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Abstract

Many old paintings suffer from the effects of certain physicochemical phe-
nomena, that can seriously degrade their overall visual appearance.Digital
image processing techniques can be utilized for the purpose of restoring
the original appearance of a painting, with minimal physical interaction
with the painting surface. In this paper, a number of methods are pre-
sented which can yield satisfactory results. Indeed, simulation results
indicate that acceptable restoration performance may be attained, de-
spite the small size of painting surface data utilized.

1 Introduction

Varnish oxidation is a phenomenon that can degrade seriously the overall visual
appearance of old paintings. The process of removing this oxidation layer is
performed by conservation experts. It is a time-consuming process which does
not always promise guaranteed success. Indeed, the prevailing environmental
conditions as well as the chemical properties, which are exhibited by the wide
spectrum of different varnishes, make the task of selecting the appropriate
cleaning process quite difficult.

Digital image processing techniques can be applied for color restoration,
aiming at obtaining an estimate of the original appearance of a painting,
without extensive chemical cleaning treatment of its surface. In this context,
Volterra filters have been utilized to extract the original color information, by
utilizing sampled images, in the RGB color space, of certain regions of the
painting, before and after cleaning [1].

Since the RGB color space does not possess perceptional uniformity, other
color spaces might be more appropriate, at least for the purposes of color im-
age processing applications. The CIELAB color space exhibits good correspon-
dence between perceived and actual color differences, with the added advantage
of device-independence [2].

Some novel approaches to this problem are presented in this paper. Only
one acquisition pass is required, provided that a number of painting patches
have already been cleaned. In addition to uniform chromaticity, these samples
should be representative of the colors that appear in the painting. Finally,
similar colors to the ones of these clean samples should also exist in oxidized
parts of the painting.

The rest of this paper is as follows. In Section 2 the mathematical founda-
tion of the restoration methods is given. Experimental results are presented in
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Section 3. Finally, some conclusions regarding the overall restoration perfor-
mance are presented in Section 4.

2 Restoration approaches

The problem can be stated as follows. Let us suppose that s is the original
image (unknown) and x = g(s) + n is the degraded (oxidized) one, where g(·)
denotes the unknown degradation function and n is observation noise. Let us
suppose that we have N cleaned and degraded color samples xi, si respectively,
with i = 1, . . . , N . The problem is to perform a “blind” estimation ŝ of the
inverse function ŝ = f(x), based on these measurements that minimize the
following approximate expression for the mean square error (MSE):

MSE ≃
1

N

N
∑

n=1

||sn − ŝn||
2 =

1

N

N
∑

n=1

(sn − ŝn)T (sn − ŝn) (1)

As it has already been mentioned above, this approach deviates from standard
restoration procedures, because the degradation function is unknown. Despite
the involvement of some first-order statistics, the problem is approached clearly
from a deterministic point of view. That is, little or no assumptions are made
about the painting surface degradation model.

In the following, the goal is the derivation of a function that can describe
adequately the change in chrominance and luminance of the painting surface.
It should be clear that limited spatial information will be utilized in order to
approximate this phenomenon.

2.1 Linear approximation

Assume that the color of a pixel is denoted by x = [x1 x2 x3]
T , where x1, x2

and x3 correspond to the L∗, a∗ and b∗ color space coordinates of the point,
respectively. If N cleaned regions are available, N corresponding regions from
the oxidized part of the image should be selected. Let the vectors m̂si

and m̂xi
,

with i = 1, . . . , N , represent the sample mean of the ith clean and oxidized
region, respectively. For each degraded observation x we are interested in
obtaining an estimate ŝ = f(x) of the reference color s. A possible choice for
this function is:

f(x) = (A + I)x (2)

where I is the 3 × 3 identity matrix and A = [a1 a2 a3]
T is a 3 × 3 coefficient

matrix. The displacement vector d = s−x can be expressed as d = Ax, while
the coefficient matrix A can be computed by polynomial regression, that is
[d1i d2i · · · dNi]

T = m̂T
x
ai where dij = m̂sji

− m̂xji
and:

m̂s = [m̂s1
m̂s2

· · · m̂sN
]

m̂x = [m̂x1
m̂x2

· · · m̂xN
]

(3)



2.2 White point transformation

Another approach is based on the fact that an object may look different, under
different lighting conditions [3]. Assume that a clean sample and its oxidized
version are viewed under the same lighting conditions. Different CIEXYZ (and,
consequently, CIELAB) values would be recorded. Instead of trying to produce
an estimate of the color difference for corresponding clean and oxidized sam-
ples, an assumption can be made that both of the samples have similar CIEXYZ
values. Thus, the difference in appearance can be attributed solely to the differ-
ent white points used for the color transformation required to obtain CIELAB
values. In the discussion that follows, vectors with the index XYZ refer to
CIEXYZ tristimulus values. Let s denote a vector of CIELAB values, which
correspond to a clean sample, and let xXY Z denote a vector that contains the
tristimulus values of the corresponding oxidized sample. The mapping from
one color space to the other is given by a nonlinear equation of the form:

x = T{xXY Z ;wXY Z} (4)

where T{·; ·} denotes the nonlinear transformation from CIEXYZ to CIELAB
and wXY Z is the white point tristimulus values vector. Thus, a white point
vector wXY Z should be determined which, after being substituted into equa-
tion (4), should yield an estimate ŝ = T{xXY Z ;wXY Z} of the clean sample.
Given the sample mean vectors m̂xXY Z

of the oxidized samples, the error can
be expressed as:

e = m̂s − T{m̂xXY Z
;wXY Z} (5)

Since the mean square error E[eT e] can not be estimated, the instantaneous
error function E = tr(eT e) can be minimized with respect to wXY Z , to yield
a solution for the white point vector. Although this is a sub-optimal solu-
tion, it can yield satisfactory results, with little computational overhead and is
extensively used in calibration problems [2].

2.3 RBF approximation

Radial basis functions networks have been used successfully as universal func-
tion approximators [4]. An arbitrary mapping f : Rp ⇒ R can be approxi-
mated as follows:

f(x) ≃
M
∑

m=1

wmφ(||x − tm||) (6)

where {φ(||x − tm||)|m = 1, . . . , M} is a set of M arbitrary functions, which
are known as radial basis functions, with corresponding centers tm and weights
wm. Of course, if the unknown function is a mapping of the form f : Rp ⇒ Rq,
equation (6) can be utilized to perform approximation on each one of the q

dimensions separately.
Let φ(·) denote the non-normalized Gaussian function, i.e.:

φ(||x − tm||) = g(x; tm,Σ−1
m ) (7)



where Σ−1
m represents the inverse covariance matrix of the mth Gaussian and:

g(x; tm,Σ−1
m ) = exp

{

−
1

2
(x − tm)T Σ−1

m (x − tm)

}

(8)

Our goal, is the RBF approximation of the unknown function f : R3 ⇒ R3,
where it is known that:

f(m̂xn
) = m̂sn

− m̂xn
, n = 1, . . . , N (9)

The function f can also be written as: f(x) = [f (1)(x) f (2)(x) f (3)(x)]T ,
where f (i), i = 1, 2, 3 is the ith color component of f . Thus:

f (i)(x) ≃

M
∑

m=1

w(i)
m g(x; t(i)

m ,Σ(i)−1

m ), i = 1, 2, 3 (10)

where the parameters of M Gaussian functions should be estimated, for each
one of the three color components. Estimation was carried out by a gradient
descent algorithm, in order to minimize the total squared error [4]. If the data
set size N is large, the computational requirements can be greatly reduced,
if the covariance matrix assumes a diagonal for, although this may limit the
overall network restoration performance.

3 Simulation results

Simulations were carried out on a painting which was chemically cleaned on its
right half. Regions of the cleaned and oxidized parts are depicted in Figures 1(a)
and (b), respectively. Five regions on each part were selected, with sizes ranging
from 5×5 to 16×16 points, depending on the uniformity of the sample. Sample
mean values of each region were estimated and consequently utilized to restore
the oxidized image, with the methods described in Section 2.

Results of the linear approximation and white point transformation meth-
ods are shown in Figures 1(c) and (d), respectively. In the RBF approach
either one or two Gaussians per color channel were used to approximate the
displacement in the CIELAB color space. An estimate of the mean square er-
ror E[(m̂s − m̂ŝ)

T (m̂s − m̂ŝ)] was used as a quantitative criterion for assessing
color restoration performance. Results are summarized in Table 1. Subjective
comparison indicated satisfactory performance, for the white point and linear
approximation methods, with the former slightly outperforming the latter, as
can be seen by comparing Fig. 1(c)-(d) with Fig. 1(a).

The fact that, subjectively, restoration performance does not correlate well
with the figures of Table 1 is not at variance with the claim of good perceptual
uniformity of the CIELAB color space.Indeed, the RBF networks used approx-
imated quite well the unknown function at the points of the data set, but could
not interpolate satisfactorily. This is a consequence of the small data set size
used in this experiment. White point transformation and linear approxima-
tion yielded good approximation and interpolation performance, due to the



Table 1: Comparison of MSE for the presented methods.

Method MSE
Linear approximation 93.21
White point 190.37
RBF (one Gaussian per channel) 126.46
RBF (two Gaussians per channel) 88.30

underlying “smoothing” nature of each method. Additionally, computational
requirements of these two methods is low.

The effectiveness of the presented methods, was found to be strongly de-
pendent on the size of the data used, as well as the size of the color space
region they occupied. Of these two factors, the latter one is of the highest
significance, because if the gamut covered by the available samples is very lim-
ited, poor restoration performance will be obtained, regardless of the number
of samples used.

4 Conclusions

This paper presented a number of digital restoration techniques for old paint-
ings, which can be used to recover the original painting appearance with little
physical manipulation of the painting surface. Despite the apparent simplicity
of these methods, simulations performed on a number of different paintings in-
dicated that satisfactory results can be obtained. In addition to the advantages
mentioned above, the small computational requirements can contribute to the
overall usefulness of these methods.
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Figure 1: (a) Clean and (b) oxidized region of the test image. Restoration per-
formance results: (c) linear approximation and (d) white point transformation.
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