible

worlds under the possible world semantics. Even worse, it is hard to share computations among different cuboids, as aggregation

functions that are distributive for traditional data cubes, e.g., SUM, become holistic in probabilistic settings. In this paper, we propose a

complete set of techniques for probabilistic data cubes, from cuboid aggregation, over cube materialization, to query evaluation. We

study two types of aggregation: convolution and sketch-based, which take polynomial time complexities for aggregation and jointly

enable efficient query processing. Also, our proposal is versatile in terms of: 1) its capability of supporting common aggregation

functions, i.e., SUM, COUNT, MAX, and AVG; 2) its adaptivity to different materialization strategies, e.g., full versus partial materialization,

with support of our devised cost models and parallelization framework; 3) its coverage of common OLAP operations, i.e., probabilistic

slicing and dicing queries. Extensive experiments over real and synthetic datasets show that our techniques are effective and scalable.

Index Terms—Probabilistic Databases, OLAP, Data Warehousing

✦

1 INTRODUCTION

On-Line Analytical Processing (OLAP) enables fast interac-
tive aggregate queries at multi-levels on large data volumes
and thus facilitates decision support and business intel-
ligence. Usually, the multidimensional data is organized
in a fact table with both categorical dimension attributes
and numerical measure attributes. Measure attributes are
associated with aggregate functions, e.g., SUM, COUNT, MAX,
or AVG, for aggregating the low-level values.

However, source data collected in real applications is
often inherently inaccurate, the so-called veracity challenge.
For example, consider a case where we want to collect
and analyze temperatures at different locations at different
times, which yields data as seen in Table 1 (a). Conceptually,
we have two sensing objects, o1 and o2, and each object
has several data instances (from multiple readings from the
same sensor or multiple sensors at the same location): t1
and t2 for o1, and t3-t5 for o2. Sensor data inaccuracies can
be temperature measurement errors, GPS errors, or sensor
transmission delays resulting in different time values. In
probabilistic databases, such imprecision is captured by
modeling a random variable following a probability mass
function (pmf), indicating the possibility of its existence. The

• †School of Computer Science and Technology, University of Science
and Technology of China, Email: {xkxie, jpq, qubit}@ustc.edu.cn,
{slnt, hxjall}@mail.ustc.edu.cn

• #Department of Computer Science, Aalborg University, Denmark, Email:
tbp@cs.aau.dk

• Xike Xie is supported by NSFC (No. 61772492), Fundamental Research
Funds for the Central Universities, Jiangsu NSF (No. BK20171240), and
the CAS Pioneer Hundred Talents Program.

TABLE 1: Example of Multi-dimensional Probabilistic Facts

D1[1] is spatial region {(33:50-34:50N], (121:50-122:50W]} and D1[2] is
{(32:50-33:50N], (121:50-122:50W]}; D2[1] is a time interval (01/21/14:1400
-01/21/14:1500] and D2[2] is (01/21/14:1500-01/21/14:1600]

Object Instance Location Time Temperature
ID ID

o1
t1 33:78N, 121:74W 01/21/14:1500 2
t2 34:39N, 122:45W 01/21/14:1500 1

o2
t3 34:16N, 121:65W 01/21/14:1500 1
t4 33:58N, 122:25W 01/21/14:1458 2
t5 33:43N, 122:40W 01/21/14:1515 1

(a) Multi-dimensional Facts

ObjID Instance Dimensions Existential Measure
ID D1 D2 probability (M)

o1
t1 D1[1] D2[1] 0.6 2
t2 D1[1] D2[1] 0.4 1

o2

t3 D1[1] D2[1] 0.2 1
t4 D1[1] D2[1] 0.5 2
t5 D1[2] D2[2] 0.3 1

(b) Multi-dimensional Probabilistic Facts

probability can be collected by parameters of the sensing
devices [1], or analysis of historical records [2].

In this paper, we consider block-independent model, where
a “block” corresponds to an object and objects are indepen-
dent. Within an object, instances are mutually independent
and their existential probabilities sum up to 1 meaning
that the object must appear in the database1. Then, the
multi-dimensional probabilistic fact data area of schema
〈OID, IID,D1, D2, ..., D|D|,M, prob〉, where, 1) IID u-
niquely identifies an instance and OID identifies which ob-
ject the instance belongs to; 2) Di is a dimensional attribute;
3) M is a measure attribute; 4) prob represents the existential
probability of an instance.

An example of probabilistic facts is shown in Table 1

1. If the sum s is less than 1, we can also create a virtual instance with
probability 1 − s like [3] does. The virtual instance will not affect the
completeness of the theorems proposed in this work.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
2

(b). There are two objects o1 and o2. Each object has several
instances where each instance corresponds to an existential
probability. In the example, each object is captured by two
dimension attributes D1 and D2 and a measure attribute M.

The table of probabilistic facts can be interpreted by
the Possible World Semantic (PWS) [4], which transforms
a probabilistic table into a set of non-probabilistic tables by
selecting an instance from each object at a time. Each such
table is called a possible world (PWD) W associated with a
probability p(W). For example, there exists a possible world
{t2, t4} with probability 0.4 × 0.5 = 0.2. By doing such,
aggregate functions, e.g., SUM, can be run on each possible
world, and then integrated to get the summary. Since each
possible world has a probability, their aggregate is in the
form of a pmf. PWS guarantees the correctness of query
evaluation in probabilistic databases, such that an algorithm
is correct if it derives the same result as if done under PWS.

Fig. 1 (b) shows the probabilistic aggregate (SUM) over
Table 1 (b). Using PWS, one can represent Table 1 (b) by
Fig. 1 (a) where each tuple is a possible world. If we consider
the probability of the aggregate being 3, W1, W3, and W5 are
selected and the total probability is 0.12 + 0.18 + 0.2 = 0.5.
With this process repeated for all possible sums, the prob-
abilistic aggregate pmf is shown in Fig. 1 (b). Nevertheless,
the computational overhead is high. Suppose there are n
objects, each of which has m instances. There can be mn

possible worlds.

Possible world Wi p(Wi) SUM
W1 = {t1, t3} 0.12 3
W2 = {t1, t4} 0.3 4
W3 = {t1, t5} 0.18 3
W4 = {t2, t3} 0.08 2
W5 = {t2, t4} 0.2 3
W6 = {t2, t5} 0.12 2

(a) PWS Table(SUM)
(b) pmf for X1 + X2

Fig. 1: Possible World Interpretation
As seen above, the aggregation of a single cell has a

high computational overhead. Even worse, there are many
cells in a cuboid, and many cuboids in a data cube. In
a data cube, each cuboid corresponds to a GROUP-BY of a
particular combination of dimensions. In general, there are
2|D| cuboids for |D|-dimensional data. In the presence of
hierarchies, there are

∏

(Li + 1) cuboids, where Li is the
number of hierarchy levels of the i-th dimension [5].

The core part of OLAP is to evaluate aggregate results
of different granularities, i.e., cells and cuboids. For efficient
construction, previous works, e.g., [5] and [6], consider the
partial order relationship between cuboids. A cuboid CA

is an ancestor of cuboid C if C’s attributes is a subset of
CA’s attributes. A cuboid can be materialized by grouping
particular attributes over its ancestor cuboids. Similarly, the
partial order relationship exists for cells. For example, cell
C3 is a descendant cell of cells C1 an C2 in Fig. 2. In
traditional data cubes, C2’s summation can be obtained by
summarizing those of C1 and C2. Therefore, SUM is a dis-
tributive operation [5]. However, basic aggregate functions,
e.g., SUM, which are distributive for traditional data cubes
become holistic in probabilistic settings. It is because the
pmfs of a cell might have correlations with other parts,
making aggregates of a cell conditionally dependent on
other cells.

Probabilistic Data Cubes. In this work, we study the
probabilistic data cube which offers confidence to the aggre-

Fig. 2: Example. C3:〈∗, D2[1]〉; C1:〈D1[1], D2[1]〉; C2:〈D1[2], D2[1]〉

gation of multidimensional probabilistic data. An example is
demonstrated in Table 2. The cube consists of four cuboids.
Each cuboid (except the apex cuboid) has multiple cells.
Each cell is associated with a set of possible values instead of
a precise value, and each possible value is with a probability.

TABLE 2: Data Cube for Table 1 (C: cuboid,M: measure)

C D1 D2 M

(D1, D2)
D1[1] D2[1] {(1, 0.1), (2, 0.26), (3, 0.32), (4, 0.3)}
D1[2] D2[1] {(1, 0.3)}

(D1)
D1[1] ∗ {(1, 0.1), (2, 0.26), (3, 0.32), (4, 0.3)}
D1[2] ∗ {(1, 0.3)}

(D2)
∗ D2[1] {(2, 0.2), (3, 0.5), (4, 0.3)}
∗ D2[2] 0

(all) ∗ ∗ {(2, 0.2), (3, 0.5), (4, 0.3)}

Contributions. We propose a framework in our pre-
vious work [7] which offers a comprehensive coverage
of the concepts, properties, and algorithms for OLAP on
probabilistic data including the follows.

• We provide two efficient aggregation techniques sat-
isfying PWS, namely convolution and sketch-based
methods, which are with polynomial and linear time
complexity, respectively.

• We investigate both full and partial cube materializa-
tion based on a proposed cost model.

• We study probabilistic OLAP queries, such as slicing
and dicing.

This paper substantially extends work [7] as follows.

• We utilize parallel computation for speeding up the
aggregation, and design cost models for supporting
the parallel materialization (Section 4).

• We support more aggregation functions, i.e., MAX and
AVG, following the cube materialization framework
previously developed (Section 6).

• We present comprehensive experimental perfor-
mance studies of our proposal using both synthetic
and real data (Section 7).

Organization. Section 2 studies related works. Section 3
presents a convolution and sketch-based methods for ag-
gregating a probabilistic cube. Section 4 covers parallel
materialization framework as well as the corresponding cost
model. Section 5 investigates two representative queries,
probabilistic slicing and dicing queries. Section 6 extends
the aggregating functions to COUNT, MAX, and AVG. Section 7
gives the experimental results. Section 8 concludes the pa-
per. Table 3 lists all notations.

2 RELATED WORKS

Data aggregation is an important building block for OLAP
systems. In particular, [8] studies a parallel algorithm for
temporal aggregation which supports full bitemporal data
model and share computation. [9] presents a suit of bit-
parallel algorithms for accelerating aggregation operations
by leveraging intra-cycle parallelism in CPU cores. [10]

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
3TABLE 3: Notations

Notation Meaning
D, M dimension attributes, the measure attribute

dom(D) domain for dimension attributes
dom(M) domain for the measure attribute
Di ∈ D dimension i of D, s.t. D = D1 ×D2...×D|D|

dom(Di) domain for dimension Di

C, CA, C a cuboid, a ancestor cuboid of C, cuboids in the lattice
(D1, ..., Dc) a cuboid specified by dimension attributes D1, ..., Dc

Ii an interval on dimension Di. Ii = [Dl
i, D

u
i]

C a multidimensional cell, i.e., C = 〈I1, I2, ..., I|D|〉
ei side length of C on dimension i, or ei = |Ii|

t, t.prob an instance, and its existential probability
oi, oi[j] an object, a truncated object, i.e., oi[j] = oi ∩ Cj

Xi a random variable for object oi’s measure value

X
(j)
i a random variable for object oi[j]’s measure value

fXi
probability mass function of object oi’s measure values

f
(j)
Xi

truncated pmf for object oi w.r.t. cell Cj

fX+Y pmf for the convolution of fX and fY
FC pmf for aggregated values of cell C
⊕ plus operator for two truncated pmfs of the same object
⊗ convolution operator for two pmfs
κk k-th order cumulant
µk k-th order moment

τp, τv probability threshold, value threshold
W ,W a possible world, a set of possible words

PWD, PWS possible worlds, possible world semantic

proposes a dynamic structure for efficient bundled range
aggregation, namely aBB-tree, which takes linear space and
logarithm time for querying and updating. In [11], authors
study efficient evaluation of iceberg cells of s-cuboids.

Many research interests are drawn on optimizing OLAP
systems. For example, [12] and [13] study replication tech-
niques to support mixed OLTP and OLAP workloads. [14]
describes new concurrency control protocols providing s-
napshot isolation on distributed in-memory OLAP systems.
[15] studies the exploration of biased queries together with
techniques of rewriting biased queries into unbiased ones.
However, none of these works are on probabilistic data.

There have also been research works on handling prob-
abilistic data aggregation. In particular, [16] studies ag-
gregation with the algebraic structures of semirings and
semimodules. [17] studies dichotomies of tractable and in-
tractable queries so that query evaluation can efficiently
switch between exact and approximate versions. [18] in-
vestigates probabilistic keys in order to facilitate data pro-
cessing for probabilistic data. [19] considers the aggregation
representation with histograms and wavelets. [20] and [22]
investigate ranking semantics for probabilistic data. [23]
and [24] use frequency moments for efficient probabilistic
data aggregation. Other query variants include trajectory
queries [25], [26], reverse nearest neighbor queries [21], [27],
and skyline queries [28], etc. However, these techniques
cannot be directly used in the OLAP settings, since they
do not consider measures, hierarchies, etc.

Meanwhile, the data veracity problem in OLAP, i.e.,
correlation between uncertain data and cells, has been rec-
ognized in [29]–[33]. However, [29] and [30] bypass the
problem by resorting to higher level cuboids that fully
accommodate an object. Thus, they do not address how
aggregation is done on base-level cells. [31] and [32] esti-
mate the expected belongingness of an object to a cell by
allocation policies, e.g., with EM algorithms. They thus do
not offer probabilistic confidence. Moreover, results with
expected values or sampling might lead to nonintuitive
query answers, when data values and their probabilities
follow skewed and non-aligned distributions [34]. Actually,
the expected value solution is a special case of our sketch

method with the 1st order cumulant. Last but not the least,
none of these works address cube materialization and query
processing as considered in our work.

3 AGGREGATION

We present the concept of measure pmf in Section 3.1. We
study convolution and sketch based aggregation in Section-
s 3.2 and 3.3, respectively2.

3.1 Measure Pmf

Since the existence of an object is uncertain, its measure
value is also uncertain. We denote the distribution of ox’s
measure value by fX(x), where X is a random variable for
the measure value. If ox’s existential pmf represent the join
distribution of both dimension and measure values, fX(x) is
the marginal distribution on the measure domain dom(M),
satisfying

∑

fX(x) = 1. Also, the length of a measure pmf
is no larger than m, if an object has m instances at most.

An object’s measure pmf can be obtained from its exis-
tential probabilities with simple transformations. For exam-
ple, in Fig. 2, we can enumerate o2’s instances {t3, t4, t5}
and merge similar items, i.e., combine instances with equal
measure values. Formally, fX(x) =

∑

ti∈ox∧ti.x=x ti.prob.
However, measure pmfs are insufficient for deriv-

ing a cell’s aggregation, because unlike a precise multi-
dimensional point that deterministically resides in a cell,
an uncertain object possibly exists in multiple cells. As we
will show, the aggregation is conditionally dependent on the
topological relationship between cells and objects.

3.2 Convolution-based Aggregation

Definition 1. Each cell is defined as a multidimensional
vector, C = {I1, I2, ..., Im}, where Ii = [Dl

i, D
u
i] is

an interval on Dimension Di, and the Iis are mutually
exclusive. For a cuboid, the union of all its cells is equal
to the corresponding domain space.

Definition 2. Complete Object and Pmf. If an object is
entirely contained by a cell, the object is a complete object
w.r.t. the cell and its pmf is a complete pmf w.r.t. the cell.

For example, o1 is a complete object w.r.t. C1 and both
o1 and o2 are complete objects w.r.t. C3. All objects are
complete objects w.r.t. the apex cell, i.e., the domain space.
The aggregation over complete pmfs is their convolution.

The convolution of complete pmfs w.r.t. a cell satisfies
PWS. We show the possible worlds of the above example in
Table 4(a). There exist 6 possible worlds W1 to W6. We can
get the pmf of SUM by scanning the PWD table and merging
items with the same values. For example, the probability of
X1 +X2 being 2 is p(W4) + p(W6) = 0.2. By repeating this,
we get the pmf for the aggregation and it is the same as the
convolution result.

TABLE 4: Possible World Interpretation
(a) X1 + X2 for cell D[1 : 2, 1]

ID PWD p(Wi) SUM
W1 t1, t3 0.12 3
W2 t1, t4 0.3 4
W3 t1, t5 0.18 3
W4 t2, t3 0.08 2
W5 t2, t4 0.2 4
W6 t2, t5 0.12 2

(b) X1 + X
(1)
2 for D[1 : 1]

ID PWD p(Wi) SUM
W1 t1, null 0.18 2
W2 t1, t3 0.12 3
W3 t1, t4 0.3 4
W4 t2, null 0.12 1
W5 t2, t3 0.08 2
W6 t2, t4 0.2 3

2. For some proofs of lemmas of this section, we refer interesting
readers to the conference version [7].

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
4

Definition 3. Truncated Object and Pmf. If object ox is
partially contained by cell Cj , we denote their over-
lapping part as a truncated object ox[j]. For instances
of ox[j], the distribution of their measure values fol-

lows a truncated pmf f
(j)
X , which can be obtained in

the same way as for a non-truncated object. Formally,

f
(j)
X (x) =

∑

ti∈ox[j]∧ti.x=x ti.prob.

In Fig. 2, o2 overlaps with cells C1 and C2. So, o2’s mea-

sure pmf is “truncated” into pmfs f
(1)
2 and f

(2)
2 , respectively.

The integration of all truncated pmfs of an object sums up
to 1, as shown in Lemma 1.

Lemma 1.
∑

o[j]⊆o

∑

x∈o[j].M

f
(j)
X (x) = 1 (1)

However, convolution cannot be directly applied for
truncated pmfs, because truncated pmfs corresponds to
“null tuples” in possible words. In Table 4(b), we show
SUM over cell C1. There are 6 possible worlds W1 to W6,
whereas W1 and W4 are with bolded “null” instances of
o2, because it is necessary to consider the case that o2 is
not in cell. We denote o2’s disappearance in C1 as ”null”,
whose probability equals to 1−

∑

ti∈o2∧ti /∈C1
ti.prob = 0.3.

Its product with t1’s existential probability is p(W1) = 0.18.
Reversely, ignoring null tuples leads to wrong calculations
of aggregated pmfs3.

Definition 4. Complemented pmfs. For a truncated pmf
fX in cell C , its complemented pmf is found by adding
a null item (0, 1−

∑

x∈C fX(x)) to fX .

For example, in Fig. 2, f
(1)
X2

= {(1, 0.2), (2, 0.5)}. Then,

the complemented pmf f
(1)
X2

is {(0, 0.3), (1, 0.2), (2, 0.5)}.
For a complete pmf, the complemented pmf is itself.

Definition 5. Operation ⊕. Suppose object oi is truncated

into two parts with truncated pmfsf
(s)
Xi

and f
(t)
Xi

. We

have: fXi
(x) = f

(s)
Xi

(x)⊕ f
(t)
Xi

(x).

For brevity, we denote it as fXi
= f

(s)
Xi

⊕ f
(t)
Xi

. Operation
⊕ is similar to vector addition. In Fig. 2, for example, o2 has
truncated pmfs f1

X2
(x) and f2

X2
(x). It shows that f1

X2
(x) ⊕

f2
X2

(x) equals {(1, 0.2+0.3), (2, 0.5+0)} which equals fX2
.

Here, the null item is (0, 1 − 0.2 − 0.3 − 0.5 = 0) and is
omitted. More, if an object is truncated into three parts, ⊕ is
applied for the sequence of the three, and so on.

Definition 6. Operation ⊗. Suppose fX and fY are t-
wo complemented pmfs of variables X and Y . The
distribution of the two variables’ summation is their
convolution.

fX+Y (z) = (fX ⊗ fY)(z) =
∑

x

fX(x) · fY (z − x)

For brevity, we denote it as fX+Y = fX⊗fY . It is easy to
verify that ⊕ and ⊗ satisfy the distribute and communicative
laws. Without causing any ambiguity, we refer to a truncated
pmf as its complemented format for the rest of the paper.
Next, we show that the convolution-based aggregation sat-
isfies PWS and thus ensures correctness.
Lemma 2. Suppose two truncated pmfs whose complement-

ed formats are fX and fY , respectively. Their convolu-
tion fX+Y = fX ⊗ fY satisfies PWS.

3. A counter example is that there would be 4 possible worlds
{(t1, t3), (t1, t4), (t2, t3), (t2, t4)} if without null cases. Its correspond-
ing SUM would be {(2, 0.08), (3, 0.32), (4, 0.3)}. But the actual pmf is
{(1, 0.12), (2, 0.26), (3, 0.32), (4, 0.3)}.

Recall that a complete pmf is also a complemented pmf.
Thus, Lemma 2 can be generalized to the case that either
or both of the two are complete pmfs. Then, using math-
ematical induction, it is easy to generalize Lemma 2 from
supporting two pmfs to multiple pmfs. So, we can conclude
that for the set of pmfs of a cell their convolution satisfies
PWS. The time complexity for aggregation is depending on
two factors: 1) the number of pmfs; 2) the length of a pmf,
i.e., the number of instances in a pmf. Suppose each pmf is of
length m. A convolution operation, i.e., ⊗, can be evaluated
in O(m2) time. The time efficiency can be improved to
O(mlog2m) if Fast Fourier Transformation (FFT) is used.
We prove that the convolution of n pmfs takes the cost of
O(mn2log2(mn)) as proved in [7]. It can be simplified as
O(n2log2(n)), if m is a constant.

Lemma 3. Suppose each pmf is of length m, the time
complexity for convoluting n pmfs is O(mn2 ·log2(mn)).

Proof. The most commonly used FFT is the Cooley-Tukey
algorithm that depends on the factorization of the pmf
length. Therefore, the pmf length is limited to power-of-two
sizes [35]. It means if a pmf is of length m, we needs to scale
it up to length 2i, where i = ⌈log2m⌉. So, a more accurate
convolution cost for two pmfs of length m is O(2i ·i) instead
of O(mlog2m).

Then, given n pmfs, how many of them will be scaled

up to 2j+1? The answer is 2j+1−2j

m . Let i = ⌈log2m⌉ and
i∗ = ⌈log2(m · n)⌉. The time cost of convoluting n pmfs is:

α · 2ilog2(2
i)+...+α · 2ilog2(2

i)
︸ ︷︷ ︸

(2i−m)/m

+α · 2i+1log2(2
i+1)+...+α · 2i+1log2(2

i+1)
︸ ︷︷ ︸

(2i+1−2i)/m

+...+ α · 2i
∗
log2(2

i∗) + ...+ α · 2i
∗
log2(2

i∗)
︸ ︷︷ ︸

(2i
∗
−2i

∗
)/m

≈

i∗∑

j=i

α
2j − 2j−1

m
· 2j log2(2

j) =
α

m

i∗∑

j=i

22j−1 · j = O(
(2i

∗
)2 · i∗

m
)

= O(mn2 · log2(mn))

3.3 Sketch-based Aggregation

Now we consider another way of probability distribution
representations to alleviate the aggregation overheads. The
cumulants (κk) and moments (µk) are quantitative measures
for defining the shape of a probability distribution. The
first and second order cumulants coincide with mean and
variance. The third and fourth order of the central moments
are called skewness and kurtosis. Theoretically, the collection
of all cumulants (or moments) of all orders, i.e., k = 1, ...∞,
can uniquely determine a probability distribution4.

Cumulants. Cumulants have a property called the linear
summation property. The cumulant of a sum of independent
random variables is the sum of the corresponding cumu-
lants of the addends [37]. For example, the expectation (1st
order cumulant) of X1+X2 equals the summation of E(X1)
and E(X2). Also, the variance (2nd order cumulant) of
X1 +X2 equals the summation of V ar(X1) and V ar(X2)

5.

4. It is also possible to approximately recover the probability distri-
bution with first few cumulants or moments [36]. But there is no theo-
retical guarantees on the approximation quality to our best knowledge.

5. The linear cumulant summation is true according to Central Limit
Theorem. In most database applications, it can be seen from the context
that it is reasonable to assume that random variables are independently
and identically distributed [38]. If it is not clear that the distributions
are identical, Liapounov’s condition can be checked to ensure the
convergence of the cumulant sum.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
5

Then, we can have that the k-th order cumulant of
cell C is the linear summation of all C’s pmfs’ cumulants.
Equivalently, κk(FC) =

∑

oi∈C
κk(oi).

Cumulants can be derived from moments, and vice ver-
sa. The k-th order cumulant κk is a k-th degree polynomial
in the first k non-central moments, {µi}i≤k.

Moments. The concept of moments is proposed by
Chebyshev for the proof of central limit theorem. A gen-
eral form of k-th order moment is: µk(X) = E(Xk) =
∑

x∈X xkfX(x).
For aggregating a cell, we first calculate each pmf’s

moments and therefore its cumulants. Then, we use the
linear summation of pmfs’ cumulants to get the cumulants
of the cell’s aggregate for complete pmfs. We proceed to
show how to use Lemma 4 to calculate the moments of an
object’s pmf from its truncated parts.

Lemma 4. The k-th order moment of an object’s pmf is the
linear summation of k-order moments of its truncated
pmfs. Formally, if object o is truncated into o[1], ..., o[τ]

with truncated pmfs f
(1)
X , ..., f

(τ)
X , we have: µk(X) =

∑τ
i=1 µk(X

(i)).
Complexity. The time complexity of sketch-based aggre-

gation depends on two factors: 1) n, the number of pmfs; 2)
k, how many cumulants are used for representing a pmf.
According to the linear summation property, the sketch-
based aggregation takes O(k · n) time.

4 PARALLEL CUBE MATERIALIZATION
We introduce the parallel framework in Section 4.1. We
devise a semi-distributive strategy which covers full and
partial cube materialization in Sections 4.2 and 4.3, respec-
tively. We study how the parallel materialization can be
optimized with a cost model in Section 4.4.

4.1 Parallel Framework

Data cube materialization is known as a computationally
intensive task. We thus consider leveraging the power of
parallel computing for efficient task processing. The work
is to match the available computational resources with the
computational needs, i.e., the materialization task. On the
other hand, it is suitable for the materialization to be paral-
lelized according to the multi-dimensional and multi-level
nature of data cubes.

For parallelizing the materialization, the computational
task is split into smaller sub-tasks and assigned to compu-
tational cores. In our implementation, we make the par-
allelism implemented on the cell levels. In particular, we
start with the base cuboid, and dynamically assign tasks of
cell aggregation to available cores in a round-robin manner.
Such task assignment continues until all aggregation tasks
of the cuboid are done. The process is then repeated for
subsequent cuboids until the materialization finishes.

The parallelization plan is made according to three prop-
erties: 1) the aggregation tasks of different cells in a cuboid
are independent; 2) the aggregation between ancestor and
descendant cells has correlations and the computational
efforts have potentials to be shared; 3) the number of cells is
much larger than the number of computation cores.

The first property, i.e., cell-level independence, enables
the feasibility of cell-level parallelism. The second property
implies that we cannot naively employ cuboid-level paral-
lelism, i.e., assigning different cuboids to different cores, to

Fig. 3: Fc and F ∗c
Fig. 4: T-pmf Model

maximally share the computation. The third fact makes it
feasible to distribute workloads in a round-robin fashion in
order to avoid cases of over- and under-provisioning and
therefore a finer level of parallelism is not necessary.

In the sequel, we introduce algorithms of full and partial
materialization for the parallel implementation, as well as
corresponding cost models.

4.2 Full Materialization

The efficient materialization is achieved by two techniques.
The first is the acceleration with parallel computing. The
second is by maximizing the sharing of aggregation com-
putation, especially the sharing between ancestor and de-
scendant cuboids. For the first part, we will show detailed
algorithms based on the proposed parallel framework. The
second part is handled by answering the following ques-
tions: 1) which part of the convolution-based aggregation
between ancestor and descendant cuboids can be reused
and how? 2) given multiple materialized ancestor cuboids,
which one derives a descendant cuboid most efficiently?

We store two parts of aggregates for each cell C , the
convolution of FC and F ∗C , and their sketches, {κj(FC)}
and {κj(F

∗
C)}

6. FC is the convolution of all pmfs, including
complete and truncated pmfs. The other aggregation F ∗C is
for convolution of complete pmfs, which can be reused for
aggregating its descendant cells. The aggregation of com-
plete pmfs, i.e., F ∗C , can be reused, because if a pmf is com-
plete for a cell it is complete for all the cell’s descendant cells.
We call such this property Pmf Containment Monotonicity. An
example is shown in Fig. 3. Suppose C3 is a descendant
cell of C1 and C2. Pmfs f3 and f5 are complete for C1

and f1 is complete for C2. According to the monotonicity
property, f1, f3, and f5 are complete for descendant cell C3.
The aggregation of complete pmfs can be reused, meaning
F ∗C3 = F ∗C1 ⊗ F ∗C2. It means the aggregation of complete
pmfs of a cell, i.e., F ∗C , is distributive.

Another observation is that truncated pmfs are necessary
for the aggregation of a cell but they cannot be reused for

descendant cells. For example, FC2 equals F ∗C2 ⊗ f
(2)
2 . But

f
(2)
2 cannot be used for getting FC3. So, for truncated pmfs,

we store their identifiers in a quarantine zone maintained
together with the cuboid. Notice that there is no quarantine
zone for the apex-cuboid, since all objects are complete for
the domain.

6. The aggregation between ancestor and descendent cells is similar
for convolution and sketch-based methods. By viewing the pmf in the
sketch representation, we can replace ⊗ and ⊕ with linear summations
over culumants and moments, respectively. For ease of presentation,
we focus on the convolution-based aggregation in this section.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
6

In summary, the convolution operation is distributive
for complete pmfs but not distributive for truncated pmfs
isolated in quarantine zones. Thus, we come up with a semi-
distributive framework that is covered by Algorithms 1 and
2. It is possible that a pmf is truncated for an ancestor
cell but complete for its descendant cell. For example, f2
is truncated for C1 but complete for C3. In this case, we
can remove f2 from cuboid C3’s quarantine zone, supposing
C3 belongs to cuboid C3. It is covered by lines 18-20 of
Algorithm 2. A cuboid’s quarantine zone can be cleaned if
all its descendant cuboids are materialized.

Algorithm 1: Base Cuboid Parallel Materialization

Output: A materialized base cuboid
1 for each cell Ck in the base cuboid in parallel do
2 FCk

← 0
3 F∗

Ck
← 0 ⊲ convolution for complete pmfs in Ck

4 Let all moments and cumulants of FCk
and F∗

Ck
be 0

5 for each object oi ∈ Ck do
6 if oi is a truncated object w.r.t. Ck then
7 Store oi in the quarantine zone

8 Let f
(k)
Xi

be oi complemented pmf w.r.t. Ck

9 FCk
← FCk

⊗ f
(k)
Xi

⊲ Convolution

10 Calculate {µj [X
(k)
i]}∀j and {κj [X

(k)
i]}∀j

11 Store oi and {µj [X
(k)
i]} in the quarantine zone

12 κj(FCk
)← κj(FCk

) + κj(X
(k)
i) ⊲ (∀j) ⊲ Sketch

13 else
14 FCk

← FCk
⊗ fXi

⊲ fXi
is a complete pmf

15 F∗
Ck
← F∗

Ck
⊗ fXi

⊲ Convolution

16 Calculate {κj [Xi]}∀j

17 κj(FCk
)← κj(FCk

) + κj(Xi) ⊲ (∀j)
18 κj(F

∗
Ck

)← κj(F
∗
Ck

) + κj(Xi) ⊲ (∀j) ⊲ Sketch

Algorithm 2: non-Base Cuboid Parallel Materialization

Input : an ancestor cuboid CA

Output: a materialized cuboid C
1 Initialize C’s quarantine zone as CA’s quarantine zone
2 for each cell Ck in the current cuboid C in parallel do
3 FCk

← 0
4 F∗

Ck
← 0 ⊲ convolution for complete pmfs in Ck

5 Let all cumulants of FCk
and F∗

Ck
be 0

6 for each Ck’s ancestor cell CA
k ∈ C

A do
7 F∗

Ck
← F∗

Ck
⊗ F∗

CA
k

⊲ Merge ancestor cells’ complete

convolution
8 κj(F

∗
Ck

)← κj(F
∗
Ck

) + κj(F
∗

CA
k

) ⊲ (∀j)

9 FCk
← F∗

Ck
10 for each object oi in cuboid C’s quarantine zone do
11 if oi is a truncated object w.r.t. Ck then

12 Let f
(k)
Xi

be oi complemented pmf w.r.t. Ck

13 FCk
← FCk

⊗ f
(j)
Xi

⊲ Convolution

14 Calculate {
∑

k µj [X
(k)
i]}∀j and {

∑

k κj [X
(k)
i]}∀j

15 Store oi and the moments in C’s quarantine zone

16 κj(FCk
)← κj(FCk

) + κj(X
(k)
i) ⊲ (∀j) ⊲ Sketch

17 else
18 F∗

Ck
← F∗

Ck
⊗ fXi

⊲ fXi
is a complete pmf

19 FCk
← FCk

⊗ fXi

20 Remove oi from C’s quarantine zone ⊲ Convolution
21 Calculate {κj(Xi)}∀j

22 κj(FCk
)← κj(FCk

) + κj(Xi) ⊲ (∀j)
23 κj(F

∗
Ck

)← κj(F
∗
Ck

) + κj(Xi) ⊲ (∀j) ⊲ Sketch

If there are multiple ancestor cuboids, we choose the
one incurring minimum aggregation cost. This problem is
known as multiway aggregation [39]. Suppose a cost model
Cost(C, CA) that estimates the materialization cost of C
from CA. The best efficiency is expected to be achieved by
choosing the ancestor cuboid CA∗ with the smallest cost.
Formally, CA∗ = argminCost(C, CA).

4.3 Partial Materialization

To get the best query performance, the full materialization ap-
proach precomputes all cuboids. However, full materializa-
tion is not space efficient and the construction time is very
high. In commercial OLAP products, a commonly adapted
method, called partial materialization, chooses a subset of
cuboids to materialize [6]. The selection of a cuboid depends
on: 1) whether the cuboid is beneficial, i.e., whether it helps
in efficiently answering queries; 2) whether the cuboid helps
in deriving other cuboids that are beneficial. A simple way
of measuring such benefits is to use a linear cost model [6].
Here, only a set of selected (not all) cuboids are materialized.
Then, during query evaluation, if the requested cuboid has
been computed, it is directly used. Otherwise, the cuboid is
materialized on-the-fly from one of its materialized ancestor
cuboids according to the linear cost model. The base cuboid
is assumed to be materialized.

However, the existing solution cannot be directly applied
for the probabilistic data cube for two reasons. First, such
a model assumes that the cost is solely dependent on the
number of tuples scanned for constructing a cuboid and
thus is linear to I/Os. The cost in our case depends on
many other factors instead of just I/Os. Second, the on-the-
fly computation of a cuboid is expected to be efficient to
meet the demands of OLAP. Actually, this cuboid selection
problem refers to the space constrained query optimization
problem based on the cuboid dependencies [6] that enables
partial materialization. In the sequel, we study a cost model
for probabilistic cubes.

4.4 Cost Estimation

Now we study a unified cost model for both full and
partial materialization. As have been illustrated, the cost
estimation can be used in two ways, multiway aggregation
for full materialization and cuboid selection for partial mate-
rialization. In either case, we need to estimate the cost for
building cuboid C from its ancestor CA in order to optimize
the materialization. In particular, we have to consider the
cost on both I/Os and parallelized computation, denoted
as CostIO and Costcomp, respectively7. The cost model is
formalized below.

Cost(C, CA) = CostIO(C, C
A) +

Costcomp(C, C
A)

dparallelism
Here, dparallelism represents the degree of parallelism,

i.e., the number of computation cores. Both parts of the cost
are measured in elapsed time so that the heterogeneous
costs can be unified in the equation. We argue that the
computation part cannot be ignored. As will be shown, the
I/O part is almost proportional to the data size, while the
growth of the computation part is much faster. Extensive
experiments are also conducted to measure the estimation
accuracy, as well as the necessity of considering computa-
tional cost.

Estimation of CostIO . Suppose cuboid CA has nA

tuples and its quarantine zone has qA tuples, and cuboid

7. In the cost model, we did not consider I/O parallelization, which
depends on the de facto computer configuration and data layout.
However, with specific configuration, our cost model can be easily
extended to support the I/O parallelization scenario, e.g., as it is done
for the computation parallelization.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
7

C is of size n with a quarantine zone sized q. We assume the
main memory is large enough for accommodating a cuboid.
The I/O cost of generating C from CA can be modeled as:

CostIO(C, C
A) = αi · PA(nA + qA) + αo · PA(n+ q)

where αi and αo denote read and write time of a disk page,
and function PA(n) denotes the number of disk pages taken
for n tuples.

Given the categories or domain space defined for each
of cuboid C’s dimensions, the number of cells in C can be
obtained. In real applications, some cells can be empty due
to skewed data distributions. A common way to derive n
and nA is to use the FM-sketches [40], which estimates the
number of distinct items, i.e., how many cells a cuboid
contains, with limited space and one single pass through
the database.

Estimation of Quarantine Zone Size q. The size of a
quarantine zone is estimated by Equation 2. Within each
cell e, we assume the objects associated are uniformly dis-
tributed. The volume of cell e can be represented by V (e) =
∏

1≤i≤d ei, where ei is the side length on dimension i. We
suppose objects are of the same size V (o) =

∏

1≤i≤d ui,
where ui is the side length of the uncertainty region on
dimension i. The density ρe is the number of objects per unit
volume of the cell. It can be replaced by a global density ρ
with some math transformations as shown in Equation 2.

q = N −
∑

e∈C

ρe ·max{0,
∏

1≤i≤|D|

(ei − ui)}

= N − ρ · n ·max{0,
∏

1≤i≤|D|

(ei − ui)}
(2)

The idea of the equation is to: 1) count the number of
complete pmfs inside a cell; 2) its difference with the total
number of pmfs (N) is the number of truncated pmfs; 3)
return the difference as the size of the quarantine zone.

Estimation of # of complete pmfs in cell e. We use an
example of a one-dimensional cell to explain the first step,
as shown in Fig. 4. There exist two dashed lines enclosing
an “infecting zone” such that if an object is truncated w.r.t.
the cell, its center must be within the infecting zone. In the
example, o1 and o3, whose centers are out of the zone, are
not truncated objects. If offsetting the cell boundary inside
by u/2, we get a region such that if a object’s center is in
the region, the object must be completely contained by the
cell. So, the number of complete pmfs can be estimated by
the product of the local density times the cell’s volume, i.e.,
ρe·
∏

1≤i≤|D|(ei−ui). There is no complete pmf in e, if ei < ui.
The parameters N , {ui}, and {ei} can be obtained while

using the FM-sketch method to scan the database. ρ can be
calculated by dividing N with the domain volume.

Estimation of Costcomp. The computational cost of
deriving cuboid C is the number of convolutions taken from
its materialized ancestor CA. The convolution computation
has three parts, including the aggregation for complete
pmfs, truncated pmfs, and for the pmfs which are truncated
in ancestor cells but complete in descendant cells. The three
parts are connected by a weighted summation function,
since the coefficients, i.e., αc, αc, and αt→c, are different
at different data scale.

Costcomp = αc · Cost
c
pmf + αt · Cost

t
pmf + αt→c · Cost

t→c
pmf

= αc · log2N
c
pmf (N

c
pmf)

2
+ αt · log2N

t
pmf (N

t
pmf)

2
+

αt→c · log2N
t→c
pmf (N

t→c
pmf)

2

(3)

N c
pmf is the number of convolutions for aggregating

complete pmfs. There are n cells in C and each cell C ∈ C
stores an aggregated pmf, F ∗C , for its complete pmfs. Thus,
there are n such aggregated pmfs in C and nA ones in CA.
Note that n is smaller than nA, because aggregates in CA

are combined and thus reused while deriving C. In total,
this process takes (nA − n) convolution operations, i.e.,
N c

pmf = nA−n. N t
pmf is the number of convolutions for ag-

gregating truncated pmfs. The truncated pmfs’ aggregation
cannot be reused, so the aggregation is redone for C. Thus,
N t

pmf equals to the total number of truncated pmfs for all
cells in C. The idea of estimating the number of truncated
pmfs per cell is similar to that of Equation 2. N t→c

pmf is the

number of pmfs which are truncated for cuboid CA but
complete for C. It can thus be estimated by the total number
of truncated pmfs of CA minus that of C.

5 PROBABILISTIC QUERIES OVER CUBOIDS

Our data cube techniques support classic OLAP queries,
such as roll-up, drill-down, slicing, and dicing. The drill-
down or roll-up path conforms with the cuboid lattice. The
implementation of roll-up and drill-down has been impli-
cated by the cuboid materialization. For example, drilling
down a cuboid refers to navigating into a more detailed
level. It can be implemented by looking up the ancestor
cuboid with the user-specified expanding dimension.

In this section, we study how to evaluate two repre-
sentative queries, namely the probabilistic slicing query and
the probabilistic dicing query, on the probabilistic data cube.
We present the query semantics and corresponding eval-
uation frameworks in Section 5.1. In particular, we cover
the sketch-based pruning techniques for probabilistic dicing
queries in Section 5.2. For ease of presentation, we assume
the data cube is fully materialized. The solutions can be
easily extended to the partial materialization case with the
techniques presented in Section 4.3.

5.1 Queries

Definition 7. A probabilistic slicing query (PSQ in short) per-
forms aggregation over a set of dimensions (D1 to Dk)
and retrieves tuples whose corresponding dimension
values are within given range, e.g., [l1, u1], ..., [lk, uk].

The purpose of PSQ is to offer confidence indicators
to traditional slicing queries. A PSQ returns a set of qual-
ified cells, i.e., within the query range, together with the
aggregates. The evaluation of PSQ has two phases. The first
phase, cuboid selection, locates the cuboid that matches the
dimensions specified in the query. The second phase, tuple
selection, elaborates each tuple of the cuboid to see if they
are within the query range.

Definition 8. A probabilistic dicing query (PDQ in short)
performs aggregation over one or more dimensions and
return the tuples with measure values higher than the
value threshold τv and qualification probabilities higher
than the probability threshold τp.

With a pre-aggregated cuboid on dimensions D1 to
Dk, the query can be evaluated by scanning each cell
and check if its corresponding qualification probability is
above the given threshold. Suppose x ∼ Fc(x) is a random
variable representing the aggregated value of cell C . The

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
8

qualification probability can be calculated by integrating the
aggregation pmf Fc as Prob(X ≥ τv) =

∑

x≥τv
Fc(x).

Then, if a tuple’s qualification probability is at least τp,
it is accepted as a part of the query answer. Otherwise, it
is rejected. In summary, the evaluation of PDQ contains 3
phases. The first cuboid selection phase is similar to that of
PSQ. The purpose is to retrieve the appropriate cuboid. The
second pruning phase utilizes probabilistic pruning bounds
(in Section 5.2) to quickly qualify or disqualify candidate
tuples/cells in the cuboid. The third refinement phase is to
compute qualification probabilities for suspected cells, i.e.,
those are neither pruned nor qualified in the second phase,
and compare them with τp. For the partial materialization
case, it is only necessary to materialize the requested cells
instead of the entire cuboid.

5.2 Sketch-based Pruning
Sketch values, i.e., cumulants and moments, can be used
to derive upper and lower bounds for cells’ qualification
probabilities. If a tuple’s lower bound is above τp, it is
included in the query answer. Or if its upper bound is below
τp, it is excluded. The bounds help in reducing the query
effort in the refinement phase.The upper and lower bounds
are formalized by Lemmas 5 and 6, respectively.

Lemma 5. (Upper Bound.) If the expectation of the aggre-
gated value X is at most τv , the probability that X ≥ τv
is at most κ2

κ2+a2 , where a = |τv − µ1(X)|. Formally,

µ1(X) ≤ τv ⇒ Prob(X ≥ τv) ≤
κ2

κ2 + a2

Lemma 6. (Lower Bound.) If the expectation of the aggre-
gated value X is at least τv , the probability that X ≥ τv
is at least a2

κ2+a2 , where a = |τv − µ1(X)|. Formally,

µ1(X) ≥ τv ⇒ Prob(X ≥ τv) ≥
a2

κ2 + a2

Notice that we do not derive both bounds for a tuple’s
qualification probability. Whether to derive the upper or
lower bound is case-dependent. If a tuple’s expectation is
greater than τv , we upper bound its probability by Lemma 5.
Otherwise, we lower bound it by Lemma 6. Since the bound-
s can be directly derived from the one-sided Chebyshev’s
inequality (or Chebyshev-Cantelli inequality), their proofs
are omitted due to page limits8.

6 EXTENSIONS TO NEW AGGREGATES

In this section, we investigate several extensions regarding
the aggregation function supported by probabilistic data
cubes. In particular, we consider the aggregation functions
COUNT, AVG, and MAX. MIN can be derived in a similar way as
MAX and is omitted due to page limits.

6.1 COUNT

COUNT can be considered as a special case of SUM. Essen-
tially, it is to measure multi-dimensional objects by their
existence. In other words, existence becomes the measure.
For example, if an object is completely inside a cell, the
existence is 100%. If an object partially belongs to a cell,
e.g. 80%, it means the existence can be represented by a

8. It’s possible to use Zelen’s inequality for the first four cumu-
lants resulting in a tighter pruning bound. We stick to Chebyshev’s
inequality that is efficient yet simple for deployment. Although the
tightest bounds can be derived by higher order cumulants, it might
cost more than calculating the exact probability integration according
to our experiments, which contradicts our intention.

TABLE 5: PWS Table (AVG) for cell D[1 : 1]

Favg
C

= {(1, 0.2), (1.5, 0.32), (2, 0.48)}

ID PWD p(Wi) SUM COUNT AVG
W1 t1, null 0.18 2 1 2
W2 t1, t3 0.12 3 2 1.5
W3 t1, t4 0.3 4 2 2
W4 t2, null 0.12 1 1 1
W5 t2, t3 0.08 2 2 1
W6 t2, t4 0.2 3 2 1.5

TABLE 6: An Example of F sum,count
C

COUNT

Probability SUM
1 2 3 4

1 0.12 0.18 0 0
2 0 0.08 0.32 0.3

complemented pmf {(0, 20%), (1, 80%)}. Here, the pmf of
an object w.r.t. a cell is defined over set {0, 1} where 0 refers
to non-existence and 1 refers to existence of the the cell. The
aggregated COUNT of a cell is still a pmf, representing the
possible counts together with their possibilities. This count
can also be calculated through convolution. Thus, the whole
materialization framework of SUM can be applied.

6.2 AVG

In traditional data cubes, AVG is an algebraic operation,
meaning it can be evaluated by algebraic function on other
aggregates. For example, in case of precise values, AVG can
be calculated by SUM / COUNT. However, it is challenging to
calculate such aggregates in the setting of probabilistic data
cubes, because 1) data values are represented by pmfs; 2)
SUM and COUNT are often not independent.

Overview. We first show how the probabilistic distri-
bution of AVG can be calculated. Then, we demonstrate
that such calculation is computationally expensive and the
simple approximation would incur considerable errors. To
tackle that, we study the properties of truncated pmfs which
would scale down the problem. We also show that the com-
putation can further be accelerated with parallel processing.
At last, we investigate the sketch method for AVG in order to
speed up the pruning efficiency for dicing queries.

6.2.1 Aggregation of F
avg
C

We denote the probabilistic distribution of AVG for cell
C as F avg

C . First, we use PWS semantic to illustrate the
derivation of F avg

C for cell D[1 : 1], as shown in Table 5.
For every possible world of the cell, p(Wi), we can get
the SUM and COUNT and therefore the value of AVG. Then,
the possible worlds with same AVG values are combined
and the corresponding probabilities are summed so that
FAVG
C = {(1, 0.2), (1.5, 0.32), (2, 0.48)}. Similar to SUM,

such a process is #-P hard and incurs extensive computa-
tional overheads.

The AVG can be efficiently obtained, if the joint distri-
bution of SUM and COUNT is available. With such a joint
distribution, the average aggregate can be evaluated by
scanning the joint distribution and by combining the items
with the same ratio of the value of SUM to COUNT. We can use
quotient convolution to represent such a process as follows.

F avg
C (z) =

∑

y

F sum,count
C (zy, y)

For example, in Table6, the average could be 1 when
both SUM and COUNT are equal to 1, or when both SUM and
COUNT are equal to 2. So, the probability for AVG = 1 is

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
9

0.12+0.08 = 0.2, which is consistent with the result derived
with the PWS semantic.

Lemma 7. Given a cell C and the joint distribution of SUM
and COUNT, the distribution of AVG can be derived by the
quotient convolution and it satisfies PWS.

The proof is similar to Lemma 2 and is omitted due to
page limits. It guarantees the correctness of the deriving
joint distribution with quotient convolution. However, the
joint distribution for pmfs of a cell are computationally
expensive. For example, if a cell has 3 objects, o1, o2, and
o3, there can be

(3
2

)

cases for calculating F sum,count(∗, 2).
They are {o1, o2}, {o2, o3}, and {o1, o3}. It means that one
has to check all the combination object sets with size equal
to the given count. In general, if there are n objects/pmfs
belonging to a cell, there can be

(n
k

)

cases for calculat-
ing F sum,count(∗, k). In total, to get the joint distribution
F sum,count() requires

∑n
k=1 k ·

(n
k

)

= n2n−1 convolutions.
The time complexity is O(n · 2n). So, an efficient way of
calculating the joint distribution is needed.

Notice that the count and sum are independent for
complete pmfs. When adding a complete object, the cell’s
object count will definitely increase by one, since a complete
object definitely belongs to a cell. It means the effect of the
sum-count correlation can be ignored for complete pmfs.
So, if a cell is with nt truncated pmfs, the complexity can
be reduced to O(nt · 2

nt). However, the complexity is still
high, especially for objects with more uncertainties, i.e., less
complete pmfs. A polynomial-time solution is thus needed
for the efficient distribution evaluation.

To do that, one may mistakenly derive the aggregation
by avoiding the computation of correlations between SUM

and COUNT. For example, suppose pmfs of SUM and COUNT

of cell C are represented by F sum
C and F count

C , which can be
derived independently.

F
avg
C (z) ≈

∑
y

F
sum
C (zy) · F count

C (y)

According to Table 5, F avg
C (1.5) = 0.32. It can be ob-

served as follows, which shows that the error caused by this
incorrect assumption is over 50%:

F
avg
C (1.5) = 0.32 6= F

sum
C (3) · F count

C (2) = 0.32 ∗ 0.7 = 0.224

Thus, unlike other aggregation results, the correlation
between the two, COUNT and SUM, has to be calculated.
Next, we show how to tackle these challenges. The joint
distribution can also be evaluated in a semi-distributive
manner. Then, for complete pmfs, their SUM and COUNT are
independent, because COUNT is now a certain value.

6.2.2 Evaluation of Joint Distribution
We tackle the problem by evaluating the joint distribution
incrementally. Given a set of objects of a cell, we insert
objects and update the states of the joint distribution it-
eratively. The joint distribution can be viewed as a two-
dimensional table, as shown in Table 6. Therefore, we
can denote the k-th row of the joint distribution table as
F sum,count
C [k]. Upon inserting a new object, we can elabo-

rate the joint distribution table and update the correspond-
ing information by rows.

Let oi be the object inserted at iteration i. The effect
of inserting oi has to be checked. If oi is a truncated pmf,

there can be two possible cases, i.e., the existence and non-
existence of oi to the cell, as summarized by Equation 4.

In the existence case, the effect of non-null items of oi is
addressed. The non-null items of oi represent the fact that
oi exists in the cell and its corresponding probabilities. Let
pmf [i] be the probability distribution for non-null items of
oi. The renewed joint probability can be done by making
each row of F sum,count

C convoluted with pmf [i].
In the non-existence case, the effect of null item of oi

is addressed. The null item of oi denotes the fact that the
object does not exist in the cell and its probability. The count
will not be affected by the null item. The joint probability
of SUM and COUNT will be recalculated, since it conditionally
depends on the existence of oi. Let !pmf [i] be probability of
the null item of oi. The joint probability can be renewed by
making the product of !pmf [i] with each row of F sum,count

C .

F sum,count
C [k] =

F sum,count
C [k − 1] · pmf [i] + F sum,count

C [k]·!pmf [i] (4)

In particular, if oi is a complete pmf, Equation 4 degener-
ates into the convolution of F sum,count

C [k − 1] and oi’s pmf,
i.e., fXi

. Equation 4 covers truncated and complete pmfs.

Analysis. The process of the joint distribution evaluation
is depicted by Algorithm 3. Line 3 utilizes Equation 4 for
the recalculation of the joint distribution with object oi.
Algorithm 3 has a nested-loop in which the convolution can
be run n2 times, if the cell has n objects |C| = n. Hence, the
time complexity is O(n3log(n)) if FFT is used.

Algorithm 3: Joint Distribution Evaluation

Output: The joint distribution of cell C, F sum,count
C

1 for each object oi of the cell C do
2 for k = 1 to |C| do
3 ⊲ |C| is the total number of objects of cell C Update

F sum,count
C

[k] by Equation 4;

4 return F sum,count
C

;

Example. We use a brief example (Table 7) to verify the
correctness. First, o1 is inserted. At this stage, there is only
one row for the joint distribution table, which is the same
as o1’s pmf. Next, o2 is inserted. The table is expanded to
two rows. The first row, denoting the probability distribu-
tion of COUNT = 1, is updated by multiplying each item
with the null item of o2, i.e., {(1, 0.4 ∗ 0.3), (2, 0.6 ∗ 0.3)}.
The second row, denoting the probability distribution of
COUNT = 2, is obtained by the convolution of curren-
t first row {(1, 0.4), (2, 0.3)} and null items of o2, i.e.,
{(1, 0.2), (2, 0.5)}. The result is {(2, 0.08), (3, 0.32), (4, 0.3)}
and is consistent with the result derived by PWS semantics,
i.e., Table 6. The process is repeated until all objects, o1 to
o3, are inserted, as shown in Table 7.

TABLE 7: An Example of Evaluating F sum,count
C

COUNT

Probability SUM
1 2 3 4 5

After Inserting o1 = {(1, 0.4), (2, 0.6)}
1 0.4 0.6

After Inserting o2 = {(0, 0.3), (1, 0.2), (2, 0.5)}
1 0.12 0.18
2 0.08 0.32 0.3

After Inserting o3 = {(0, 0.3), (1, 0.7)}
1 0.036 0.054
2 0.108 0.222 0.09
3 0.056 0.224 0.21

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
10

Materialization. The materialization for AVG follows the
semi-distributive framework introduced in Section 4. Recall
that there is no correlation between SUM and COUNT for
complete pmfs, as we have shown in this section. The
aggregation, or equivalently the evaluation of the joint dis-
tribution, of a cell can thus be done by combining two parts.
The first part is the integration of all truncated pmfs with

Equation 4, denoted by F
(sum,count)t
C . The second part is the

convolution of all complete pmfs, denoted by F
(sum,count)∗
C .

The convolution result, or the joint distribution for com-
plete pmfs, is one-dimensional, since the count of complete
objects is a fixed value. To merge the two, we replace each

row of F
(sum,count)t
C by its convolution with F

(sum,count)∗
C .

The updated distribution is the sum-count joint distribution
to be derived.

According to the Pmf Containment Monotonicity, a com-
plete pmf for a cell is also complete for all its descendant
cells. The second part can thus be reused between the ances-
tor and descendant cuboids. So, we can use the quarantine
zone for storing the truncated pmfs of a cuboid in order to
maximally share the computation efforts on complete pmfs
and apply the parallel materialization framework for the
distribution evaluation.

Next, we introduce an efficient method for sketching
out the joint distribution and hence speeding up the query
process.
6.2.3 Sketch of AVG
Let X denote SUM and Y denote COUNT. To get the sketch of
AVG is equivalently to getting the sketch of X

Y . To derive the
sketch of AVG = X

Y
requires calculating the first two orders

of cumulants and moments, which is equivalent to evaluate
the expectation and variance, i.e., E(XY), and V ar(XY).

E(
X

Y
) =

∑

(x,y)∈(X,Y)

x

y
f(x, y) =

∑

(x,y)∈(X,Y)

x

y
fX(x|Y = y)fY (y)

V ar(
X

Y
) = E[(

X

Y
)
2
]− E

2
[
X

Y
]

From the equation group, to get the expectation and the
variance requires checking combinations of SUM and COUNT,
which is expensive. More, the process has to be repeated for
deriving E[(X

Y
)2]. A more efficient calculation is thus needed.

We can expand E(XY) around (µx, µy) by a 2nd-order
Taylor series, following the expanding process of E(XY)
shown in [37]. The result is shown by Equation 5, where
R is the remainder and can be omitted for approximation
purpose9. Terms f ′X() and f ′′XX() are for the first and second
order derivatives, respectively.

E(
X

Y
) = E{

µx

µy

+ f
′
X(

µx

µy

)(x− µx) + f
′
Y (

µx

µy

)(y − µy)

+
1

2
[f

′′
XX(

µx

µy

)(x− µx)
2
+ 2f

′′
XY (x− µx)(y − µy)

+f
′′
Y Y (

µy

µy

)(y − µy)
2
] + R}

≈
µx

µy

+
1

2
[f

′′
XX(

µx

µy

)V ar(X) + 2f
′′
XY (

µx

µy

)Cov(X,Y) + f
′′
Y Y (

µx

µy

)]

=
E(X)

E(Y)
−

Cov(X,Y)

E2(Y)
+

V ar(Y)E(X)

E3(Y)

(5)

With Equation 5, we can get the variance of AVG. After
some transformation, we can get the following.

9. The approximated sketch is used for rendering the pruning bound
in the form of probabilistic inequalities, which is found to be accurate
in terms of query evaluation.

V ar(
X

Y
) = E(

X2

Y 2
)− E

2
(
X

Y
)

≈
E(X2)

E(Y 2)
−

Cov(X2, Y 2)

E2(Y 2)
+

V ar(Y 2)E(X2)

E3(Y 2)
− E

2
(
X

Y
)

=
E2(X)

E2(Y)
·
[V ar(X)

E2(X)
− 2 ·

Cov(X,Y)

E(X) · E(Y)
+

V ar(Y)

E2(Y)

]

From the equations of E(XY) and V AR(XY), we can see
most items can obtained from the expectations and variance
of SUM and COUNT, except their covariance COV(X, Y). It
means that the computation for sketching SUM and COUNT

can be reused and the calculation is thus transferred to
deriving the covariance.

According to the definition of covariance, COV(X, Y) mea-
sures the the joint variability of SUM and COUNT:

Cov(X,Y) = E(XY)− E(X) · E(Y) (6)

The expectations of SUM and COUNT are known after the
corresponding sketching process is done. Only the expec-
tation of the production of SUM and COUNT needs to be
evaluated. Such an expectation can be efficiently derived
from the joint distribution F sum,count

C .

6.3 MAX
Overview. The aggregation of MAX is a bit different from
the other operators. We show that the aggregation function
MAX is not distributive in a probabilistic setting. Then, we
apply the idea of quarantine zone which helps to make the
operation semi-distributive.

6.3.1 Aggregation

The pmf of cell C can be derived by calculating each
possible value that can be the maximum of the cell. Let
Fmax
C (x) denote the probability that value x is higher than

all other values for objects in the cell C . The probability
equals the sum of probabilities that an object has value x
and all other objects have valuesj less than x. Formally,

F
max
C (x) =

∑
oi∈C

∫ +∞

−∞

fXi(x) ·
∏

oj∈C∧oi 6=oj

Pr(Xj < Xi) (7)

Considering the computational cost, to calculate such
a probability distribution, one needs to: 1) go through all
possible values of objects belonging to C ; 2) for each value,
calculate the product of probabilities that all other objects
are below such a value. We can reduce the computational
overheads by: 1) checking only a smaller subset instead of
all possible values of those objects; 2) avoiding unnecessary
calculation for the probability product by pruning some
irrelevant objects.

The optimization can be done with a cutting object. The
cutting object o∗ of a cell is the object which has the max-
imum minimum value. Formally, o∗ = argmaxoi∈C(Xi.l).
There can be multiple cutting objects, if multiple minimum
values of objects are equal. But the cutting value of a cell
is unique, denoted as l∗. Taking Table 1 as an example, o1’s
minimum value in C1 is 1 and o2’s minimum value in C1 is
1. Both o1 and o2 can be cutting objects, with cutting value
1 for cell C1.

Within a cell, if another object’s maximum value is small-
er than o∗’s minimum value, then the object has no chance
to contribute to the maximum value of this cell. It implies

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
11

Fig. 5: Calculating Fmax
C for Cell C

that there is no need to consider objects whose instances’
values are below l∗ for calculating the distribution, Fmax

C .
For example, in Figure 5, o1 will be chosen as the cutting

object, since it is the object with the maximum minimum
value within Cell C . o4 can be pruned, because its maximum
value is lower than the cutting bound. This way, only
unpruned objects, i.e., o1, o2, and o3, are substituted into
Equation 7 for deriving Fmax

C .
This way, we can thus shrink the integration range from

[−∞,+∞] to [l∗,+∞]. The upper bound can further be
shortened from +∞ to u∗, if u∗ denotes the maximum value
of all objects in the cell. Also, we can get a smaller object set
for the integration of Equation 7. The candidate object set,
denoted as SC , includes the objects whose maximum values
are no smaller than the cutting value, l∗. Equation 7 can thus
be rewritten as follows.

F
max
C =

∑
oi∈SC

∫ u∗

l∗
fXi(x) ·

∏
oj∈C∧o∗ 6=oj

Pr(Xj < X∗) dx (8)

From the equation of Fmax
C , it can be inferred that the

computation part is not distributive, due to the integration
part and the probability production part. More, the outer
summation is based on the candidate object set which is
cell-dependant. We observe that the I/O cost dominates the
cost of the materialization and therefore the reduction of
object traversing overheads would significantly accelerate
the overall materialization. In the sequel, we study how the
I/O part can be handled in a semi-distributive manner.

6.3.2 Materialization

We have shown the process for calculating the MAX ag-
gregation on the level of cells. Now, we study how such
aggregation can be deployed for cuboid levels, i.e., how
the computation of a cell affects the aggregation of its
descendant cells during the materialization.

Suppose a cell C consisting of a set of ancestor cells,
i.e., C = ∪CA. The distribution Fmax

C can be obtained by
checking the objects in cell C , pruning irrelevant ones, and
applying Equation 7. Equivalently, all objects in ancestor
cells {o ∈ ∪CA} should be checked. We find that the
pruning effect, i.e., the candidate object set, can be inherited
for descendant cells. Let candidate object sets SCA and SC

be for cells CA and C , respectively. We can prove that SC
must be a subset of ∪SCA . The correctness is guaranteed by
Lemma 8.

Lemma 8. If C consists of a set of ancestor cells (C = ∪CA),
then SC must be a subset of ∪SCA (SC ⊆ ∪SCA).

Proof. Let l∗(C) and l∗(CA) be the cutting value of
cells C and CA, respectively. The candidate set can thus
be represented by the objects with maximum values no less
than the cutting value, i.e., SC = {o

∣

∣o.u ≥ l∗(C) ∧ o ∈ C}

and SCA = {o
∣

∣o.u ≥ l∗(C) ∧ o ∈ CA}. Also, we have: 1)
l∗(C) ≥ l∗(CA); 2) C = ∪CA. To sum up, SCA must be a
subset of SCA .

We can thus store the candidate set in the quarantine
zone and save the pruning power for descendant cuboids.
In particular, during the materialization, the union of candi-
date sets for a cuboid is stored in the quarantine zone, and
is reused while materializing descendant cuboids. This way,
the cost for object traversing for cuboids of higher levels is
significantly reduced.

7 EXPERIMENTAL EVALUATION
7.1 Settings

Datasets10. We use both synthetic data (an adapted version
of the wellknown TPC-H benchmark11) and real data (US
Climate 201412). Each object in the raw data can be viewed as
a multi-dimensional point. Then, for each object, we model
its uncertainty of by creating a set of 10, 20, 30, and 40
possible instances. Of the same object, the instances reside
within a multi-dimensional orthogonal region. The region
is centered at the multi-dimensional point representing the
original object. For each dimension, the region’s side length
is set to 0.5%, 1%, and 2% of its domain. Within such
a region, the instances follow a multi-dimensional Gaus-
sian distribution whose mean is the region center and the
variance of each dimension is the square of 1/6 of the
corresponding side length. Then, we get two probabilistic
datasets called TPC and Climate. The statistics of the two
datasets are shown as below.

• TPC. We identify attributes Time, Item, Supplier,
Customer as dimension attributes, and Price as the
measure.

• Climate. We identify attributes Time, Wind Direc-
tion, Wind Speed, and Temperature as dimension
attributes, and Rainfall Amount as the measure.

By default, both datasets store 100MB data for 20, 141
objects and 0.4M tuples. We make the two datasets with
similar sizes in order to purely examine the effects of dif-
ferent data distributions. For scalability testing, we evaluate
the performance with up to 1GB data. The hierarchies of
TPC are of two levels on average. For Climate, we construct
a two-level hierarchy for each dimension. Then, there are
108 cuboids in the cuboid lattice for both datasets.

Parameters. For partial materialization, we examine the
tradeoff between the space cost and performance for cube
materialization and query evaluation by varying the space
budgets. We use the term space budget to represent the ratio
of the space cost of the partial materialization to the space
cost of the full materialization. By default, it equals 30%.

Implementation. The convolution-based method is im-
plemented using the wavelet package13. The sketch-based
method uses the first two orders of cumulants and moments
by default. All our programs were implemented in Java
and run on a PC with a 24 cores / 48 threads processor
@ 2.4GHz per core and 32GB RAM. We use 4 core to run all
the experiments by default.

10. Default parameters are given in bold.
11. http://www.tpc.org/tpch/
12. http://www.ncdc.noaa.gov/cdo-web/datasets
13. http://www.nayuki.io/page/free-small-fft-in-multiple-

languages

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
12

7.2 Results

Aggregation. Results for the aggregation is shown in
Fig. 6. We first consider the time cost of the aggregation
in Fig. 6(a). The amount of time for all the three methods
increases with the data volume. The convolution and sketch
methods need orders of magnitude less time than PWD.
Note that PWD can only finish on a smaller number of
objects. It follows from the fact that the two methods run
in polynomial time, but PWD has an exponential time
complexity. We then consider the space cost in Fig. 6 (b). The
PWD method requires enumerating an exponential number
of possible worlds and thus has very high space complexity.
For convolution and sketch aggregations, the space cost
increases polynomially and linearly, respectively. The effect
of parallelization is shown in Fig. 6 (c) and (d). The ac-
celeration on sketch-based method is not as significant as
convolution-based method, because of it is of light-weighted
computation. However, the overall acceleration for the two
aggregation is still impressive, since the cost for convolution
method is orders of magnitude higher.

Full Materialization. We examine the performance of
full cube materialization in 7. First, we compare the con-
struction efficiency of the proposed semi-distributive ap-
proach (Algorithms 1 and 2) with the holistic approach.
For a fair comparison, both approaches are equipped with
the same cost model meaning they are able to follow the
optimal aggregation path. In Fig. 7 (a), the semi-distributive
approach is about 3 orders of magnitude more efficient than
the holistic approach. Note that the y-axis is in log scale.
The efficiency is achieved by maximally reusing ancestor
cuboids’ computation. Second, we show the efficiency pro-
vided by the cost model. We consider two other competi-
tors: one is the random model which arbitrarily selects an
ancestor cuboid; another one is to simply use the I/O model
proposed in [6] which does not address the computational
cost considered in our problem settings. Fig. 7 (b) reports
the effectiveness of the parallelization. In particular, when
data size is 1000MB, the overall materialization cost with 8
cores is about 28% of that with single core.

Partial Materialization. We report the results on partial
materialization by varying the space budgets in Fig. 8. For
both TPC and Climate data, the results with our proposed
model dominate the others. For example, in Fig. 8 (a), when
the space budget is equal to 50%, our model results in
an efficient cube construction costing only 2/3 of the I/O
model and the random model. We compare the construc-
tion efficiency between the convolution and sketch-based
methods, as shown in Fig. 8 (b). First, the construction
time of convolution-based aggregation increases with the
space budget. Because in higher level cuboid aggregation,
it corresponds to a larger pmf length which incurs higher
computational cost. The construction time for the sketch-
based method increases linearly and is much less.

SUM. We continue to examine the query performance.
Each reported value is the average of 200 runs. We evaluate
the query performance of SUM with different levels of mate-
rialization in Fig. 9 (a-b). In all cases, our model outperforms
the random model by two times with the default space
budget. The curve “optimum” represent the query time on
the fully materialized cube, i.e., the space budget equals

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Co
ns

tru
ct

io
n

Ti
m

e
(s

)

Space Budget (%)

TPC-Convolution
TPC-Sketch

Climate-Convolution
Climate-Sketch

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

Qu
er

y
Ti

m
e

(s
)

Space Budget (%)

TPC-Convolution
TPC-Sketch

Climate-Convolution
Climate-Sketch

(a) Materialization Time (b) Query Time (PSQ)

Fig. 10: Extensions to COUNT

100%. In Fig. 9 (a), it achieves a good trade-off between
construction and query evaluation when the space budget
is greater than 40%. The query performance becomes very
close to that of a fully materialized cube. Similar results on
Climate dataset are observed from Fig. 9 (b). The efficiency
of our method is achieved by accurate cost estimation, as
shown in Fig. 9 (c). When the space budget is below 70%,
the accuracy is above 90%. Notice that the error becomes big
when the budget is above 90%. We argue that the accuracy is
adequate because the cost model is mostly used with small
space budgets and such a range of accuracy achieves best
trade-offs between the on-the-fly construction and querying.
The reasonability of studying cost models is explained by
Fig. 9 (d), which shows the on-the-fly cuboid materialization
dominates other parts. The results of PDQ is shown in
Fig. 9 (e). The query time decreases with the increase of
space budget as expected. More, the sketch-based pruning
significantly improves the query efficiency. When the space
budget equals 50%, the method with sketch pruning spends
only 50% time of the one without pruning.

COUNT. As we have discussed, COUNT can be viewed
as another form of SUM. So, we just briefly report its results.
Fig. 10 (a) shows the materialization time w.r.t. the space
budget. For both datasets, the trends are similar to the
results on SUM, and the construction time for the sketch-
based aggregation method increases linearly. Also, similar
trends are observed for PSQ in Fig. 10 (b). Compared with
results on SUM, the query time is much less, because the pmf
length is much smaller. Results on PDQ is omitted due to
page limits.

MAX. We show the query performance of MAX in Fig. 11.
For PSQ queries, we show the performance by varying cost
models adopted, as shown in Fig. 11 (a). In all cases, our cost
model is better than the other two. The reason is explained
by Fig. 11 (b). The estimation accuracy is steadily above 92%
when the budget is below 90%. We further analyze the cost
of materialization by varying the amount of objects in Fig. 11
(c). The query time increases moderately w.r.t. the data size
and the MAX computation time, i.e., time cost for evaluating
the probability distribution, forms only a very small part of
the total. Due to the specialty of the aggregation function,
MAX does not have closed form equation for sketching. Also,
from the figure, there seems no need for doing so, since the
computation efficiency is adequate, i.e., within 200 millisec-
onds. Similar facts are observed by varying the number of
cores in Fig. 11 (d), where the max computation time takes
only about 2 percents of the total. The performance of PDQ
is reported in Fig. 11 (e). When the space budget is above
40%, the query can be finished within 2 seconds.

AVG. We report the PSQ performance of AVG in Fig. 12
(a), where the result with our proposed mode is better than

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
13

 0

 50

 100

 150

 200

40000 80000 200000 400000 800000

T
im
e

 (
s
)

Tuples

PWD

Convolution

Sketch

 0

 5

 10

 15

 20

40000 80000 200000 400000 800000

S
p
a
c
e

 (
M
B
)

Tuples

convolution

sketch

PWD

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

40000 80000 200000 400000 800000

T
im
e

 (
s
)

Tuples

2 cores
4 cores
8 cores
24 cores
48 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

40000 80000 200000 400000 800000

T
im
e

 (
s
)

Tuples

2 cores
4 cores
8 cores
24 cores
48 cores

(a) Time Cost vs. # of Obj (b) Space Cost vs. # of Obj (c) Parallelization (Convolution) (d) Parallelization (Sketch)

Fig. 6: Aggregation (TPC)

 1

 10

 100

 1000

 10000

 100000
 1x106
 1x107

TPC-H Climate

Co
ns

tru
ct

ion
 T

im
e

(s
) Holistic

Semi-Distributive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

100 200 500 1000

T
im
e

 (
s
)

Data Size (MB)

1 core
2 cores
4 cores
8 cores

(a) Semi-distributive (b) Parallelization

Fig. 7: Full Cube Materialization

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

T
im
e

 (
s
)

Budget (%)

Construction-Model

I/O-Model

Random-Model

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

C
o
n
st
ru
ct
io
n
 T
im
e

 (
s)

Space Budget (%)

TPC-Convolution

TPC-Sketch

(a) Cost Models (b) Convolution vs. Sketch (TPC)

Fig. 8: Partial Cube Materialization

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e

 (
s
)

Space Budget (%)

Cost Model
Random Model

Optimum

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e

 (
s
)

Space Budget (%)

Cost Model
Random Model

Optimum

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

T
im
e
 (
s
)

Space budget (%)

Estimation

Real value

 0.01

 0.1

 1

 10

 100

 1000

Convolution Sketch

T
im
e

 C
o
s
t
(s
)

pruning+refnement
cuboid selction

on-the-fy materilization

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e
 (
s
)

Space Budget (%)

With sketch pruning
Without sketch pruning

(a) PSQ (TPC) (b) PSQ (Climate) (c) Estimation Accuracy (d) Time Breakdown (TPC) (e) PDQ (TPC)

Fig. 9: SUM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e
 (
s
)

Space Budget (%)

Cost Model
Random Model

Optimum

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

T
im
e
 (
s
)

Space Budget (%)

Estimation

Real value

 0.01

 0.1

 1

 10

 100

40000 80000 200000 400000 800000 2000000

Q
u
e
ry

 T
im
e
 (
s
)

obj number

Aggregation Time
Max computation Time

 0.1

 1

 10

 100

1 2 4 8 16

Q
u
e
ry

 T
im
e
 (
s
)

Core Number

Aggregation Time
Max computation Time

 1

 10

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e
 (
s
)

Space Budget (%)

PDQ for max

(a) PSQ (TPC) (b) Estimation Accuracy (c) Scalability (d) Parallelization (e) PDQ (TPC)

Fig. 11: MAX

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e

 (
s
)

Space Budget (%)

Cost Model
Random Model

Optimum

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90 100

T
im
e
 (
s
)

Space budget (%)

Estimation

Real value

 0

 5

 10

 15

 20

 25

1 2 4 8 16

T
im
e
 (
s
)

Cores

80000 tuples
200000 tuples

 0

 5

 10

 15

 20

 25

 30

 35

40000 80000 200000 400000 800000

S
p
a
c
e

 (
M
B
)

Tuples

CountSumJoint pmfs
Sum+Count+CountSumJoint pmfs

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

Q
u
e
ry

 T
im
e
 (
s
)

Space Budget (%)

With sketch pruning
Without sketch pruning

(a) PSQ (TPC) (b) Estimation Accuracy (d) Parallelization (d) Space Cost (e) PDQ (TPC)

Fig. 12: AVG

its competitors. The result of estimation is shown in Fig. 12
(b), where the accuracy is as high as over 90% when the
budget is less than 90%. The parallelization result shows
that the time cost decreases w.r.t. the number of cores. Also,
the improvement is more significant if the object set is larger.
From Fig. 12 (c), we can see the query cost scales down
w.r.t. the number of computation cores, and the downward
trend is more obvious with larger datasets. In Fig. 12 (d),
we report the space cost for running AVG, because it takes
extra space for storing the joint probability distribution. The
storage cost for the joint distribution takes only about 50-
60% of the total cost. The result of PDQ is shown in Fig. 12
(e). The result with sketch pruning is about 5 times faster,
when space budget is 50%.

8 CONCLUSION

In this paper, we study multi-dimensional probabilistic data
cubes by providing a complete set of techniques, including
cuboid aggregation, parallel cube materialization, and query

evaluation. We study convolution and sketch-based aggre-
gation methods. We consider full and partial materialization
with support of the proposed parallel framework. We sup-
port common OLAP aggregation functions, e.g., SUM, COUNT,
MAX and AVG. Also, our proposal supports probabilistic ver-
sions of common OLAP queries, such as roll-up, drill-down,
slicing, and dicing. Extensive experimental results show that
our proposals are effective and efficient for querying multi-
dimensional probabilistic data.

REFERENCES

[1] D. Pfoser and C. S. Jensen, “Capturing the uncertainty of moving-
object representations,” in SSD, 1999.

[2] Z. Istvan, L. Woods, and G. Alonso, “Histograms as a side effect
of data movement for big data,” in SIGMOD, 2014.

[3] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with
quality guarantees,” in VLDB, 2008.

[4] N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” in VLDB, 2004.

[5] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: A
relational aggregation operator generalizing group-by, cross-tab,
and sub-total,” in ICDE, 1996.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2019.2913420, IEEE Transactions on Knowledge and Data Engineering
14

[6] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing
data cubes efficiently,” in SIGMOD, 1996.

[7] X. Xie, X. Hao, T. B. Pedersen, P. Jin, and J. Chen, “Olap over prob-
abilistic data cubes i: Aggregating, materializing, and querying,”
in ICDE, 2016.

[8] M. Pilman, M. Kaufmann, F. Köhl, D. Kossmann, and D. Profeta,
“Partime: Parallel temporal aggregation,” in SIGMOD, 2016, pp.
999–1010.

[9] Z. Feng and E. Lo, “Accelerating aggregation using intra-cycle
parallelism,” in ICDE, 2015, pp. 291–302.

[10] Y. Tao and C. Sheng, “I/o-efficient bundled range aggregation,”
TKDE, vol. 26, no. 6, pp. 1521–1531, 2014.

[11] Z. He, P. Wong, B. Kao, E. Lo, R. Cheng, and Z. Feng, “Efficient
pattern-based aggregation on sequence data,” TKDE, vol. 29, no. 2,
pp. 286–299, 2017.

[12] J. Lee, W. Han, H. J. Na, C. G. Park, K. H. Kim, D. H. Kim,
J. Lee, S. K. Cha, and S. Moon, “Parallel replication across formats
for scaling out mixed OLTP/OLAP workloads in main-memory
databases,” VLDB J., vol. 27, no. 3, pp. 421–444, 2018.

[13] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “Batchdb:
Efficient isolated execution of hybrid OLTP+OLAP workloads for
interactive applications,” in SIGMOD, 2017.

[14] P. Pedreira, Y. Lu, S. Pershin, A. Dutta, and C. Croswhite, “Re-
thinking concurrency control for in-memory OLAP dbmss,” in
ICDE, 2018.

[15] B. Salimi, J. Gehrke, and D. Suciu, “Bias in OLAP queries: Detec-
tion, explanation, and removal,” in SIGMOD, 2018.

[16] R. Fink, L. Han, and D. Olteanu, “Aggregation in probabilistic
databases via knowledge compilation,” in VLDB, 2012.

[17] R. Fink and D. Olteanu, “Dichotomies for queries with negation in
probabilistic databases,” TODS, vol. 41, no. 1, pp. 4:1–4:47, 2016.

[18] P. Brown and S. Link, “Probabilistic keys,” TKDE, vol. 29, no. 3,
pp. 670–682, 2017.

[19] G. Cormode and M. N. Garofalakis, “Histograms and wavelets on
probabilistic data,” in ICDE, 2009.

[20] G. Cormode, F. Li, and K. Yi, “Semantics of ranking queries for
probabilistic data and expected ranks,” in ICDE, 2009.

[21] X. Lian and L. Chen, “Efficient processing of probabilistic reverse
nearest neighbor queries over uncertain data,” VLDB J., vol. 18,
no. 3, pp. 787–808, 2009.

[22] J. Li, B. Saha, and A. Deshpande, “A unified approach to ranking
in probabilistic databases,” in VLDB, 2009.

[23] G. Cormode and M. Garofalakis, “Sketching probabilistic data
streams,” in SIGMOD, 2007.

[24] T. S. Jayram, S. Kale, and E. Vee, “Efficient aggregation algorithms
for probabilistic data,” in SODA, 2007.

[25] X. Xie, M. L. Yiu, R. Cheng, and H. Lu, “Scalable evaluation of
trajectory queries over imprecise location data,” TKDE, 2013.

[26] X. Xie, B. Mei, J. Chen, X. Du, and C. S. Jensen, “Elite: an elastic
infrastructure for big spatiotemporal trajectories,” VLDB J., vol. 25,
no. 4, pp. 473–493, 2016.

[27] X. Xie, R. Cheng, M. L. Yiu, L. Sun, and J. Chen, “UV-diagram: A
voronoi diagram for uncertain spatial databases,” VLDBJ, 2013.

[28] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines on
uncertain data,” in VLDB, 2007.

[29] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “Supporting
imprecision in multidimensional databases using granularities,”
in SSDBM, 1999.

[30] I. Timko, C. E. Dyreson, and T. B. Pedersen, “Pre-aggregation with
probability distributions,” in DOLAP, 2006.

[31] D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan, “OLAP over uncertain and imprecise data,” in
VLDB, 2005.

[32] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan, “Efficient allocation algorithms for OLAP over
imprecise data,” in VLDB, 2006.

[33] A. Cuzzocrea and D. Gunopulos, “Efficiently computing and
querying multidimensional olap data cubes over probabilistic
relational data.” in ADBIS, 2010.

[34] C. Ré and D. Suciu, “The trichotomy of HAVING queries on a
probabilistic database,” VLDB J., vol. 18, no. 5, pp. 1091–1116, 2009.

[35] M. Heideman, D. Johnson, and C. Burrus, “Gauss and the history
of the fast fourier transform,” ASSP Magazine, IEEE, vol. 1, no. 4,
pp. 14–21, 1984.

[36] V. John, I. Angelov, A. onc ul, and D. Thévenin, “Techniques for
the reconstruction of a distribution from a finite number of its
moments.” in Chemical Engineering Science, 2007.

[37] M. G. Kendall, A. Stuart, and J. K. Ord, Eds., Kendall’s Advanced
Theory of Statistics. Oxford University Press, Inc., 1987.

[38] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge
University Press, 2003.

[39] J. Han, Data Mining: Concepts and Techniques. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2005.

[40] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms
for data base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp.
182–209, 1985.

Xike Xie is currently a professor in the School of
Computer Science and Technology, University of
Science and Technology of China. His research
interests include data uncertainty, spatiotempo-
ral databases, and mobile computing.

Kai Zou is a master student of School of Com-
puter Science and Technology, University of Sci-
ence and Technology of China. His research
interests include data warehousing and parallel
computation.

Xingjun Hao is a PhD student of School of
Computer Science and Technology, University of
Science and Technology of China. His research
interests include data aggregation and big data
analysis.

Torben Bach Pedersen is a Professor of Com-
puter Science at Aalborg University, Denmark.
His research concerns business intelligence and
big data, especially “Big Multidimensional Data”
-the integration and analysis of large amounts
of complex and highly dynamic multidimension-
al data. He is an ACM Distinguished Scientist,
an IEEE Senior Member, and a member of the
Danish Academy of Technical Sciences.

Peiquan Jin is now an associate professor in
the School of Computer Science and Technol-
ogy, USTC. His research interests focus on spa-
tiotemporal databases, flash-based databases,
and Web information retrieval.

Wei Yang is an associate professor in the U-
niversity of Science and Technology of China.
His research interests include quantum data pro-
cessing and data mining.

