
Old and new parameter choice rules

for discrete ill-posed problems

Lothar Reichel∗ Giuseppe Rodriguez†

Dedicated to Claude Brezinski and Sebastiano Seatzu

on the Occasion of Their 70th Birthdays.

Abstract

Linear discrete ill-posed problems are difficult to solve numerically be-

cause their solution is very sensitive to perturbations, which may stem

from errors in the data and from round-off errors introduced during the

solution process. The computation of a meaningful approximate solution

requires that the given problem be replaced by a nearby problem that

is less sensitive to disturbances. This replacement is known as regular-

ization. A regularization parameter determines how much the regularized

problem differs from the original one. The proper choice of this parameter

is important for the quality of the computed solution. This paper studies

the performance of known and new approaches to choosing a suitable value

of the regularization parameter for the truncated singular value decompo-

sition method and for the LSQR iterative Krylov subspace method in the

situation when no accurate estimate of the norm of the error in the data

is available. The regularization parameter choice rules considered include

several L-curve methods, Regińska’s method and a modification thereof,

extrapolation methods, the quasi-optimality criterion, rules designed for

use with LSQR, as well as hybrid methods.

Keywords Ill-posed problem, regularization, regularization parameter, TSVD,
LSQR

1 Introduction

We would like to determine an approximate solution of least-squares problems
of the form

min
x∈Rn

‖Ax− b‖, A ∈ R
m×n, x ∈ R

n, b ∈ R
m, (1)

where the matrix A is of ill-determined rank, i.e., the singular values of A
“cluster” at the origin. In particular, A is very ill-conditioned and may be
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singular. Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the
associated induced matrix norm. Least-squares problems of the form (1) with a
matrix of ill-determined rank often are referred to as discrete ill-posed problems.
They arise, for instance, from the discretization of ill-posed problems, such as
Fredholm integral equations of the first kind with a smooth kernel. The vector
b in discrete ill-posed problems that arise in science and engineering represents
available data and typically is contaminated by a measurement error e ∈ R

m,
which we will refer to as “noise.” For ease of notation, we will assume that
m ≥ n; however, only minor modifications are required when m < n.

Let b̂ be the unknown noise-free vector associated with b, i.e., b = b̂ + e,
and consider the unavailable noise-free least-squares problem

min
x∈Rn

‖Ax− b̂‖ (2)

associated with (1). Its solution of minimal Euclidean norm is given by x̂ = A†b̂,
where A† denotes the Moore-Penrose pseudoinverse of A. We would like to
determine an accurate approximation of x̂ by computing a suitable approximate
solution of the available least-squares problem (1) with error-contaminated data
b. Note that, generally, the solution of (1) of minimal Euclidean norm, given by

A†b = x̂+A†e,

is not a useful approximation of x̂, because the term A†e typically dominates x̂.
Moreover, when the computations are carried out in finite-precision arithmetic,
amplified propagated round-off errors generally yield a computed solution of
poor quality also when there is no noise in b.

A common approach to remedy these difficulties is to replace the least-
squares problem (1) by a nearby problem, whose solution is less sensitive to the
error e in b and to round-off errors introduced during the solution process. This
replacement is known as regularization. We will focus on two well-known reg-
ularization methods: truncated singular value decomposition (TSVD) for small
to medium-sized problems [15, 25] and truncated iteration with the iterative
Krylov subspace method LSQR [20, 36]. For TSVD the regularization parame-
ter is the truncation index, and for LSQR it is the index of the iterate chosen
to approximate x̂. Thus, for both methods, the regularization parameter is
integer-valued.

We conclude this section with a description of TSVD and outline the issues
to be discussed in the remainder of this paper. The singular value decomposition
(SVD) of the matrix A in (1) is given by

A = U

[
Σ
O

]

V T , (3)

where the matrices U = [u1,u2, . . . ,um] ∈ R
m×m and V = [v1,v2, . . . ,vn] ∈

R
n×n are orthogonal, O ∈ R

(m−n)×n is a matrix with all entries zero, and the
entries of the diagonal matrix

Σ = diag[σ1, σ2, . . . , σn] ∈ R
n×n

are the singular values of A ordered according to

σ1 ≥ σ2 ≥ · · · ≥ σℓ > σℓ+1 = · · · = σn = 0.
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The integer ℓ is the rank of A. We remark that when computing the SVD of
a matrix of ill-determined rank in finite-precision arithmetic, ℓ typically is n
and several of the smallest singular values are “tiny.” The columns uj of U
are referred to as left singular vectors of A and the columns vj of V as right
singular vectors. The superscript T in (3) stands for transposition.

The TSVD is a regularization method which replaces the matrix A in (1) by
a closest approximation of rank k ≤ ℓ, and determines the solution of minimal
Euclidean norm of the least-squares problem so obtained. Let the matrix

Σk = diag[σ1, σ2, . . . , σk, 0, . . . , 0
︸ ︷︷ ︸

n−k

] ∈ R
n×n

be defined by setting the last n − k diagonal entries of Σ to zero for some
1 ≤ k ≤ ℓ. The Moore-Penrose pseudoinverse of Σk is

Σ†
k = diag[σ−1

1 , σ−1
2 , . . . , σ−1

k , 0, . . . , 0
︸ ︷︷ ︸

n−k

] ∈ R
n×n.

A closest rank-k approximation of A with regard to the spectral norm ‖ · ‖ is
given by

Ak = U

[
Σk

O

]

V T .

It has the Moore-Penrose pseudoinverse

A†
k = V [Σ†

k, O
T ]UT .

The minimal-norm solution of the least-squares problem obtained by replac-
ing A by Ak in (1) can be expressed as

xk = A†
kb =

k∑

j=1

uT
j b

σj

vj . (4)

The truncation index k is the regularization parameter. The value of k deter-
mines the quality of the approximation xk of x̂ as well as how sensitive xk is
to the error e and to round-off errors introduced during the computations. We
would like to choose k so that the difference xk−x̂ is small. Generally, ‖xk−x̂‖
decreases as k increases and is fairly small, but increases rapidly with k when k
is large. Therefore, it is important to choose a suitable truncation index k.

When an accurate estimate of the norm of the error e in b is known, an
appropriate value of k often can be determined with the aid of the discrepancy
principle, which prescribes that the truncation index k be chosen as the smallest
index k = kdiscr such that

‖Axkdiscr
− b‖ ≤ τ‖e‖. (5)

Here τ > 1 is a user-supplied constant independent of ‖e‖. Properties of the
discrepancy principle are discussed, e.g., by Engl et al. [15, Section 4.3], where a
proof in Hilbert space setting that, under suitable conditions, xkdiscr

converges
to x̂ as ‖e‖ ց 0, can be found. Note that kdiscr increases as ‖e‖ decreases.
The discrepancy principle typically yields a suitable truncation index when an
accurate bound for ‖e‖ is available. We are interested in the situation when
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no such bound is known and, therefore, the discrepancy principle cannot be
applied.

It has been shown by Bakushinski [1] that regularization parameter choice
rules that do not use a bound for ‖e‖ will fail to determine a suitable value of k
for some problems. Such rules are therefore sometimes referred to as “heuristic.”
Nevertheless, there is a need to use heuristic parameter choice rules, because for
many discrete ill-posed problems (1) that arise in applications in science and en-
gineering no accurate bound for ‖e‖ is available. For this reason, many heuristic
parameter choice rules have been proposed in the literature, including the L-
curve criterion, the residual L-curve criterion, generalized cross validation, error
estimation methods based on extrapolation, the quasi-optimality criterion, and
Regińska’s method; see, e.g., [6, 7, 24, 25, 28, 29, 38, 39, 41, 43] and references
therein.

Recently, considerable progress has been made in understanding the per-
formance of the quasi-optimality criterion and of other heuristic methods; see
[2, 31]. These results are very valuable; however, they involve constants that
describe the performance of the parameter choice rules, and the sizes of these
constants can be difficult to assess. It is therefore of interest to investigate the
performance of heuristic parameter choice rules when applied to a variety of
linear discrete ill-posed problems with different amounts of noise e in the data
b.

A thorough comparison of many heuristic parameter choice rules is reported
in [3]. All the linear discrete ill-posed problems in this comparison have a diag-
onal matrix. This implies that the singular vectors of the matrices are the axis
vectors. We compare several old and new parameter choice rules when applied
to discretized Fredholm integral equations of the first kind with a smooth kernel.
The singular vectors for matrices obtained in this way typically are discretiza-
tions of oscillatory functions, with the frequency of the oscillations increasing
with the index of the vector. We include several methods in our comparison
that are not considered in [3]. Another recent comparison of heuristic parameter
choice rules is reported in [29].

Besides the TSVD regularization method, we consider regularization by trun-
cated iteration with the LSQR iterative Krylov subspace method [20, 36]. This
minimal residual iterative method is frequently used to solve large-scale linear
discrete ill-posed problems; see, e.g., [20, 22, 25] for illustrations. The number
of iterations carried out is the regularization parameter. We compare several
well-known and new methods that do not require an accurate bound for ‖e‖ for
determining a suitable number of iterations.

This paper is organized as follows. Section 2 discusses parameter choice rules
for small to medium-sized problems for which it is feasible to compute the SVD
of A. The solution of large-scale minimization problems (1) by the LSQR itera-
tive method is discussed in Section 3. Both available and new parameter choice
rules for determining a suitable number of iterations are described. Section 4
presents computed examples, some of which illustrate how the application of
a user-specified regularization matrix affects the performance of the parameter
choice rules. Concluding remarks can be found in Section 5.

Claude Brezinski and Sebastiano Seatzu have over many years made a large
number of very significant contributions to our understanding of linear discrete
ill-posed problems and they have developed powerful numerical methods for
their solution. In particular, they have developed several novel techniques for
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determining a suitable value of the regularization parameter. It is a pleasure to
dedicate this paper to them.

2 Parameter choice rules for small to medium-
sized problems

The parameter choice rules of this section are designed to determine the trun-
cation index in the TSVD method. We describe both known and new rules.

2.1 The L-curve criterion

The L-curve when applied to determine a suitable truncation index k for TSVD
is a plot of the points

{log ‖xj‖, log ‖rj‖}, j = 1, 2, . . . , ℓ, (6)

where the xj are given by (4) and rj = b − Axj is the associated residual
error.1 Note that ‖xj‖ and ‖rj‖, j = 1, 2, . . . , ℓ, can be evaluated easily and
quickly when the SVD of A (3) is available. It is straightforward to show that
‖xj‖ ≤ ‖xj+1‖ and ‖rj‖ ≥ ‖rj+1‖ for all j.

Ideally, the plot of the points (6) (or part thereof) looks like a discretization
of the letter “L”. Therefore, the plot is referred to as the L-curve or discrete
L-curve. We seek to determine a truncation index k = kL-curve that corresponds
to a point close to the “vertex” of the “L.” This choice is designed to determine
an approximate solution xkL-curve

of (1) of moderate norm with an associated
residual error rkL-curve

of fairly small norm. The latter property indicates that
xkL-curve

is a quite accurate solution of (1), and the former property suggests that
xkL-curve

is not severely contaminated by propagated noise; see, e.g., [24, 25, 28]
for discussions on the L-curve criterion.

It is often quite easy to visually determine the index kL-curve from the plot,
but it is a fairly difficult task to write a computer program that finds this index.
A reason for this is that when consecutive points of the plot are connected by
line segments, the resulting graph is not guaranteed to be convex and may have
several kinks that should not be considered the “vertex” of the “L.” Castellanos
et al. [12] proposed a scheme for determining a truncation index close to the
“vertex” of the “L” by forming a sequence of triangles with vertices at the points
(6) and then determining the desired “vertex” of the “L” from the shape of these
triangles. We will refer to this scheme as the L-triangle method in the numerical
examples reported in Section 4.

Hansen et al. [27] proposed an alternative approach to determining the “ver-
tex” of the “L” from the point set (6). They construct a sequence of pruned
L-curves, removing an increasing number of points, and consider a list of candi-
date “vertices” produced by two different selection algorithms. The “vertex” of
the “L” is selected from this list by taking the last point before reaching the part
of the L-curve, where the norm of the computed approximate solution starts to
increase rapidly and the norm of the associated residual vectors stagnates. We
will refer to this scheme as the L-corner method.

1In some references the plot of {log ‖rj‖, log ‖xj‖}, j = 1, 2, . . . , ℓ, is referred to as the

L-curve.
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It is known that the L-curve method may fail to determine a suitable trun-
cation index; see [21, 44] for analyses. However, in applications to problems in
science and engineering, the L-curve method often performs well when there is
a fair amount of noise in the data. The L-curve method therefore continues to
be a popular approach to determine a suitable truncation index for the TSVD.

2.2 The residual L-curve criterion

Sometimes several of the points (6) “cluster” near the “vertex” of the “L.” This
may make it difficult to distinguish the “vertex.” The residual L-curve seeks to
circumvent this difficulty by instead considering the set

{log j, log ‖rj‖}, j = 1, 2, . . . , ℓ. (7)

The “vertex” of this point set is obtained by applying the L-corner method [27]
to the set (7). The index k of the vertex is the truncation index for the TSVD
method. We found the residual L-curve based on the point set (7) to give better
approximations xk of x̂ than the residual L-curve determined by the points
{j, log ‖rj‖}ℓj=1, which were used in [39].

2.3 The condition L-curve criterion

The condition L-curve plots ‖rj‖ versus the condition number κ(Aj) of Aj in
log-log scale. The latter is defined as σ1/σj and therefore is easy to compute
when the SVD of A is available. Since the singular values are a decreasing
function of their index, we have κ(Aj) ≤ κ(Aj+1) for all j. Thus, the condition
L-curve is the plot of the point set

{log κ(Aj), log ‖rj‖}, j = 1, 2, . . . , ℓ. (8)

We determine the “vertex” of the graph of this point set with the aid of the
L-corner method [27]. The index of the vertex is the truncation index for the
TSVD method. The condition L-curve was introduced in [10] for use with the
GMRES iterative method, because the norm of iterates generated by GMRES
is not guaranteed to increase with the iteration number.

2.4 Regińska’s method

The L-curve criterion of Subsection 2.1 also can be applied to determine the reg-
ularization parameter in Tikhonov regularization; see, e.g., [24, 25]. The discrete
set (6) then is replaced by a continuous set. Regińska [41] proposed a parameter
choice rule for Tikhonov regularization and showed how it relates to the L-curve
criterion for Tikhonov regularization. This rule easily can be adapted to the
situation when the regularization parameter is discrete. Regińska’s parameter
choice rule applied to the set {‖xj‖, ‖rj‖}ℓj=1 prescribes that the truncation
index k be the minimizer of the function

φν(j) = ‖rj‖ ‖xj‖ν , j = 1, 2, . . . , ℓ− 1, (9)

where ν > 0 is a user-specified parameter. We will use ν = 2 in the computed
examples of Section 4.
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2.5 The restricted Regińska method

The performance of the Regińska method can be improved by two preprocessing
steps that select a subset of consecutive elements of the set {‖xj‖, ‖rj‖}ℓ−1

j=1.
Regińska’s method is then applied to this subset. We refer to this scheme as
the restricted Regińska method. It consists of the following steps:

• Eliminate points {‖xj‖, ‖rj‖} with ‖xj‖ very large: When working in
double precision arithmetic, let M = 1010 and determine the smallest
index jM such that

‖xjM ‖ > M min
1≤j<ℓ

‖xj‖, (10)

where we recall that ‖xj‖ ≤ ‖xj+1‖ for all j. If the inequality (10) is
violated for all indices jM , then set jM = ℓ − 1. Discard the points
{xj , rj}ℓ−1

j=jM+1. The minimization in (10) is carried out over nonvanishing
‖xj‖ only.

• Select the largest convex subset: We say that a subset of consecutive points
{‖xj‖, φν(j)}ji+1

j=ji
with 1 ≤ ji < ji+1 ≤ jM is convex if the piecewise

linear function obtained by connecting consecutive points in the set by
line segments is convex. Subdivide the point set {‖xj‖, φν(j)}jMj=1 into the

smallest number of convex subsets of consecutive points {‖xj‖, φν(j)}ji+1

j=ji
,

i = 1, 2, . . . , t−1, where 1 ≤ j1 < j2 < · · · < jt ≤ jM . Let ι be the smallest
index of the convex point set with the most elements, i.e.,

jι+1 − jι = max
1≤i<t

(ji+1 − ji). (11)

If there are several convex point sets with the same largest number of
elements, then we choose ι to be the smallest possible index such that
(11) holds.

• Apply Regińska’s method: Let the truncation index k for TSVD be the
minimizer of

φν(j) = ‖rj‖ ‖xj‖ν , j = jι, jι + 1, . . . , jι+1. (12)

Similarly as in (9), we use ν = 2 in the computed examples of Section 4.

2.6 The quasi-optimality criterion

This criterion lets the truncation index k be the smallest index jq, such that

‖xjq+1 − xjq‖ = min
1≤j<ℓ

‖xj+1 − xj‖.

Recent theoretical and numerical investigations are reported in [2, 3, 31]. Sub-
sampling can improve the performance of the quasi-optimal criterion, but choos-
ing an appropriate subsample can be difficult; see [4] for an analysis and discus-
sion. The present paper will not discuss this modification.
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2.7 Generalized cross validation (GCV)

This method is derived within a statistical framework. Roughly, one would like
the regularization parameter to be such that when an entry of the data vector
b were missing, the regularized solution should be able to predict this entry
accurately. The error e in b is assumed to be random with zero mean and
covariance matrix σ2I with σ2 unknown. When regularization is carried out by
TSVD, the GCV method prescribes that the truncation index k be the integer
j that minimizes the function

G(j) =
‖rj‖2

(m− j)2
;

see, e.g., [5, 25] for further details on this method. For many problems, the
function G is quite flat around the minimum. The GCV method is known to be
unreliable for small to medium-sized problems and robust versions have been
developed; see [3, 32]. The latter methods require the choice of an additional
parameter and, therefore, will not be considered in the present paper.

The application of the GCV method to large linear discrete ill-posed prob-
lems for which it is unattractive to compute the SVD is fairly complicated; see
[19].

2.8 Error estimation methods based on extrapolation

Let as usual xj be defined by (4) and rj = b − Axj . Brezinski et al. [7] show
that

η
(ν)
j = dν−1

0 d5−2ν
1 dν−3

2 , (13)

where d0 = ‖rj‖2, d1 = ‖AT rj‖2, and d2 = ‖AAT rj‖2, is an estimate for the
squared norm of the error in xj for each ν ∈ R under the assumption that rj
is the error in b. In fact, using the SVD of A (3) and letting αi = uT

i b, we can
write

‖x̂− xj‖2 =
ℓ∑

i=j+1

α2
i

σ2
i

≃ α2σ−2, (14)

where the final approximation is obtained by keeping just one term in the sum-
mation. We obtain similarly

d0 ≃ α2, d1 ≃ σ2α2, d2 ≃ σ4α2.

Substituting these expressions into (13) and comparing with (14) yields

‖x̂− xj‖2 ≃ η
(ν)
j , ∀ν ∈ R.

When the matrix A is square, one can show similarly that

e
(ν)
j = dν−1

0 c3−ν
1 dν−4

1 (15)

also is an estimate of ‖x̂− xj‖2 for all ν ∈ R, where c1 = (rTj Arj)
2; see [6] for

details. The quantities in the error estimates (13) and (15) can be computed



Parameter choice rules 9

inexpensively for several values of j when the SVD of A is available. Some
particular error estimates belonging to the above families are

η
(2)
j =

‖rj‖2 ‖AT rj‖2
‖AAT rj‖2

, η
(3)
j = e

(3)
j =

‖rj‖4
‖AT rj‖2

. (16)

In the computed examples reported in Section 4, we let the truncation index k

be the index k = j that minimizes η
(3)
j . We will refer to this parameter choice

rule as the extrapolation method. Numerous computed examples reported in
[6, 7] show this choice of truncation index often to be appropriate, even though

η
(2)
k , η

(3)
k , and e

(3)
k typically are poor approximations of ‖x̂ − xk‖2 when the

matrix A is ill-conditioned.

2.9 Hybrid quasi-optimal methods

The function
j → ‖xj+1 − xj‖ (17)

typically has many local minima; see Figure 1 of Section 4. When several of
the local minima are close to being global minima, the index jq chosen by the
quasi-optimality criterion might not be appropriate. We therefore investigate
the performance of hybrid methods that determine an initial index jinit by some
method different from the quasi-optimality criterion, say the L-curve criterion
or the restricted Regińska method, and then apply the quasi-optimality criterion
in a neighborhood of jinit. Specifically, we let the truncation index k be a local
minimum, jloc, of the function (17) closest to jinit, and as small as possible in
case of nonunicity.

An interactive hybrid method that combines the L-curve criterion with quasi-
optimality to determine which iterate generated by a Krylov subspace method
to use as approximation of x̂ has been described in [33]. We comment on this
method further below.

3 Parameter choice rules for large problems

Popular solution methods for large linear discrete ill-posed problems include
iterative Krylov subspace methods, such as LSQR [36] or RRGMRES [34, 35].
Regularization is achieved by terminating the iterations sufficiently early. The
difficulty is to determine which iterate to choose as an approximation of x̂. This
section focuses on the LSQR iterative method; however, the discussion, suitably
modified, also applies to other Krylov subspace methods.

The LSQR method is an implementation of the conjugate gradient method
applied to the normal equations associated with (1). Let the initial iterate be
x0 = 0. Then the iterates x1,x2,x3, . . . , generated by LSQR are characterized
by

‖Axj − b‖ = min
x∈Kj(ATA,AT b)

‖Ax− b‖, xj ∈ Kj(A
TA,AT b), (18)

where

Kj(A
TA,AT b) = span{AT b, (ATA)AT b, . . . , (ATA)j−1AT b}
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is a Krylov subspace. The LSQR method is implemented with the aid of Lanczos
bidiagonalization of A:

AVj = Uj+1C̄j , ATUj = VjC
T
j , (19)

where the columns of Uj+1 ∈ R
m×(j+1) form an orthonormal basis for the Krylov

subspace Kj+1(AA
T , b) with Uj+1e1 = b/‖b‖, and Uj ∈ R

m×j consists of the
first j columns of Uj+1. The columns of Vj ∈ R

n×j form an orthonormal basis
for Kj(A

TA,AT b). The rectangular matrix C̄j ∈ R
(j+1)×j is lower bidiagonal

with leading submatrix Cj ∈ R
j×j . Iteration j+1 appends one column to Uj+1

and Vj to obtain Uj+2 and Vj+1, respectively, as well as a row and a column
to C̄j to obtain C̄j+1. We assume that j is small enough so that the matrices
Uj+1, Vj , and C̄j with the stated properties exist.

Substituting (19) into (18) yields the equivalent reduced minimization prob-
lem ∥

∥
∥C̄jyj − e1‖b‖

∥
∥
∥ = min

y∈Rj

∥
∥
∥C̄jy − e1‖b‖

∥
∥
∥, yj ∈ R

j , (20)

where
xj = Vjyj , rj = Axj − b = Uj+1

(
C̄jyj − e1‖b‖

)
. (21)

We are in a position to discuss several parameter choice rules and first describe
how the rules of Section 2 can be applied.

3.1 Parameter choice rules based on the reduced problem
(20)

It follows from (21) that

‖xj‖ = ‖yj‖, ‖xj+1 − xj‖ =

∥
∥
∥
∥
yj+1 −

[
yj

0

]∥
∥
∥
∥
, ‖rj‖ = ‖C̄jyj − e1‖b‖‖.

These relations show that the quantities required by the L-curve and residual
L-curve criteria, Regińska’s and the restricted Regińska methods, as well as by
the quasi-optimality criterion discussed in Section 2 can be determined inexpen-
sively from the reduced problem (20). In order for several of these parameter
choice rules to perform well, one has to carry out a few more iteration steps than
the index of the iterate that best approximates x̂. For instance, the L-corner
algorithm requires that enough iterates be carried out so that the discrete L-
curve includes a portion where the norm of the residual vector does not change
much during the last iterations.

The condition L-curve criterion can be applied by computing the condition
number of a sequence of small bidiagonal matrices C̄1, C̄2, C̄3, . . . and by using
the associated residual vector norms ‖C̄1y1 − e1‖b‖‖, ‖C̄2y2 − e1‖b‖‖, ‖C̄3y3 −
e1‖b‖‖, . . . . Similarly, all quantities required when applying the extrapolation
method of Subsection 2.8 can be evaluated from the reduced problem (20). For
instance, we have

∥
∥ATrj

∥
∥ =

∥
∥CT

j+1

(
C̄jyj − ej‖b‖

)∥
∥ ,

∥
∥AAT rj

∥
∥ =

∥
∥C̄j+1C

T
j+1

(
C̄jyj − ej‖b‖

)∥
∥ ;

see [7] for details on the organization of the computations. We illustrate the
performance of some of these methods in Section 4.
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The parameter choice rules of this subsection can, suitably modified, also
be applied to other iterative Krylov subspace methods, including RRGMRES.
The parameter choice rules described in the following subsections are specific
for LSQR.

3.2 The quadrature method

Hnětynková et al. [30] recently proposed to use the connection between Lanc-
zos bidiagonalization (referred to as Golub-Kahan bidiagonalization) and Gauss
quadrature to estimate the norm of the error e in b. We refer to this ap-
proach as the quadrature method. The connection between Lanczos bi- or tri-
diagonalization, and Gauss quadrature is developed and applied in the recent
book by Golub and Meurant [17]; see also [16]. Applications to the solution of
linear discrete ill-posed problems also are described in, e.g., [8, 9, 11, 18, 38].

Introduce the spectral factorization

AAT = WΛWT , Λ = diag[λ1, λ2, . . . , λm] ∈ R
m×m

with W ∈ R
m×m orthogonal. Then the sum

bT f(AAT )b =

m∑

j=1

f(λj)ω
2
j , ωj = bTWej ,

can be viewed as a Stieltjes integral with a measure induced by the matrix A
and vector b. It can be shown that

Gjf := ‖b‖2eT1 f(CjC
T
j )e1 (22)

is a j-point Gauss quadrature rule associated with this measure; see, e.g., [8,
17] for details. Hnětynková et al. [30] use this connection between Lanczos
bidiagonalization and Gauss quadrature to derive a method for detecting the
amount of “noise” in the vector b. Introduce the singular value decomposition

Cj = WjSjW̃
T
j , (23)

where the matrices Wj , W̃j ∈ R
j×j are orthogonal and the diagonal entries

of Sj = diag[s
(j)
1 , s

(j)
2 , . . . , s

(j)
j ] ∈ R

j×j are the singular values of Cj ordered

according to s
(j)
1 ≥ s

(j)
2 ≥ . . . ≥ s

(j)
j ≥ 0.

Substituting (23) into (22) yields the expression

Gjf =

j
∑

i=1

f((s
(j)
i )2)(ω

(j)
i )2,

where
ω
(j)
i = ‖b‖eT1 Wjei. (24)

Thus, the squared singular values are Gaussian nodes and the squared normal-
ized first component of the left singular vectors are Gaussian weights.

Hnětynková et al. [30] show that the Gaussian weight (ω
(j)
j )2, which is asso-

ciated with the smallest singular value, is a decreasing function of j, and that
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the decrease stagnates when j is large. Then (ω
(j)
j )2 ≈ ‖e‖2. Let k ≥ 1 be the

smallest integer such that

|eT1 w(k+1)|
|eT1 w(k+1+step)| <

( |eT1 w(k)|
|eT1 w(k+1)|

)ζ

where w(k) = Wkek, ζ = 0.5, and step = 3. Hnětynková et al. [30] say that
stagnation occurs at step k, and use the iterate xk as an approximation of x̂.

It is important that the columns of the matrices U1, U2, U3, . . . in (19) be
numerically orthonormal for the good performance of this regularization param-
eter choice rule. To secure numerical orthogonality, Hnětynková et al. [30] carry
out double reorthogonalization; the software they provide for bidiagonalization
is used in the numerical illustrations presented in Section 4.

3.3 The ratio method

This parameter choice rule is a modification of the quadrature method. Let ω
(j)
j ,

j = 1, 2, . . . , i, be defined by (24), where the number of iterations i is suitably
large. We consider the ratios

ρj =
ω
(j)
j

s
(j)
j

, j = 1, 2, . . . , i,

where s
(j)
j is the smallest singular value of the bidiagonal matrix Cj in (19). We

choose the iterate xk as an approximation of x̂, where k is the smallest index
such that

ρk = min
1≤j≤i

ρj .

Here we assume that i is large enough so that k < i. This approach yields a
suitable iterate when the function j → ρj is not flat around j = k; otherwise
we define a plateau containing the minimal value of ρj , and let k be the index
of the last point of the plateau. A plateau is a set of consecutive ratios of near-
minimal value. Specifically, consecutive ratios that contain ρmin = min1≤j≤i ρj
and satisfy

log ρj ≤ log ρmin +
1

10

(

log max
1≤j≤i

ρj − log ρmin

)

form a plateau.

4 Computed examples

We present several computed examples that illustrate the performance of the
parameter choice rules described in Sections 2 and 3. These rules are applied to
a set of linear discrete ill-posed problems from Regularization Tools [26] (Baart,
Deriv2 (with parameter 2), Foxgood, Gravity, Heat (with parameter 1), Ilaplace
(with parameter 3), Phillips [37], and Shaw [42]) as well as to the problems
Hilbert and Lotkin from the MATLAB gallery. The desired solutions x̂ are
provided by the test problems from [26]; for the problems Hilbert and Lotkin,
we use the solution x̂ of the Shaw test problem. The error-free data vector is
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Table 1: Parameter choice rules for TSVD.
Method n× n 2n× n

L-corner 6%( 0%) 4%( 0%)
Res. L-curve 3%( 1%) 1%( 0%)
Cond. L-curve 2%( 1%) 8%( 6%)
Regińska 4%( 0%) 2%( 0%)
Restr. Regińska 3%( 0%) 2%( 0%)
Quasi-optimality 9%( 1%) 7%( 1%)
GCV 24%(20%) 8%( 4%)
Extrapolation 5%( 1%) 9%( 0%)
Discrepancy 0%( 0%) 0%( 0%)

for all problems generated according to b̂ := Ax̂. All computations are carried
out in MATLAB with ǫmachine = 2.22 · 10−16.

The perturbed data vectors b are determined by adding a “noise-vector” e

to b̂. Specifically, we let the vector w have normally distributed entries with
mean zero and variance one, and compute

b = b̂+w ‖b̂‖ δ√
n
.

By the Central Limit Theorem, the relative error in b satisfies

‖b− b̂‖
‖b̂‖

≈ δ.

We use the noise-levels δ = 1·10−1, δ = 1·10−2, and δ = 1·10−3 in the computed
examples. These noise-levels are compatible with real world applications. The
value of δ is used in the discrepancy principle (5), where we substitute δ‖b̂‖ for
‖e‖; the other parameter choice rules do not explicitly use the value of δ.

Table 1 shows the performance of the parameter choice rules listed in the
first column when applied to determining the truncation index in the TSVD
method for all the test problems. We consider matrices A of sizes n × n and
2n× n for n = 40 and n = 100. The rectangular matrices are obtained by first
generating 2n× 2n matrices with the available software and then retaining the
first n columns. We solve each of the 10 square and 10 rectangular problems
10 times with different “noise-vectors.” Since three noise-levels are used, this
amounts to 1200 experiments.

Let kbest denote the truncation index that yields the smallest error, i.e.,

‖xkbest
− x̂‖ = min

j
‖xj − x̂‖.

The first (green) entries in the second and third columns of Table 1 show the
percentage of experiments that produced an approximate solution xk with

‖xk − x̂‖ > 10 ‖xkbest
− x̂‖; (25)

the second entries of the second and third columns (red and in parentheses)
display the percentage of experiments that produced an approximate solution
xk with

‖xk − x̂‖ > 100 ‖xkbest
− x̂‖. (26)
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Table 2: Parameter choice rules for LSQR.
Method n× n 2n× n

L-corner 4%( 0%) 2%( 0%)
L-triangle 4%( 3%) 4%( 4%)
Res. L-curve 13%(12%) 10%(10%)
Cond. L-curve 4%( 4%) 13%( 9%)
Regińska 3%( 0%) 1%( 0%)
Restr. Regińska 1%( 0%) 1%( 0%)
Quasi-optimality 2%( 0%) 1%( 0%)
Extrapolation 8%( 0%) 12%( 1%)
Quadrature 3%( 1%) 2%( 0%)
Ratio 0%( 0%) 0%( 0%)
Discrepancy 0%( 0%) 0%( 0%)

We used the parameter τ = 1.3 for the discrepancy principle (5). Table 1
shows most of the heuristic methods, except for GCV and the quasi-optimality
criterion, to perform quite well, with Regińska’s and the restricted Regińska
methods, as well as the residual and condition L-curve criteria to perform the
best for square matrices. The former three methods perform even better when
applied to discrete ill-posed problems with rectangular matrices. The table
illustrates that it is beneficial to use the discrepancy principle when possible
and, when this is not the case, fairly good results can be expected by using
certain heuristic parameter choice rules. Table 1 displays the reliability of the
parameter choice rules compared. Since the factors 10 and 100 in (25) and
(26), respectively, are quite large, a large entry in Table 1 indicates that the
corresponding method should not be used. For instance, the GCV method is
seen to give an error that is 10 times larger than the smallest possible in about
1/4 of the experiments. Therefore GCV is an unreliable parameter choice rule
and should not be applied to the problems at hand.

Table 2 shows the performance of the parameter choice rules of Section 3
when applied to determining which iterate xk generated by LSQR to use as
an approximation of x̂. The table is analogous to Table 1. The matrices used
were of sizes n × n or 2n × n with n = 100 and n = 400. The table shows the
restricted Regińska and the ratio methods to be the best heuristic parameter
choice rules. In fact, the latter performed as well as the discrepancy principle.
LSQR is applied with reorthogonalization. The effect of loss of orthogonality of
the columns of the matrices Uj and Vj in (19) on the quasi-optimality criterion
is illustrated in Figure 3.

The performance of heuristic parameter choice rules may depend on the
noise-level. Many of the rules perform better for large noise-levels than for
small ones. This is illustrated by Table 3 for TSVD. The L-corner, residual
L-curve, Regińska, restricted Regińska, and extrapolation methods all perform
quite well for noise-levels 1 ·10−2 and larger. It is remarkable that the condition
L-curve gives good results for the noise-level 1 · 10−3 as well.

The quasi-optimality criterion does not perform well in Table 1. We therefore
applied this criterion in conjunction with the other parameter choice rules as
described in Subsection 2.9. Table 4 displays the performance of these hybrid
methods when applied to determine the truncation index for TSVD. Application
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Table 3: Parameter choice rules for TSVD for n×n matrices and several noise-
levels δ.

Method δ = 1 · 10−3 δ = 1 · 10−2 δ = 1 · 10−1

L-corner 5%( 0%) 1%( 0%) 0%( 0%)
Res. L-curve 2%( 1%) 1%( 0%) 1%( 0%)
Cond. L-curve 0%( 0%) 0%( 0%) 2%( 1%)
Regińska 3%( 0%) 1%( 0%) 0%( 0%)
Restr. Regińska 3%( 0%) 0%( 0%) 0%( 0%)
Quasi-optimality 4%( 0%) 4%( 0%) 1%( 0%)
GCV 8%( 7%) 8%( 7%) 9%( 7%)
Extrapolation 3%( 0%) 1%( 0%) 0%( 0%)
Discrepancy 0%( 0%) 0%( 0%) 0%( 0%)

Table 4: Hybrid parameter choice rules using the quasi-optimality criterion
applied to TSVD.

Method n× n 2n× n
Q-L-corner 6%( 0%) 4%( 0%)
Q-Res. L-curve 2%( 1%) 1%( 0%)
Q-Cond. L-curve 1%( 1%) 5%( 2%)
Q-Regińska 4%( 0%) 2%( 0%)
Q-Restr. Regińska 3%( 0%) 2%( 0%)
Q-GCV 20%(17%) 4%( 1%)
Q-Extrapolation 1%( 1%) 0%( 0%)

Table 5: Hybrid parameter choice rules using the quasi-optimality criterion
applied to LSQR.

Method n× n 2n× n
Q-L-corner 4%( 0%) 1%( 0%)
Q-L-triangle 4%( 3%) 4%( 4%)
Q-Res. L-curve 12%(12%) 10%(10%)
Q-Cond. L-curve 4%( 4%) 11%( 7%)
Q-Regińska 3%( 0%) 1%( 0%)
Q-Restr. Regińska 2%( 0%) 1%( 0%)
Q-Extrapolation 3%( 0%) 1%( 1%)
Q-Quadrature 2%( 1%) 0%( 0%)
Q-Ratio 0%( 0%) 0%( 0%)
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Table 6: Parameter choice rules for TGSVD with regularization matrix (28).
Method n× n 2n× n

Regińska 5%(0%) 6%( 0%)
Restr. Regińska 2%(0%) 2%( 0%)
Quasi-optimality 12%(0%) 6%( 0%)
Extrapolation 8%(2%) 3%( 0%)
Discrepancy 3%(0%) 2%( 0%)

to choosing a suitable iterate computed with LSQR is illustrated in Table 5.
The hybrid methods perform much better than the quasi-optimality criterion
in Table 1, and several of the parameter choice rules of Table 1 are enhanced
by combining them with the quasi-optimality criterion. Some parameter choice
methods in Table 2 are improved by combining them with the quasi-optimality
criterion. LSQR is used with reorthogonalization.

For some discrete ill-posed problems a more accurate approximation of the
desired solution x̂ can be determined by using a suitable regularization ma-
trix L. Common choices of regularization matrices are scaled finite difference
approximations of derivative operators such as

L =
1

2










1 −1 0
1 −1

1 −1
. . .

. . .

0 1 −1










∈ R
(n−1)×n (27)

and

L =
1

4








−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1







∈ R

(n−2)×n; (28)

see, e.g., [13, 25, 40] for discussions on properties of these and other regulariza-
tion matrices.

For small to medium-sized problems, the regularization matrices are applied
by first reducing the matrix pair {A,L} by the generalized SVD (GSVD) to a
pair of diagonal matrices. Regularization then can be carried out by only includ-
ing terms with sufficiently large generalized singular values in the representation
of the computed approximation of x̂; see [25] for details. The regularization
method so obtained is referred to as the truncated GSVD (TGSVD) method. A
parameter choice rule is applied to determine a suitable truncation index, just
as for TSVD. The TGSVD regularization method is equivalent to applying the
TSVD of the matrix AL†

A to regularize the least-squares problem (29) defined
below; see [23] for details. Table 6 describes results obtained with this approach
for the best performing parameter choice rules. The restricted Regińska method
yields particularly good results; they are better than those achieved with the
discrepancy principle.

It is not attractive to compute the GSVD of a matrix pair {A,L} with
large matrices due to the high computational cost. Eldén [14] introduced the
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Table 7: Parameter choice rules for LSQR with regularization matrix (28).
Method n× n 2n× n

Regińska 8%(0%) 7%(0%)
Restr. Regińska 1%(0%) 2%(0%)
Quasi-optimality 6%(0%) 4%(0%)
Ratio 11%(0%) 11%(1%)
Discrepancy 3%(0%) 3%(0%)

A-weighted generalized inverse of L, denoted by L†
A, with the property that the

minimization problem
min
y∈Rn

‖AL†
Ay − b̄‖ (29)

is equivalent to (1). Here b̄ is a suitable modification of the vector b in (1). We
apply LSQR to the solution of (29) and use a parameter choice rule to deter-
mine which iterate yk to select. This iterate is transformed to an approximate
solution xk of (1). When L is a banded matrix with an explicitly known null
space of small dimension, it is not much more expensive to compute matrix-
vector products with AL†

A and (AL†
A)

T than with A and AT ; see [14, 25] for
details. Table 7 displays results achieved with this approach for the parameter
choice rules that gave the best results. The restricted Regińska method performs
especially well.

0 10 20 30 40
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

0 10 20 30 40

10
−4

10
−2

10
0

10
2
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Figure 1: TGSVD, Phillips, m = n = 40, L defined by (27), noise-level δ =
1 · 10−3: left Restr. Regińska, right Quasi-optimality.

We conclude this section with a few graphs that shed light on the perfor-
mance of the parameter choice rules in our comparison. Each figure contains, for
a subset of methods, a plot of the index associated to each method, and a table
reporting the value of the truncation parameter k chosen and the corresponding
error norm ‖xk− x̂‖. Figure 1 shows an example for which the preprocessing in
the restricted Regińska method is beneficial when determining the truncation
index for the TGSVD method. The index chosen is marked by a red dot and by
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a red vertical dashed line. The quasi-optimality criterion is seen to pick a poor
index. The table shows that none of the heuristic parameter choice rules is able
to pick the index that yields the smallest error (k = 8), and that the restricted
Regińska method determines the best approximation of x̂.
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Figure 2: LSQR, Deriv2, m = n = 100, noise-level δ = 1 · 10−3: NW restricted
Regińska, NE Quasi-optimality, SW Quadrature, SE Ratio.

Figure 2 considers LSQR applied to Deriv2 with noise-level 1 ·10−3. None of
the heuristic parameter choice rules is able to determine the iteration number of
the iterate x11 closest to x̂. The ratio parameter choice rule is seen to perform
the best, but the restricted Regińska method also produces an acceptable error.

Finally, Figure 3 shows all parameter choice rules to perform well, except
for the quasi-optimality criterion when LSQR is implemented without reorthog-
onalization. It is clear that reorthogonalization is mandatory when the quasi-
optimality criterion is used to determine the LSQR iterate.

5 Conclusion

For many linear discrete ill-posed problems that arise in science and engineering,
the noise-level δ is not explicitly known. It is therefore important to investigate
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Figure 3: LSQR, Deriv2, m = n = 400, L defined by (28), noise 10−1: NW
Quadrature, NE Ratio, SW Quasi-optimality applied to LSQR without re-
orthogonalization, SE Quasi-optimality applied to LSQR with reorthogonal-
ization.
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parameter choice rules that do not require knowledge about the noise-level.
This paper compares the performance of several new and known parameter
choice rules of this kind. For small to medium-sized problems that can be
solved by TSVD, we find the residual L-curve method implemented with the
L-corner algorithm and the restricted Regińska method to perform the best of
the nonhybrid parameter choice rules. Some hybrid methods that use the quasi-
optimality criterion as a postprocessing step perform even better. The hybrid
quasi-optimality-residual L-curve and quasi-optimality-extrapolation parameter
choice rules are particularly well suited to determine a suitable truncation index
for the TSVD method.

For large scale problems that are solved by LSQR, the restricted Regińska
and the ratio methods yield the best approximations of the desired solution;
in fact, the latter parameter choice rule performs as well as the discrepancy
principle. There does not seem to be a significant advantage using hybrid pa-
rameter choice rules that apply the quasi-optimality criterion when determining
a suitable iterate.

We also applied heuristic parameter choice rules when the regularization
matrices (27) and (28) were used. The restricted Regińska rule performs well in
this setting, but many parameter choice rules do not.
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